You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

192 lines
5.6KB

  1. /*
  2. * AC-3 DSP utils
  3. * Copyright (c) 2011 Justin Ruggles
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/avassert.h"
  22. #include "avcodec.h"
  23. #include "ac3.h"
  24. #include "ac3dsp.h"
  25. static void ac3_exponent_min_c(uint8_t *exp, int num_reuse_blocks, int nb_coefs)
  26. {
  27. int blk, i;
  28. if (!num_reuse_blocks)
  29. return;
  30. for (i = 0; i < nb_coefs; i++) {
  31. uint8_t min_exp = *exp;
  32. uint8_t *exp1 = exp + 256;
  33. for (blk = 0; blk < num_reuse_blocks; blk++) {
  34. uint8_t next_exp = *exp1;
  35. if (next_exp < min_exp)
  36. min_exp = next_exp;
  37. exp1 += 256;
  38. }
  39. *exp++ = min_exp;
  40. }
  41. }
  42. static int ac3_max_msb_abs_int16_c(const int16_t *src, int len)
  43. {
  44. int i, v = 0;
  45. for (i = 0; i < len; i++)
  46. v |= abs(src[i]);
  47. return v;
  48. }
  49. static void ac3_lshift_int16_c(int16_t *src, unsigned int len,
  50. unsigned int shift)
  51. {
  52. uint32_t *src32 = (uint32_t *)src;
  53. const uint32_t mask = ~(((1 << shift) - 1) << 16);
  54. int i;
  55. len >>= 1;
  56. for (i = 0; i < len; i += 8) {
  57. src32[i ] = (src32[i ] << shift) & mask;
  58. src32[i+1] = (src32[i+1] << shift) & mask;
  59. src32[i+2] = (src32[i+2] << shift) & mask;
  60. src32[i+3] = (src32[i+3] << shift) & mask;
  61. src32[i+4] = (src32[i+4] << shift) & mask;
  62. src32[i+5] = (src32[i+5] << shift) & mask;
  63. src32[i+6] = (src32[i+6] << shift) & mask;
  64. src32[i+7] = (src32[i+7] << shift) & mask;
  65. }
  66. }
  67. static void ac3_rshift_int32_c(int32_t *src, unsigned int len,
  68. unsigned int shift)
  69. {
  70. do {
  71. *src++ >>= shift;
  72. *src++ >>= shift;
  73. *src++ >>= shift;
  74. *src++ >>= shift;
  75. *src++ >>= shift;
  76. *src++ >>= shift;
  77. *src++ >>= shift;
  78. *src++ >>= shift;
  79. len -= 8;
  80. } while (len > 0);
  81. }
  82. static void float_to_fixed24_c(int32_t *dst, const float *src, unsigned int len)
  83. {
  84. const float scale = 1 << 24;
  85. do {
  86. *dst++ = lrintf(*src++ * scale);
  87. *dst++ = lrintf(*src++ * scale);
  88. *dst++ = lrintf(*src++ * scale);
  89. *dst++ = lrintf(*src++ * scale);
  90. *dst++ = lrintf(*src++ * scale);
  91. *dst++ = lrintf(*src++ * scale);
  92. *dst++ = lrintf(*src++ * scale);
  93. *dst++ = lrintf(*src++ * scale);
  94. len -= 8;
  95. } while (len > 0);
  96. }
  97. static void ac3_bit_alloc_calc_bap_c(int16_t *mask, int16_t *psd,
  98. int start, int end,
  99. int snr_offset, int floor,
  100. const uint8_t *bap_tab, uint8_t *bap)
  101. {
  102. int bin, band;
  103. /* special case, if snr offset is -960, set all bap's to zero */
  104. if (snr_offset == -960) {
  105. memset(bap, 0, AC3_MAX_COEFS);
  106. return;
  107. }
  108. bin = start;
  109. band = ff_ac3_bin_to_band_tab[start];
  110. do {
  111. int m = (FFMAX(mask[band] - snr_offset - floor, 0) & 0x1FE0) + floor;
  112. int band_end = FFMIN(ff_ac3_band_start_tab[band+1], end);
  113. for (; bin < band_end; bin++) {
  114. int address = av_clip((psd[bin] - m) >> 5, 0, 63);
  115. bap[bin] = bap_tab[address];
  116. }
  117. } while (end > ff_ac3_band_start_tab[band++]);
  118. }
  119. static int ac3_compute_mantissa_size_c(int mant_cnt[5], uint8_t *bap,
  120. int nb_coefs)
  121. {
  122. int bits, b, i;
  123. bits = 0;
  124. for (i = 0; i < nb_coefs; i++) {
  125. b = bap[i];
  126. if (b <= 4) {
  127. // bap=1 to bap=4 will be counted in compute_mantissa_size_final
  128. mant_cnt[b]++;
  129. } else if (b <= 13) {
  130. // bap=5 to bap=13 use (bap-1) bits
  131. bits += b - 1;
  132. } else {
  133. // bap=14 uses 14 bits and bap=15 uses 16 bits
  134. bits += (b == 14) ? 14 : 16;
  135. }
  136. }
  137. return bits;
  138. }
  139. static void ac3_extract_exponents_c(uint8_t *exp, int32_t *coef, int nb_coefs)
  140. {
  141. int i;
  142. for (i = 0; i < nb_coefs; i++) {
  143. int e;
  144. int v = abs(coef[i]);
  145. if (v == 0)
  146. e = 24;
  147. else {
  148. e = 23 - av_log2(v);
  149. if (e >= 24) {
  150. e = 24;
  151. coef[i] = 0;
  152. } else if (e < 0) {
  153. e = 0;
  154. coef[i] = av_clip(coef[i], -16777215, 16777215);
  155. }
  156. }
  157. exp[i] = e;
  158. }
  159. }
  160. av_cold void ff_ac3dsp_init(AC3DSPContext *c, int bit_exact)
  161. {
  162. c->ac3_exponent_min = ac3_exponent_min_c;
  163. c->ac3_max_msb_abs_int16 = ac3_max_msb_abs_int16_c;
  164. c->ac3_lshift_int16 = ac3_lshift_int16_c;
  165. c->ac3_rshift_int32 = ac3_rshift_int32_c;
  166. c->float_to_fixed24 = float_to_fixed24_c;
  167. c->bit_alloc_calc_bap = ac3_bit_alloc_calc_bap_c;
  168. c->compute_mantissa_size = ac3_compute_mantissa_size_c;
  169. c->extract_exponents = ac3_extract_exponents_c;
  170. if (ARCH_ARM)
  171. ff_ac3dsp_init_arm(c, bit_exact);
  172. if (HAVE_MMX)
  173. ff_ac3dsp_init_x86(c, bit_exact);
  174. }