You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1312 lines
46KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #ifndef AVCODEC_H264_H
  27. #define AVCODEC_H264_H
  28. #include "libavutil/intreadwrite.h"
  29. #include "dsputil.h"
  30. #include "cabac.h"
  31. #include "mpegvideo.h"
  32. #include "h264dsp.h"
  33. #include "h264pred.h"
  34. #include "rectangle.h"
  35. #define interlaced_dct interlaced_dct_is_a_bad_name
  36. #define mb_intra mb_intra_is_not_initialized_see_mb_type
  37. #define LUMA_DC_BLOCK_INDEX 24
  38. #define CHROMA_DC_BLOCK_INDEX 25
  39. #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
  40. #define COEFF_TOKEN_VLC_BITS 8
  41. #define TOTAL_ZEROS_VLC_BITS 9
  42. #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
  43. #define RUN_VLC_BITS 3
  44. #define RUN7_VLC_BITS 6
  45. #define MAX_SPS_COUNT 32
  46. #define MAX_PPS_COUNT 256
  47. #define MAX_MMCO_COUNT 66
  48. #define MAX_DELAYED_PIC_COUNT 16
  49. /* Compiling in interlaced support reduces the speed
  50. * of progressive decoding by about 2%. */
  51. #define ALLOW_INTERLACE
  52. #define ALLOW_NOCHROMA
  53. #define FMO 0
  54. /**
  55. * The maximum number of slices supported by the decoder.
  56. * must be a power of 2
  57. */
  58. #define MAX_SLICES 16
  59. #ifdef ALLOW_INTERLACE
  60. #define MB_MBAFF h->mb_mbaff
  61. #define MB_FIELD h->mb_field_decoding_flag
  62. #define FRAME_MBAFF h->mb_aff_frame
  63. #define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
  64. #else
  65. #define MB_MBAFF 0
  66. #define MB_FIELD 0
  67. #define FRAME_MBAFF 0
  68. #define FIELD_PICTURE 0
  69. #undef IS_INTERLACED
  70. #define IS_INTERLACED(mb_type) 0
  71. #endif
  72. #define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
  73. #ifdef ALLOW_NOCHROMA
  74. #define CHROMA h->sps.chroma_format_idc
  75. #else
  76. #define CHROMA 1
  77. #endif
  78. #ifndef CABAC
  79. #define CABAC h->pps.cabac
  80. #endif
  81. #define EXTENDED_SAR 255
  82. #define MB_TYPE_REF0 MB_TYPE_ACPRED //dirty but it fits in 16 bit
  83. #define MB_TYPE_8x8DCT 0x01000000
  84. #define IS_REF0(a) ((a) & MB_TYPE_REF0)
  85. #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
  86. /**
  87. * Value of Picture.reference when Picture is not a reference picture, but
  88. * is held for delayed output.
  89. */
  90. #define DELAYED_PIC_REF 4
  91. /* NAL unit types */
  92. enum {
  93. NAL_SLICE=1,
  94. NAL_DPA,
  95. NAL_DPB,
  96. NAL_DPC,
  97. NAL_IDR_SLICE,
  98. NAL_SEI,
  99. NAL_SPS,
  100. NAL_PPS,
  101. NAL_AUD,
  102. NAL_END_SEQUENCE,
  103. NAL_END_STREAM,
  104. NAL_FILLER_DATA,
  105. NAL_SPS_EXT,
  106. NAL_AUXILIARY_SLICE=19
  107. };
  108. /**
  109. * SEI message types
  110. */
  111. typedef enum {
  112. SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
  113. SEI_TYPE_PIC_TIMING = 1, ///< picture timing
  114. SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
  115. SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync)
  116. } SEI_Type;
  117. /**
  118. * pic_struct in picture timing SEI message
  119. */
  120. typedef enum {
  121. SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
  122. SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
  123. SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
  124. SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
  125. SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
  126. SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
  127. SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
  128. SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
  129. SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
  130. } SEI_PicStructType;
  131. /**
  132. * Sequence parameter set
  133. */
  134. typedef struct SPS{
  135. int profile_idc;
  136. int level_idc;
  137. int chroma_format_idc;
  138. int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
  139. int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
  140. int poc_type; ///< pic_order_cnt_type
  141. int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
  142. int delta_pic_order_always_zero_flag;
  143. int offset_for_non_ref_pic;
  144. int offset_for_top_to_bottom_field;
  145. int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
  146. int ref_frame_count; ///< num_ref_frames
  147. int gaps_in_frame_num_allowed_flag;
  148. int mb_width; ///< pic_width_in_mbs_minus1 + 1
  149. int mb_height; ///< pic_height_in_map_units_minus1 + 1
  150. int frame_mbs_only_flag;
  151. int mb_aff; ///<mb_adaptive_frame_field_flag
  152. int direct_8x8_inference_flag;
  153. int crop; ///< frame_cropping_flag
  154. unsigned int crop_left; ///< frame_cropping_rect_left_offset
  155. unsigned int crop_right; ///< frame_cropping_rect_right_offset
  156. unsigned int crop_top; ///< frame_cropping_rect_top_offset
  157. unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
  158. int vui_parameters_present_flag;
  159. AVRational sar;
  160. int video_signal_type_present_flag;
  161. int full_range;
  162. int colour_description_present_flag;
  163. enum AVColorPrimaries color_primaries;
  164. enum AVColorTransferCharacteristic color_trc;
  165. enum AVColorSpace colorspace;
  166. int timing_info_present_flag;
  167. uint32_t num_units_in_tick;
  168. uint32_t time_scale;
  169. int fixed_frame_rate_flag;
  170. short offset_for_ref_frame[256]; //FIXME dyn aloc?
  171. int bitstream_restriction_flag;
  172. int num_reorder_frames;
  173. int scaling_matrix_present;
  174. uint8_t scaling_matrix4[6][16];
  175. uint8_t scaling_matrix8[2][64];
  176. int nal_hrd_parameters_present_flag;
  177. int vcl_hrd_parameters_present_flag;
  178. int pic_struct_present_flag;
  179. int time_offset_length;
  180. int cpb_cnt; ///< See H.264 E.1.2
  181. int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
  182. int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
  183. int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
  184. int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
  185. int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
  186. int residual_color_transform_flag; ///< residual_colour_transform_flag
  187. int constraint_set_flags; ///< constraint_set[0-3]_flag
  188. }SPS;
  189. /**
  190. * Picture parameter set
  191. */
  192. typedef struct PPS{
  193. unsigned int sps_id;
  194. int cabac; ///< entropy_coding_mode_flag
  195. int pic_order_present; ///< pic_order_present_flag
  196. int slice_group_count; ///< num_slice_groups_minus1 + 1
  197. int mb_slice_group_map_type;
  198. unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
  199. int weighted_pred; ///< weighted_pred_flag
  200. int weighted_bipred_idc;
  201. int init_qp; ///< pic_init_qp_minus26 + 26
  202. int init_qs; ///< pic_init_qs_minus26 + 26
  203. int chroma_qp_index_offset[2];
  204. int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
  205. int constrained_intra_pred; ///< constrained_intra_pred_flag
  206. int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
  207. int transform_8x8_mode; ///< transform_8x8_mode_flag
  208. uint8_t scaling_matrix4[6][16];
  209. uint8_t scaling_matrix8[2][64];
  210. uint8_t chroma_qp_table[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
  211. int chroma_qp_diff;
  212. }PPS;
  213. /**
  214. * Memory management control operation opcode.
  215. */
  216. typedef enum MMCOOpcode{
  217. MMCO_END=0,
  218. MMCO_SHORT2UNUSED,
  219. MMCO_LONG2UNUSED,
  220. MMCO_SHORT2LONG,
  221. MMCO_SET_MAX_LONG,
  222. MMCO_RESET,
  223. MMCO_LONG,
  224. } MMCOOpcode;
  225. /**
  226. * Memory management control operation.
  227. */
  228. typedef struct MMCO{
  229. MMCOOpcode opcode;
  230. int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
  231. int long_arg; ///< index, pic_num, or num long refs depending on opcode
  232. } MMCO;
  233. /**
  234. * H264Context
  235. */
  236. typedef struct H264Context{
  237. MpegEncContext s;
  238. H264DSPContext h264dsp;
  239. int chroma_qp[2]; //QPc
  240. int qp_thresh; ///< QP threshold to skip loopfilter
  241. int prev_mb_skipped;
  242. int next_mb_skipped;
  243. //prediction stuff
  244. int chroma_pred_mode;
  245. int intra16x16_pred_mode;
  246. int topleft_mb_xy;
  247. int top_mb_xy;
  248. int topright_mb_xy;
  249. int left_mb_xy[2];
  250. int topleft_type;
  251. int top_type;
  252. int topright_type;
  253. int left_type[2];
  254. const uint8_t * left_block;
  255. int topleft_partition;
  256. int8_t intra4x4_pred_mode_cache[5*8];
  257. int8_t (*intra4x4_pred_mode);
  258. H264PredContext hpc;
  259. unsigned int topleft_samples_available;
  260. unsigned int top_samples_available;
  261. unsigned int topright_samples_available;
  262. unsigned int left_samples_available;
  263. uint8_t (*top_borders[2])[16+2*8];
  264. /**
  265. * non zero coeff count cache.
  266. * is 64 if not available.
  267. */
  268. DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[6*8];
  269. /*
  270. .UU.YYYY
  271. .UU.YYYY
  272. .vv.YYYY
  273. .VV.YYYY
  274. */
  275. uint8_t (*non_zero_count)[32];
  276. /**
  277. * Motion vector cache.
  278. */
  279. DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5*8][2];
  280. DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5*8];
  281. #define LIST_NOT_USED -1 //FIXME rename?
  282. #define PART_NOT_AVAILABLE -2
  283. /**
  284. * is 1 if the specific list MV&references are set to 0,0,-2.
  285. */
  286. int mv_cache_clean[2];
  287. /**
  288. * number of neighbors (top and/or left) that used 8x8 dct
  289. */
  290. int neighbor_transform_size;
  291. /**
  292. * block_offset[ 0..23] for frame macroblocks
  293. * block_offset[24..47] for field macroblocks
  294. */
  295. int block_offset[2*(16+8)];
  296. uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
  297. uint32_t *mb2br_xy;
  298. int b_stride; //FIXME use s->b4_stride
  299. int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff
  300. int mb_uvlinesize;
  301. int emu_edge_width;
  302. int emu_edge_height;
  303. SPS sps; ///< current sps
  304. /**
  305. * current pps
  306. */
  307. PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
  308. uint32_t dequant4_buffer[6][52][16]; //FIXME should these be moved down?
  309. uint32_t dequant8_buffer[2][52][64];
  310. uint32_t (*dequant4_coeff[6])[16];
  311. uint32_t (*dequant8_coeff[2])[64];
  312. int slice_num;
  313. uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
  314. int slice_type;
  315. int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
  316. int slice_type_fixed;
  317. //interlacing specific flags
  318. int mb_aff_frame;
  319. int mb_field_decoding_flag;
  320. int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
  321. DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
  322. //Weighted pred stuff
  323. int use_weight;
  324. int use_weight_chroma;
  325. int luma_log2_weight_denom;
  326. int chroma_log2_weight_denom;
  327. //The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
  328. int luma_weight[48][2][2];
  329. int chroma_weight[48][2][2][2];
  330. int implicit_weight[48][48][2];
  331. int direct_spatial_mv_pred;
  332. int col_parity;
  333. int col_fieldoff;
  334. int dist_scale_factor[16];
  335. int dist_scale_factor_field[2][32];
  336. int map_col_to_list0[2][16+32];
  337. int map_col_to_list0_field[2][2][16+32];
  338. /**
  339. * num_ref_idx_l0/1_active_minus1 + 1
  340. */
  341. unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
  342. unsigned int list_count;
  343. uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
  344. Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
  345. Reordered version of default_ref_list
  346. according to picture reordering in slice header */
  347. int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
  348. //data partitioning
  349. GetBitContext intra_gb;
  350. GetBitContext inter_gb;
  351. GetBitContext *intra_gb_ptr;
  352. GetBitContext *inter_gb_ptr;
  353. DECLARE_ALIGNED(16, DCTELEM, mb)[16*24];
  354. DECLARE_ALIGNED(16, DCTELEM, mb_luma_dc)[16];
  355. DCTELEM mb_padding[256]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
  356. /**
  357. * Cabac
  358. */
  359. CABACContext cabac;
  360. uint8_t cabac_state[460];
  361. /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
  362. uint16_t *cbp_table;
  363. int cbp;
  364. int top_cbp;
  365. int left_cbp;
  366. /* chroma_pred_mode for i4x4 or i16x16, else 0 */
  367. uint8_t *chroma_pred_mode_table;
  368. int last_qscale_diff;
  369. uint8_t (*mvd_table[2])[2];
  370. DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5*8][2];
  371. uint8_t *direct_table;
  372. uint8_t direct_cache[5*8];
  373. uint8_t zigzag_scan[16];
  374. uint8_t zigzag_scan8x8[64];
  375. uint8_t zigzag_scan8x8_cavlc[64];
  376. uint8_t field_scan[16];
  377. uint8_t field_scan8x8[64];
  378. uint8_t field_scan8x8_cavlc[64];
  379. const uint8_t *zigzag_scan_q0;
  380. const uint8_t *zigzag_scan8x8_q0;
  381. const uint8_t *zigzag_scan8x8_cavlc_q0;
  382. const uint8_t *field_scan_q0;
  383. const uint8_t *field_scan8x8_q0;
  384. const uint8_t *field_scan8x8_cavlc_q0;
  385. int x264_build;
  386. int mb_xy;
  387. int is_complex;
  388. //deblock
  389. int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
  390. int slice_alpha_c0_offset;
  391. int slice_beta_offset;
  392. //=============================================================
  393. //Things below are not used in the MB or more inner code
  394. int nal_ref_idc;
  395. int nal_unit_type;
  396. uint8_t *rbsp_buffer[2];
  397. unsigned int rbsp_buffer_size[2];
  398. /**
  399. * Used to parse AVC variant of h264
  400. */
  401. int is_avc; ///< this flag is != 0 if codec is avc1
  402. int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
  403. int got_first; ///< this flag is != 0 if we've parsed a frame
  404. SPS *sps_buffers[MAX_SPS_COUNT];
  405. PPS *pps_buffers[MAX_PPS_COUNT];
  406. int dequant_coeff_pps; ///< reinit tables when pps changes
  407. uint16_t *slice_table_base;
  408. //POC stuff
  409. int poc_lsb;
  410. int poc_msb;
  411. int delta_poc_bottom;
  412. int delta_poc[2];
  413. int frame_num;
  414. int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
  415. int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
  416. int frame_num_offset; ///< for POC type 2
  417. int prev_frame_num_offset; ///< for POC type 2
  418. int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
  419. /**
  420. * frame_num for frames or 2*frame_num+1 for field pics.
  421. */
  422. int curr_pic_num;
  423. /**
  424. * max_frame_num or 2*max_frame_num for field pics.
  425. */
  426. int max_pic_num;
  427. int redundant_pic_count;
  428. Picture *short_ref[32];
  429. Picture *long_ref[32];
  430. Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
  431. Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
  432. int outputed_poc;
  433. /**
  434. * memory management control operations buffer.
  435. */
  436. MMCO mmco[MAX_MMCO_COUNT];
  437. int mmco_index;
  438. int long_ref_count; ///< number of actual long term references
  439. int short_ref_count; ///< number of actual short term references
  440. int cabac_init_idc;
  441. /**
  442. * @defgroup multithreading Members for slice based multithreading
  443. * @{
  444. */
  445. struct H264Context *thread_context[MAX_THREADS];
  446. /**
  447. * current slice number, used to initalize slice_num of each thread/context
  448. */
  449. int current_slice;
  450. /**
  451. * Max number of threads / contexts.
  452. * This is equal to AVCodecContext.thread_count unless
  453. * multithreaded decoding is impossible, in which case it is
  454. * reduced to 1.
  455. */
  456. int max_contexts;
  457. /**
  458. * 1 if the single thread fallback warning has already been
  459. * displayed, 0 otherwise.
  460. */
  461. int single_decode_warning;
  462. int last_slice_type;
  463. /** @} */
  464. /**
  465. * pic_struct in picture timing SEI message
  466. */
  467. SEI_PicStructType sei_pic_struct;
  468. /**
  469. * Complement sei_pic_struct
  470. * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
  471. * However, soft telecined frames may have these values.
  472. * This is used in an attempt to flag soft telecine progressive.
  473. */
  474. int prev_interlaced_frame;
  475. /**
  476. * Bit set of clock types for fields/frames in picture timing SEI message.
  477. * For each found ct_type, appropriate bit is set (e.g., bit 1 for
  478. * interlaced).
  479. */
  480. int sei_ct_type;
  481. /**
  482. * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
  483. */
  484. int sei_dpb_output_delay;
  485. /**
  486. * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
  487. */
  488. int sei_cpb_removal_delay;
  489. /**
  490. * recovery_frame_cnt from SEI message
  491. *
  492. * Set to -1 if no recovery point SEI message found or to number of frames
  493. * before playback synchronizes. Frames having recovery point are key
  494. * frames.
  495. */
  496. int sei_recovery_frame_cnt;
  497. int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
  498. int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
  499. // Timestamp stuff
  500. int sei_buffering_period_present; ///< Buffering period SEI flag
  501. int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
  502. //SVQ3 specific fields
  503. int halfpel_flag;
  504. int thirdpel_flag;
  505. int unknown_svq3_flag;
  506. int next_slice_index;
  507. uint32_t svq3_watermark_key;
  508. }H264Context;
  509. extern const uint8_t ff_h264_chroma_qp[52];
  510. /**
  511. * Decode SEI
  512. */
  513. int ff_h264_decode_sei(H264Context *h);
  514. /**
  515. * Decode SPS
  516. */
  517. int ff_h264_decode_seq_parameter_set(H264Context *h);
  518. /**
  519. * compute profile from sps
  520. */
  521. int ff_h264_get_profile(SPS *sps);
  522. /**
  523. * Decode PPS
  524. */
  525. int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
  526. /**
  527. * Decode a network abstraction layer unit.
  528. * @param consumed is the number of bytes used as input
  529. * @param length is the length of the array
  530. * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
  531. * @return decoded bytes, might be src+1 if no escapes
  532. */
  533. const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
  534. /**
  535. * Free any data that may have been allocated in the H264 context like SPS, PPS etc.
  536. */
  537. av_cold void ff_h264_free_context(H264Context *h);
  538. /**
  539. * Reconstruct bitstream slice_type.
  540. */
  541. int ff_h264_get_slice_type(const H264Context *h);
  542. /**
  543. * Allocate tables.
  544. * needs width/height
  545. */
  546. int ff_h264_alloc_tables(H264Context *h);
  547. /**
  548. * Fill the default_ref_list.
  549. */
  550. int ff_h264_fill_default_ref_list(H264Context *h);
  551. int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
  552. void ff_h264_fill_mbaff_ref_list(H264Context *h);
  553. void ff_h264_remove_all_refs(H264Context *h);
  554. /**
  555. * Execute the reference picture marking (memory management control operations).
  556. */
  557. int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
  558. int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
  559. void ff_generate_sliding_window_mmcos(H264Context *h);
  560. /**
  561. * Check if the top & left blocks are available if needed & change the dc mode so it only uses the available blocks.
  562. */
  563. int ff_h264_check_intra4x4_pred_mode(H264Context *h);
  564. /**
  565. * Check if the top & left blocks are available if needed & change the dc mode so it only uses the available blocks.
  566. */
  567. int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
  568. void ff_h264_write_back_intra_pred_mode(H264Context *h);
  569. void ff_h264_hl_decode_mb(H264Context *h);
  570. int ff_h264_frame_start(H264Context *h);
  571. int ff_h264_decode_extradata(H264Context *h);
  572. av_cold int ff_h264_decode_init(AVCodecContext *avctx);
  573. av_cold int ff_h264_decode_end(AVCodecContext *avctx);
  574. av_cold void ff_h264_decode_init_vlc(void);
  575. /**
  576. * Decode a macroblock
  577. * @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  578. */
  579. int ff_h264_decode_mb_cavlc(H264Context *h);
  580. /**
  581. * Decode a CABAC coded macroblock
  582. * @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  583. */
  584. int ff_h264_decode_mb_cabac(H264Context *h);
  585. void ff_h264_init_cabac_states(H264Context *h);
  586. void ff_h264_direct_dist_scale_factor(H264Context * const h);
  587. void ff_h264_direct_ref_list_init(H264Context * const h);
  588. void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
  589. void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  590. void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  591. /**
  592. * Reset SEI values at the beginning of the frame.
  593. *
  594. * @param h H.264 context.
  595. */
  596. void ff_h264_reset_sei(H264Context *h);
  597. /*
  598. o-o o-o
  599. / / /
  600. o-o o-o
  601. ,---'
  602. o-o o-o
  603. / / /
  604. o-o o-o
  605. */
  606. /* Scan8 organization:
  607. * 0 1 2 3 4 5 6 7
  608. * 0 u u y y y y y
  609. * 1 u U U y Y Y Y Y
  610. * 2 u U U y Y Y Y Y
  611. * 3 v v y Y Y Y Y
  612. * 4 v V V y Y Y Y Y
  613. * 5 v V V DYDUDV
  614. * DY/DU/DV are for luma/chroma DC.
  615. */
  616. //This table must be here because scan8[constant] must be known at compiletime
  617. static const uint8_t scan8[16 + 2*4 + 3]={
  618. 4+1*8, 5+1*8, 4+2*8, 5+2*8,
  619. 6+1*8, 7+1*8, 6+2*8, 7+2*8,
  620. 4+3*8, 5+3*8, 4+4*8, 5+4*8,
  621. 6+3*8, 7+3*8, 6+4*8, 7+4*8,
  622. 1+1*8, 2+1*8,
  623. 1+2*8, 2+2*8,
  624. 1+4*8, 2+4*8,
  625. 1+5*8, 2+5*8,
  626. 4+5*8, 5+5*8, 6+5*8
  627. };
  628. static av_always_inline uint32_t pack16to32(int a, int b){
  629. #if HAVE_BIGENDIAN
  630. return (b&0xFFFF) + (a<<16);
  631. #else
  632. return (a&0xFFFF) + (b<<16);
  633. #endif
  634. }
  635. static av_always_inline uint16_t pack8to16(int a, int b){
  636. #if HAVE_BIGENDIAN
  637. return (b&0xFF) + (a<<8);
  638. #else
  639. return (a&0xFF) + (b<<8);
  640. #endif
  641. }
  642. /**
  643. * gets the chroma qp.
  644. */
  645. static inline int get_chroma_qp(H264Context *h, int t, int qscale){
  646. return h->pps.chroma_qp_table[t][qscale];
  647. }
  648. static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
  649. static void fill_decode_neighbors(H264Context *h, int mb_type){
  650. MpegEncContext * const s = &h->s;
  651. const int mb_xy= h->mb_xy;
  652. int topleft_xy, top_xy, topright_xy, left_xy[2];
  653. static const uint8_t left_block_options[4][16]={
  654. {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
  655. {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
  656. {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
  657. {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
  658. };
  659. h->topleft_partition= -1;
  660. top_xy = mb_xy - (s->mb_stride << MB_FIELD);
  661. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  662. * stuff, I can't imagine that these complex rules are worth it. */
  663. topleft_xy = top_xy - 1;
  664. topright_xy= top_xy + 1;
  665. left_xy[1] = left_xy[0] = mb_xy-1;
  666. h->left_block = left_block_options[0];
  667. if(FRAME_MBAFF){
  668. const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
  669. const int curr_mb_field_flag = IS_INTERLACED(mb_type);
  670. if(s->mb_y&1){
  671. if (left_mb_field_flag != curr_mb_field_flag) {
  672. left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1;
  673. if (curr_mb_field_flag) {
  674. left_xy[1] += s->mb_stride;
  675. h->left_block = left_block_options[3];
  676. } else {
  677. topleft_xy += s->mb_stride;
  678. // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
  679. h->topleft_partition = 0;
  680. h->left_block = left_block_options[1];
  681. }
  682. }
  683. }else{
  684. if(curr_mb_field_flag){
  685. topleft_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1);
  686. topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1);
  687. top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1);
  688. }
  689. if (left_mb_field_flag != curr_mb_field_flag) {
  690. if (curr_mb_field_flag) {
  691. left_xy[1] += s->mb_stride;
  692. h->left_block = left_block_options[3];
  693. } else {
  694. h->left_block = left_block_options[2];
  695. }
  696. }
  697. }
  698. }
  699. h->topleft_mb_xy = topleft_xy;
  700. h->top_mb_xy = top_xy;
  701. h->topright_mb_xy= topright_xy;
  702. h->left_mb_xy[0] = left_xy[0];
  703. h->left_mb_xy[1] = left_xy[1];
  704. //FIXME do we need all in the context?
  705. h->topleft_type = s->current_picture.mb_type[topleft_xy] ;
  706. h->top_type = s->current_picture.mb_type[top_xy] ;
  707. h->topright_type= s->current_picture.mb_type[topright_xy];
  708. h->left_type[0] = s->current_picture.mb_type[left_xy[0]] ;
  709. h->left_type[1] = s->current_picture.mb_type[left_xy[1]] ;
  710. if(FMO){
  711. if(h->slice_table[topleft_xy ] != h->slice_num) h->topleft_type = 0;
  712. if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0;
  713. if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
  714. }else{
  715. if(h->slice_table[topleft_xy ] != h->slice_num){
  716. h->topleft_type = 0;
  717. if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0;
  718. if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
  719. }
  720. }
  721. if(h->slice_table[topright_xy] != h->slice_num) h->topright_type= 0;
  722. }
  723. static void fill_decode_caches(H264Context *h, int mb_type){
  724. MpegEncContext * const s = &h->s;
  725. int topleft_xy, top_xy, topright_xy, left_xy[2];
  726. int topleft_type, top_type, topright_type, left_type[2];
  727. const uint8_t * left_block= h->left_block;
  728. int i;
  729. topleft_xy = h->topleft_mb_xy ;
  730. top_xy = h->top_mb_xy ;
  731. topright_xy = h->topright_mb_xy;
  732. left_xy[0] = h->left_mb_xy[0] ;
  733. left_xy[1] = h->left_mb_xy[1] ;
  734. topleft_type = h->topleft_type ;
  735. top_type = h->top_type ;
  736. topright_type= h->topright_type ;
  737. left_type[0] = h->left_type[0] ;
  738. left_type[1] = h->left_type[1] ;
  739. if(!IS_SKIP(mb_type)){
  740. if(IS_INTRA(mb_type)){
  741. int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
  742. h->topleft_samples_available=
  743. h->top_samples_available=
  744. h->left_samples_available= 0xFFFF;
  745. h->topright_samples_available= 0xEEEA;
  746. if(!(top_type & type_mask)){
  747. h->topleft_samples_available= 0xB3FF;
  748. h->top_samples_available= 0x33FF;
  749. h->topright_samples_available= 0x26EA;
  750. }
  751. if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
  752. if(IS_INTERLACED(mb_type)){
  753. if(!(left_type[0] & type_mask)){
  754. h->topleft_samples_available&= 0xDFFF;
  755. h->left_samples_available&= 0x5FFF;
  756. }
  757. if(!(left_type[1] & type_mask)){
  758. h->topleft_samples_available&= 0xFF5F;
  759. h->left_samples_available&= 0xFF5F;
  760. }
  761. }else{
  762. int left_typei = s->current_picture.mb_type[left_xy[0] + s->mb_stride];
  763. assert(left_xy[0] == left_xy[1]);
  764. if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
  765. h->topleft_samples_available&= 0xDF5F;
  766. h->left_samples_available&= 0x5F5F;
  767. }
  768. }
  769. }else{
  770. if(!(left_type[0] & type_mask)){
  771. h->topleft_samples_available&= 0xDF5F;
  772. h->left_samples_available&= 0x5F5F;
  773. }
  774. }
  775. if(!(topleft_type & type_mask))
  776. h->topleft_samples_available&= 0x7FFF;
  777. if(!(topright_type & type_mask))
  778. h->topright_samples_available&= 0xFBFF;
  779. if(IS_INTRA4x4(mb_type)){
  780. if(IS_INTRA4x4(top_type)){
  781. AV_COPY32(h->intra4x4_pred_mode_cache+4+8*0, h->intra4x4_pred_mode + h->mb2br_xy[top_xy]);
  782. }else{
  783. h->intra4x4_pred_mode_cache[4+8*0]=
  784. h->intra4x4_pred_mode_cache[5+8*0]=
  785. h->intra4x4_pred_mode_cache[6+8*0]=
  786. h->intra4x4_pred_mode_cache[7+8*0]= 2 - 3*!(top_type & type_mask);
  787. }
  788. for(i=0; i<2; i++){
  789. if(IS_INTRA4x4(left_type[i])){
  790. int8_t *mode= h->intra4x4_pred_mode + h->mb2br_xy[left_xy[i]];
  791. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= mode[6-left_block[0+2*i]];
  792. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= mode[6-left_block[1+2*i]];
  793. }else{
  794. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
  795. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= 2 - 3*!(left_type[i] & type_mask);
  796. }
  797. }
  798. }
  799. }
  800. /*
  801. 0 . T T. T T T T
  802. 1 L . .L . . . .
  803. 2 L . .L . . . .
  804. 3 . T TL . . . .
  805. 4 L . .L . . . .
  806. 5 L . .. . . . .
  807. */
  808. //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
  809. if(top_type){
  810. AV_COPY32(&h->non_zero_count_cache[4+8*0], &h->non_zero_count[top_xy][4+3*8]);
  811. h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
  812. h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
  813. h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
  814. h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
  815. }else {
  816. h->non_zero_count_cache[1+8*0]=
  817. h->non_zero_count_cache[2+8*0]=
  818. h->non_zero_count_cache[1+8*3]=
  819. h->non_zero_count_cache[2+8*3]=
  820. AV_WN32A(&h->non_zero_count_cache[4+8*0], CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040);
  821. }
  822. for (i=0; i<2; i++) {
  823. if(left_type[i]){
  824. h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
  825. h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
  826. h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
  827. h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
  828. }else{
  829. h->non_zero_count_cache[3+8*1 + 2*8*i]=
  830. h->non_zero_count_cache[3+8*2 + 2*8*i]=
  831. h->non_zero_count_cache[0+8*1 + 8*i]=
  832. h->non_zero_count_cache[0+8*4 + 8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
  833. }
  834. }
  835. if( CABAC ) {
  836. // top_cbp
  837. if(top_type) {
  838. h->top_cbp = h->cbp_table[top_xy];
  839. } else {
  840. h->top_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
  841. }
  842. // left_cbp
  843. if (left_type[0]) {
  844. h->left_cbp = (h->cbp_table[left_xy[0]] & 0x1f0)
  845. | ((h->cbp_table[left_xy[0]]>>(left_block[0]&(~1)))&2)
  846. | (((h->cbp_table[left_xy[1]]>>(left_block[2]&(~1)))&2) << 2);
  847. } else {
  848. h->left_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
  849. }
  850. }
  851. }
  852. if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){
  853. int list;
  854. for(list=0; list<h->list_count; list++){
  855. if(!USES_LIST(mb_type, list)){
  856. /*if(!h->mv_cache_clean[list]){
  857. memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
  858. memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
  859. h->mv_cache_clean[list]= 1;
  860. }*/
  861. continue;
  862. }
  863. assert(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred));
  864. h->mv_cache_clean[list]= 0;
  865. if(USES_LIST(top_type, list)){
  866. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  867. AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
  868. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  869. h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 2];
  870. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  871. h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 3];
  872. }else{
  873. AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
  874. AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101);
  875. }
  876. if(mb_type & (MB_TYPE_16x8|MB_TYPE_8x8)){
  877. for(i=0; i<2; i++){
  878. int cache_idx = scan8[0] - 1 + i*2*8;
  879. if(USES_LIST(left_type[i], list)){
  880. const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
  881. const int b8_xy= 4*left_xy[i] + 1;
  882. AV_COPY32(h->mv_cache[list][cache_idx ], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]]);
  883. AV_COPY32(h->mv_cache[list][cache_idx+8], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]]);
  884. h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + (left_block[0+i*2]&~1)];
  885. h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + (left_block[1+i*2]&~1)];
  886. }else{
  887. AV_ZERO32(h->mv_cache [list][cache_idx ]);
  888. AV_ZERO32(h->mv_cache [list][cache_idx+8]);
  889. h->ref_cache[list][cache_idx ]=
  890. h->ref_cache[list][cache_idx+8]= (left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  891. }
  892. }
  893. }else{
  894. if(USES_LIST(left_type[0], list)){
  895. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  896. const int b8_xy= 4*left_xy[0] + 1;
  897. AV_COPY32(h->mv_cache[list][scan8[0] - 1], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]]);
  898. h->ref_cache[list][scan8[0] - 1]= s->current_picture.ref_index[list][b8_xy + (left_block[0]&~1)];
  899. }else{
  900. AV_ZERO32(h->mv_cache [list][scan8[0] - 1]);
  901. h->ref_cache[list][scan8[0] - 1]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  902. }
  903. }
  904. if(USES_LIST(topright_type, list)){
  905. const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
  906. AV_COPY32(h->mv_cache[list][scan8[0] + 4 - 1*8], s->current_picture.motion_val[list][b_xy]);
  907. h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][4*topright_xy + 2];
  908. }else{
  909. AV_ZERO32(h->mv_cache [list][scan8[0] + 4 - 1*8]);
  910. h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  911. }
  912. if(h->ref_cache[list][scan8[0] + 4 - 1*8] < 0){
  913. if(USES_LIST(topleft_type, list)){
  914. const int b_xy = h->mb2b_xy [topleft_xy] + 3 + h->b_stride + (h->topleft_partition & 2*h->b_stride);
  915. const int b8_xy= 4*topleft_xy + 1 + (h->topleft_partition & 2);
  916. AV_COPY32(h->mv_cache[list][scan8[0] - 1 - 1*8], s->current_picture.motion_val[list][b_xy]);
  917. h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  918. }else{
  919. AV_ZERO32(h->mv_cache[list][scan8[0] - 1 - 1*8]);
  920. h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  921. }
  922. }
  923. if((mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2)) && !FRAME_MBAFF)
  924. continue;
  925. if(!(mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2))) {
  926. h->ref_cache[list][scan8[4 ]] =
  927. h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
  928. AV_ZERO32(h->mv_cache [list][scan8[4 ]]);
  929. AV_ZERO32(h->mv_cache [list][scan8[12]]);
  930. if( CABAC ) {
  931. /* XXX beurk, Load mvd */
  932. if(USES_LIST(top_type, list)){
  933. const int b_xy= h->mb2br_xy[top_xy];
  934. AV_COPY64(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]);
  935. }else{
  936. AV_ZERO64(h->mvd_cache[list][scan8[0] + 0 - 1*8]);
  937. }
  938. if(USES_LIST(left_type[0], list)){
  939. const int b_xy= h->mb2br_xy[left_xy[0]] + 6;
  940. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 0*8], h->mvd_table[list][b_xy - left_block[0]]);
  941. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 1*8], h->mvd_table[list][b_xy - left_block[1]]);
  942. }else{
  943. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 0*8]);
  944. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 1*8]);
  945. }
  946. if(USES_LIST(left_type[1], list)){
  947. const int b_xy= h->mb2br_xy[left_xy[1]] + 6;
  948. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 2*8], h->mvd_table[list][b_xy - left_block[2]]);
  949. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 3*8], h->mvd_table[list][b_xy - left_block[3]]);
  950. }else{
  951. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 2*8]);
  952. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 3*8]);
  953. }
  954. AV_ZERO16(h->mvd_cache [list][scan8[4 ]]);
  955. AV_ZERO16(h->mvd_cache [list][scan8[12]]);
  956. if(h->slice_type_nos == AV_PICTURE_TYPE_B){
  957. fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, MB_TYPE_16x16>>1, 1);
  958. if(IS_DIRECT(top_type)){
  959. AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101u*(MB_TYPE_DIRECT2>>1));
  960. }else if(IS_8X8(top_type)){
  961. int b8_xy = 4*top_xy;
  962. h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy + 2];
  963. h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 3];
  964. }else{
  965. AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101*(MB_TYPE_16x16>>1));
  966. }
  967. if(IS_DIRECT(left_type[0]))
  968. h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_DIRECT2>>1;
  969. else if(IS_8X8(left_type[0]))
  970. h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[4*left_xy[0] + 1 + (left_block[0]&~1)];
  971. else
  972. h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_16x16>>1;
  973. if(IS_DIRECT(left_type[1]))
  974. h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_DIRECT2>>1;
  975. else if(IS_8X8(left_type[1]))
  976. h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[4*left_xy[1] + 1 + (left_block[2]&~1)];
  977. else
  978. h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_16x16>>1;
  979. }
  980. }
  981. }
  982. if(FRAME_MBAFF){
  983. #define MAP_MVS\
  984. MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
  985. MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
  986. MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
  987. MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
  988. MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
  989. MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
  990. MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
  991. MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
  992. MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
  993. MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
  994. if(MB_FIELD){
  995. #define MAP_F2F(idx, mb_type)\
  996. if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  997. h->ref_cache[list][idx] <<= 1;\
  998. h->mv_cache[list][idx][1] /= 2;\
  999. h->mvd_cache[list][idx][1] >>=1;\
  1000. }
  1001. MAP_MVS
  1002. #undef MAP_F2F
  1003. }else{
  1004. #define MAP_F2F(idx, mb_type)\
  1005. if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  1006. h->ref_cache[list][idx] >>= 1;\
  1007. h->mv_cache[list][idx][1] <<= 1;\
  1008. h->mvd_cache[list][idx][1] <<= 1;\
  1009. }
  1010. MAP_MVS
  1011. #undef MAP_F2F
  1012. }
  1013. }
  1014. }
  1015. }
  1016. h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
  1017. }
  1018. /**
  1019. * gets the predicted intra4x4 prediction mode.
  1020. */
  1021. static inline int pred_intra_mode(H264Context *h, int n){
  1022. const int index8= scan8[n];
  1023. const int left= h->intra4x4_pred_mode_cache[index8 - 1];
  1024. const int top = h->intra4x4_pred_mode_cache[index8 - 8];
  1025. const int min= FFMIN(left, top);
  1026. tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
  1027. if(min<0) return DC_PRED;
  1028. else return min;
  1029. }
  1030. static inline void write_back_non_zero_count(H264Context *h){
  1031. const int mb_xy= h->mb_xy;
  1032. AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]);
  1033. AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]);
  1034. AV_COPY32(&h->non_zero_count[mb_xy][16], &h->non_zero_count_cache[0+8*5]);
  1035. AV_COPY32(&h->non_zero_count[mb_xy][20], &h->non_zero_count_cache[4+8*3]);
  1036. AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]);
  1037. }
  1038. static inline void write_back_motion(H264Context *h, int mb_type){
  1039. MpegEncContext * const s = &h->s;
  1040. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; //try mb2b(8)_xy
  1041. const int b8_xy= 4*h->mb_xy;
  1042. int list;
  1043. if(!USES_LIST(mb_type, 0))
  1044. fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
  1045. for(list=0; list<h->list_count; list++){
  1046. int y, b_stride;
  1047. int16_t (*mv_dst)[2];
  1048. int16_t (*mv_src)[2];
  1049. if(!USES_LIST(mb_type, list))
  1050. continue;
  1051. b_stride = h->b_stride;
  1052. mv_dst = &s->current_picture.motion_val[list][b_xy];
  1053. mv_src = &h->mv_cache[list][scan8[0]];
  1054. for(y=0; y<4; y++){
  1055. AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
  1056. }
  1057. if( CABAC ) {
  1058. uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8*h->mb_xy : h->mb2br_xy[h->mb_xy]];
  1059. uint8_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
  1060. if(IS_SKIP(mb_type))
  1061. AV_ZERO128(mvd_dst);
  1062. else{
  1063. AV_COPY64(mvd_dst, mvd_src + 8*3);
  1064. AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8*0);
  1065. AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8*1);
  1066. AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8*2);
  1067. }
  1068. }
  1069. {
  1070. int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
  1071. ref_index[0+0*2]= h->ref_cache[list][scan8[0]];
  1072. ref_index[1+0*2]= h->ref_cache[list][scan8[4]];
  1073. ref_index[0+1*2]= h->ref_cache[list][scan8[8]];
  1074. ref_index[1+1*2]= h->ref_cache[list][scan8[12]];
  1075. }
  1076. }
  1077. if(h->slice_type_nos == AV_PICTURE_TYPE_B && CABAC){
  1078. if(IS_8X8(mb_type)){
  1079. uint8_t *direct_table = &h->direct_table[4*h->mb_xy];
  1080. direct_table[1] = h->sub_mb_type[1]>>1;
  1081. direct_table[2] = h->sub_mb_type[2]>>1;
  1082. direct_table[3] = h->sub_mb_type[3]>>1;
  1083. }
  1084. }
  1085. }
  1086. static inline int get_dct8x8_allowed(H264Context *h){
  1087. if(h->sps.direct_8x8_inference_flag)
  1088. return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8 )*0x0001000100010001ULL));
  1089. else
  1090. return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
  1091. }
  1092. /**
  1093. * decodes a P_SKIP or B_SKIP macroblock
  1094. */
  1095. static void av_unused decode_mb_skip(H264Context *h){
  1096. MpegEncContext * const s = &h->s;
  1097. const int mb_xy= h->mb_xy;
  1098. int mb_type=0;
  1099. memset(h->non_zero_count[mb_xy], 0, 32);
  1100. memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
  1101. if(MB_FIELD)
  1102. mb_type|= MB_TYPE_INTERLACED;
  1103. if( h->slice_type_nos == AV_PICTURE_TYPE_B )
  1104. {
  1105. // just for fill_caches. pred_direct_motion will set the real mb_type
  1106. mb_type|= MB_TYPE_L0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
  1107. if(h->direct_spatial_mv_pred){
  1108. fill_decode_neighbors(h, mb_type);
  1109. fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
  1110. }
  1111. ff_h264_pred_direct_motion(h, &mb_type);
  1112. mb_type|= MB_TYPE_SKIP;
  1113. }
  1114. else
  1115. {
  1116. int mx, my;
  1117. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
  1118. fill_decode_neighbors(h, mb_type);
  1119. fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
  1120. pred_pskip_motion(h, &mx, &my);
  1121. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
  1122. fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
  1123. }
  1124. write_back_motion(h, mb_type);
  1125. s->current_picture.mb_type[mb_xy]= mb_type;
  1126. s->current_picture.qscale_table[mb_xy]= s->qscale;
  1127. h->slice_table[ mb_xy ]= h->slice_num;
  1128. h->prev_mb_skipped= 1;
  1129. }
  1130. #include "h264_mvpred.h" //For pred_pskip_motion()
  1131. #endif /* AVCODEC_H264_H */