You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

489 lines
13KB

  1. /*
  2. * (c) 2002 Fabrice Bellard
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file
  22. * FFT and MDCT tests.
  23. */
  24. #include "libavutil/mathematics.h"
  25. #include "libavutil/lfg.h"
  26. #include "libavutil/log.h"
  27. #include "fft.h"
  28. #if CONFIG_FFT_FLOAT
  29. #include "dct.h"
  30. #include "rdft.h"
  31. #endif
  32. #include <math.h>
  33. #include <unistd.h>
  34. #include <sys/time.h>
  35. #include <stdlib.h>
  36. #include <string.h>
  37. #undef exit
  38. /* reference fft */
  39. #define MUL16(a,b) ((a) * (b))
  40. #define CMAC(pre, pim, are, aim, bre, bim) \
  41. {\
  42. pre += (MUL16(are, bre) - MUL16(aim, bim));\
  43. pim += (MUL16(are, bim) + MUL16(bre, aim));\
  44. }
  45. #if CONFIG_FFT_FLOAT
  46. # define RANGE 1.0
  47. # define REF_SCALE(x, bits) (x)
  48. # define FMT "%10.6f"
  49. #else
  50. # define RANGE 16384
  51. # define REF_SCALE(x, bits) ((x) / (1<<(bits)))
  52. # define FMT "%6d"
  53. #endif
  54. struct {
  55. float re, im;
  56. } *exptab;
  57. static void fft_ref_init(int nbits, int inverse)
  58. {
  59. int n, i;
  60. double c1, s1, alpha;
  61. n = 1 << nbits;
  62. exptab = av_malloc((n / 2) * sizeof(*exptab));
  63. for (i = 0; i < (n/2); i++) {
  64. alpha = 2 * M_PI * (float)i / (float)n;
  65. c1 = cos(alpha);
  66. s1 = sin(alpha);
  67. if (!inverse)
  68. s1 = -s1;
  69. exptab[i].re = c1;
  70. exptab[i].im = s1;
  71. }
  72. }
  73. static void fft_ref(FFTComplex *tabr, FFTComplex *tab, int nbits)
  74. {
  75. int n, i, j, k, n2;
  76. double tmp_re, tmp_im, s, c;
  77. FFTComplex *q;
  78. n = 1 << nbits;
  79. n2 = n >> 1;
  80. for (i = 0; i < n; i++) {
  81. tmp_re = 0;
  82. tmp_im = 0;
  83. q = tab;
  84. for (j = 0; j < n; j++) {
  85. k = (i * j) & (n - 1);
  86. if (k >= n2) {
  87. c = -exptab[k - n2].re;
  88. s = -exptab[k - n2].im;
  89. } else {
  90. c = exptab[k].re;
  91. s = exptab[k].im;
  92. }
  93. CMAC(tmp_re, tmp_im, c, s, q->re, q->im);
  94. q++;
  95. }
  96. tabr[i].re = REF_SCALE(tmp_re, nbits);
  97. tabr[i].im = REF_SCALE(tmp_im, nbits);
  98. }
  99. }
  100. static void imdct_ref(FFTSample *out, FFTSample *in, int nbits)
  101. {
  102. int n = 1<<nbits;
  103. int k, i, a;
  104. double sum, f;
  105. for (i = 0; i < n; i++) {
  106. sum = 0;
  107. for (k = 0; k < n/2; k++) {
  108. a = (2 * i + 1 + (n / 2)) * (2 * k + 1);
  109. f = cos(M_PI * a / (double)(2 * n));
  110. sum += f * in[k];
  111. }
  112. out[i] = REF_SCALE(-sum, nbits - 2);
  113. }
  114. }
  115. /* NOTE: no normalisation by 1 / N is done */
  116. static void mdct_ref(FFTSample *output, FFTSample *input, int nbits)
  117. {
  118. int n = 1<<nbits;
  119. int k, i;
  120. double a, s;
  121. /* do it by hand */
  122. for (k = 0; k < n/2; k++) {
  123. s = 0;
  124. for (i = 0; i < n; i++) {
  125. a = (2*M_PI*(2*i+1+n/2)*(2*k+1) / (4 * n));
  126. s += input[i] * cos(a);
  127. }
  128. output[k] = REF_SCALE(s, nbits - 1);
  129. }
  130. }
  131. #if CONFIG_FFT_FLOAT
  132. static void idct_ref(float *output, float *input, int nbits)
  133. {
  134. int n = 1<<nbits;
  135. int k, i;
  136. double a, s;
  137. /* do it by hand */
  138. for (i = 0; i < n; i++) {
  139. s = 0.5 * input[0];
  140. for (k = 1; k < n; k++) {
  141. a = M_PI*k*(i+0.5) / n;
  142. s += input[k] * cos(a);
  143. }
  144. output[i] = 2 * s / n;
  145. }
  146. }
  147. static void dct_ref(float *output, float *input, int nbits)
  148. {
  149. int n = 1<<nbits;
  150. int k, i;
  151. double a, s;
  152. /* do it by hand */
  153. for (k = 0; k < n; k++) {
  154. s = 0;
  155. for (i = 0; i < n; i++) {
  156. a = M_PI*k*(i+0.5) / n;
  157. s += input[i] * cos(a);
  158. }
  159. output[k] = s;
  160. }
  161. }
  162. #endif
  163. static FFTSample frandom(AVLFG *prng)
  164. {
  165. return (int16_t)av_lfg_get(prng) / 32768.0 * RANGE;
  166. }
  167. static int64_t gettime(void)
  168. {
  169. struct timeval tv;
  170. gettimeofday(&tv,NULL);
  171. return (int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
  172. }
  173. static int check_diff(FFTSample *tab1, FFTSample *tab2, int n, double scale)
  174. {
  175. int i;
  176. double max= 0;
  177. double error= 0;
  178. int err = 0;
  179. for (i = 0; i < n; i++) {
  180. double e = fabsf(tab1[i] - (tab2[i] / scale)) / RANGE;
  181. if (e >= 1e-3) {
  182. av_log(NULL, AV_LOG_ERROR, "ERROR %5d: "FMT" "FMT"\n",
  183. i, tab1[i], tab2[i]);
  184. err = 1;
  185. }
  186. error+= e*e;
  187. if(e>max) max= e;
  188. }
  189. av_log(NULL, AV_LOG_INFO, "max:%f e:%g\n", max, sqrt(error)/n);
  190. return err;
  191. }
  192. static void help(void)
  193. {
  194. av_log(NULL, AV_LOG_INFO,"usage: fft-test [-h] [-s] [-i] [-n b]\n"
  195. "-h print this help\n"
  196. "-s speed test\n"
  197. "-m (I)MDCT test\n"
  198. "-d (I)DCT test\n"
  199. "-r (I)RDFT test\n"
  200. "-i inverse transform test\n"
  201. "-n b set the transform size to 2^b\n"
  202. "-f x set scale factor for output data of (I)MDCT to x\n"
  203. );
  204. exit(1);
  205. }
  206. enum tf_transform {
  207. TRANSFORM_FFT,
  208. TRANSFORM_MDCT,
  209. TRANSFORM_RDFT,
  210. TRANSFORM_DCT,
  211. };
  212. int main(int argc, char **argv)
  213. {
  214. FFTComplex *tab, *tab1, *tab_ref;
  215. FFTSample *tab2;
  216. int it, i, c;
  217. int do_speed = 0;
  218. int err = 1;
  219. enum tf_transform transform = TRANSFORM_FFT;
  220. int do_inverse = 0;
  221. FFTContext s1, *s = &s1;
  222. FFTContext m1, *m = &m1;
  223. #if CONFIG_FFT_FLOAT
  224. RDFTContext r1, *r = &r1;
  225. DCTContext d1, *d = &d1;
  226. #endif
  227. int fft_nbits, fft_size, fft_size_2;
  228. double scale = 1.0;
  229. AVLFG prng;
  230. av_lfg_init(&prng, 1);
  231. fft_nbits = 9;
  232. for(;;) {
  233. c = getopt(argc, argv, "hsimrdn:f:");
  234. if (c == -1)
  235. break;
  236. switch(c) {
  237. case 'h':
  238. help();
  239. break;
  240. case 's':
  241. do_speed = 1;
  242. break;
  243. case 'i':
  244. do_inverse = 1;
  245. break;
  246. case 'm':
  247. transform = TRANSFORM_MDCT;
  248. break;
  249. case 'r':
  250. transform = TRANSFORM_RDFT;
  251. break;
  252. case 'd':
  253. transform = TRANSFORM_DCT;
  254. break;
  255. case 'n':
  256. fft_nbits = atoi(optarg);
  257. break;
  258. case 'f':
  259. scale = atof(optarg);
  260. break;
  261. }
  262. }
  263. fft_size = 1 << fft_nbits;
  264. fft_size_2 = fft_size >> 1;
  265. tab = av_malloc(fft_size * sizeof(FFTComplex));
  266. tab1 = av_malloc(fft_size * sizeof(FFTComplex));
  267. tab_ref = av_malloc(fft_size * sizeof(FFTComplex));
  268. tab2 = av_malloc(fft_size * sizeof(FFTSample));
  269. switch (transform) {
  270. case TRANSFORM_MDCT:
  271. av_log(NULL, AV_LOG_INFO,"Scale factor is set to %f\n", scale);
  272. if (do_inverse)
  273. av_log(NULL, AV_LOG_INFO,"IMDCT");
  274. else
  275. av_log(NULL, AV_LOG_INFO,"MDCT");
  276. ff_mdct_init(m, fft_nbits, do_inverse, scale);
  277. break;
  278. case TRANSFORM_FFT:
  279. if (do_inverse)
  280. av_log(NULL, AV_LOG_INFO,"IFFT");
  281. else
  282. av_log(NULL, AV_LOG_INFO,"FFT");
  283. ff_fft_init(s, fft_nbits, do_inverse);
  284. fft_ref_init(fft_nbits, do_inverse);
  285. break;
  286. #if CONFIG_FFT_FLOAT
  287. case TRANSFORM_RDFT:
  288. if (do_inverse)
  289. av_log(NULL, AV_LOG_INFO,"IDFT_C2R");
  290. else
  291. av_log(NULL, AV_LOG_INFO,"DFT_R2C");
  292. ff_rdft_init(r, fft_nbits, do_inverse ? IDFT_C2R : DFT_R2C);
  293. fft_ref_init(fft_nbits, do_inverse);
  294. break;
  295. case TRANSFORM_DCT:
  296. if (do_inverse)
  297. av_log(NULL, AV_LOG_INFO,"DCT_III");
  298. else
  299. av_log(NULL, AV_LOG_INFO,"DCT_II");
  300. ff_dct_init(d, fft_nbits, do_inverse ? DCT_III : DCT_II);
  301. break;
  302. #endif
  303. default:
  304. av_log(NULL, AV_LOG_ERROR, "Requested transform not supported\n");
  305. return 1;
  306. }
  307. av_log(NULL, AV_LOG_INFO," %d test\n", fft_size);
  308. /* generate random data */
  309. for (i = 0; i < fft_size; i++) {
  310. tab1[i].re = frandom(&prng);
  311. tab1[i].im = frandom(&prng);
  312. }
  313. /* checking result */
  314. av_log(NULL, AV_LOG_INFO,"Checking...\n");
  315. switch (transform) {
  316. case TRANSFORM_MDCT:
  317. if (do_inverse) {
  318. imdct_ref((FFTSample *)tab_ref, (FFTSample *)tab1, fft_nbits);
  319. m->imdct_calc(m, tab2, (FFTSample *)tab1);
  320. err = check_diff((FFTSample *)tab_ref, tab2, fft_size, scale);
  321. } else {
  322. mdct_ref((FFTSample *)tab_ref, (FFTSample *)tab1, fft_nbits);
  323. m->mdct_calc(m, tab2, (FFTSample *)tab1);
  324. err = check_diff((FFTSample *)tab_ref, tab2, fft_size / 2, scale);
  325. }
  326. break;
  327. case TRANSFORM_FFT:
  328. memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
  329. s->fft_permute(s, tab);
  330. s->fft_calc(s, tab);
  331. fft_ref(tab_ref, tab1, fft_nbits);
  332. err = check_diff((FFTSample *)tab_ref, (FFTSample *)tab, fft_size * 2, 1.0);
  333. break;
  334. #if CONFIG_FFT_FLOAT
  335. case TRANSFORM_RDFT:
  336. if (do_inverse) {
  337. tab1[ 0].im = 0;
  338. tab1[fft_size_2].im = 0;
  339. for (i = 1; i < fft_size_2; i++) {
  340. tab1[fft_size_2+i].re = tab1[fft_size_2-i].re;
  341. tab1[fft_size_2+i].im = -tab1[fft_size_2-i].im;
  342. }
  343. memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
  344. tab2[1] = tab1[fft_size_2].re;
  345. r->rdft_calc(r, tab2);
  346. fft_ref(tab_ref, tab1, fft_nbits);
  347. for (i = 0; i < fft_size; i++) {
  348. tab[i].re = tab2[i];
  349. tab[i].im = 0;
  350. }
  351. err = check_diff((float *)tab_ref, (float *)tab, fft_size * 2, 0.5);
  352. } else {
  353. for (i = 0; i < fft_size; i++) {
  354. tab2[i] = tab1[i].re;
  355. tab1[i].im = 0;
  356. }
  357. r->rdft_calc(r, tab2);
  358. fft_ref(tab_ref, tab1, fft_nbits);
  359. tab_ref[0].im = tab_ref[fft_size_2].re;
  360. err = check_diff((float *)tab_ref, (float *)tab2, fft_size, 1.0);
  361. }
  362. break;
  363. case TRANSFORM_DCT:
  364. memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
  365. d->dct_calc(d, tab);
  366. if (do_inverse) {
  367. idct_ref(tab_ref, tab1, fft_nbits);
  368. } else {
  369. dct_ref(tab_ref, tab1, fft_nbits);
  370. }
  371. err = check_diff((float *)tab_ref, (float *)tab, fft_size, 1.0);
  372. break;
  373. #endif
  374. }
  375. /* do a speed test */
  376. if (do_speed) {
  377. int64_t time_start, duration;
  378. int nb_its;
  379. av_log(NULL, AV_LOG_INFO,"Speed test...\n");
  380. /* we measure during about 1 seconds */
  381. nb_its = 1;
  382. for(;;) {
  383. time_start = gettime();
  384. for (it = 0; it < nb_its; it++) {
  385. switch (transform) {
  386. case TRANSFORM_MDCT:
  387. if (do_inverse) {
  388. m->imdct_calc(m, (FFTSample *)tab, (FFTSample *)tab1);
  389. } else {
  390. m->mdct_calc(m, (FFTSample *)tab, (FFTSample *)tab1);
  391. }
  392. break;
  393. case TRANSFORM_FFT:
  394. memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
  395. s->fft_calc(s, tab);
  396. break;
  397. #if CONFIG_FFT_FLOAT
  398. case TRANSFORM_RDFT:
  399. memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
  400. r->rdft_calc(r, tab2);
  401. break;
  402. case TRANSFORM_DCT:
  403. memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
  404. d->dct_calc(d, tab2);
  405. break;
  406. #endif
  407. }
  408. }
  409. duration = gettime() - time_start;
  410. if (duration >= 1000000)
  411. break;
  412. nb_its *= 2;
  413. }
  414. av_log(NULL, AV_LOG_INFO,"time: %0.1f us/transform [total time=%0.2f s its=%d]\n",
  415. (double)duration / nb_its,
  416. (double)duration / 1000000.0,
  417. nb_its);
  418. }
  419. switch (transform) {
  420. case TRANSFORM_MDCT:
  421. ff_mdct_end(m);
  422. break;
  423. case TRANSFORM_FFT:
  424. ff_fft_end(s);
  425. break;
  426. #if CONFIG_FFT_FLOAT
  427. case TRANSFORM_RDFT:
  428. ff_rdft_end(r);
  429. break;
  430. case TRANSFORM_DCT:
  431. ff_dct_end(d);
  432. break;
  433. #endif
  434. }
  435. av_free(tab);
  436. av_free(tab1);
  437. av_free(tab2);
  438. av_free(tab_ref);
  439. av_free(exptab);
  440. return err;
  441. }