You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1762 lines
65KB

  1. /*
  2. * AAC Spectral Band Replication decoding functions
  3. * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
  4. * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * AAC Spectral Band Replication decoding functions
  25. * @author Robert Swain ( rob opendot cl )
  26. */
  27. #include "aac.h"
  28. #include "sbr.h"
  29. #include "aacsbr.h"
  30. #include "aacsbrdata.h"
  31. #include "fft.h"
  32. #include "aacps.h"
  33. #include "libavutil/libm.h"
  34. #include <stdint.h>
  35. #include <float.h>
  36. #define ENVELOPE_ADJUSTMENT_OFFSET 2
  37. #define NOISE_FLOOR_OFFSET 6.0f
  38. /**
  39. * SBR VLC tables
  40. */
  41. enum {
  42. T_HUFFMAN_ENV_1_5DB,
  43. F_HUFFMAN_ENV_1_5DB,
  44. T_HUFFMAN_ENV_BAL_1_5DB,
  45. F_HUFFMAN_ENV_BAL_1_5DB,
  46. T_HUFFMAN_ENV_3_0DB,
  47. F_HUFFMAN_ENV_3_0DB,
  48. T_HUFFMAN_ENV_BAL_3_0DB,
  49. F_HUFFMAN_ENV_BAL_3_0DB,
  50. T_HUFFMAN_NOISE_3_0DB,
  51. T_HUFFMAN_NOISE_BAL_3_0DB,
  52. };
  53. /**
  54. * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
  55. */
  56. enum {
  57. FIXFIX,
  58. FIXVAR,
  59. VARFIX,
  60. VARVAR,
  61. };
  62. enum {
  63. EXTENSION_ID_PS = 2,
  64. };
  65. static VLC vlc_sbr[10];
  66. static const int8_t vlc_sbr_lav[10] =
  67. { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
  68. static const DECLARE_ALIGNED(16, float, zero64)[64];
  69. #define SBR_INIT_VLC_STATIC(num, size) \
  70. INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
  71. sbr_tmp[num].sbr_bits , 1, 1, \
  72. sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
  73. size)
  74. #define SBR_VLC_ROW(name) \
  75. { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  76. av_cold void ff_aac_sbr_init(void)
  77. {
  78. int n;
  79. static const struct {
  80. const void *sbr_codes, *sbr_bits;
  81. const unsigned int table_size, elem_size;
  82. } sbr_tmp[] = {
  83. SBR_VLC_ROW(t_huffman_env_1_5dB),
  84. SBR_VLC_ROW(f_huffman_env_1_5dB),
  85. SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
  86. SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
  87. SBR_VLC_ROW(t_huffman_env_3_0dB),
  88. SBR_VLC_ROW(f_huffman_env_3_0dB),
  89. SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
  90. SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
  91. SBR_VLC_ROW(t_huffman_noise_3_0dB),
  92. SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
  93. };
  94. // SBR VLC table initialization
  95. SBR_INIT_VLC_STATIC(0, 1098);
  96. SBR_INIT_VLC_STATIC(1, 1092);
  97. SBR_INIT_VLC_STATIC(2, 768);
  98. SBR_INIT_VLC_STATIC(3, 1026);
  99. SBR_INIT_VLC_STATIC(4, 1058);
  100. SBR_INIT_VLC_STATIC(5, 1052);
  101. SBR_INIT_VLC_STATIC(6, 544);
  102. SBR_INIT_VLC_STATIC(7, 544);
  103. SBR_INIT_VLC_STATIC(8, 592);
  104. SBR_INIT_VLC_STATIC(9, 512);
  105. for (n = 1; n < 320; n++)
  106. sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
  107. sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
  108. sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
  109. for (n = 0; n < 320; n++)
  110. sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
  111. ff_ps_init();
  112. }
  113. av_cold void ff_aac_sbr_ctx_init(SpectralBandReplication *sbr)
  114. {
  115. sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
  116. sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
  117. sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  118. sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  119. ff_mdct_init(&sbr->mdct, 7, 1, 1.0/64);
  120. ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0);
  121. ff_ps_ctx_init(&sbr->ps);
  122. }
  123. av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
  124. {
  125. ff_mdct_end(&sbr->mdct);
  126. ff_mdct_end(&sbr->mdct_ana);
  127. }
  128. static int qsort_comparison_function_int16(const void *a, const void *b)
  129. {
  130. return *(const int16_t *)a - *(const int16_t *)b;
  131. }
  132. static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
  133. {
  134. int i;
  135. for (i = 0; i <= last_el; i++)
  136. if (table[i] == needle)
  137. return 1;
  138. return 0;
  139. }
  140. /// Limiter Frequency Band Table (14496-3 sp04 p198)
  141. static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
  142. {
  143. int k;
  144. if (sbr->bs_limiter_bands > 0) {
  145. static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
  146. 1.18509277094158210129f, //2^(0.49/2)
  147. 1.11987160404675912501f }; //2^(0.49/3)
  148. const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
  149. int16_t patch_borders[7];
  150. uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
  151. patch_borders[0] = sbr->kx[1];
  152. for (k = 1; k <= sbr->num_patches; k++)
  153. patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
  154. memcpy(sbr->f_tablelim, sbr->f_tablelow,
  155. (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
  156. if (sbr->num_patches > 1)
  157. memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
  158. (sbr->num_patches - 1) * sizeof(patch_borders[0]));
  159. qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
  160. sizeof(sbr->f_tablelim[0]),
  161. qsort_comparison_function_int16);
  162. sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
  163. while (out < sbr->f_tablelim + sbr->n_lim) {
  164. if (*in >= *out * lim_bands_per_octave_warped) {
  165. *++out = *in++;
  166. } else if (*in == *out ||
  167. !in_table_int16(patch_borders, sbr->num_patches, *in)) {
  168. in++;
  169. sbr->n_lim--;
  170. } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
  171. *out = *in++;
  172. sbr->n_lim--;
  173. } else {
  174. *++out = *in++;
  175. }
  176. }
  177. } else {
  178. sbr->f_tablelim[0] = sbr->f_tablelow[0];
  179. sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
  180. sbr->n_lim = 1;
  181. }
  182. }
  183. static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
  184. {
  185. unsigned int cnt = get_bits_count(gb);
  186. uint8_t bs_header_extra_1;
  187. uint8_t bs_header_extra_2;
  188. int old_bs_limiter_bands = sbr->bs_limiter_bands;
  189. SpectrumParameters old_spectrum_params;
  190. sbr->start = 1;
  191. // Save last spectrum parameters variables to compare to new ones
  192. memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
  193. sbr->bs_amp_res_header = get_bits1(gb);
  194. sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
  195. sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
  196. sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
  197. skip_bits(gb, 2); // bs_reserved
  198. bs_header_extra_1 = get_bits1(gb);
  199. bs_header_extra_2 = get_bits1(gb);
  200. if (bs_header_extra_1) {
  201. sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
  202. sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
  203. sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
  204. } else {
  205. sbr->spectrum_params.bs_freq_scale = 2;
  206. sbr->spectrum_params.bs_alter_scale = 1;
  207. sbr->spectrum_params.bs_noise_bands = 2;
  208. }
  209. // Check if spectrum parameters changed
  210. if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
  211. sbr->reset = 1;
  212. if (bs_header_extra_2) {
  213. sbr->bs_limiter_bands = get_bits(gb, 2);
  214. sbr->bs_limiter_gains = get_bits(gb, 2);
  215. sbr->bs_interpol_freq = get_bits1(gb);
  216. sbr->bs_smoothing_mode = get_bits1(gb);
  217. } else {
  218. sbr->bs_limiter_bands = 2;
  219. sbr->bs_limiter_gains = 2;
  220. sbr->bs_interpol_freq = 1;
  221. sbr->bs_smoothing_mode = 1;
  222. }
  223. if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
  224. sbr_make_f_tablelim(sbr);
  225. return get_bits_count(gb) - cnt;
  226. }
  227. static int array_min_int16(const int16_t *array, int nel)
  228. {
  229. int i, min = array[0];
  230. for (i = 1; i < nel; i++)
  231. min = FFMIN(array[i], min);
  232. return min;
  233. }
  234. static void make_bands(int16_t* bands, int start, int stop, int num_bands)
  235. {
  236. int k, previous, present;
  237. float base, prod;
  238. base = powf((float)stop / start, 1.0f / num_bands);
  239. prod = start;
  240. previous = start;
  241. for (k = 0; k < num_bands-1; k++) {
  242. prod *= base;
  243. present = lrintf(prod);
  244. bands[k] = present - previous;
  245. previous = present;
  246. }
  247. bands[num_bands-1] = stop - previous;
  248. }
  249. static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
  250. {
  251. // Requirements (14496-3 sp04 p205)
  252. if (n_master <= 0) {
  253. av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
  254. return -1;
  255. }
  256. if (bs_xover_band >= n_master) {
  257. av_log(avctx, AV_LOG_ERROR,
  258. "Invalid bitstream, crossover band index beyond array bounds: %d\n",
  259. bs_xover_band);
  260. return -1;
  261. }
  262. return 0;
  263. }
  264. /// Master Frequency Band Table (14496-3 sp04 p194)
  265. static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
  266. SpectrumParameters *spectrum)
  267. {
  268. unsigned int temp, max_qmf_subbands;
  269. unsigned int start_min, stop_min;
  270. int k;
  271. const int8_t *sbr_offset_ptr;
  272. int16_t stop_dk[13];
  273. if (sbr->sample_rate < 32000) {
  274. temp = 3000;
  275. } else if (sbr->sample_rate < 64000) {
  276. temp = 4000;
  277. } else
  278. temp = 5000;
  279. start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  280. stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  281. switch (sbr->sample_rate) {
  282. case 16000:
  283. sbr_offset_ptr = sbr_offset[0];
  284. break;
  285. case 22050:
  286. sbr_offset_ptr = sbr_offset[1];
  287. break;
  288. case 24000:
  289. sbr_offset_ptr = sbr_offset[2];
  290. break;
  291. case 32000:
  292. sbr_offset_ptr = sbr_offset[3];
  293. break;
  294. case 44100: case 48000: case 64000:
  295. sbr_offset_ptr = sbr_offset[4];
  296. break;
  297. case 88200: case 96000: case 128000: case 176400: case 192000:
  298. sbr_offset_ptr = sbr_offset[5];
  299. break;
  300. default:
  301. av_log(ac->avctx, AV_LOG_ERROR,
  302. "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
  303. return -1;
  304. }
  305. sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
  306. if (spectrum->bs_stop_freq < 14) {
  307. sbr->k[2] = stop_min;
  308. make_bands(stop_dk, stop_min, 64, 13);
  309. qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
  310. for (k = 0; k < spectrum->bs_stop_freq; k++)
  311. sbr->k[2] += stop_dk[k];
  312. } else if (spectrum->bs_stop_freq == 14) {
  313. sbr->k[2] = 2*sbr->k[0];
  314. } else if (spectrum->bs_stop_freq == 15) {
  315. sbr->k[2] = 3*sbr->k[0];
  316. } else {
  317. av_log(ac->avctx, AV_LOG_ERROR,
  318. "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
  319. return -1;
  320. }
  321. sbr->k[2] = FFMIN(64, sbr->k[2]);
  322. // Requirements (14496-3 sp04 p205)
  323. if (sbr->sample_rate <= 32000) {
  324. max_qmf_subbands = 48;
  325. } else if (sbr->sample_rate == 44100) {
  326. max_qmf_subbands = 35;
  327. } else if (sbr->sample_rate >= 48000)
  328. max_qmf_subbands = 32;
  329. if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
  330. av_log(ac->avctx, AV_LOG_ERROR,
  331. "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
  332. return -1;
  333. }
  334. if (!spectrum->bs_freq_scale) {
  335. int dk, k2diff;
  336. dk = spectrum->bs_alter_scale + 1;
  337. sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
  338. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  339. return -1;
  340. for (k = 1; k <= sbr->n_master; k++)
  341. sbr->f_master[k] = dk;
  342. k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
  343. if (k2diff < 0) {
  344. sbr->f_master[1]--;
  345. sbr->f_master[2]-= (k2diff < -1);
  346. } else if (k2diff) {
  347. sbr->f_master[sbr->n_master]++;
  348. }
  349. sbr->f_master[0] = sbr->k[0];
  350. for (k = 1; k <= sbr->n_master; k++)
  351. sbr->f_master[k] += sbr->f_master[k - 1];
  352. } else {
  353. int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
  354. int two_regions, num_bands_0;
  355. int vdk0_max, vdk1_min;
  356. int16_t vk0[49];
  357. if (49 * sbr->k[2] > 110 * sbr->k[0]) {
  358. two_regions = 1;
  359. sbr->k[1] = 2 * sbr->k[0];
  360. } else {
  361. two_regions = 0;
  362. sbr->k[1] = sbr->k[2];
  363. }
  364. num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
  365. if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
  366. av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
  367. return -1;
  368. }
  369. vk0[0] = 0;
  370. make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
  371. qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
  372. vdk0_max = vk0[num_bands_0];
  373. vk0[0] = sbr->k[0];
  374. for (k = 1; k <= num_bands_0; k++) {
  375. if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
  376. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
  377. return -1;
  378. }
  379. vk0[k] += vk0[k-1];
  380. }
  381. if (two_regions) {
  382. int16_t vk1[49];
  383. float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
  384. : 1.0f; // bs_alter_scale = {0,1}
  385. int num_bands_1 = lrintf(half_bands * invwarp *
  386. log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
  387. make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
  388. vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
  389. if (vdk1_min < vdk0_max) {
  390. int change;
  391. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  392. change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
  393. vk1[1] += change;
  394. vk1[num_bands_1] -= change;
  395. }
  396. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  397. vk1[0] = sbr->k[1];
  398. for (k = 1; k <= num_bands_1; k++) {
  399. if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
  400. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
  401. return -1;
  402. }
  403. vk1[k] += vk1[k-1];
  404. }
  405. sbr->n_master = num_bands_0 + num_bands_1;
  406. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  407. return -1;
  408. memcpy(&sbr->f_master[0], vk0,
  409. (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  410. memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
  411. num_bands_1 * sizeof(sbr->f_master[0]));
  412. } else {
  413. sbr->n_master = num_bands_0;
  414. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  415. return -1;
  416. memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  417. }
  418. }
  419. return 0;
  420. }
  421. /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
  422. static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
  423. {
  424. int i, k, sb = 0;
  425. int msb = sbr->k[0];
  426. int usb = sbr->kx[1];
  427. int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  428. sbr->num_patches = 0;
  429. if (goal_sb < sbr->kx[1] + sbr->m[1]) {
  430. for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
  431. } else
  432. k = sbr->n_master;
  433. do {
  434. int odd = 0;
  435. for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
  436. sb = sbr->f_master[i];
  437. odd = (sb + sbr->k[0]) & 1;
  438. }
  439. // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
  440. // After this check the final number of patches can still be six which is
  441. // illegal however the Coding Technologies decoder check stream has a final
  442. // count of 6 patches
  443. if (sbr->num_patches > 5) {
  444. av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
  445. return -1;
  446. }
  447. sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
  448. sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
  449. if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
  450. usb = sb;
  451. msb = sb;
  452. sbr->num_patches++;
  453. } else
  454. msb = sbr->kx[1];
  455. if (sbr->f_master[k] - sb < 3)
  456. k = sbr->n_master;
  457. } while (sb != sbr->kx[1] + sbr->m[1]);
  458. if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
  459. sbr->num_patches--;
  460. return 0;
  461. }
  462. /// Derived Frequency Band Tables (14496-3 sp04 p197)
  463. static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
  464. {
  465. int k, temp;
  466. sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
  467. sbr->n[0] = (sbr->n[1] + 1) >> 1;
  468. memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
  469. (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
  470. sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
  471. sbr->kx[1] = sbr->f_tablehigh[0];
  472. // Requirements (14496-3 sp04 p205)
  473. if (sbr->kx[1] + sbr->m[1] > 64) {
  474. av_log(ac->avctx, AV_LOG_ERROR,
  475. "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
  476. return -1;
  477. }
  478. if (sbr->kx[1] > 32) {
  479. av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
  480. return -1;
  481. }
  482. sbr->f_tablelow[0] = sbr->f_tablehigh[0];
  483. temp = sbr->n[1] & 1;
  484. for (k = 1; k <= sbr->n[0]; k++)
  485. sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
  486. sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
  487. log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
  488. if (sbr->n_q > 5) {
  489. av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
  490. return -1;
  491. }
  492. sbr->f_tablenoise[0] = sbr->f_tablelow[0];
  493. temp = 0;
  494. for (k = 1; k <= sbr->n_q; k++) {
  495. temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
  496. sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
  497. }
  498. if (sbr_hf_calc_npatches(ac, sbr) < 0)
  499. return -1;
  500. sbr_make_f_tablelim(sbr);
  501. sbr->data[0].f_indexnoise = 0;
  502. sbr->data[1].f_indexnoise = 0;
  503. return 0;
  504. }
  505. static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
  506. int elements)
  507. {
  508. int i;
  509. for (i = 0; i < elements; i++) {
  510. vec[i] = get_bits1(gb);
  511. }
  512. }
  513. /** ceil(log2(index+1)) */
  514. static const int8_t ceil_log2[] = {
  515. 0, 1, 2, 2, 3, 3,
  516. };
  517. static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
  518. GetBitContext *gb, SBRData *ch_data)
  519. {
  520. int i;
  521. unsigned bs_pointer = 0;
  522. // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
  523. int abs_bord_trail = 16;
  524. int num_rel_lead, num_rel_trail;
  525. unsigned bs_num_env_old = ch_data->bs_num_env;
  526. ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
  527. ch_data->bs_amp_res = sbr->bs_amp_res_header;
  528. ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
  529. switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
  530. case FIXFIX:
  531. ch_data->bs_num_env = 1 << get_bits(gb, 2);
  532. num_rel_lead = ch_data->bs_num_env - 1;
  533. if (ch_data->bs_num_env == 1)
  534. ch_data->bs_amp_res = 0;
  535. if (ch_data->bs_num_env > 4) {
  536. av_log(ac->avctx, AV_LOG_ERROR,
  537. "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
  538. ch_data->bs_num_env);
  539. return -1;
  540. }
  541. ch_data->t_env[0] = 0;
  542. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  543. abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
  544. ch_data->bs_num_env;
  545. for (i = 0; i < num_rel_lead; i++)
  546. ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
  547. ch_data->bs_freq_res[1] = get_bits1(gb);
  548. for (i = 1; i < ch_data->bs_num_env; i++)
  549. ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
  550. break;
  551. case FIXVAR:
  552. abs_bord_trail += get_bits(gb, 2);
  553. num_rel_trail = get_bits(gb, 2);
  554. ch_data->bs_num_env = num_rel_trail + 1;
  555. ch_data->t_env[0] = 0;
  556. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  557. for (i = 0; i < num_rel_trail; i++)
  558. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  559. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  560. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  561. for (i = 0; i < ch_data->bs_num_env; i++)
  562. ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
  563. break;
  564. case VARFIX:
  565. ch_data->t_env[0] = get_bits(gb, 2);
  566. num_rel_lead = get_bits(gb, 2);
  567. ch_data->bs_num_env = num_rel_lead + 1;
  568. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  569. for (i = 0; i < num_rel_lead; i++)
  570. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  571. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  572. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  573. break;
  574. case VARVAR:
  575. ch_data->t_env[0] = get_bits(gb, 2);
  576. abs_bord_trail += get_bits(gb, 2);
  577. num_rel_lead = get_bits(gb, 2);
  578. num_rel_trail = get_bits(gb, 2);
  579. ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
  580. if (ch_data->bs_num_env > 5) {
  581. av_log(ac->avctx, AV_LOG_ERROR,
  582. "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
  583. ch_data->bs_num_env);
  584. return -1;
  585. }
  586. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  587. for (i = 0; i < num_rel_lead; i++)
  588. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  589. for (i = 0; i < num_rel_trail; i++)
  590. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  591. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  592. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  593. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  594. break;
  595. }
  596. if (bs_pointer > ch_data->bs_num_env + 1) {
  597. av_log(ac->avctx, AV_LOG_ERROR,
  598. "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
  599. bs_pointer);
  600. return -1;
  601. }
  602. for (i = 1; i <= ch_data->bs_num_env; i++) {
  603. if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
  604. av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
  605. return -1;
  606. }
  607. }
  608. ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
  609. ch_data->t_q[0] = ch_data->t_env[0];
  610. ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
  611. if (ch_data->bs_num_noise > 1) {
  612. unsigned int idx;
  613. if (ch_data->bs_frame_class == FIXFIX) {
  614. idx = ch_data->bs_num_env >> 1;
  615. } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
  616. idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
  617. } else { // VARFIX
  618. if (!bs_pointer)
  619. idx = 1;
  620. else if (bs_pointer == 1)
  621. idx = ch_data->bs_num_env - 1;
  622. else // bs_pointer > 1
  623. idx = bs_pointer - 1;
  624. }
  625. ch_data->t_q[1] = ch_data->t_env[idx];
  626. }
  627. ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
  628. ch_data->e_a[1] = -1;
  629. if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
  630. ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
  631. } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
  632. ch_data->e_a[1] = bs_pointer - 1;
  633. return 0;
  634. }
  635. static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
  636. //These variables are saved from the previous frame rather than copied
  637. dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
  638. dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
  639. dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
  640. //These variables are read from the bitstream and therefore copied
  641. memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
  642. memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
  643. memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
  644. dst->bs_num_env = src->bs_num_env;
  645. dst->bs_amp_res = src->bs_amp_res;
  646. dst->bs_num_noise = src->bs_num_noise;
  647. dst->bs_frame_class = src->bs_frame_class;
  648. dst->e_a[1] = src->e_a[1];
  649. }
  650. /// Read how the envelope and noise floor data is delta coded
  651. static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
  652. SBRData *ch_data)
  653. {
  654. get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
  655. get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
  656. }
  657. /// Read inverse filtering data
  658. static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
  659. SBRData *ch_data)
  660. {
  661. int i;
  662. memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
  663. for (i = 0; i < sbr->n_q; i++)
  664. ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
  665. }
  666. static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
  667. SBRData *ch_data, int ch)
  668. {
  669. int bits;
  670. int i, j, k;
  671. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  672. int t_lav, f_lav;
  673. const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  674. const int odd = sbr->n[1] & 1;
  675. if (sbr->bs_coupling && ch) {
  676. if (ch_data->bs_amp_res) {
  677. bits = 5;
  678. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
  679. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
  680. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  681. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  682. } else {
  683. bits = 6;
  684. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
  685. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
  686. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
  687. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
  688. }
  689. } else {
  690. if (ch_data->bs_amp_res) {
  691. bits = 6;
  692. t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
  693. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
  694. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  695. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  696. } else {
  697. bits = 7;
  698. t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
  699. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
  700. f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
  701. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
  702. }
  703. }
  704. for (i = 0; i < ch_data->bs_num_env; i++) {
  705. if (ch_data->bs_df_env[i]) {
  706. // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
  707. if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
  708. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  709. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  710. } else if (ch_data->bs_freq_res[i + 1]) {
  711. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  712. k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
  713. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  714. }
  715. } else {
  716. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  717. k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
  718. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  719. }
  720. }
  721. } else {
  722. ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
  723. for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  724. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  725. }
  726. }
  727. //assign 0th elements of env_facs from last elements
  728. memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
  729. sizeof(ch_data->env_facs[0]));
  730. }
  731. static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
  732. SBRData *ch_data, int ch)
  733. {
  734. int i, j;
  735. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  736. int t_lav, f_lav;
  737. int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  738. if (sbr->bs_coupling && ch) {
  739. t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
  740. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
  741. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  742. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  743. } else {
  744. t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
  745. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
  746. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  747. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  748. }
  749. for (i = 0; i < ch_data->bs_num_noise; i++) {
  750. if (ch_data->bs_df_noise[i]) {
  751. for (j = 0; j < sbr->n_q; j++)
  752. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
  753. } else {
  754. ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
  755. for (j = 1; j < sbr->n_q; j++)
  756. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  757. }
  758. }
  759. //assign 0th elements of noise_facs from last elements
  760. memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
  761. sizeof(ch_data->noise_facs[0]));
  762. }
  763. static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  764. GetBitContext *gb,
  765. int bs_extension_id, int *num_bits_left)
  766. {
  767. switch (bs_extension_id) {
  768. case EXTENSION_ID_PS:
  769. if (!ac->m4ac.ps) {
  770. av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
  771. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  772. *num_bits_left = 0;
  773. } else {
  774. #if 1
  775. *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
  776. #else
  777. av_log_missing_feature(ac->avctx, "Parametric Stereo is", 0);
  778. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  779. *num_bits_left = 0;
  780. #endif
  781. }
  782. break;
  783. default:
  784. av_log_missing_feature(ac->avctx, "Reserved SBR extensions are", 1);
  785. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  786. *num_bits_left = 0;
  787. break;
  788. }
  789. }
  790. static int read_sbr_single_channel_element(AACContext *ac,
  791. SpectralBandReplication *sbr,
  792. GetBitContext *gb)
  793. {
  794. if (get_bits1(gb)) // bs_data_extra
  795. skip_bits(gb, 4); // bs_reserved
  796. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  797. return -1;
  798. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  799. read_sbr_invf(sbr, gb, &sbr->data[0]);
  800. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  801. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  802. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  803. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  804. return 0;
  805. }
  806. static int read_sbr_channel_pair_element(AACContext *ac,
  807. SpectralBandReplication *sbr,
  808. GetBitContext *gb)
  809. {
  810. if (get_bits1(gb)) // bs_data_extra
  811. skip_bits(gb, 8); // bs_reserved
  812. if ((sbr->bs_coupling = get_bits1(gb))) {
  813. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  814. return -1;
  815. copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
  816. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  817. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  818. read_sbr_invf(sbr, gb, &sbr->data[0]);
  819. memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  820. memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  821. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  822. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  823. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  824. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  825. } else {
  826. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
  827. read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
  828. return -1;
  829. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  830. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  831. read_sbr_invf(sbr, gb, &sbr->data[0]);
  832. read_sbr_invf(sbr, gb, &sbr->data[1]);
  833. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  834. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  835. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  836. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  837. }
  838. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  839. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  840. if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
  841. get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
  842. return 0;
  843. }
  844. static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
  845. GetBitContext *gb, int id_aac)
  846. {
  847. unsigned int cnt = get_bits_count(gb);
  848. if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
  849. if (read_sbr_single_channel_element(ac, sbr, gb)) {
  850. sbr->start = 0;
  851. return get_bits_count(gb) - cnt;
  852. }
  853. } else if (id_aac == TYPE_CPE) {
  854. if (read_sbr_channel_pair_element(ac, sbr, gb)) {
  855. sbr->start = 0;
  856. return get_bits_count(gb) - cnt;
  857. }
  858. } else {
  859. av_log(ac->avctx, AV_LOG_ERROR,
  860. "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
  861. sbr->start = 0;
  862. return get_bits_count(gb) - cnt;
  863. }
  864. if (get_bits1(gb)) { // bs_extended_data
  865. int num_bits_left = get_bits(gb, 4); // bs_extension_size
  866. if (num_bits_left == 15)
  867. num_bits_left += get_bits(gb, 8); // bs_esc_count
  868. num_bits_left <<= 3;
  869. while (num_bits_left > 7) {
  870. num_bits_left -= 2;
  871. read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
  872. }
  873. if (num_bits_left < 0) {
  874. av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
  875. }
  876. if (num_bits_left > 0)
  877. skip_bits(gb, num_bits_left);
  878. }
  879. return get_bits_count(gb) - cnt;
  880. }
  881. static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
  882. {
  883. int err;
  884. err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
  885. if (err >= 0)
  886. err = sbr_make_f_derived(ac, sbr);
  887. if (err < 0) {
  888. av_log(ac->avctx, AV_LOG_ERROR,
  889. "SBR reset failed. Switching SBR to pure upsampling mode.\n");
  890. sbr->start = 0;
  891. }
  892. }
  893. /**
  894. * Decode Spectral Band Replication extension data; reference: table 4.55.
  895. *
  896. * @param crc flag indicating the presence of CRC checksum
  897. * @param cnt length of TYPE_FIL syntactic element in bytes
  898. *
  899. * @return Returns number of bytes consumed from the TYPE_FIL element.
  900. */
  901. int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  902. GetBitContext *gb_host, int crc, int cnt, int id_aac)
  903. {
  904. unsigned int num_sbr_bits = 0, num_align_bits;
  905. unsigned bytes_read;
  906. GetBitContext gbc = *gb_host, *gb = &gbc;
  907. skip_bits_long(gb_host, cnt*8 - 4);
  908. sbr->reset = 0;
  909. if (!sbr->sample_rate)
  910. sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
  911. if (!ac->m4ac.ext_sample_rate)
  912. ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;
  913. if (crc) {
  914. skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
  915. num_sbr_bits += 10;
  916. }
  917. //Save some state from the previous frame.
  918. sbr->kx[0] = sbr->kx[1];
  919. sbr->m[0] = sbr->m[1];
  920. num_sbr_bits++;
  921. if (get_bits1(gb)) // bs_header_flag
  922. num_sbr_bits += read_sbr_header(sbr, gb);
  923. if (sbr->reset)
  924. sbr_reset(ac, sbr);
  925. if (sbr->start)
  926. num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
  927. num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
  928. bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
  929. if (bytes_read > cnt) {
  930. av_log(ac->avctx, AV_LOG_ERROR,
  931. "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
  932. }
  933. return cnt;
  934. }
  935. /// Dequantization and stereo decoding (14496-3 sp04 p203)
  936. static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
  937. {
  938. int k, e;
  939. int ch;
  940. if (id_aac == TYPE_CPE && sbr->bs_coupling) {
  941. float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
  942. float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
  943. for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
  944. for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
  945. float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
  946. float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
  947. float fac = temp1 / (1.0f + temp2);
  948. sbr->data[0].env_facs[e][k] = fac;
  949. sbr->data[1].env_facs[e][k] = fac * temp2;
  950. }
  951. }
  952. for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
  953. for (k = 0; k < sbr->n_q; k++) {
  954. float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
  955. float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
  956. float fac = temp1 / (1.0f + temp2);
  957. sbr->data[0].noise_facs[e][k] = fac;
  958. sbr->data[1].noise_facs[e][k] = fac * temp2;
  959. }
  960. }
  961. } else { // SCE or one non-coupled CPE
  962. for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
  963. float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
  964. for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
  965. for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
  966. sbr->data[ch].env_facs[e][k] =
  967. exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
  968. for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
  969. for (k = 0; k < sbr->n_q; k++)
  970. sbr->data[ch].noise_facs[e][k] =
  971. exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
  972. }
  973. }
  974. }
  975. /**
  976. * Analysis QMF Bank (14496-3 sp04 p206)
  977. *
  978. * @param x pointer to the beginning of the first sample window
  979. * @param W array of complex-valued samples split into subbands
  980. */
  981. static void sbr_qmf_analysis(DSPContext *dsp, FFTContext *mdct, const float *in, float *x,
  982. float z[320], float W[2][32][32][2])
  983. {
  984. int i, k;
  985. memcpy(W[0], W[1], sizeof(W[0]));
  986. memcpy(x , x+1024, (320-32)*sizeof(x[0]));
  987. memcpy(x+288, in, 1024*sizeof(x[0]));
  988. for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
  989. // are not supported
  990. dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
  991. for (k = 0; k < 64; k++) {
  992. float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
  993. z[k] = f;
  994. }
  995. //Shuffle to IMDCT
  996. z[64] = z[0];
  997. for (k = 1; k < 32; k++) {
  998. z[64+2*k-1] = z[ k];
  999. z[64+2*k ] = -z[64-k];
  1000. }
  1001. z[64+63] = z[32];
  1002. mdct->imdct_half(mdct, z, z+64);
  1003. for (k = 0; k < 32; k++) {
  1004. W[1][i][k][0] = -z[63-k];
  1005. W[1][i][k][1] = z[k];
  1006. }
  1007. x += 32;
  1008. }
  1009. }
  1010. /**
  1011. * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
  1012. * (14496-3 sp04 p206)
  1013. */
  1014. static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
  1015. float *out, float X[2][38][64],
  1016. float mdct_buf[2][64],
  1017. float *v0, int *v_off, const unsigned int div)
  1018. {
  1019. int i, n;
  1020. const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
  1021. float *v;
  1022. for (i = 0; i < 32; i++) {
  1023. if (*v_off == 0) {
  1024. int saved_samples = (1280 - 128) >> div;
  1025. memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
  1026. *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div);
  1027. } else {
  1028. *v_off -= 128 >> div;
  1029. }
  1030. v = v0 + *v_off;
  1031. if (div) {
  1032. for (n = 0; n < 32; n++) {
  1033. X[0][i][ n] = -X[0][i][n];
  1034. X[0][i][32+n] = X[1][i][31-n];
  1035. }
  1036. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1037. for (n = 0; n < 32; n++) {
  1038. v[ n] = mdct_buf[0][63 - 2*n];
  1039. v[63 - n] = -mdct_buf[0][62 - 2*n];
  1040. }
  1041. } else {
  1042. for (n = 1; n < 64; n+=2) {
  1043. X[1][i][n] = -X[1][i][n];
  1044. }
  1045. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1046. mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
  1047. for (n = 0; n < 64; n++) {
  1048. v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ];
  1049. v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ];
  1050. }
  1051. }
  1052. dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div);
  1053. dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
  1054. dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
  1055. dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
  1056. dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
  1057. dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
  1058. dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
  1059. dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
  1060. dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
  1061. dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
  1062. out += 64 >> div;
  1063. }
  1064. }
  1065. static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag)
  1066. {
  1067. int i;
  1068. float real_sum = 0.0f;
  1069. float imag_sum = 0.0f;
  1070. if (lag) {
  1071. for (i = 1; i < 38; i++) {
  1072. real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
  1073. imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
  1074. }
  1075. phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
  1076. phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
  1077. if (lag == 1) {
  1078. phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
  1079. phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
  1080. }
  1081. } else {
  1082. for (i = 1; i < 38; i++) {
  1083. real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
  1084. }
  1085. phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
  1086. phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
  1087. }
  1088. }
  1089. /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
  1090. * (14496-3 sp04 p214)
  1091. * Warning: This routine does not seem numerically stable.
  1092. */
  1093. static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2],
  1094. const float X_low[32][40][2], int k0)
  1095. {
  1096. int k;
  1097. for (k = 0; k < k0; k++) {
  1098. float phi[3][2][2], dk;
  1099. autocorrelate(X_low[k], phi, 0);
  1100. autocorrelate(X_low[k], phi, 1);
  1101. autocorrelate(X_low[k], phi, 2);
  1102. dk = phi[2][1][0] * phi[1][0][0] -
  1103. (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
  1104. if (!dk) {
  1105. alpha1[k][0] = 0;
  1106. alpha1[k][1] = 0;
  1107. } else {
  1108. float temp_real, temp_im;
  1109. temp_real = phi[0][0][0] * phi[1][1][0] -
  1110. phi[0][0][1] * phi[1][1][1] -
  1111. phi[0][1][0] * phi[1][0][0];
  1112. temp_im = phi[0][0][0] * phi[1][1][1] +
  1113. phi[0][0][1] * phi[1][1][0] -
  1114. phi[0][1][1] * phi[1][0][0];
  1115. alpha1[k][0] = temp_real / dk;
  1116. alpha1[k][1] = temp_im / dk;
  1117. }
  1118. if (!phi[1][0][0]) {
  1119. alpha0[k][0] = 0;
  1120. alpha0[k][1] = 0;
  1121. } else {
  1122. float temp_real, temp_im;
  1123. temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
  1124. alpha1[k][1] * phi[1][1][1];
  1125. temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
  1126. alpha1[k][0] * phi[1][1][1];
  1127. alpha0[k][0] = -temp_real / phi[1][0][0];
  1128. alpha0[k][1] = -temp_im / phi[1][0][0];
  1129. }
  1130. if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
  1131. alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
  1132. alpha1[k][0] = 0;
  1133. alpha1[k][1] = 0;
  1134. alpha0[k][0] = 0;
  1135. alpha0[k][1] = 0;
  1136. }
  1137. }
  1138. }
  1139. /// Chirp Factors (14496-3 sp04 p214)
  1140. static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
  1141. {
  1142. int i;
  1143. float new_bw;
  1144. static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
  1145. for (i = 0; i < sbr->n_q; i++) {
  1146. if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
  1147. new_bw = 0.6f;
  1148. } else
  1149. new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
  1150. if (new_bw < ch_data->bw_array[i]) {
  1151. new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
  1152. } else
  1153. new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
  1154. ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
  1155. }
  1156. }
  1157. /// Generate the subband filtered lowband
  1158. static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1159. float X_low[32][40][2], const float W[2][32][32][2])
  1160. {
  1161. int i, k;
  1162. const int t_HFGen = 8;
  1163. const int i_f = 32;
  1164. memset(X_low, 0, 32*sizeof(*X_low));
  1165. for (k = 0; k < sbr->kx[1]; k++) {
  1166. for (i = t_HFGen; i < i_f + t_HFGen; i++) {
  1167. X_low[k][i][0] = W[1][i - t_HFGen][k][0];
  1168. X_low[k][i][1] = W[1][i - t_HFGen][k][1];
  1169. }
  1170. }
  1171. for (k = 0; k < sbr->kx[0]; k++) {
  1172. for (i = 0; i < t_HFGen; i++) {
  1173. X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
  1174. X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
  1175. }
  1176. }
  1177. return 0;
  1178. }
  1179. /// High Frequency Generator (14496-3 sp04 p215)
  1180. static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1181. float X_high[64][40][2], const float X_low[32][40][2],
  1182. const float (*alpha0)[2], const float (*alpha1)[2],
  1183. const float bw_array[5], const uint8_t *t_env,
  1184. int bs_num_env)
  1185. {
  1186. int i, j, x;
  1187. int g = 0;
  1188. int k = sbr->kx[1];
  1189. for (j = 0; j < sbr->num_patches; j++) {
  1190. for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
  1191. float alpha[4];
  1192. const int p = sbr->patch_start_subband[j] + x;
  1193. while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
  1194. g++;
  1195. g--;
  1196. if (g < 0) {
  1197. av_log(ac->avctx, AV_LOG_ERROR,
  1198. "ERROR : no subband found for frequency %d\n", k);
  1199. return -1;
  1200. }
  1201. alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g];
  1202. alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g];
  1203. alpha[2] = alpha0[p][0] * bw_array[g];
  1204. alpha[3] = alpha0[p][1] * bw_array[g];
  1205. for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) {
  1206. const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET;
  1207. X_high[k][idx][0] =
  1208. X_low[p][idx - 2][0] * alpha[0] -
  1209. X_low[p][idx - 2][1] * alpha[1] +
  1210. X_low[p][idx - 1][0] * alpha[2] -
  1211. X_low[p][idx - 1][1] * alpha[3] +
  1212. X_low[p][idx][0];
  1213. X_high[k][idx][1] =
  1214. X_low[p][idx - 2][1] * alpha[0] +
  1215. X_low[p][idx - 2][0] * alpha[1] +
  1216. X_low[p][idx - 1][1] * alpha[2] +
  1217. X_low[p][idx - 1][0] * alpha[3] +
  1218. X_low[p][idx][1];
  1219. }
  1220. }
  1221. }
  1222. if (k < sbr->m[1] + sbr->kx[1])
  1223. memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
  1224. return 0;
  1225. }
  1226. /// Generate the subband filtered lowband
  1227. static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
  1228. const float X_low[32][40][2], const float Y[2][38][64][2],
  1229. int ch)
  1230. {
  1231. int k, i;
  1232. const int i_f = 32;
  1233. const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
  1234. memset(X, 0, 2*sizeof(*X));
  1235. for (k = 0; k < sbr->kx[0]; k++) {
  1236. for (i = 0; i < i_Temp; i++) {
  1237. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1238. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1239. }
  1240. }
  1241. for (; k < sbr->kx[0] + sbr->m[0]; k++) {
  1242. for (i = 0; i < i_Temp; i++) {
  1243. X[0][i][k] = Y[0][i + i_f][k][0];
  1244. X[1][i][k] = Y[0][i + i_f][k][1];
  1245. }
  1246. }
  1247. for (k = 0; k < sbr->kx[1]; k++) {
  1248. for (i = i_Temp; i < 38; i++) {
  1249. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1250. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1251. }
  1252. }
  1253. for (; k < sbr->kx[1] + sbr->m[1]; k++) {
  1254. for (i = i_Temp; i < i_f; i++) {
  1255. X[0][i][k] = Y[1][i][k][0];
  1256. X[1][i][k] = Y[1][i][k][1];
  1257. }
  1258. }
  1259. return 0;
  1260. }
  1261. /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
  1262. * (14496-3 sp04 p217)
  1263. */
  1264. static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
  1265. SBRData *ch_data, int e_a[2])
  1266. {
  1267. int e, i, m;
  1268. memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
  1269. for (e = 0; e < ch_data->bs_num_env; e++) {
  1270. const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
  1271. uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1272. int k;
  1273. for (i = 0; i < ilim; i++)
  1274. for (m = table[i]; m < table[i + 1]; m++)
  1275. sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
  1276. // ch_data->bs_num_noise > 1 => 2 noise floors
  1277. k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
  1278. for (i = 0; i < sbr->n_q; i++)
  1279. for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
  1280. sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
  1281. for (i = 0; i < sbr->n[1]; i++) {
  1282. if (ch_data->bs_add_harmonic_flag) {
  1283. const unsigned int m_midpoint =
  1284. (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
  1285. ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
  1286. (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
  1287. }
  1288. }
  1289. for (i = 0; i < ilim; i++) {
  1290. int additional_sinusoid_present = 0;
  1291. for (m = table[i]; m < table[i + 1]; m++) {
  1292. if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
  1293. additional_sinusoid_present = 1;
  1294. break;
  1295. }
  1296. }
  1297. memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
  1298. (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
  1299. }
  1300. }
  1301. memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
  1302. }
  1303. /// Estimation of current envelope (14496-3 sp04 p218)
  1304. static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
  1305. SpectralBandReplication *sbr, SBRData *ch_data)
  1306. {
  1307. int e, i, m;
  1308. if (sbr->bs_interpol_freq) {
  1309. for (e = 0; e < ch_data->bs_num_env; e++) {
  1310. const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1311. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1312. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1313. for (m = 0; m < sbr->m[1]; m++) {
  1314. float sum = 0.0f;
  1315. for (i = ilb; i < iub; i++) {
  1316. sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] +
  1317. X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1];
  1318. }
  1319. e_curr[e][m] = sum * recip_env_size;
  1320. }
  1321. }
  1322. } else {
  1323. int k, p;
  1324. for (e = 0; e < ch_data->bs_num_env; e++) {
  1325. const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1326. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1327. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1328. const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1329. for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
  1330. float sum = 0.0f;
  1331. const int den = env_size * (table[p + 1] - table[p]);
  1332. for (k = table[p]; k < table[p + 1]; k++) {
  1333. for (i = ilb; i < iub; i++) {
  1334. sum += X_high[k][i][0] * X_high[k][i][0] +
  1335. X_high[k][i][1] * X_high[k][i][1];
  1336. }
  1337. }
  1338. sum /= den;
  1339. for (k = table[p]; k < table[p + 1]; k++) {
  1340. e_curr[e][k - sbr->kx[1]] = sum;
  1341. }
  1342. }
  1343. }
  1344. }
  1345. }
  1346. /**
  1347. * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
  1348. * and Calculation of gain (14496-3 sp04 p219)
  1349. */
  1350. static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
  1351. SBRData *ch_data, const int e_a[2])
  1352. {
  1353. int e, k, m;
  1354. // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
  1355. static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
  1356. for (e = 0; e < ch_data->bs_num_env; e++) {
  1357. int delta = !((e == e_a[1]) || (e == e_a[0]));
  1358. for (k = 0; k < sbr->n_lim; k++) {
  1359. float gain_boost, gain_max;
  1360. float sum[2] = { 0.0f, 0.0f };
  1361. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1362. const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
  1363. sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
  1364. sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
  1365. if (!sbr->s_mapped[e][m]) {
  1366. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
  1367. ((1.0f + sbr->e_curr[e][m]) *
  1368. (1.0f + sbr->q_mapped[e][m] * delta)));
  1369. } else {
  1370. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
  1371. ((1.0f + sbr->e_curr[e][m]) *
  1372. (1.0f + sbr->q_mapped[e][m])));
  1373. }
  1374. }
  1375. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1376. sum[0] += sbr->e_origmapped[e][m];
  1377. sum[1] += sbr->e_curr[e][m];
  1378. }
  1379. gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1380. gain_max = FFMIN(100000.f, gain_max);
  1381. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1382. float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
  1383. sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
  1384. sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
  1385. }
  1386. sum[0] = sum[1] = 0.0f;
  1387. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1388. sum[0] += sbr->e_origmapped[e][m];
  1389. sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
  1390. + sbr->s_m[e][m] * sbr->s_m[e][m]
  1391. + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
  1392. }
  1393. gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1394. gain_boost = FFMIN(1.584893192f, gain_boost);
  1395. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1396. sbr->gain[e][m] *= gain_boost;
  1397. sbr->q_m[e][m] *= gain_boost;
  1398. sbr->s_m[e][m] *= gain_boost;
  1399. }
  1400. }
  1401. }
  1402. }
  1403. /// Assembling HF Signals (14496-3 sp04 p220)
  1404. static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2],
  1405. SpectralBandReplication *sbr, SBRData *ch_data,
  1406. const int e_a[2])
  1407. {
  1408. int e, i, j, m;
  1409. const int h_SL = 4 * !sbr->bs_smoothing_mode;
  1410. const int kx = sbr->kx[1];
  1411. const int m_max = sbr->m[1];
  1412. static const float h_smooth[5] = {
  1413. 0.33333333333333,
  1414. 0.30150283239582,
  1415. 0.21816949906249,
  1416. 0.11516383427084,
  1417. 0.03183050093751,
  1418. };
  1419. static const int8_t phi[2][4] = {
  1420. { 1, 0, -1, 0}, // real
  1421. { 0, 1, 0, -1}, // imaginary
  1422. };
  1423. float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
  1424. int indexnoise = ch_data->f_indexnoise;
  1425. int indexsine = ch_data->f_indexsine;
  1426. memcpy(Y[0], Y[1], sizeof(Y[0]));
  1427. if (sbr->reset) {
  1428. for (i = 0; i < h_SL; i++) {
  1429. memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
  1430. memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
  1431. }
  1432. } else if (h_SL) {
  1433. memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
  1434. memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
  1435. }
  1436. for (e = 0; e < ch_data->bs_num_env; e++) {
  1437. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1438. memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
  1439. memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
  1440. }
  1441. }
  1442. for (e = 0; e < ch_data->bs_num_env; e++) {
  1443. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1444. int phi_sign = (1 - 2*(kx & 1));
  1445. if (h_SL && e != e_a[0] && e != e_a[1]) {
  1446. for (m = 0; m < m_max; m++) {
  1447. const int idx1 = i + h_SL;
  1448. float g_filt = 0.0f;
  1449. for (j = 0; j <= h_SL; j++)
  1450. g_filt += g_temp[idx1 - j][m] * h_smooth[j];
  1451. Y[1][i][m + kx][0] =
  1452. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
  1453. Y[1][i][m + kx][1] =
  1454. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
  1455. }
  1456. } else {
  1457. for (m = 0; m < m_max; m++) {
  1458. const float g_filt = g_temp[i + h_SL][m];
  1459. Y[1][i][m + kx][0] =
  1460. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
  1461. Y[1][i][m + kx][1] =
  1462. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
  1463. }
  1464. }
  1465. if (e != e_a[0] && e != e_a[1]) {
  1466. for (m = 0; m < m_max; m++) {
  1467. indexnoise = (indexnoise + 1) & 0x1ff;
  1468. if (sbr->s_m[e][m]) {
  1469. Y[1][i][m + kx][0] +=
  1470. sbr->s_m[e][m] * phi[0][indexsine];
  1471. Y[1][i][m + kx][1] +=
  1472. sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
  1473. } else {
  1474. float q_filt;
  1475. if (h_SL) {
  1476. const int idx1 = i + h_SL;
  1477. q_filt = 0.0f;
  1478. for (j = 0; j <= h_SL; j++)
  1479. q_filt += q_temp[idx1 - j][m] * h_smooth[j];
  1480. } else {
  1481. q_filt = q_temp[i][m];
  1482. }
  1483. Y[1][i][m + kx][0] +=
  1484. q_filt * sbr_noise_table[indexnoise][0];
  1485. Y[1][i][m + kx][1] +=
  1486. q_filt * sbr_noise_table[indexnoise][1];
  1487. }
  1488. phi_sign = -phi_sign;
  1489. }
  1490. } else {
  1491. indexnoise = (indexnoise + m_max) & 0x1ff;
  1492. for (m = 0; m < m_max; m++) {
  1493. Y[1][i][m + kx][0] +=
  1494. sbr->s_m[e][m] * phi[0][indexsine];
  1495. Y[1][i][m + kx][1] +=
  1496. sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
  1497. phi_sign = -phi_sign;
  1498. }
  1499. }
  1500. indexsine = (indexsine + 1) & 3;
  1501. }
  1502. }
  1503. ch_data->f_indexnoise = indexnoise;
  1504. ch_data->f_indexsine = indexsine;
  1505. }
  1506. void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
  1507. float* L, float* R)
  1508. {
  1509. int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
  1510. int ch;
  1511. int nch = (id_aac == TYPE_CPE) ? 2 : 1;
  1512. if (sbr->start) {
  1513. sbr_dequant(sbr, id_aac);
  1514. }
  1515. for (ch = 0; ch < nch; ch++) {
  1516. /* decode channel */
  1517. sbr_qmf_analysis(&ac->dsp, &sbr->mdct_ana, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
  1518. (float*)sbr->qmf_filter_scratch,
  1519. sbr->data[ch].W);
  1520. sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
  1521. if (sbr->start) {
  1522. sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
  1523. sbr_chirp(sbr, &sbr->data[ch]);
  1524. sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
  1525. sbr->data[ch].bw_array, sbr->data[ch].t_env,
  1526. sbr->data[ch].bs_num_env);
  1527. // hf_adj
  1528. sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1529. sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
  1530. sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1531. sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch],
  1532. sbr->data[ch].e_a);
  1533. }
  1534. /* synthesis */
  1535. sbr_x_gen(sbr, sbr->X[ch], sbr->X_low, sbr->data[ch].Y, ch);
  1536. }
  1537. if (ac->m4ac.ps == 1) {
  1538. if (sbr->ps.start) {
  1539. ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
  1540. } else {
  1541. memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
  1542. }
  1543. nch = 2;
  1544. }
  1545. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, L, sbr->X[0], sbr->qmf_filter_scratch,
  1546. sbr->data[0].synthesis_filterbank_samples,
  1547. &sbr->data[0].synthesis_filterbank_samples_offset,
  1548. downsampled);
  1549. if (nch == 2)
  1550. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, R, sbr->X[1], sbr->qmf_filter_scratch,
  1551. sbr->data[1].synthesis_filterbank_samples,
  1552. &sbr->data[1].synthesis_filterbank_samples_offset,
  1553. downsampled);
  1554. }