You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3691 lines
143KB

  1. /*
  2. * HEVC video Decoder
  3. *
  4. * Copyright (C) 2012 - 2013 Guillaume Martres
  5. * Copyright (C) 2012 - 2013 Mickael Raulet
  6. * Copyright (C) 2012 - 2013 Gildas Cocherel
  7. * Copyright (C) 2012 - 2013 Wassim Hamidouche
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/display.h"
  28. #include "libavutil/internal.h"
  29. #include "libavutil/mastering_display_metadata.h"
  30. #include "libavutil/md5.h"
  31. #include "libavutil/opt.h"
  32. #include "libavutil/pixdesc.h"
  33. #include "libavutil/stereo3d.h"
  34. #include "libavutil/timecode.h"
  35. #include "bswapdsp.h"
  36. #include "bytestream.h"
  37. #include "cabac_functions.h"
  38. #include "golomb.h"
  39. #include "hevc.h"
  40. #include "hevc_data.h"
  41. #include "hevc_parse.h"
  42. #include "hevcdec.h"
  43. #include "hwconfig.h"
  44. #include "profiles.h"
  45. const uint8_t ff_hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 };
  46. /**
  47. * NOTE: Each function hls_foo correspond to the function foo in the
  48. * specification (HLS stands for High Level Syntax).
  49. */
  50. /**
  51. * Section 5.7
  52. */
  53. /* free everything allocated by pic_arrays_init() */
  54. static void pic_arrays_free(HEVCContext *s)
  55. {
  56. av_freep(&s->sao);
  57. av_freep(&s->deblock);
  58. av_freep(&s->skip_flag);
  59. av_freep(&s->tab_ct_depth);
  60. av_freep(&s->tab_ipm);
  61. av_freep(&s->cbf_luma);
  62. av_freep(&s->is_pcm);
  63. av_freep(&s->qp_y_tab);
  64. av_freep(&s->tab_slice_address);
  65. av_freep(&s->filter_slice_edges);
  66. av_freep(&s->horizontal_bs);
  67. av_freep(&s->vertical_bs);
  68. av_freep(&s->sh.entry_point_offset);
  69. av_freep(&s->sh.size);
  70. av_freep(&s->sh.offset);
  71. av_buffer_pool_uninit(&s->tab_mvf_pool);
  72. av_buffer_pool_uninit(&s->rpl_tab_pool);
  73. }
  74. /* allocate arrays that depend on frame dimensions */
  75. static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
  76. {
  77. int log2_min_cb_size = sps->log2_min_cb_size;
  78. int width = sps->width;
  79. int height = sps->height;
  80. int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) *
  81. ((height >> log2_min_cb_size) + 1);
  82. int ctb_count = sps->ctb_width * sps->ctb_height;
  83. int min_pu_size = sps->min_pu_width * sps->min_pu_height;
  84. s->bs_width = (width >> 2) + 1;
  85. s->bs_height = (height >> 2) + 1;
  86. s->sao = av_mallocz_array(ctb_count, sizeof(*s->sao));
  87. s->deblock = av_mallocz_array(ctb_count, sizeof(*s->deblock));
  88. if (!s->sao || !s->deblock)
  89. goto fail;
  90. s->skip_flag = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  91. s->tab_ct_depth = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  92. if (!s->skip_flag || !s->tab_ct_depth)
  93. goto fail;
  94. s->cbf_luma = av_malloc_array(sps->min_tb_width, sps->min_tb_height);
  95. s->tab_ipm = av_mallocz(min_pu_size);
  96. s->is_pcm = av_malloc_array(sps->min_pu_width + 1, sps->min_pu_height + 1);
  97. if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
  98. goto fail;
  99. s->filter_slice_edges = av_mallocz(ctb_count);
  100. s->tab_slice_address = av_malloc_array(pic_size_in_ctb,
  101. sizeof(*s->tab_slice_address));
  102. s->qp_y_tab = av_malloc_array(pic_size_in_ctb,
  103. sizeof(*s->qp_y_tab));
  104. if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
  105. goto fail;
  106. s->horizontal_bs = av_mallocz_array(s->bs_width, s->bs_height);
  107. s->vertical_bs = av_mallocz_array(s->bs_width, s->bs_height);
  108. if (!s->horizontal_bs || !s->vertical_bs)
  109. goto fail;
  110. s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
  111. av_buffer_allocz);
  112. s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
  113. av_buffer_allocz);
  114. if (!s->tab_mvf_pool || !s->rpl_tab_pool)
  115. goto fail;
  116. return 0;
  117. fail:
  118. pic_arrays_free(s);
  119. return AVERROR(ENOMEM);
  120. }
  121. static int pred_weight_table(HEVCContext *s, GetBitContext *gb)
  122. {
  123. int i = 0;
  124. int j = 0;
  125. uint8_t luma_weight_l0_flag[16];
  126. uint8_t chroma_weight_l0_flag[16];
  127. uint8_t luma_weight_l1_flag[16];
  128. uint8_t chroma_weight_l1_flag[16];
  129. int luma_log2_weight_denom;
  130. luma_log2_weight_denom = get_ue_golomb_long(gb);
  131. if (luma_log2_weight_denom < 0 || luma_log2_weight_denom > 7) {
  132. av_log(s->avctx, AV_LOG_ERROR, "luma_log2_weight_denom %d is invalid\n", luma_log2_weight_denom);
  133. return AVERROR_INVALIDDATA;
  134. }
  135. s->sh.luma_log2_weight_denom = av_clip_uintp2(luma_log2_weight_denom, 3);
  136. if (s->ps.sps->chroma_format_idc != 0) {
  137. int64_t chroma_log2_weight_denom = luma_log2_weight_denom + (int64_t)get_se_golomb(gb);
  138. if (chroma_log2_weight_denom < 0 || chroma_log2_weight_denom > 7) {
  139. av_log(s->avctx, AV_LOG_ERROR, "chroma_log2_weight_denom %"PRId64" is invalid\n", chroma_log2_weight_denom);
  140. return AVERROR_INVALIDDATA;
  141. }
  142. s->sh.chroma_log2_weight_denom = chroma_log2_weight_denom;
  143. }
  144. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  145. luma_weight_l0_flag[i] = get_bits1(gb);
  146. if (!luma_weight_l0_flag[i]) {
  147. s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
  148. s->sh.luma_offset_l0[i] = 0;
  149. }
  150. }
  151. if (s->ps.sps->chroma_format_idc != 0) {
  152. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  153. chroma_weight_l0_flag[i] = get_bits1(gb);
  154. } else {
  155. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  156. chroma_weight_l0_flag[i] = 0;
  157. }
  158. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  159. if (luma_weight_l0_flag[i]) {
  160. int delta_luma_weight_l0 = get_se_golomb(gb);
  161. if ((int8_t)delta_luma_weight_l0 != delta_luma_weight_l0)
  162. return AVERROR_INVALIDDATA;
  163. s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
  164. s->sh.luma_offset_l0[i] = get_se_golomb(gb);
  165. }
  166. if (chroma_weight_l0_flag[i]) {
  167. for (j = 0; j < 2; j++) {
  168. int delta_chroma_weight_l0 = get_se_golomb(gb);
  169. int delta_chroma_offset_l0 = get_se_golomb(gb);
  170. if ( (int8_t)delta_chroma_weight_l0 != delta_chroma_weight_l0
  171. || delta_chroma_offset_l0 < -(1<<17) || delta_chroma_offset_l0 > (1<<17)) {
  172. return AVERROR_INVALIDDATA;
  173. }
  174. s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
  175. s->sh.chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
  176. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  177. }
  178. } else {
  179. s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  180. s->sh.chroma_offset_l0[i][0] = 0;
  181. s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  182. s->sh.chroma_offset_l0[i][1] = 0;
  183. }
  184. }
  185. if (s->sh.slice_type == HEVC_SLICE_B) {
  186. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  187. luma_weight_l1_flag[i] = get_bits1(gb);
  188. if (!luma_weight_l1_flag[i]) {
  189. s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
  190. s->sh.luma_offset_l1[i] = 0;
  191. }
  192. }
  193. if (s->ps.sps->chroma_format_idc != 0) {
  194. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  195. chroma_weight_l1_flag[i] = get_bits1(gb);
  196. } else {
  197. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  198. chroma_weight_l1_flag[i] = 0;
  199. }
  200. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  201. if (luma_weight_l1_flag[i]) {
  202. int delta_luma_weight_l1 = get_se_golomb(gb);
  203. if ((int8_t)delta_luma_weight_l1 != delta_luma_weight_l1)
  204. return AVERROR_INVALIDDATA;
  205. s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
  206. s->sh.luma_offset_l1[i] = get_se_golomb(gb);
  207. }
  208. if (chroma_weight_l1_flag[i]) {
  209. for (j = 0; j < 2; j++) {
  210. int delta_chroma_weight_l1 = get_se_golomb(gb);
  211. int delta_chroma_offset_l1 = get_se_golomb(gb);
  212. if ( (int8_t)delta_chroma_weight_l1 != delta_chroma_weight_l1
  213. || delta_chroma_offset_l1 < -(1<<17) || delta_chroma_offset_l1 > (1<<17)) {
  214. return AVERROR_INVALIDDATA;
  215. }
  216. s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
  217. s->sh.chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
  218. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  219. }
  220. } else {
  221. s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  222. s->sh.chroma_offset_l1[i][0] = 0;
  223. s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  224. s->sh.chroma_offset_l1[i][1] = 0;
  225. }
  226. }
  227. }
  228. return 0;
  229. }
  230. static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
  231. {
  232. const HEVCSPS *sps = s->ps.sps;
  233. int max_poc_lsb = 1 << sps->log2_max_poc_lsb;
  234. int prev_delta_msb = 0;
  235. unsigned int nb_sps = 0, nb_sh;
  236. int i;
  237. rps->nb_refs = 0;
  238. if (!sps->long_term_ref_pics_present_flag)
  239. return 0;
  240. if (sps->num_long_term_ref_pics_sps > 0)
  241. nb_sps = get_ue_golomb_long(gb);
  242. nb_sh = get_ue_golomb_long(gb);
  243. if (nb_sps > sps->num_long_term_ref_pics_sps)
  244. return AVERROR_INVALIDDATA;
  245. if (nb_sh + (uint64_t)nb_sps > FF_ARRAY_ELEMS(rps->poc))
  246. return AVERROR_INVALIDDATA;
  247. rps->nb_refs = nb_sh + nb_sps;
  248. for (i = 0; i < rps->nb_refs; i++) {
  249. if (i < nb_sps) {
  250. uint8_t lt_idx_sps = 0;
  251. if (sps->num_long_term_ref_pics_sps > 1)
  252. lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
  253. rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
  254. rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
  255. } else {
  256. rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb);
  257. rps->used[i] = get_bits1(gb);
  258. }
  259. rps->poc_msb_present[i] = get_bits1(gb);
  260. if (rps->poc_msb_present[i]) {
  261. int64_t delta = get_ue_golomb_long(gb);
  262. int64_t poc;
  263. if (i && i != nb_sps)
  264. delta += prev_delta_msb;
  265. poc = rps->poc[i] + s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
  266. if (poc != (int32_t)poc)
  267. return AVERROR_INVALIDDATA;
  268. rps->poc[i] = poc;
  269. prev_delta_msb = delta;
  270. }
  271. }
  272. return 0;
  273. }
  274. static void export_stream_params(HEVCContext *s, const HEVCSPS *sps)
  275. {
  276. AVCodecContext *avctx = s->avctx;
  277. const HEVCParamSets *ps = &s->ps;
  278. const HEVCVPS *vps = (const HEVCVPS*)ps->vps_list[sps->vps_id]->data;
  279. const HEVCWindow *ow = &sps->output_window;
  280. unsigned int num = 0, den = 0;
  281. avctx->pix_fmt = sps->pix_fmt;
  282. avctx->coded_width = sps->width;
  283. avctx->coded_height = sps->height;
  284. avctx->width = sps->width - ow->left_offset - ow->right_offset;
  285. avctx->height = sps->height - ow->top_offset - ow->bottom_offset;
  286. avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
  287. avctx->profile = sps->ptl.general_ptl.profile_idc;
  288. avctx->level = sps->ptl.general_ptl.level_idc;
  289. ff_set_sar(avctx, sps->vui.sar);
  290. if (sps->vui.video_signal_type_present_flag)
  291. avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
  292. : AVCOL_RANGE_MPEG;
  293. else
  294. avctx->color_range = AVCOL_RANGE_MPEG;
  295. if (sps->vui.colour_description_present_flag) {
  296. avctx->color_primaries = sps->vui.colour_primaries;
  297. avctx->color_trc = sps->vui.transfer_characteristic;
  298. avctx->colorspace = sps->vui.matrix_coeffs;
  299. } else {
  300. avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
  301. avctx->color_trc = AVCOL_TRC_UNSPECIFIED;
  302. avctx->colorspace = AVCOL_SPC_UNSPECIFIED;
  303. }
  304. avctx->chroma_sample_location = AVCHROMA_LOC_UNSPECIFIED;
  305. if (sps->chroma_format_idc == 1) {
  306. if (sps->vui.chroma_loc_info_present_flag) {
  307. if (sps->vui.chroma_sample_loc_type_top_field <= 5)
  308. avctx->chroma_sample_location = sps->vui.chroma_sample_loc_type_top_field + 1;
  309. } else
  310. avctx->chroma_sample_location = AVCHROMA_LOC_LEFT;
  311. }
  312. if (vps->vps_timing_info_present_flag) {
  313. num = vps->vps_num_units_in_tick;
  314. den = vps->vps_time_scale;
  315. } else if (sps->vui.vui_timing_info_present_flag) {
  316. num = sps->vui.vui_num_units_in_tick;
  317. den = sps->vui.vui_time_scale;
  318. }
  319. if (num != 0 && den != 0)
  320. av_reduce(&avctx->framerate.den, &avctx->framerate.num,
  321. num, den, 1 << 30);
  322. }
  323. static int export_stream_params_from_sei(HEVCContext *s)
  324. {
  325. AVCodecContext *avctx = s->avctx;
  326. if (s->sei.a53_caption.buf_ref)
  327. s->avctx->properties |= FF_CODEC_PROPERTY_CLOSED_CAPTIONS;
  328. if (s->sei.alternative_transfer.present &&
  329. av_color_transfer_name(s->sei.alternative_transfer.preferred_transfer_characteristics) &&
  330. s->sei.alternative_transfer.preferred_transfer_characteristics != AVCOL_TRC_UNSPECIFIED) {
  331. avctx->color_trc = s->sei.alternative_transfer.preferred_transfer_characteristics;
  332. }
  333. return 0;
  334. }
  335. static enum AVPixelFormat get_format(HEVCContext *s, const HEVCSPS *sps)
  336. {
  337. #define HWACCEL_MAX (CONFIG_HEVC_DXVA2_HWACCEL + \
  338. CONFIG_HEVC_D3D11VA_HWACCEL * 2 + \
  339. CONFIG_HEVC_NVDEC_HWACCEL + \
  340. CONFIG_HEVC_VAAPI_HWACCEL + \
  341. CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL + \
  342. CONFIG_HEVC_VDPAU_HWACCEL)
  343. enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
  344. switch (sps->pix_fmt) {
  345. case AV_PIX_FMT_YUV420P:
  346. case AV_PIX_FMT_YUVJ420P:
  347. #if CONFIG_HEVC_DXVA2_HWACCEL
  348. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  349. #endif
  350. #if CONFIG_HEVC_D3D11VA_HWACCEL
  351. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  352. *fmt++ = AV_PIX_FMT_D3D11;
  353. #endif
  354. #if CONFIG_HEVC_VAAPI_HWACCEL
  355. *fmt++ = AV_PIX_FMT_VAAPI;
  356. #endif
  357. #if CONFIG_HEVC_VDPAU_HWACCEL
  358. *fmt++ = AV_PIX_FMT_VDPAU;
  359. #endif
  360. #if CONFIG_HEVC_NVDEC_HWACCEL
  361. *fmt++ = AV_PIX_FMT_CUDA;
  362. #endif
  363. #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
  364. *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
  365. #endif
  366. break;
  367. case AV_PIX_FMT_YUV420P10:
  368. #if CONFIG_HEVC_DXVA2_HWACCEL
  369. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  370. #endif
  371. #if CONFIG_HEVC_D3D11VA_HWACCEL
  372. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  373. *fmt++ = AV_PIX_FMT_D3D11;
  374. #endif
  375. #if CONFIG_HEVC_VAAPI_HWACCEL
  376. *fmt++ = AV_PIX_FMT_VAAPI;
  377. #endif
  378. #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
  379. *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
  380. #endif
  381. #if CONFIG_HEVC_VDPAU_HWACCEL
  382. *fmt++ = AV_PIX_FMT_VDPAU;
  383. #endif
  384. #if CONFIG_HEVC_NVDEC_HWACCEL
  385. *fmt++ = AV_PIX_FMT_CUDA;
  386. #endif
  387. break;
  388. case AV_PIX_FMT_YUV444P:
  389. #if CONFIG_HEVC_VDPAU_HWACCEL
  390. *fmt++ = AV_PIX_FMT_VDPAU;
  391. #endif
  392. #if CONFIG_HEVC_NVDEC_HWACCEL
  393. *fmt++ = AV_PIX_FMT_CUDA;
  394. #endif
  395. break;
  396. case AV_PIX_FMT_YUV422P:
  397. case AV_PIX_FMT_YUV422P10LE:
  398. #if CONFIG_HEVC_VAAPI_HWACCEL
  399. *fmt++ = AV_PIX_FMT_VAAPI;
  400. #endif
  401. break;
  402. case AV_PIX_FMT_YUV420P12:
  403. case AV_PIX_FMT_YUV444P10:
  404. case AV_PIX_FMT_YUV444P12:
  405. #if CONFIG_HEVC_VDPAU_HWACCEL
  406. *fmt++ = AV_PIX_FMT_VDPAU;
  407. #endif
  408. #if CONFIG_HEVC_NVDEC_HWACCEL
  409. *fmt++ = AV_PIX_FMT_CUDA;
  410. #endif
  411. break;
  412. }
  413. *fmt++ = sps->pix_fmt;
  414. *fmt = AV_PIX_FMT_NONE;
  415. return ff_thread_get_format(s->avctx, pix_fmts);
  416. }
  417. static int set_sps(HEVCContext *s, const HEVCSPS *sps,
  418. enum AVPixelFormat pix_fmt)
  419. {
  420. int ret, i;
  421. pic_arrays_free(s);
  422. s->ps.sps = NULL;
  423. s->ps.vps = NULL;
  424. if (!sps)
  425. return 0;
  426. ret = pic_arrays_init(s, sps);
  427. if (ret < 0)
  428. goto fail;
  429. export_stream_params(s, sps);
  430. s->avctx->pix_fmt = pix_fmt;
  431. ff_hevc_pred_init(&s->hpc, sps->bit_depth);
  432. ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
  433. ff_videodsp_init (&s->vdsp, sps->bit_depth);
  434. for (i = 0; i < 3; i++) {
  435. av_freep(&s->sao_pixel_buffer_h[i]);
  436. av_freep(&s->sao_pixel_buffer_v[i]);
  437. }
  438. if (sps->sao_enabled && !s->avctx->hwaccel) {
  439. int c_count = (sps->chroma_format_idc != 0) ? 3 : 1;
  440. int c_idx;
  441. for(c_idx = 0; c_idx < c_count; c_idx++) {
  442. int w = sps->width >> sps->hshift[c_idx];
  443. int h = sps->height >> sps->vshift[c_idx];
  444. s->sao_pixel_buffer_h[c_idx] =
  445. av_malloc((w * 2 * sps->ctb_height) <<
  446. sps->pixel_shift);
  447. s->sao_pixel_buffer_v[c_idx] =
  448. av_malloc((h * 2 * sps->ctb_width) <<
  449. sps->pixel_shift);
  450. }
  451. }
  452. s->ps.sps = sps;
  453. s->ps.vps = (HEVCVPS*) s->ps.vps_list[s->ps.sps->vps_id]->data;
  454. return 0;
  455. fail:
  456. pic_arrays_free(s);
  457. s->ps.sps = NULL;
  458. return ret;
  459. }
  460. static int hls_slice_header(HEVCContext *s)
  461. {
  462. GetBitContext *gb = &s->HEVClc->gb;
  463. SliceHeader *sh = &s->sh;
  464. int i, ret;
  465. // Coded parameters
  466. sh->first_slice_in_pic_flag = get_bits1(gb);
  467. if (s->ref && sh->first_slice_in_pic_flag) {
  468. av_log(s->avctx, AV_LOG_ERROR, "Two slices reporting being the first in the same frame.\n");
  469. return 1; // This slice will be skipped later, do not corrupt state
  470. }
  471. if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
  472. s->seq_decode = (s->seq_decode + 1) & 0xff;
  473. s->max_ra = INT_MAX;
  474. if (IS_IDR(s))
  475. ff_hevc_clear_refs(s);
  476. }
  477. sh->no_output_of_prior_pics_flag = 0;
  478. if (IS_IRAP(s))
  479. sh->no_output_of_prior_pics_flag = get_bits1(gb);
  480. sh->pps_id = get_ue_golomb_long(gb);
  481. if (sh->pps_id >= HEVC_MAX_PPS_COUNT || !s->ps.pps_list[sh->pps_id]) {
  482. av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
  483. return AVERROR_INVALIDDATA;
  484. }
  485. if (!sh->first_slice_in_pic_flag &&
  486. s->ps.pps != (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data) {
  487. av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
  488. return AVERROR_INVALIDDATA;
  489. }
  490. s->ps.pps = (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data;
  491. if (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos == 1)
  492. sh->no_output_of_prior_pics_flag = 1;
  493. if (s->ps.sps != (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data) {
  494. const HEVCSPS *sps = (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data;
  495. const HEVCSPS *last_sps = s->ps.sps;
  496. enum AVPixelFormat pix_fmt;
  497. if (last_sps && IS_IRAP(s) && s->nal_unit_type != HEVC_NAL_CRA_NUT) {
  498. if (sps->width != last_sps->width || sps->height != last_sps->height ||
  499. sps->temporal_layer[sps->max_sub_layers - 1].max_dec_pic_buffering !=
  500. last_sps->temporal_layer[last_sps->max_sub_layers - 1].max_dec_pic_buffering)
  501. sh->no_output_of_prior_pics_flag = 0;
  502. }
  503. ff_hevc_clear_refs(s);
  504. ret = set_sps(s, sps, sps->pix_fmt);
  505. if (ret < 0)
  506. return ret;
  507. pix_fmt = get_format(s, sps);
  508. if (pix_fmt < 0)
  509. return pix_fmt;
  510. s->avctx->pix_fmt = pix_fmt;
  511. s->seq_decode = (s->seq_decode + 1) & 0xff;
  512. s->max_ra = INT_MAX;
  513. }
  514. ret = export_stream_params_from_sei(s);
  515. if (ret < 0)
  516. return ret;
  517. sh->dependent_slice_segment_flag = 0;
  518. if (!sh->first_slice_in_pic_flag) {
  519. int slice_address_length;
  520. if (s->ps.pps->dependent_slice_segments_enabled_flag)
  521. sh->dependent_slice_segment_flag = get_bits1(gb);
  522. slice_address_length = av_ceil_log2(s->ps.sps->ctb_width *
  523. s->ps.sps->ctb_height);
  524. sh->slice_segment_addr = get_bitsz(gb, slice_address_length);
  525. if (sh->slice_segment_addr >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  526. av_log(s->avctx, AV_LOG_ERROR,
  527. "Invalid slice segment address: %u.\n",
  528. sh->slice_segment_addr);
  529. return AVERROR_INVALIDDATA;
  530. }
  531. if (!sh->dependent_slice_segment_flag) {
  532. sh->slice_addr = sh->slice_segment_addr;
  533. s->slice_idx++;
  534. }
  535. } else {
  536. sh->slice_segment_addr = sh->slice_addr = 0;
  537. s->slice_idx = 0;
  538. s->slice_initialized = 0;
  539. }
  540. if (!sh->dependent_slice_segment_flag) {
  541. s->slice_initialized = 0;
  542. for (i = 0; i < s->ps.pps->num_extra_slice_header_bits; i++)
  543. skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
  544. sh->slice_type = get_ue_golomb_long(gb);
  545. if (!(sh->slice_type == HEVC_SLICE_I ||
  546. sh->slice_type == HEVC_SLICE_P ||
  547. sh->slice_type == HEVC_SLICE_B)) {
  548. av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
  549. sh->slice_type);
  550. return AVERROR_INVALIDDATA;
  551. }
  552. if (IS_IRAP(s) && sh->slice_type != HEVC_SLICE_I) {
  553. av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
  554. return AVERROR_INVALIDDATA;
  555. }
  556. // when flag is not present, picture is inferred to be output
  557. sh->pic_output_flag = 1;
  558. if (s->ps.pps->output_flag_present_flag)
  559. sh->pic_output_flag = get_bits1(gb);
  560. if (s->ps.sps->separate_colour_plane_flag)
  561. sh->colour_plane_id = get_bits(gb, 2);
  562. if (!IS_IDR(s)) {
  563. int poc, pos;
  564. sh->pic_order_cnt_lsb = get_bits(gb, s->ps.sps->log2_max_poc_lsb);
  565. poc = ff_hevc_compute_poc(s->ps.sps, s->pocTid0, sh->pic_order_cnt_lsb, s->nal_unit_type);
  566. if (!sh->first_slice_in_pic_flag && poc != s->poc) {
  567. av_log(s->avctx, AV_LOG_WARNING,
  568. "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
  569. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  570. return AVERROR_INVALIDDATA;
  571. poc = s->poc;
  572. }
  573. s->poc = poc;
  574. sh->short_term_ref_pic_set_sps_flag = get_bits1(gb);
  575. pos = get_bits_left(gb);
  576. if (!sh->short_term_ref_pic_set_sps_flag) {
  577. ret = ff_hevc_decode_short_term_rps(gb, s->avctx, &sh->slice_rps, s->ps.sps, 1);
  578. if (ret < 0)
  579. return ret;
  580. sh->short_term_rps = &sh->slice_rps;
  581. } else {
  582. int numbits, rps_idx;
  583. if (!s->ps.sps->nb_st_rps) {
  584. av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
  585. return AVERROR_INVALIDDATA;
  586. }
  587. numbits = av_ceil_log2(s->ps.sps->nb_st_rps);
  588. rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
  589. sh->short_term_rps = &s->ps.sps->st_rps[rps_idx];
  590. }
  591. sh->short_term_ref_pic_set_size = pos - get_bits_left(gb);
  592. pos = get_bits_left(gb);
  593. ret = decode_lt_rps(s, &sh->long_term_rps, gb);
  594. if (ret < 0) {
  595. av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
  596. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  597. return AVERROR_INVALIDDATA;
  598. }
  599. sh->long_term_ref_pic_set_size = pos - get_bits_left(gb);
  600. if (s->ps.sps->sps_temporal_mvp_enabled_flag)
  601. sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
  602. else
  603. sh->slice_temporal_mvp_enabled_flag = 0;
  604. } else {
  605. s->sh.short_term_rps = NULL;
  606. s->poc = 0;
  607. }
  608. /* 8.3.1 */
  609. if (sh->first_slice_in_pic_flag && s->temporal_id == 0 &&
  610. s->nal_unit_type != HEVC_NAL_TRAIL_N &&
  611. s->nal_unit_type != HEVC_NAL_TSA_N &&
  612. s->nal_unit_type != HEVC_NAL_STSA_N &&
  613. s->nal_unit_type != HEVC_NAL_RADL_N &&
  614. s->nal_unit_type != HEVC_NAL_RADL_R &&
  615. s->nal_unit_type != HEVC_NAL_RASL_N &&
  616. s->nal_unit_type != HEVC_NAL_RASL_R)
  617. s->pocTid0 = s->poc;
  618. if (s->ps.sps->sao_enabled) {
  619. sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
  620. if (s->ps.sps->chroma_format_idc) {
  621. sh->slice_sample_adaptive_offset_flag[1] =
  622. sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
  623. }
  624. } else {
  625. sh->slice_sample_adaptive_offset_flag[0] = 0;
  626. sh->slice_sample_adaptive_offset_flag[1] = 0;
  627. sh->slice_sample_adaptive_offset_flag[2] = 0;
  628. }
  629. sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
  630. if (sh->slice_type == HEVC_SLICE_P || sh->slice_type == HEVC_SLICE_B) {
  631. int nb_refs;
  632. sh->nb_refs[L0] = s->ps.pps->num_ref_idx_l0_default_active;
  633. if (sh->slice_type == HEVC_SLICE_B)
  634. sh->nb_refs[L1] = s->ps.pps->num_ref_idx_l1_default_active;
  635. if (get_bits1(gb)) { // num_ref_idx_active_override_flag
  636. sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
  637. if (sh->slice_type == HEVC_SLICE_B)
  638. sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
  639. }
  640. if (sh->nb_refs[L0] > HEVC_MAX_REFS || sh->nb_refs[L1] > HEVC_MAX_REFS) {
  641. av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
  642. sh->nb_refs[L0], sh->nb_refs[L1]);
  643. return AVERROR_INVALIDDATA;
  644. }
  645. sh->rpl_modification_flag[0] = 0;
  646. sh->rpl_modification_flag[1] = 0;
  647. nb_refs = ff_hevc_frame_nb_refs(s);
  648. if (!nb_refs) {
  649. av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
  650. return AVERROR_INVALIDDATA;
  651. }
  652. if (s->ps.pps->lists_modification_present_flag && nb_refs > 1) {
  653. sh->rpl_modification_flag[0] = get_bits1(gb);
  654. if (sh->rpl_modification_flag[0]) {
  655. for (i = 0; i < sh->nb_refs[L0]; i++)
  656. sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
  657. }
  658. if (sh->slice_type == HEVC_SLICE_B) {
  659. sh->rpl_modification_flag[1] = get_bits1(gb);
  660. if (sh->rpl_modification_flag[1] == 1)
  661. for (i = 0; i < sh->nb_refs[L1]; i++)
  662. sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
  663. }
  664. }
  665. if (sh->slice_type == HEVC_SLICE_B)
  666. sh->mvd_l1_zero_flag = get_bits1(gb);
  667. if (s->ps.pps->cabac_init_present_flag)
  668. sh->cabac_init_flag = get_bits1(gb);
  669. else
  670. sh->cabac_init_flag = 0;
  671. sh->collocated_ref_idx = 0;
  672. if (sh->slice_temporal_mvp_enabled_flag) {
  673. sh->collocated_list = L0;
  674. if (sh->slice_type == HEVC_SLICE_B)
  675. sh->collocated_list = !get_bits1(gb);
  676. if (sh->nb_refs[sh->collocated_list] > 1) {
  677. sh->collocated_ref_idx = get_ue_golomb_long(gb);
  678. if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
  679. av_log(s->avctx, AV_LOG_ERROR,
  680. "Invalid collocated_ref_idx: %d.\n",
  681. sh->collocated_ref_idx);
  682. return AVERROR_INVALIDDATA;
  683. }
  684. }
  685. }
  686. if ((s->ps.pps->weighted_pred_flag && sh->slice_type == HEVC_SLICE_P) ||
  687. (s->ps.pps->weighted_bipred_flag && sh->slice_type == HEVC_SLICE_B)) {
  688. int ret = pred_weight_table(s, gb);
  689. if (ret < 0)
  690. return ret;
  691. }
  692. sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
  693. if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
  694. av_log(s->avctx, AV_LOG_ERROR,
  695. "Invalid number of merging MVP candidates: %d.\n",
  696. sh->max_num_merge_cand);
  697. return AVERROR_INVALIDDATA;
  698. }
  699. }
  700. sh->slice_qp_delta = get_se_golomb(gb);
  701. if (s->ps.pps->pic_slice_level_chroma_qp_offsets_present_flag) {
  702. sh->slice_cb_qp_offset = get_se_golomb(gb);
  703. sh->slice_cr_qp_offset = get_se_golomb(gb);
  704. } else {
  705. sh->slice_cb_qp_offset = 0;
  706. sh->slice_cr_qp_offset = 0;
  707. }
  708. if (s->ps.pps->chroma_qp_offset_list_enabled_flag)
  709. sh->cu_chroma_qp_offset_enabled_flag = get_bits1(gb);
  710. else
  711. sh->cu_chroma_qp_offset_enabled_flag = 0;
  712. if (s->ps.pps->deblocking_filter_control_present_flag) {
  713. int deblocking_filter_override_flag = 0;
  714. if (s->ps.pps->deblocking_filter_override_enabled_flag)
  715. deblocking_filter_override_flag = get_bits1(gb);
  716. if (deblocking_filter_override_flag) {
  717. sh->disable_deblocking_filter_flag = get_bits1(gb);
  718. if (!sh->disable_deblocking_filter_flag) {
  719. int beta_offset_div2 = get_se_golomb(gb);
  720. int tc_offset_div2 = get_se_golomb(gb) ;
  721. if (beta_offset_div2 < -6 || beta_offset_div2 > 6 ||
  722. tc_offset_div2 < -6 || tc_offset_div2 > 6) {
  723. av_log(s->avctx, AV_LOG_ERROR,
  724. "Invalid deblock filter offsets: %d, %d\n",
  725. beta_offset_div2, tc_offset_div2);
  726. return AVERROR_INVALIDDATA;
  727. }
  728. sh->beta_offset = beta_offset_div2 * 2;
  729. sh->tc_offset = tc_offset_div2 * 2;
  730. }
  731. } else {
  732. sh->disable_deblocking_filter_flag = s->ps.pps->disable_dbf;
  733. sh->beta_offset = s->ps.pps->beta_offset;
  734. sh->tc_offset = s->ps.pps->tc_offset;
  735. }
  736. } else {
  737. sh->disable_deblocking_filter_flag = 0;
  738. sh->beta_offset = 0;
  739. sh->tc_offset = 0;
  740. }
  741. if (s->ps.pps->seq_loop_filter_across_slices_enabled_flag &&
  742. (sh->slice_sample_adaptive_offset_flag[0] ||
  743. sh->slice_sample_adaptive_offset_flag[1] ||
  744. !sh->disable_deblocking_filter_flag)) {
  745. sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
  746. } else {
  747. sh->slice_loop_filter_across_slices_enabled_flag = s->ps.pps->seq_loop_filter_across_slices_enabled_flag;
  748. }
  749. } else if (!s->slice_initialized) {
  750. av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
  751. return AVERROR_INVALIDDATA;
  752. }
  753. sh->num_entry_point_offsets = 0;
  754. if (s->ps.pps->tiles_enabled_flag || s->ps.pps->entropy_coding_sync_enabled_flag) {
  755. unsigned num_entry_point_offsets = get_ue_golomb_long(gb);
  756. // It would be possible to bound this tighter but this here is simpler
  757. if (num_entry_point_offsets > get_bits_left(gb)) {
  758. av_log(s->avctx, AV_LOG_ERROR, "num_entry_point_offsets %d is invalid\n", num_entry_point_offsets);
  759. return AVERROR_INVALIDDATA;
  760. }
  761. sh->num_entry_point_offsets = num_entry_point_offsets;
  762. if (sh->num_entry_point_offsets > 0) {
  763. int offset_len = get_ue_golomb_long(gb) + 1;
  764. if (offset_len < 1 || offset_len > 32) {
  765. sh->num_entry_point_offsets = 0;
  766. av_log(s->avctx, AV_LOG_ERROR, "offset_len %d is invalid\n", offset_len);
  767. return AVERROR_INVALIDDATA;
  768. }
  769. av_freep(&sh->entry_point_offset);
  770. av_freep(&sh->offset);
  771. av_freep(&sh->size);
  772. sh->entry_point_offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(unsigned));
  773. sh->offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  774. sh->size = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  775. if (!sh->entry_point_offset || !sh->offset || !sh->size) {
  776. sh->num_entry_point_offsets = 0;
  777. av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n");
  778. return AVERROR(ENOMEM);
  779. }
  780. for (i = 0; i < sh->num_entry_point_offsets; i++) {
  781. unsigned val = get_bits_long(gb, offset_len);
  782. sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size
  783. }
  784. if (s->threads_number > 1 && (s->ps.pps->num_tile_rows > 1 || s->ps.pps->num_tile_columns > 1)) {
  785. s->enable_parallel_tiles = 0; // TODO: you can enable tiles in parallel here
  786. s->threads_number = 1;
  787. } else
  788. s->enable_parallel_tiles = 0;
  789. } else
  790. s->enable_parallel_tiles = 0;
  791. }
  792. if (s->ps.pps->slice_header_extension_present_flag) {
  793. unsigned int length = get_ue_golomb_long(gb);
  794. if (length*8LL > get_bits_left(gb)) {
  795. av_log(s->avctx, AV_LOG_ERROR, "too many slice_header_extension_data_bytes\n");
  796. return AVERROR_INVALIDDATA;
  797. }
  798. for (i = 0; i < length; i++)
  799. skip_bits(gb, 8); // slice_header_extension_data_byte
  800. }
  801. // Inferred parameters
  802. sh->slice_qp = 26U + s->ps.pps->pic_init_qp_minus26 + sh->slice_qp_delta;
  803. if (sh->slice_qp > 51 ||
  804. sh->slice_qp < -s->ps.sps->qp_bd_offset) {
  805. av_log(s->avctx, AV_LOG_ERROR,
  806. "The slice_qp %d is outside the valid range "
  807. "[%d, 51].\n",
  808. sh->slice_qp,
  809. -s->ps.sps->qp_bd_offset);
  810. return AVERROR_INVALIDDATA;
  811. }
  812. sh->slice_ctb_addr_rs = sh->slice_segment_addr;
  813. if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
  814. av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
  815. return AVERROR_INVALIDDATA;
  816. }
  817. if (get_bits_left(gb) < 0) {
  818. av_log(s->avctx, AV_LOG_ERROR,
  819. "Overread slice header by %d bits\n", -get_bits_left(gb));
  820. return AVERROR_INVALIDDATA;
  821. }
  822. s->HEVClc->first_qp_group = !s->sh.dependent_slice_segment_flag;
  823. if (!s->ps.pps->cu_qp_delta_enabled_flag)
  824. s->HEVClc->qp_y = s->sh.slice_qp;
  825. s->slice_initialized = 1;
  826. s->HEVClc->tu.cu_qp_offset_cb = 0;
  827. s->HEVClc->tu.cu_qp_offset_cr = 0;
  828. return 0;
  829. }
  830. #define CTB(tab, x, y) ((tab)[(y) * s->ps.sps->ctb_width + (x)])
  831. #define SET_SAO(elem, value) \
  832. do { \
  833. if (!sao_merge_up_flag && !sao_merge_left_flag) \
  834. sao->elem = value; \
  835. else if (sao_merge_left_flag) \
  836. sao->elem = CTB(s->sao, rx-1, ry).elem; \
  837. else if (sao_merge_up_flag) \
  838. sao->elem = CTB(s->sao, rx, ry-1).elem; \
  839. else \
  840. sao->elem = 0; \
  841. } while (0)
  842. static void hls_sao_param(HEVCContext *s, int rx, int ry)
  843. {
  844. HEVCLocalContext *lc = s->HEVClc;
  845. int sao_merge_left_flag = 0;
  846. int sao_merge_up_flag = 0;
  847. SAOParams *sao = &CTB(s->sao, rx, ry);
  848. int c_idx, i;
  849. if (s->sh.slice_sample_adaptive_offset_flag[0] ||
  850. s->sh.slice_sample_adaptive_offset_flag[1]) {
  851. if (rx > 0) {
  852. if (lc->ctb_left_flag)
  853. sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
  854. }
  855. if (ry > 0 && !sao_merge_left_flag) {
  856. if (lc->ctb_up_flag)
  857. sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
  858. }
  859. }
  860. for (c_idx = 0; c_idx < (s->ps.sps->chroma_format_idc ? 3 : 1); c_idx++) {
  861. int log2_sao_offset_scale = c_idx == 0 ? s->ps.pps->log2_sao_offset_scale_luma :
  862. s->ps.pps->log2_sao_offset_scale_chroma;
  863. if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
  864. sao->type_idx[c_idx] = SAO_NOT_APPLIED;
  865. continue;
  866. }
  867. if (c_idx == 2) {
  868. sao->type_idx[2] = sao->type_idx[1];
  869. sao->eo_class[2] = sao->eo_class[1];
  870. } else {
  871. SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
  872. }
  873. if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
  874. continue;
  875. for (i = 0; i < 4; i++)
  876. SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
  877. if (sao->type_idx[c_idx] == SAO_BAND) {
  878. for (i = 0; i < 4; i++) {
  879. if (sao->offset_abs[c_idx][i]) {
  880. SET_SAO(offset_sign[c_idx][i],
  881. ff_hevc_sao_offset_sign_decode(s));
  882. } else {
  883. sao->offset_sign[c_idx][i] = 0;
  884. }
  885. }
  886. SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
  887. } else if (c_idx != 2) {
  888. SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
  889. }
  890. // Inferred parameters
  891. sao->offset_val[c_idx][0] = 0;
  892. for (i = 0; i < 4; i++) {
  893. sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i];
  894. if (sao->type_idx[c_idx] == SAO_EDGE) {
  895. if (i > 1)
  896. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  897. } else if (sao->offset_sign[c_idx][i]) {
  898. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  899. }
  900. sao->offset_val[c_idx][i + 1] *= 1 << log2_sao_offset_scale;
  901. }
  902. }
  903. }
  904. #undef SET_SAO
  905. #undef CTB
  906. static int hls_cross_component_pred(HEVCContext *s, int idx) {
  907. HEVCLocalContext *lc = s->HEVClc;
  908. int log2_res_scale_abs_plus1 = ff_hevc_log2_res_scale_abs(s, idx);
  909. if (log2_res_scale_abs_plus1 != 0) {
  910. int res_scale_sign_flag = ff_hevc_res_scale_sign_flag(s, idx);
  911. lc->tu.res_scale_val = (1 << (log2_res_scale_abs_plus1 - 1)) *
  912. (1 - 2 * res_scale_sign_flag);
  913. } else {
  914. lc->tu.res_scale_val = 0;
  915. }
  916. return 0;
  917. }
  918. static int hls_transform_unit(HEVCContext *s, int x0, int y0,
  919. int xBase, int yBase, int cb_xBase, int cb_yBase,
  920. int log2_cb_size, int log2_trafo_size,
  921. int blk_idx, int cbf_luma, int *cbf_cb, int *cbf_cr)
  922. {
  923. HEVCLocalContext *lc = s->HEVClc;
  924. const int log2_trafo_size_c = log2_trafo_size - s->ps.sps->hshift[1];
  925. int i;
  926. if (lc->cu.pred_mode == MODE_INTRA) {
  927. int trafo_size = 1 << log2_trafo_size;
  928. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
  929. s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
  930. }
  931. if (cbf_luma || cbf_cb[0] || cbf_cr[0] ||
  932. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  933. int scan_idx = SCAN_DIAG;
  934. int scan_idx_c = SCAN_DIAG;
  935. int cbf_chroma = cbf_cb[0] || cbf_cr[0] ||
  936. (s->ps.sps->chroma_format_idc == 2 &&
  937. (cbf_cb[1] || cbf_cr[1]));
  938. if (s->ps.pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
  939. lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
  940. if (lc->tu.cu_qp_delta != 0)
  941. if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
  942. lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
  943. lc->tu.is_cu_qp_delta_coded = 1;
  944. if (lc->tu.cu_qp_delta < -(26 + s->ps.sps->qp_bd_offset / 2) ||
  945. lc->tu.cu_qp_delta > (25 + s->ps.sps->qp_bd_offset / 2)) {
  946. av_log(s->avctx, AV_LOG_ERROR,
  947. "The cu_qp_delta %d is outside the valid range "
  948. "[%d, %d].\n",
  949. lc->tu.cu_qp_delta,
  950. -(26 + s->ps.sps->qp_bd_offset / 2),
  951. (25 + s->ps.sps->qp_bd_offset / 2));
  952. return AVERROR_INVALIDDATA;
  953. }
  954. ff_hevc_set_qPy(s, cb_xBase, cb_yBase, log2_cb_size);
  955. }
  956. if (s->sh.cu_chroma_qp_offset_enabled_flag && cbf_chroma &&
  957. !lc->cu.cu_transquant_bypass_flag && !lc->tu.is_cu_chroma_qp_offset_coded) {
  958. int cu_chroma_qp_offset_flag = ff_hevc_cu_chroma_qp_offset_flag(s);
  959. if (cu_chroma_qp_offset_flag) {
  960. int cu_chroma_qp_offset_idx = 0;
  961. if (s->ps.pps->chroma_qp_offset_list_len_minus1 > 0) {
  962. cu_chroma_qp_offset_idx = ff_hevc_cu_chroma_qp_offset_idx(s);
  963. av_log(s->avctx, AV_LOG_ERROR,
  964. "cu_chroma_qp_offset_idx not yet tested.\n");
  965. }
  966. lc->tu.cu_qp_offset_cb = s->ps.pps->cb_qp_offset_list[cu_chroma_qp_offset_idx];
  967. lc->tu.cu_qp_offset_cr = s->ps.pps->cr_qp_offset_list[cu_chroma_qp_offset_idx];
  968. } else {
  969. lc->tu.cu_qp_offset_cb = 0;
  970. lc->tu.cu_qp_offset_cr = 0;
  971. }
  972. lc->tu.is_cu_chroma_qp_offset_coded = 1;
  973. }
  974. if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
  975. if (lc->tu.intra_pred_mode >= 6 &&
  976. lc->tu.intra_pred_mode <= 14) {
  977. scan_idx = SCAN_VERT;
  978. } else if (lc->tu.intra_pred_mode >= 22 &&
  979. lc->tu.intra_pred_mode <= 30) {
  980. scan_idx = SCAN_HORIZ;
  981. }
  982. if (lc->tu.intra_pred_mode_c >= 6 &&
  983. lc->tu.intra_pred_mode_c <= 14) {
  984. scan_idx_c = SCAN_VERT;
  985. } else if (lc->tu.intra_pred_mode_c >= 22 &&
  986. lc->tu.intra_pred_mode_c <= 30) {
  987. scan_idx_c = SCAN_HORIZ;
  988. }
  989. }
  990. lc->tu.cross_pf = 0;
  991. if (cbf_luma)
  992. ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
  993. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  994. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  995. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  996. lc->tu.cross_pf = (s->ps.pps->cross_component_prediction_enabled_flag && cbf_luma &&
  997. (lc->cu.pred_mode == MODE_INTER ||
  998. (lc->tu.chroma_mode_c == 4)));
  999. if (lc->tu.cross_pf) {
  1000. hls_cross_component_pred(s, 0);
  1001. }
  1002. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  1003. if (lc->cu.pred_mode == MODE_INTRA) {
  1004. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  1005. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 1);
  1006. }
  1007. if (cbf_cb[i])
  1008. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  1009. log2_trafo_size_c, scan_idx_c, 1);
  1010. else
  1011. if (lc->tu.cross_pf) {
  1012. ptrdiff_t stride = s->frame->linesize[1];
  1013. int hshift = s->ps.sps->hshift[1];
  1014. int vshift = s->ps.sps->vshift[1];
  1015. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  1016. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  1017. int size = 1 << log2_trafo_size_c;
  1018. uint8_t *dst = &s->frame->data[1][(y0 >> vshift) * stride +
  1019. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  1020. for (i = 0; i < (size * size); i++) {
  1021. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  1022. }
  1023. s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
  1024. }
  1025. }
  1026. if (lc->tu.cross_pf) {
  1027. hls_cross_component_pred(s, 1);
  1028. }
  1029. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  1030. if (lc->cu.pred_mode == MODE_INTRA) {
  1031. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  1032. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 2);
  1033. }
  1034. if (cbf_cr[i])
  1035. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  1036. log2_trafo_size_c, scan_idx_c, 2);
  1037. else
  1038. if (lc->tu.cross_pf) {
  1039. ptrdiff_t stride = s->frame->linesize[2];
  1040. int hshift = s->ps.sps->hshift[2];
  1041. int vshift = s->ps.sps->vshift[2];
  1042. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  1043. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  1044. int size = 1 << log2_trafo_size_c;
  1045. uint8_t *dst = &s->frame->data[2][(y0 >> vshift) * stride +
  1046. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  1047. for (i = 0; i < (size * size); i++) {
  1048. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  1049. }
  1050. s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
  1051. }
  1052. }
  1053. } else if (s->ps.sps->chroma_format_idc && blk_idx == 3) {
  1054. int trafo_size_h = 1 << (log2_trafo_size + 1);
  1055. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  1056. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  1057. if (lc->cu.pred_mode == MODE_INTRA) {
  1058. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  1059. trafo_size_h, trafo_size_v);
  1060. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 1);
  1061. }
  1062. if (cbf_cb[i])
  1063. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  1064. log2_trafo_size, scan_idx_c, 1);
  1065. }
  1066. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  1067. if (lc->cu.pred_mode == MODE_INTRA) {
  1068. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  1069. trafo_size_h, trafo_size_v);
  1070. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 2);
  1071. }
  1072. if (cbf_cr[i])
  1073. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  1074. log2_trafo_size, scan_idx_c, 2);
  1075. }
  1076. }
  1077. } else if (s->ps.sps->chroma_format_idc && lc->cu.pred_mode == MODE_INTRA) {
  1078. if (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3) {
  1079. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  1080. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  1081. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size_h, trafo_size_v);
  1082. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 1);
  1083. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 2);
  1084. if (s->ps.sps->chroma_format_idc == 2) {
  1085. ff_hevc_set_neighbour_available(s, x0, y0 + (1 << log2_trafo_size_c),
  1086. trafo_size_h, trafo_size_v);
  1087. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 1);
  1088. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 2);
  1089. }
  1090. } else if (blk_idx == 3) {
  1091. int trafo_size_h = 1 << (log2_trafo_size + 1);
  1092. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  1093. ff_hevc_set_neighbour_available(s, xBase, yBase,
  1094. trafo_size_h, trafo_size_v);
  1095. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
  1096. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
  1097. if (s->ps.sps->chroma_format_idc == 2) {
  1098. ff_hevc_set_neighbour_available(s, xBase, yBase + (1 << (log2_trafo_size)),
  1099. trafo_size_h, trafo_size_v);
  1100. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 1);
  1101. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 2);
  1102. }
  1103. }
  1104. }
  1105. return 0;
  1106. }
  1107. static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1108. {
  1109. int cb_size = 1 << log2_cb_size;
  1110. int log2_min_pu_size = s->ps.sps->log2_min_pu_size;
  1111. int min_pu_width = s->ps.sps->min_pu_width;
  1112. int x_end = FFMIN(x0 + cb_size, s->ps.sps->width);
  1113. int y_end = FFMIN(y0 + cb_size, s->ps.sps->height);
  1114. int i, j;
  1115. for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
  1116. for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
  1117. s->is_pcm[i + j * min_pu_width] = 2;
  1118. }
  1119. static int hls_transform_tree(HEVCContext *s, int x0, int y0,
  1120. int xBase, int yBase, int cb_xBase, int cb_yBase,
  1121. int log2_cb_size, int log2_trafo_size,
  1122. int trafo_depth, int blk_idx,
  1123. const int *base_cbf_cb, const int *base_cbf_cr)
  1124. {
  1125. HEVCLocalContext *lc = s->HEVClc;
  1126. uint8_t split_transform_flag;
  1127. int cbf_cb[2];
  1128. int cbf_cr[2];
  1129. int ret;
  1130. cbf_cb[0] = base_cbf_cb[0];
  1131. cbf_cb[1] = base_cbf_cb[1];
  1132. cbf_cr[0] = base_cbf_cr[0];
  1133. cbf_cr[1] = base_cbf_cr[1];
  1134. if (lc->cu.intra_split_flag) {
  1135. if (trafo_depth == 1) {
  1136. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
  1137. if (s->ps.sps->chroma_format_idc == 3) {
  1138. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[blk_idx];
  1139. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[blk_idx];
  1140. } else {
  1141. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1142. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1143. }
  1144. }
  1145. } else {
  1146. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[0];
  1147. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1148. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1149. }
  1150. if (log2_trafo_size <= s->ps.sps->log2_max_trafo_size &&
  1151. log2_trafo_size > s->ps.sps->log2_min_tb_size &&
  1152. trafo_depth < lc->cu.max_trafo_depth &&
  1153. !(lc->cu.intra_split_flag && trafo_depth == 0)) {
  1154. split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
  1155. } else {
  1156. int inter_split = s->ps.sps->max_transform_hierarchy_depth_inter == 0 &&
  1157. lc->cu.pred_mode == MODE_INTER &&
  1158. lc->cu.part_mode != PART_2Nx2N &&
  1159. trafo_depth == 0;
  1160. split_transform_flag = log2_trafo_size > s->ps.sps->log2_max_trafo_size ||
  1161. (lc->cu.intra_split_flag && trafo_depth == 0) ||
  1162. inter_split;
  1163. }
  1164. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  1165. if (trafo_depth == 0 || cbf_cb[0]) {
  1166. cbf_cb[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1167. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1168. cbf_cb[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1169. }
  1170. }
  1171. if (trafo_depth == 0 || cbf_cr[0]) {
  1172. cbf_cr[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1173. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1174. cbf_cr[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1175. }
  1176. }
  1177. }
  1178. if (split_transform_flag) {
  1179. const int trafo_size_split = 1 << (log2_trafo_size - 1);
  1180. const int x1 = x0 + trafo_size_split;
  1181. const int y1 = y0 + trafo_size_split;
  1182. #define SUBDIVIDE(x, y, idx) \
  1183. do { \
  1184. ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
  1185. log2_trafo_size - 1, trafo_depth + 1, idx, \
  1186. cbf_cb, cbf_cr); \
  1187. if (ret < 0) \
  1188. return ret; \
  1189. } while (0)
  1190. SUBDIVIDE(x0, y0, 0);
  1191. SUBDIVIDE(x1, y0, 1);
  1192. SUBDIVIDE(x0, y1, 2);
  1193. SUBDIVIDE(x1, y1, 3);
  1194. #undef SUBDIVIDE
  1195. } else {
  1196. int min_tu_size = 1 << s->ps.sps->log2_min_tb_size;
  1197. int log2_min_tu_size = s->ps.sps->log2_min_tb_size;
  1198. int min_tu_width = s->ps.sps->min_tb_width;
  1199. int cbf_luma = 1;
  1200. if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
  1201. cbf_cb[0] || cbf_cr[0] ||
  1202. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  1203. cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
  1204. }
  1205. ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
  1206. log2_cb_size, log2_trafo_size,
  1207. blk_idx, cbf_luma, cbf_cb, cbf_cr);
  1208. if (ret < 0)
  1209. return ret;
  1210. // TODO: store cbf_luma somewhere else
  1211. if (cbf_luma) {
  1212. int i, j;
  1213. for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
  1214. for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
  1215. int x_tu = (x0 + j) >> log2_min_tu_size;
  1216. int y_tu = (y0 + i) >> log2_min_tu_size;
  1217. s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
  1218. }
  1219. }
  1220. if (!s->sh.disable_deblocking_filter_flag) {
  1221. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
  1222. if (s->ps.pps->transquant_bypass_enable_flag &&
  1223. lc->cu.cu_transquant_bypass_flag)
  1224. set_deblocking_bypass(s, x0, y0, log2_trafo_size);
  1225. }
  1226. }
  1227. return 0;
  1228. }
  1229. static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1230. {
  1231. HEVCLocalContext *lc = s->HEVClc;
  1232. GetBitContext gb;
  1233. int cb_size = 1 << log2_cb_size;
  1234. ptrdiff_t stride0 = s->frame->linesize[0];
  1235. ptrdiff_t stride1 = s->frame->linesize[1];
  1236. ptrdiff_t stride2 = s->frame->linesize[2];
  1237. uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->ps.sps->pixel_shift)];
  1238. uint8_t *dst1 = &s->frame->data[1][(y0 >> s->ps.sps->vshift[1]) * stride1 + ((x0 >> s->ps.sps->hshift[1]) << s->ps.sps->pixel_shift)];
  1239. uint8_t *dst2 = &s->frame->data[2][(y0 >> s->ps.sps->vshift[2]) * stride2 + ((x0 >> s->ps.sps->hshift[2]) << s->ps.sps->pixel_shift)];
  1240. int length = cb_size * cb_size * s->ps.sps->pcm.bit_depth +
  1241. (((cb_size >> s->ps.sps->hshift[1]) * (cb_size >> s->ps.sps->vshift[1])) +
  1242. ((cb_size >> s->ps.sps->hshift[2]) * (cb_size >> s->ps.sps->vshift[2]))) *
  1243. s->ps.sps->pcm.bit_depth_chroma;
  1244. const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
  1245. int ret;
  1246. if (!s->sh.disable_deblocking_filter_flag)
  1247. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1248. ret = init_get_bits(&gb, pcm, length);
  1249. if (ret < 0)
  1250. return ret;
  1251. s->hevcdsp.put_pcm(dst0, stride0, cb_size, cb_size, &gb, s->ps.sps->pcm.bit_depth);
  1252. if (s->ps.sps->chroma_format_idc) {
  1253. s->hevcdsp.put_pcm(dst1, stride1,
  1254. cb_size >> s->ps.sps->hshift[1],
  1255. cb_size >> s->ps.sps->vshift[1],
  1256. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1257. s->hevcdsp.put_pcm(dst2, stride2,
  1258. cb_size >> s->ps.sps->hshift[2],
  1259. cb_size >> s->ps.sps->vshift[2],
  1260. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1261. }
  1262. return 0;
  1263. }
  1264. /**
  1265. * 8.5.3.2.2.1 Luma sample unidirectional interpolation process
  1266. *
  1267. * @param s HEVC decoding context
  1268. * @param dst target buffer for block data at block position
  1269. * @param dststride stride of the dst buffer
  1270. * @param ref reference picture buffer at origin (0, 0)
  1271. * @param mv motion vector (relative to block position) to get pixel data from
  1272. * @param x_off horizontal position of block from origin (0, 0)
  1273. * @param y_off vertical position of block from origin (0, 0)
  1274. * @param block_w width of block
  1275. * @param block_h height of block
  1276. * @param luma_weight weighting factor applied to the luma prediction
  1277. * @param luma_offset additive offset applied to the luma prediction value
  1278. */
  1279. static void luma_mc_uni(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1280. AVFrame *ref, const Mv *mv, int x_off, int y_off,
  1281. int block_w, int block_h, int luma_weight, int luma_offset)
  1282. {
  1283. HEVCLocalContext *lc = s->HEVClc;
  1284. uint8_t *src = ref->data[0];
  1285. ptrdiff_t srcstride = ref->linesize[0];
  1286. int pic_width = s->ps.sps->width;
  1287. int pic_height = s->ps.sps->height;
  1288. int mx = mv->x & 3;
  1289. int my = mv->y & 3;
  1290. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1291. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1292. int idx = ff_hevc_pel_weight[block_w];
  1293. x_off += mv->x >> 2;
  1294. y_off += mv->y >> 2;
  1295. src += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1296. if (x_off < QPEL_EXTRA_BEFORE || y_off < QPEL_EXTRA_AFTER ||
  1297. x_off >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1298. y_off >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1299. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1300. int offset = QPEL_EXTRA_BEFORE * srcstride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1301. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1302. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
  1303. edge_emu_stride, srcstride,
  1304. block_w + QPEL_EXTRA,
  1305. block_h + QPEL_EXTRA,
  1306. x_off - QPEL_EXTRA_BEFORE, y_off - QPEL_EXTRA_BEFORE,
  1307. pic_width, pic_height);
  1308. src = lc->edge_emu_buffer + buf_offset;
  1309. srcstride = edge_emu_stride;
  1310. }
  1311. if (!weight_flag)
  1312. s->hevcdsp.put_hevc_qpel_uni[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1313. block_h, mx, my, block_w);
  1314. else
  1315. s->hevcdsp.put_hevc_qpel_uni_w[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1316. block_h, s->sh.luma_log2_weight_denom,
  1317. luma_weight, luma_offset, mx, my, block_w);
  1318. }
  1319. /**
  1320. * 8.5.3.2.2.1 Luma sample bidirectional interpolation process
  1321. *
  1322. * @param s HEVC decoding context
  1323. * @param dst target buffer for block data at block position
  1324. * @param dststride stride of the dst buffer
  1325. * @param ref0 reference picture0 buffer at origin (0, 0)
  1326. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1327. * @param x_off horizontal position of block from origin (0, 0)
  1328. * @param y_off vertical position of block from origin (0, 0)
  1329. * @param block_w width of block
  1330. * @param block_h height of block
  1331. * @param ref1 reference picture1 buffer at origin (0, 0)
  1332. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1333. * @param current_mv current motion vector structure
  1334. */
  1335. static void luma_mc_bi(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1336. AVFrame *ref0, const Mv *mv0, int x_off, int y_off,
  1337. int block_w, int block_h, AVFrame *ref1, const Mv *mv1, struct MvField *current_mv)
  1338. {
  1339. HEVCLocalContext *lc = s->HEVClc;
  1340. ptrdiff_t src0stride = ref0->linesize[0];
  1341. ptrdiff_t src1stride = ref1->linesize[0];
  1342. int pic_width = s->ps.sps->width;
  1343. int pic_height = s->ps.sps->height;
  1344. int mx0 = mv0->x & 3;
  1345. int my0 = mv0->y & 3;
  1346. int mx1 = mv1->x & 3;
  1347. int my1 = mv1->y & 3;
  1348. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1349. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1350. int x_off0 = x_off + (mv0->x >> 2);
  1351. int y_off0 = y_off + (mv0->y >> 2);
  1352. int x_off1 = x_off + (mv1->x >> 2);
  1353. int y_off1 = y_off + (mv1->y >> 2);
  1354. int idx = ff_hevc_pel_weight[block_w];
  1355. uint8_t *src0 = ref0->data[0] + y_off0 * src0stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1356. uint8_t *src1 = ref1->data[0] + y_off1 * src1stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1357. if (x_off0 < QPEL_EXTRA_BEFORE || y_off0 < QPEL_EXTRA_AFTER ||
  1358. x_off0 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1359. y_off0 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1360. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1361. int offset = QPEL_EXTRA_BEFORE * src0stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1362. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1363. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset,
  1364. edge_emu_stride, src0stride,
  1365. block_w + QPEL_EXTRA,
  1366. block_h + QPEL_EXTRA,
  1367. x_off0 - QPEL_EXTRA_BEFORE, y_off0 - QPEL_EXTRA_BEFORE,
  1368. pic_width, pic_height);
  1369. src0 = lc->edge_emu_buffer + buf_offset;
  1370. src0stride = edge_emu_stride;
  1371. }
  1372. if (x_off1 < QPEL_EXTRA_BEFORE || y_off1 < QPEL_EXTRA_AFTER ||
  1373. x_off1 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1374. y_off1 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1375. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1376. int offset = QPEL_EXTRA_BEFORE * src1stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1377. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1378. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src1 - offset,
  1379. edge_emu_stride, src1stride,
  1380. block_w + QPEL_EXTRA,
  1381. block_h + QPEL_EXTRA,
  1382. x_off1 - QPEL_EXTRA_BEFORE, y_off1 - QPEL_EXTRA_BEFORE,
  1383. pic_width, pic_height);
  1384. src1 = lc->edge_emu_buffer2 + buf_offset;
  1385. src1stride = edge_emu_stride;
  1386. }
  1387. s->hevcdsp.put_hevc_qpel[idx][!!my0][!!mx0](lc->tmp, src0, src0stride,
  1388. block_h, mx0, my0, block_w);
  1389. if (!weight_flag)
  1390. s->hevcdsp.put_hevc_qpel_bi[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1391. block_h, mx1, my1, block_w);
  1392. else
  1393. s->hevcdsp.put_hevc_qpel_bi_w[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1394. block_h, s->sh.luma_log2_weight_denom,
  1395. s->sh.luma_weight_l0[current_mv->ref_idx[0]],
  1396. s->sh.luma_weight_l1[current_mv->ref_idx[1]],
  1397. s->sh.luma_offset_l0[current_mv->ref_idx[0]],
  1398. s->sh.luma_offset_l1[current_mv->ref_idx[1]],
  1399. mx1, my1, block_w);
  1400. }
  1401. /**
  1402. * 8.5.3.2.2.2 Chroma sample uniprediction interpolation process
  1403. *
  1404. * @param s HEVC decoding context
  1405. * @param dst1 target buffer for block data at block position (U plane)
  1406. * @param dst2 target buffer for block data at block position (V plane)
  1407. * @param dststride stride of the dst1 and dst2 buffers
  1408. * @param ref reference picture buffer at origin (0, 0)
  1409. * @param mv motion vector (relative to block position) to get pixel data from
  1410. * @param x_off horizontal position of block from origin (0, 0)
  1411. * @param y_off vertical position of block from origin (0, 0)
  1412. * @param block_w width of block
  1413. * @param block_h height of block
  1414. * @param chroma_weight weighting factor applied to the chroma prediction
  1415. * @param chroma_offset additive offset applied to the chroma prediction value
  1416. */
  1417. static void chroma_mc_uni(HEVCContext *s, uint8_t *dst0,
  1418. ptrdiff_t dststride, uint8_t *src0, ptrdiff_t srcstride, int reflist,
  1419. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int chroma_weight, int chroma_offset)
  1420. {
  1421. HEVCLocalContext *lc = s->HEVClc;
  1422. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1423. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1424. const Mv *mv = &current_mv->mv[reflist];
  1425. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1426. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1427. int idx = ff_hevc_pel_weight[block_w];
  1428. int hshift = s->ps.sps->hshift[1];
  1429. int vshift = s->ps.sps->vshift[1];
  1430. intptr_t mx = av_mod_uintp2(mv->x, 2 + hshift);
  1431. intptr_t my = av_mod_uintp2(mv->y, 2 + vshift);
  1432. intptr_t _mx = mx << (1 - hshift);
  1433. intptr_t _my = my << (1 - vshift);
  1434. x_off += mv->x >> (2 + hshift);
  1435. y_off += mv->y >> (2 + vshift);
  1436. src0 += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1437. if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
  1438. x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1439. y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1440. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1441. int offset0 = EPEL_EXTRA_BEFORE * (srcstride + (1 << s->ps.sps->pixel_shift));
  1442. int buf_offset0 = EPEL_EXTRA_BEFORE *
  1443. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1444. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset0,
  1445. edge_emu_stride, srcstride,
  1446. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1447. x_off - EPEL_EXTRA_BEFORE,
  1448. y_off - EPEL_EXTRA_BEFORE,
  1449. pic_width, pic_height);
  1450. src0 = lc->edge_emu_buffer + buf_offset0;
  1451. srcstride = edge_emu_stride;
  1452. }
  1453. if (!weight_flag)
  1454. s->hevcdsp.put_hevc_epel_uni[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1455. block_h, _mx, _my, block_w);
  1456. else
  1457. s->hevcdsp.put_hevc_epel_uni_w[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1458. block_h, s->sh.chroma_log2_weight_denom,
  1459. chroma_weight, chroma_offset, _mx, _my, block_w);
  1460. }
  1461. /**
  1462. * 8.5.3.2.2.2 Chroma sample bidirectional interpolation process
  1463. *
  1464. * @param s HEVC decoding context
  1465. * @param dst target buffer for block data at block position
  1466. * @param dststride stride of the dst buffer
  1467. * @param ref0 reference picture0 buffer at origin (0, 0)
  1468. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1469. * @param x_off horizontal position of block from origin (0, 0)
  1470. * @param y_off vertical position of block from origin (0, 0)
  1471. * @param block_w width of block
  1472. * @param block_h height of block
  1473. * @param ref1 reference picture1 buffer at origin (0, 0)
  1474. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1475. * @param current_mv current motion vector structure
  1476. * @param cidx chroma component(cb, cr)
  1477. */
  1478. static void chroma_mc_bi(HEVCContext *s, uint8_t *dst0, ptrdiff_t dststride, AVFrame *ref0, AVFrame *ref1,
  1479. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int cidx)
  1480. {
  1481. HEVCLocalContext *lc = s->HEVClc;
  1482. uint8_t *src1 = ref0->data[cidx+1];
  1483. uint8_t *src2 = ref1->data[cidx+1];
  1484. ptrdiff_t src1stride = ref0->linesize[cidx+1];
  1485. ptrdiff_t src2stride = ref1->linesize[cidx+1];
  1486. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1487. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1488. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1489. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1490. Mv *mv0 = &current_mv->mv[0];
  1491. Mv *mv1 = &current_mv->mv[1];
  1492. int hshift = s->ps.sps->hshift[1];
  1493. int vshift = s->ps.sps->vshift[1];
  1494. intptr_t mx0 = av_mod_uintp2(mv0->x, 2 + hshift);
  1495. intptr_t my0 = av_mod_uintp2(mv0->y, 2 + vshift);
  1496. intptr_t mx1 = av_mod_uintp2(mv1->x, 2 + hshift);
  1497. intptr_t my1 = av_mod_uintp2(mv1->y, 2 + vshift);
  1498. intptr_t _mx0 = mx0 << (1 - hshift);
  1499. intptr_t _my0 = my0 << (1 - vshift);
  1500. intptr_t _mx1 = mx1 << (1 - hshift);
  1501. intptr_t _my1 = my1 << (1 - vshift);
  1502. int x_off0 = x_off + (mv0->x >> (2 + hshift));
  1503. int y_off0 = y_off + (mv0->y >> (2 + vshift));
  1504. int x_off1 = x_off + (mv1->x >> (2 + hshift));
  1505. int y_off1 = y_off + (mv1->y >> (2 + vshift));
  1506. int idx = ff_hevc_pel_weight[block_w];
  1507. src1 += y_off0 * src1stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1508. src2 += y_off1 * src2stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1509. if (x_off0 < EPEL_EXTRA_BEFORE || y_off0 < EPEL_EXTRA_AFTER ||
  1510. x_off0 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1511. y_off0 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1512. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1513. int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->ps.sps->pixel_shift));
  1514. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1515. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1516. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
  1517. edge_emu_stride, src1stride,
  1518. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1519. x_off0 - EPEL_EXTRA_BEFORE,
  1520. y_off0 - EPEL_EXTRA_BEFORE,
  1521. pic_width, pic_height);
  1522. src1 = lc->edge_emu_buffer + buf_offset1;
  1523. src1stride = edge_emu_stride;
  1524. }
  1525. if (x_off1 < EPEL_EXTRA_BEFORE || y_off1 < EPEL_EXTRA_AFTER ||
  1526. x_off1 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1527. y_off1 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1528. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1529. int offset1 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->ps.sps->pixel_shift));
  1530. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1531. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1532. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src2 - offset1,
  1533. edge_emu_stride, src2stride,
  1534. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1535. x_off1 - EPEL_EXTRA_BEFORE,
  1536. y_off1 - EPEL_EXTRA_BEFORE,
  1537. pic_width, pic_height);
  1538. src2 = lc->edge_emu_buffer2 + buf_offset1;
  1539. src2stride = edge_emu_stride;
  1540. }
  1541. s->hevcdsp.put_hevc_epel[idx][!!my0][!!mx0](lc->tmp, src1, src1stride,
  1542. block_h, _mx0, _my0, block_w);
  1543. if (!weight_flag)
  1544. s->hevcdsp.put_hevc_epel_bi[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1545. src2, src2stride, lc->tmp,
  1546. block_h, _mx1, _my1, block_w);
  1547. else
  1548. s->hevcdsp.put_hevc_epel_bi_w[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1549. src2, src2stride, lc->tmp,
  1550. block_h,
  1551. s->sh.chroma_log2_weight_denom,
  1552. s->sh.chroma_weight_l0[current_mv->ref_idx[0]][cidx],
  1553. s->sh.chroma_weight_l1[current_mv->ref_idx[1]][cidx],
  1554. s->sh.chroma_offset_l0[current_mv->ref_idx[0]][cidx],
  1555. s->sh.chroma_offset_l1[current_mv->ref_idx[1]][cidx],
  1556. _mx1, _my1, block_w);
  1557. }
  1558. static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
  1559. const Mv *mv, int y0, int height)
  1560. {
  1561. if (s->threads_type == FF_THREAD_FRAME ) {
  1562. int y = FFMAX(0, (mv->y >> 2) + y0 + height + 9);
  1563. ff_thread_await_progress(&ref->tf, y, 0);
  1564. }
  1565. }
  1566. static void hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW,
  1567. int nPbH, int log2_cb_size, int part_idx,
  1568. int merge_idx, MvField *mv)
  1569. {
  1570. HEVCLocalContext *lc = s->HEVClc;
  1571. enum InterPredIdc inter_pred_idc = PRED_L0;
  1572. int mvp_flag;
  1573. ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
  1574. mv->pred_flag = 0;
  1575. if (s->sh.slice_type == HEVC_SLICE_B)
  1576. inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
  1577. if (inter_pred_idc != PRED_L1) {
  1578. if (s->sh.nb_refs[L0])
  1579. mv->ref_idx[0]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
  1580. mv->pred_flag = PF_L0;
  1581. ff_hevc_hls_mvd_coding(s, x0, y0, 0);
  1582. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1583. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1584. part_idx, merge_idx, mv, mvp_flag, 0);
  1585. mv->mv[0].x += lc->pu.mvd.x;
  1586. mv->mv[0].y += lc->pu.mvd.y;
  1587. }
  1588. if (inter_pred_idc != PRED_L0) {
  1589. if (s->sh.nb_refs[L1])
  1590. mv->ref_idx[1]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
  1591. if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
  1592. AV_ZERO32(&lc->pu.mvd);
  1593. } else {
  1594. ff_hevc_hls_mvd_coding(s, x0, y0, 1);
  1595. }
  1596. mv->pred_flag += PF_L1;
  1597. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1598. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1599. part_idx, merge_idx, mv, mvp_flag, 1);
  1600. mv->mv[1].x += lc->pu.mvd.x;
  1601. mv->mv[1].y += lc->pu.mvd.y;
  1602. }
  1603. }
  1604. static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
  1605. int nPbW, int nPbH,
  1606. int log2_cb_size, int partIdx, int idx)
  1607. {
  1608. #define POS(c_idx, x, y) \
  1609. &s->frame->data[c_idx][((y) >> s->ps.sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
  1610. (((x) >> s->ps.sps->hshift[c_idx]) << s->ps.sps->pixel_shift)]
  1611. HEVCLocalContext *lc = s->HEVClc;
  1612. int merge_idx = 0;
  1613. struct MvField current_mv = {{{ 0 }}};
  1614. int min_pu_width = s->ps.sps->min_pu_width;
  1615. MvField *tab_mvf = s->ref->tab_mvf;
  1616. RefPicList *refPicList = s->ref->refPicList;
  1617. HEVCFrame *ref0 = NULL, *ref1 = NULL;
  1618. uint8_t *dst0 = POS(0, x0, y0);
  1619. uint8_t *dst1 = POS(1, x0, y0);
  1620. uint8_t *dst2 = POS(2, x0, y0);
  1621. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1622. int min_cb_width = s->ps.sps->min_cb_width;
  1623. int x_cb = x0 >> log2_min_cb_size;
  1624. int y_cb = y0 >> log2_min_cb_size;
  1625. int x_pu, y_pu;
  1626. int i, j;
  1627. int skip_flag = SAMPLE_CTB(s->skip_flag, x_cb, y_cb);
  1628. if (!skip_flag)
  1629. lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
  1630. if (skip_flag || lc->pu.merge_flag) {
  1631. if (s->sh.max_num_merge_cand > 1)
  1632. merge_idx = ff_hevc_merge_idx_decode(s);
  1633. else
  1634. merge_idx = 0;
  1635. ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1636. partIdx, merge_idx, &current_mv);
  1637. } else {
  1638. hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1639. partIdx, merge_idx, &current_mv);
  1640. }
  1641. x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1642. y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1643. for (j = 0; j < nPbH >> s->ps.sps->log2_min_pu_size; j++)
  1644. for (i = 0; i < nPbW >> s->ps.sps->log2_min_pu_size; i++)
  1645. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
  1646. if (current_mv.pred_flag & PF_L0) {
  1647. ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
  1648. if (!ref0)
  1649. return;
  1650. hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
  1651. }
  1652. if (current_mv.pred_flag & PF_L1) {
  1653. ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
  1654. if (!ref1)
  1655. return;
  1656. hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
  1657. }
  1658. if (current_mv.pred_flag == PF_L0) {
  1659. int x0_c = x0 >> s->ps.sps->hshift[1];
  1660. int y0_c = y0 >> s->ps.sps->vshift[1];
  1661. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1662. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1663. luma_mc_uni(s, dst0, s->frame->linesize[0], ref0->frame,
  1664. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1665. s->sh.luma_weight_l0[current_mv.ref_idx[0]],
  1666. s->sh.luma_offset_l0[current_mv.ref_idx[0]]);
  1667. if (s->ps.sps->chroma_format_idc) {
  1668. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref0->frame->data[1], ref0->frame->linesize[1],
  1669. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1670. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0]);
  1671. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref0->frame->data[2], ref0->frame->linesize[2],
  1672. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1673. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1]);
  1674. }
  1675. } else if (current_mv.pred_flag == PF_L1) {
  1676. int x0_c = x0 >> s->ps.sps->hshift[1];
  1677. int y0_c = y0 >> s->ps.sps->vshift[1];
  1678. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1679. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1680. luma_mc_uni(s, dst0, s->frame->linesize[0], ref1->frame,
  1681. &current_mv.mv[1], x0, y0, nPbW, nPbH,
  1682. s->sh.luma_weight_l1[current_mv.ref_idx[1]],
  1683. s->sh.luma_offset_l1[current_mv.ref_idx[1]]);
  1684. if (s->ps.sps->chroma_format_idc) {
  1685. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref1->frame->data[1], ref1->frame->linesize[1],
  1686. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1687. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0]);
  1688. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref1->frame->data[2], ref1->frame->linesize[2],
  1689. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1690. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1]);
  1691. }
  1692. } else if (current_mv.pred_flag == PF_BI) {
  1693. int x0_c = x0 >> s->ps.sps->hshift[1];
  1694. int y0_c = y0 >> s->ps.sps->vshift[1];
  1695. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1696. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1697. luma_mc_bi(s, dst0, s->frame->linesize[0], ref0->frame,
  1698. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1699. ref1->frame, &current_mv.mv[1], &current_mv);
  1700. if (s->ps.sps->chroma_format_idc) {
  1701. chroma_mc_bi(s, dst1, s->frame->linesize[1], ref0->frame, ref1->frame,
  1702. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 0);
  1703. chroma_mc_bi(s, dst2, s->frame->linesize[2], ref0->frame, ref1->frame,
  1704. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 1);
  1705. }
  1706. }
  1707. }
  1708. /**
  1709. * 8.4.1
  1710. */
  1711. static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
  1712. int prev_intra_luma_pred_flag)
  1713. {
  1714. HEVCLocalContext *lc = s->HEVClc;
  1715. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1716. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1717. int min_pu_width = s->ps.sps->min_pu_width;
  1718. int size_in_pus = pu_size >> s->ps.sps->log2_min_pu_size;
  1719. int x0b = av_mod_uintp2(x0, s->ps.sps->log2_ctb_size);
  1720. int y0b = av_mod_uintp2(y0, s->ps.sps->log2_ctb_size);
  1721. int cand_up = (lc->ctb_up_flag || y0b) ?
  1722. s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
  1723. int cand_left = (lc->ctb_left_flag || x0b) ?
  1724. s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC;
  1725. int y_ctb = (y0 >> (s->ps.sps->log2_ctb_size)) << (s->ps.sps->log2_ctb_size);
  1726. MvField *tab_mvf = s->ref->tab_mvf;
  1727. int intra_pred_mode;
  1728. int candidate[3];
  1729. int i, j;
  1730. // intra_pred_mode prediction does not cross vertical CTB boundaries
  1731. if ((y0 - 1) < y_ctb)
  1732. cand_up = INTRA_DC;
  1733. if (cand_left == cand_up) {
  1734. if (cand_left < 2) {
  1735. candidate[0] = INTRA_PLANAR;
  1736. candidate[1] = INTRA_DC;
  1737. candidate[2] = INTRA_ANGULAR_26;
  1738. } else {
  1739. candidate[0] = cand_left;
  1740. candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
  1741. candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
  1742. }
  1743. } else {
  1744. candidate[0] = cand_left;
  1745. candidate[1] = cand_up;
  1746. if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
  1747. candidate[2] = INTRA_PLANAR;
  1748. } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
  1749. candidate[2] = INTRA_DC;
  1750. } else {
  1751. candidate[2] = INTRA_ANGULAR_26;
  1752. }
  1753. }
  1754. if (prev_intra_luma_pred_flag) {
  1755. intra_pred_mode = candidate[lc->pu.mpm_idx];
  1756. } else {
  1757. if (candidate[0] > candidate[1])
  1758. FFSWAP(uint8_t, candidate[0], candidate[1]);
  1759. if (candidate[0] > candidate[2])
  1760. FFSWAP(uint8_t, candidate[0], candidate[2]);
  1761. if (candidate[1] > candidate[2])
  1762. FFSWAP(uint8_t, candidate[1], candidate[2]);
  1763. intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
  1764. for (i = 0; i < 3; i++)
  1765. if (intra_pred_mode >= candidate[i])
  1766. intra_pred_mode++;
  1767. }
  1768. /* write the intra prediction units into the mv array */
  1769. if (!size_in_pus)
  1770. size_in_pus = 1;
  1771. for (i = 0; i < size_in_pus; i++) {
  1772. memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
  1773. intra_pred_mode, size_in_pus);
  1774. for (j = 0; j < size_in_pus; j++) {
  1775. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag = PF_INTRA;
  1776. }
  1777. }
  1778. return intra_pred_mode;
  1779. }
  1780. static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
  1781. int log2_cb_size, int ct_depth)
  1782. {
  1783. int length = (1 << log2_cb_size) >> s->ps.sps->log2_min_cb_size;
  1784. int x_cb = x0 >> s->ps.sps->log2_min_cb_size;
  1785. int y_cb = y0 >> s->ps.sps->log2_min_cb_size;
  1786. int y;
  1787. for (y = 0; y < length; y++)
  1788. memset(&s->tab_ct_depth[(y_cb + y) * s->ps.sps->min_cb_width + x_cb],
  1789. ct_depth, length);
  1790. }
  1791. static const uint8_t tab_mode_idx[] = {
  1792. 0, 1, 2, 2, 2, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20,
  1793. 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29, 30, 31};
  1794. static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
  1795. int log2_cb_size)
  1796. {
  1797. HEVCLocalContext *lc = s->HEVClc;
  1798. static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
  1799. uint8_t prev_intra_luma_pred_flag[4];
  1800. int split = lc->cu.part_mode == PART_NxN;
  1801. int pb_size = (1 << log2_cb_size) >> split;
  1802. int side = split + 1;
  1803. int chroma_mode;
  1804. int i, j;
  1805. for (i = 0; i < side; i++)
  1806. for (j = 0; j < side; j++)
  1807. prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
  1808. for (i = 0; i < side; i++) {
  1809. for (j = 0; j < side; j++) {
  1810. if (prev_intra_luma_pred_flag[2 * i + j])
  1811. lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
  1812. else
  1813. lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
  1814. lc->pu.intra_pred_mode[2 * i + j] =
  1815. luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
  1816. prev_intra_luma_pred_flag[2 * i + j]);
  1817. }
  1818. }
  1819. if (s->ps.sps->chroma_format_idc == 3) {
  1820. for (i = 0; i < side; i++) {
  1821. for (j = 0; j < side; j++) {
  1822. lc->pu.chroma_mode_c[2 * i + j] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1823. if (chroma_mode != 4) {
  1824. if (lc->pu.intra_pred_mode[2 * i + j] == intra_chroma_table[chroma_mode])
  1825. lc->pu.intra_pred_mode_c[2 * i + j] = 34;
  1826. else
  1827. lc->pu.intra_pred_mode_c[2 * i + j] = intra_chroma_table[chroma_mode];
  1828. } else {
  1829. lc->pu.intra_pred_mode_c[2 * i + j] = lc->pu.intra_pred_mode[2 * i + j];
  1830. }
  1831. }
  1832. }
  1833. } else if (s->ps.sps->chroma_format_idc == 2) {
  1834. int mode_idx;
  1835. lc->pu.chroma_mode_c[0] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1836. if (chroma_mode != 4) {
  1837. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1838. mode_idx = 34;
  1839. else
  1840. mode_idx = intra_chroma_table[chroma_mode];
  1841. } else {
  1842. mode_idx = lc->pu.intra_pred_mode[0];
  1843. }
  1844. lc->pu.intra_pred_mode_c[0] = tab_mode_idx[mode_idx];
  1845. } else if (s->ps.sps->chroma_format_idc != 0) {
  1846. chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1847. if (chroma_mode != 4) {
  1848. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1849. lc->pu.intra_pred_mode_c[0] = 34;
  1850. else
  1851. lc->pu.intra_pred_mode_c[0] = intra_chroma_table[chroma_mode];
  1852. } else {
  1853. lc->pu.intra_pred_mode_c[0] = lc->pu.intra_pred_mode[0];
  1854. }
  1855. }
  1856. }
  1857. static void intra_prediction_unit_default_value(HEVCContext *s,
  1858. int x0, int y0,
  1859. int log2_cb_size)
  1860. {
  1861. HEVCLocalContext *lc = s->HEVClc;
  1862. int pb_size = 1 << log2_cb_size;
  1863. int size_in_pus = pb_size >> s->ps.sps->log2_min_pu_size;
  1864. int min_pu_width = s->ps.sps->min_pu_width;
  1865. MvField *tab_mvf = s->ref->tab_mvf;
  1866. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1867. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1868. int j, k;
  1869. if (size_in_pus == 0)
  1870. size_in_pus = 1;
  1871. for (j = 0; j < size_in_pus; j++)
  1872. memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
  1873. if (lc->cu.pred_mode == MODE_INTRA)
  1874. for (j = 0; j < size_in_pus; j++)
  1875. for (k = 0; k < size_in_pus; k++)
  1876. tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].pred_flag = PF_INTRA;
  1877. }
  1878. static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1879. {
  1880. int cb_size = 1 << log2_cb_size;
  1881. HEVCLocalContext *lc = s->HEVClc;
  1882. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1883. int length = cb_size >> log2_min_cb_size;
  1884. int min_cb_width = s->ps.sps->min_cb_width;
  1885. int x_cb = x0 >> log2_min_cb_size;
  1886. int y_cb = y0 >> log2_min_cb_size;
  1887. int idx = log2_cb_size - 2;
  1888. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  1889. int x, y, ret;
  1890. lc->cu.x = x0;
  1891. lc->cu.y = y0;
  1892. lc->cu.pred_mode = MODE_INTRA;
  1893. lc->cu.part_mode = PART_2Nx2N;
  1894. lc->cu.intra_split_flag = 0;
  1895. SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
  1896. for (x = 0; x < 4; x++)
  1897. lc->pu.intra_pred_mode[x] = 1;
  1898. if (s->ps.pps->transquant_bypass_enable_flag) {
  1899. lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
  1900. if (lc->cu.cu_transquant_bypass_flag)
  1901. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1902. } else
  1903. lc->cu.cu_transquant_bypass_flag = 0;
  1904. if (s->sh.slice_type != HEVC_SLICE_I) {
  1905. uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
  1906. x = y_cb * min_cb_width + x_cb;
  1907. for (y = 0; y < length; y++) {
  1908. memset(&s->skip_flag[x], skip_flag, length);
  1909. x += min_cb_width;
  1910. }
  1911. lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
  1912. } else {
  1913. x = y_cb * min_cb_width + x_cb;
  1914. for (y = 0; y < length; y++) {
  1915. memset(&s->skip_flag[x], 0, length);
  1916. x += min_cb_width;
  1917. }
  1918. }
  1919. if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
  1920. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1921. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1922. if (!s->sh.disable_deblocking_filter_flag)
  1923. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1924. } else {
  1925. int pcm_flag = 0;
  1926. if (s->sh.slice_type != HEVC_SLICE_I)
  1927. lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
  1928. if (lc->cu.pred_mode != MODE_INTRA ||
  1929. log2_cb_size == s->ps.sps->log2_min_cb_size) {
  1930. lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size);
  1931. lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
  1932. lc->cu.pred_mode == MODE_INTRA;
  1933. }
  1934. if (lc->cu.pred_mode == MODE_INTRA) {
  1935. if (lc->cu.part_mode == PART_2Nx2N && s->ps.sps->pcm_enabled_flag &&
  1936. log2_cb_size >= s->ps.sps->pcm.log2_min_pcm_cb_size &&
  1937. log2_cb_size <= s->ps.sps->pcm.log2_max_pcm_cb_size) {
  1938. pcm_flag = ff_hevc_pcm_flag_decode(s);
  1939. }
  1940. if (pcm_flag) {
  1941. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1942. ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
  1943. if (s->ps.sps->pcm.loop_filter_disable_flag)
  1944. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1945. if (ret < 0)
  1946. return ret;
  1947. } else {
  1948. intra_prediction_unit(s, x0, y0, log2_cb_size);
  1949. }
  1950. } else {
  1951. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1952. switch (lc->cu.part_mode) {
  1953. case PART_2Nx2N:
  1954. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1955. break;
  1956. case PART_2NxN:
  1957. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0, idx);
  1958. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1, idx);
  1959. break;
  1960. case PART_Nx2N:
  1961. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0, idx - 1);
  1962. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1, idx - 1);
  1963. break;
  1964. case PART_2NxnU:
  1965. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0, idx);
  1966. hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1, idx);
  1967. break;
  1968. case PART_2NxnD:
  1969. hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0, idx);
  1970. hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1, idx);
  1971. break;
  1972. case PART_nLx2N:
  1973. hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size, 0, idx - 2);
  1974. hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1, idx - 2);
  1975. break;
  1976. case PART_nRx2N:
  1977. hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0, idx - 2);
  1978. hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1, idx - 2);
  1979. break;
  1980. case PART_NxN:
  1981. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0, idx - 1);
  1982. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1, idx - 1);
  1983. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2, idx - 1);
  1984. hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3, idx - 1);
  1985. break;
  1986. }
  1987. }
  1988. if (!pcm_flag) {
  1989. int rqt_root_cbf = 1;
  1990. if (lc->cu.pred_mode != MODE_INTRA &&
  1991. !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
  1992. rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
  1993. }
  1994. if (rqt_root_cbf) {
  1995. const static int cbf[2] = { 0 };
  1996. lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
  1997. s->ps.sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
  1998. s->ps.sps->max_transform_hierarchy_depth_inter;
  1999. ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
  2000. log2_cb_size,
  2001. log2_cb_size, 0, 0, cbf, cbf);
  2002. if (ret < 0)
  2003. return ret;
  2004. } else {
  2005. if (!s->sh.disable_deblocking_filter_flag)
  2006. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  2007. }
  2008. }
  2009. }
  2010. if (s->ps.pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
  2011. ff_hevc_set_qPy(s, x0, y0, log2_cb_size);
  2012. x = y_cb * min_cb_width + x_cb;
  2013. for (y = 0; y < length; y++) {
  2014. memset(&s->qp_y_tab[x], lc->qp_y, length);
  2015. x += min_cb_width;
  2016. }
  2017. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  2018. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) {
  2019. lc->qPy_pred = lc->qp_y;
  2020. }
  2021. set_ct_depth(s, x0, y0, log2_cb_size, lc->ct_depth);
  2022. return 0;
  2023. }
  2024. static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
  2025. int log2_cb_size, int cb_depth)
  2026. {
  2027. HEVCLocalContext *lc = s->HEVClc;
  2028. const int cb_size = 1 << log2_cb_size;
  2029. int ret;
  2030. int split_cu;
  2031. lc->ct_depth = cb_depth;
  2032. if (x0 + cb_size <= s->ps.sps->width &&
  2033. y0 + cb_size <= s->ps.sps->height &&
  2034. log2_cb_size > s->ps.sps->log2_min_cb_size) {
  2035. split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
  2036. } else {
  2037. split_cu = (log2_cb_size > s->ps.sps->log2_min_cb_size);
  2038. }
  2039. if (s->ps.pps->cu_qp_delta_enabled_flag &&
  2040. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth) {
  2041. lc->tu.is_cu_qp_delta_coded = 0;
  2042. lc->tu.cu_qp_delta = 0;
  2043. }
  2044. if (s->sh.cu_chroma_qp_offset_enabled_flag &&
  2045. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_chroma_qp_offset_depth) {
  2046. lc->tu.is_cu_chroma_qp_offset_coded = 0;
  2047. }
  2048. if (split_cu) {
  2049. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  2050. const int cb_size_split = cb_size >> 1;
  2051. const int x1 = x0 + cb_size_split;
  2052. const int y1 = y0 + cb_size_split;
  2053. int more_data = 0;
  2054. more_data = hls_coding_quadtree(s, x0, y0, log2_cb_size - 1, cb_depth + 1);
  2055. if (more_data < 0)
  2056. return more_data;
  2057. if (more_data && x1 < s->ps.sps->width) {
  2058. more_data = hls_coding_quadtree(s, x1, y0, log2_cb_size - 1, cb_depth + 1);
  2059. if (more_data < 0)
  2060. return more_data;
  2061. }
  2062. if (more_data && y1 < s->ps.sps->height) {
  2063. more_data = hls_coding_quadtree(s, x0, y1, log2_cb_size - 1, cb_depth + 1);
  2064. if (more_data < 0)
  2065. return more_data;
  2066. }
  2067. if (more_data && x1 < s->ps.sps->width &&
  2068. y1 < s->ps.sps->height) {
  2069. more_data = hls_coding_quadtree(s, x1, y1, log2_cb_size - 1, cb_depth + 1);
  2070. if (more_data < 0)
  2071. return more_data;
  2072. }
  2073. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  2074. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0)
  2075. lc->qPy_pred = lc->qp_y;
  2076. if (more_data)
  2077. return ((x1 + cb_size_split) < s->ps.sps->width ||
  2078. (y1 + cb_size_split) < s->ps.sps->height);
  2079. else
  2080. return 0;
  2081. } else {
  2082. ret = hls_coding_unit(s, x0, y0, log2_cb_size);
  2083. if (ret < 0)
  2084. return ret;
  2085. if ((!((x0 + cb_size) %
  2086. (1 << (s->ps.sps->log2_ctb_size))) ||
  2087. (x0 + cb_size >= s->ps.sps->width)) &&
  2088. (!((y0 + cb_size) %
  2089. (1 << (s->ps.sps->log2_ctb_size))) ||
  2090. (y0 + cb_size >= s->ps.sps->height))) {
  2091. int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(s);
  2092. return !end_of_slice_flag;
  2093. } else {
  2094. return 1;
  2095. }
  2096. }
  2097. return 0;
  2098. }
  2099. static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
  2100. int ctb_addr_ts)
  2101. {
  2102. HEVCLocalContext *lc = s->HEVClc;
  2103. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  2104. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2105. int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
  2106. s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
  2107. if (s->ps.pps->entropy_coding_sync_enabled_flag) {
  2108. if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
  2109. lc->first_qp_group = 1;
  2110. lc->end_of_tiles_x = s->ps.sps->width;
  2111. } else if (s->ps.pps->tiles_enabled_flag) {
  2112. if (ctb_addr_ts && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[ctb_addr_ts - 1]) {
  2113. int idxX = s->ps.pps->col_idxX[x_ctb >> s->ps.sps->log2_ctb_size];
  2114. lc->end_of_tiles_x = x_ctb + (s->ps.pps->column_width[idxX] << s->ps.sps->log2_ctb_size);
  2115. lc->first_qp_group = 1;
  2116. }
  2117. } else {
  2118. lc->end_of_tiles_x = s->ps.sps->width;
  2119. }
  2120. lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->ps.sps->height);
  2121. lc->boundary_flags = 0;
  2122. if (s->ps.pps->tiles_enabled_flag) {
  2123. if (x_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
  2124. lc->boundary_flags |= BOUNDARY_LEFT_TILE;
  2125. if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1])
  2126. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2127. if (y_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->ps.sps->ctb_width]])
  2128. lc->boundary_flags |= BOUNDARY_UPPER_TILE;
  2129. if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->ps.sps->ctb_width])
  2130. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2131. } else {
  2132. if (ctb_addr_in_slice <= 0)
  2133. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2134. if (ctb_addr_in_slice < s->ps.sps->ctb_width)
  2135. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2136. }
  2137. lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
  2138. lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= s->ps.sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
  2139. lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->ps.sps->ctb_width]]));
  2140. lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->ps.sps->ctb_width]]));
  2141. }
  2142. static int hls_decode_entry(AVCodecContext *avctxt, void *isFilterThread)
  2143. {
  2144. HEVCContext *s = avctxt->priv_data;
  2145. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  2146. int more_data = 1;
  2147. int x_ctb = 0;
  2148. int y_ctb = 0;
  2149. int ctb_addr_ts = s->ps.pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
  2150. int ret;
  2151. if (!ctb_addr_ts && s->sh.dependent_slice_segment_flag) {
  2152. av_log(s->avctx, AV_LOG_ERROR, "Impossible initial tile.\n");
  2153. return AVERROR_INVALIDDATA;
  2154. }
  2155. if (s->sh.dependent_slice_segment_flag) {
  2156. int prev_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts - 1];
  2157. if (s->tab_slice_address[prev_rs] != s->sh.slice_addr) {
  2158. av_log(s->avctx, AV_LOG_ERROR, "Previous slice segment missing\n");
  2159. return AVERROR_INVALIDDATA;
  2160. }
  2161. }
  2162. while (more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2163. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2164. x_ctb = (ctb_addr_rs % ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2165. y_ctb = (ctb_addr_rs / ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2166. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2167. ret = ff_hevc_cabac_init(s, ctb_addr_ts);
  2168. if (ret < 0) {
  2169. s->tab_slice_address[ctb_addr_rs] = -1;
  2170. return ret;
  2171. }
  2172. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2173. s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
  2174. s->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset;
  2175. s->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag;
  2176. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2177. if (more_data < 0) {
  2178. s->tab_slice_address[ctb_addr_rs] = -1;
  2179. return more_data;
  2180. }
  2181. ctb_addr_ts++;
  2182. ff_hevc_save_states(s, ctb_addr_ts);
  2183. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2184. }
  2185. if (x_ctb + ctb_size >= s->ps.sps->width &&
  2186. y_ctb + ctb_size >= s->ps.sps->height)
  2187. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2188. return ctb_addr_ts;
  2189. }
  2190. static int hls_slice_data(HEVCContext *s)
  2191. {
  2192. int arg[2];
  2193. int ret[2];
  2194. arg[0] = 0;
  2195. arg[1] = 1;
  2196. s->avctx->execute(s->avctx, hls_decode_entry, arg, ret , 1, sizeof(int));
  2197. return ret[0];
  2198. }
  2199. static int hls_decode_entry_wpp(AVCodecContext *avctxt, void *input_ctb_row, int job, int self_id)
  2200. {
  2201. HEVCContext *s1 = avctxt->priv_data, *s;
  2202. HEVCLocalContext *lc;
  2203. int ctb_size = 1<< s1->ps.sps->log2_ctb_size;
  2204. int more_data = 1;
  2205. int *ctb_row_p = input_ctb_row;
  2206. int ctb_row = ctb_row_p[job];
  2207. int ctb_addr_rs = s1->sh.slice_ctb_addr_rs + ctb_row * ((s1->ps.sps->width + ctb_size - 1) >> s1->ps.sps->log2_ctb_size);
  2208. int ctb_addr_ts = s1->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs];
  2209. int thread = ctb_row % s1->threads_number;
  2210. int ret;
  2211. s = s1->sList[self_id];
  2212. lc = s->HEVClc;
  2213. if(ctb_row) {
  2214. ret = init_get_bits8(&lc->gb, s->data + s->sh.offset[ctb_row - 1], s->sh.size[ctb_row - 1]);
  2215. if (ret < 0)
  2216. goto error;
  2217. ff_init_cabac_decoder(&lc->cc, s->data + s->sh.offset[(ctb_row)-1], s->sh.size[ctb_row - 1]);
  2218. }
  2219. while(more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2220. int x_ctb = (ctb_addr_rs % s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2221. int y_ctb = (ctb_addr_rs / s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2222. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2223. ff_thread_await_progress2(s->avctx, ctb_row, thread, SHIFT_CTB_WPP);
  2224. if (atomic_load(&s1->wpp_err)) {
  2225. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2226. return 0;
  2227. }
  2228. ret = ff_hevc_cabac_init(s, ctb_addr_ts);
  2229. if (ret < 0)
  2230. goto error;
  2231. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2232. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2233. if (more_data < 0) {
  2234. ret = more_data;
  2235. goto error;
  2236. }
  2237. ctb_addr_ts++;
  2238. ff_hevc_save_states(s, ctb_addr_ts);
  2239. ff_thread_report_progress2(s->avctx, ctb_row, thread, 1);
  2240. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2241. if (!more_data && (x_ctb+ctb_size) < s->ps.sps->width && ctb_row != s->sh.num_entry_point_offsets) {
  2242. atomic_store(&s1->wpp_err, 1);
  2243. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2244. return 0;
  2245. }
  2246. if ((x_ctb+ctb_size) >= s->ps.sps->width && (y_ctb+ctb_size) >= s->ps.sps->height ) {
  2247. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2248. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2249. return ctb_addr_ts;
  2250. }
  2251. ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2252. x_ctb+=ctb_size;
  2253. if(x_ctb >= s->ps.sps->width) {
  2254. break;
  2255. }
  2256. }
  2257. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2258. return 0;
  2259. error:
  2260. s->tab_slice_address[ctb_addr_rs] = -1;
  2261. atomic_store(&s1->wpp_err, 1);
  2262. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2263. return ret;
  2264. }
  2265. static int hls_slice_data_wpp(HEVCContext *s, const H2645NAL *nal)
  2266. {
  2267. const uint8_t *data = nal->data;
  2268. int length = nal->size;
  2269. HEVCLocalContext *lc = s->HEVClc;
  2270. int *ret = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2271. int *arg = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2272. int64_t offset;
  2273. int64_t startheader, cmpt = 0;
  2274. int i, j, res = 0;
  2275. if (!ret || !arg) {
  2276. av_free(ret);
  2277. av_free(arg);
  2278. return AVERROR(ENOMEM);
  2279. }
  2280. if (s->sh.slice_ctb_addr_rs + s->sh.num_entry_point_offsets * s->ps.sps->ctb_width >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  2281. av_log(s->avctx, AV_LOG_ERROR, "WPP ctb addresses are wrong (%d %d %d %d)\n",
  2282. s->sh.slice_ctb_addr_rs, s->sh.num_entry_point_offsets,
  2283. s->ps.sps->ctb_width, s->ps.sps->ctb_height
  2284. );
  2285. res = AVERROR_INVALIDDATA;
  2286. goto error;
  2287. }
  2288. ff_alloc_entries(s->avctx, s->sh.num_entry_point_offsets + 1);
  2289. if (!s->sList[1]) {
  2290. for (i = 1; i < s->threads_number; i++) {
  2291. s->sList[i] = av_malloc(sizeof(HEVCContext));
  2292. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2293. s->HEVClcList[i] = av_mallocz(sizeof(HEVCLocalContext));
  2294. s->sList[i]->HEVClc = s->HEVClcList[i];
  2295. }
  2296. }
  2297. offset = (lc->gb.index >> 3);
  2298. for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < nal->skipped_bytes; j++) {
  2299. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2300. startheader--;
  2301. cmpt++;
  2302. }
  2303. }
  2304. for (i = 1; i < s->sh.num_entry_point_offsets; i++) {
  2305. offset += (s->sh.entry_point_offset[i - 1] - cmpt);
  2306. for (j = 0, cmpt = 0, startheader = offset
  2307. + s->sh.entry_point_offset[i]; j < nal->skipped_bytes; j++) {
  2308. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2309. startheader--;
  2310. cmpt++;
  2311. }
  2312. }
  2313. s->sh.size[i - 1] = s->sh.entry_point_offset[i] - cmpt;
  2314. s->sh.offset[i - 1] = offset;
  2315. }
  2316. if (s->sh.num_entry_point_offsets != 0) {
  2317. offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt;
  2318. if (length < offset) {
  2319. av_log(s->avctx, AV_LOG_ERROR, "entry_point_offset table is corrupted\n");
  2320. res = AVERROR_INVALIDDATA;
  2321. goto error;
  2322. }
  2323. s->sh.size[s->sh.num_entry_point_offsets - 1] = length - offset;
  2324. s->sh.offset[s->sh.num_entry_point_offsets - 1] = offset;
  2325. }
  2326. s->data = data;
  2327. for (i = 1; i < s->threads_number; i++) {
  2328. s->sList[i]->HEVClc->first_qp_group = 1;
  2329. s->sList[i]->HEVClc->qp_y = s->sList[0]->HEVClc->qp_y;
  2330. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2331. s->sList[i]->HEVClc = s->HEVClcList[i];
  2332. }
  2333. atomic_store(&s->wpp_err, 0);
  2334. ff_reset_entries(s->avctx);
  2335. for (i = 0; i <= s->sh.num_entry_point_offsets; i++) {
  2336. arg[i] = i;
  2337. ret[i] = 0;
  2338. }
  2339. if (s->ps.pps->entropy_coding_sync_enabled_flag)
  2340. s->avctx->execute2(s->avctx, hls_decode_entry_wpp, arg, ret, s->sh.num_entry_point_offsets + 1);
  2341. for (i = 0; i <= s->sh.num_entry_point_offsets; i++)
  2342. res += ret[i];
  2343. error:
  2344. av_free(ret);
  2345. av_free(arg);
  2346. return res;
  2347. }
  2348. static int set_side_data(HEVCContext *s)
  2349. {
  2350. AVFrame *out = s->ref->frame;
  2351. if (s->sei.frame_packing.present &&
  2352. s->sei.frame_packing.arrangement_type >= 3 &&
  2353. s->sei.frame_packing.arrangement_type <= 5 &&
  2354. s->sei.frame_packing.content_interpretation_type > 0 &&
  2355. s->sei.frame_packing.content_interpretation_type < 3) {
  2356. AVStereo3D *stereo = av_stereo3d_create_side_data(out);
  2357. if (!stereo)
  2358. return AVERROR(ENOMEM);
  2359. switch (s->sei.frame_packing.arrangement_type) {
  2360. case 3:
  2361. if (s->sei.frame_packing.quincunx_subsampling)
  2362. stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
  2363. else
  2364. stereo->type = AV_STEREO3D_SIDEBYSIDE;
  2365. break;
  2366. case 4:
  2367. stereo->type = AV_STEREO3D_TOPBOTTOM;
  2368. break;
  2369. case 5:
  2370. stereo->type = AV_STEREO3D_FRAMESEQUENCE;
  2371. break;
  2372. }
  2373. if (s->sei.frame_packing.content_interpretation_type == 2)
  2374. stereo->flags = AV_STEREO3D_FLAG_INVERT;
  2375. if (s->sei.frame_packing.arrangement_type == 5) {
  2376. if (s->sei.frame_packing.current_frame_is_frame0_flag)
  2377. stereo->view = AV_STEREO3D_VIEW_LEFT;
  2378. else
  2379. stereo->view = AV_STEREO3D_VIEW_RIGHT;
  2380. }
  2381. }
  2382. if (s->sei.display_orientation.present &&
  2383. (s->sei.display_orientation.anticlockwise_rotation ||
  2384. s->sei.display_orientation.hflip || s->sei.display_orientation.vflip)) {
  2385. double angle = s->sei.display_orientation.anticlockwise_rotation * 360 / (double) (1 << 16);
  2386. AVFrameSideData *rotation = av_frame_new_side_data(out,
  2387. AV_FRAME_DATA_DISPLAYMATRIX,
  2388. sizeof(int32_t) * 9);
  2389. if (!rotation)
  2390. return AVERROR(ENOMEM);
  2391. av_display_rotation_set((int32_t *)rotation->data, angle);
  2392. av_display_matrix_flip((int32_t *)rotation->data,
  2393. s->sei.display_orientation.hflip,
  2394. s->sei.display_orientation.vflip);
  2395. }
  2396. // Decrement the mastering display flag when IRAP frame has no_rasl_output_flag=1
  2397. // so the side data persists for the entire coded video sequence.
  2398. if (s->sei.mastering_display.present > 0 &&
  2399. IS_IRAP(s) && s->no_rasl_output_flag) {
  2400. s->sei.mastering_display.present--;
  2401. }
  2402. if (s->sei.mastering_display.present) {
  2403. // HEVC uses a g,b,r ordering, which we convert to a more natural r,g,b
  2404. const int mapping[3] = {2, 0, 1};
  2405. const int chroma_den = 50000;
  2406. const int luma_den = 10000;
  2407. int i;
  2408. AVMasteringDisplayMetadata *metadata =
  2409. av_mastering_display_metadata_create_side_data(out);
  2410. if (!metadata)
  2411. return AVERROR(ENOMEM);
  2412. for (i = 0; i < 3; i++) {
  2413. const int j = mapping[i];
  2414. metadata->display_primaries[i][0].num = s->sei.mastering_display.display_primaries[j][0];
  2415. metadata->display_primaries[i][0].den = chroma_den;
  2416. metadata->display_primaries[i][1].num = s->sei.mastering_display.display_primaries[j][1];
  2417. metadata->display_primaries[i][1].den = chroma_den;
  2418. }
  2419. metadata->white_point[0].num = s->sei.mastering_display.white_point[0];
  2420. metadata->white_point[0].den = chroma_den;
  2421. metadata->white_point[1].num = s->sei.mastering_display.white_point[1];
  2422. metadata->white_point[1].den = chroma_den;
  2423. metadata->max_luminance.num = s->sei.mastering_display.max_luminance;
  2424. metadata->max_luminance.den = luma_den;
  2425. metadata->min_luminance.num = s->sei.mastering_display.min_luminance;
  2426. metadata->min_luminance.den = luma_den;
  2427. metadata->has_luminance = 1;
  2428. metadata->has_primaries = 1;
  2429. av_log(s->avctx, AV_LOG_DEBUG, "Mastering Display Metadata:\n");
  2430. av_log(s->avctx, AV_LOG_DEBUG,
  2431. "r(%5.4f,%5.4f) g(%5.4f,%5.4f) b(%5.4f %5.4f) wp(%5.4f, %5.4f)\n",
  2432. av_q2d(metadata->display_primaries[0][0]),
  2433. av_q2d(metadata->display_primaries[0][1]),
  2434. av_q2d(metadata->display_primaries[1][0]),
  2435. av_q2d(metadata->display_primaries[1][1]),
  2436. av_q2d(metadata->display_primaries[2][0]),
  2437. av_q2d(metadata->display_primaries[2][1]),
  2438. av_q2d(metadata->white_point[0]), av_q2d(metadata->white_point[1]));
  2439. av_log(s->avctx, AV_LOG_DEBUG,
  2440. "min_luminance=%f, max_luminance=%f\n",
  2441. av_q2d(metadata->min_luminance), av_q2d(metadata->max_luminance));
  2442. }
  2443. // Decrement the mastering display flag when IRAP frame has no_rasl_output_flag=1
  2444. // so the side data persists for the entire coded video sequence.
  2445. if (s->sei.content_light.present > 0 &&
  2446. IS_IRAP(s) && s->no_rasl_output_flag) {
  2447. s->sei.content_light.present--;
  2448. }
  2449. if (s->sei.content_light.present) {
  2450. AVContentLightMetadata *metadata =
  2451. av_content_light_metadata_create_side_data(out);
  2452. if (!metadata)
  2453. return AVERROR(ENOMEM);
  2454. metadata->MaxCLL = s->sei.content_light.max_content_light_level;
  2455. metadata->MaxFALL = s->sei.content_light.max_pic_average_light_level;
  2456. av_log(s->avctx, AV_LOG_DEBUG, "Content Light Level Metadata:\n");
  2457. av_log(s->avctx, AV_LOG_DEBUG, "MaxCLL=%d, MaxFALL=%d\n",
  2458. metadata->MaxCLL, metadata->MaxFALL);
  2459. }
  2460. if (s->sei.a53_caption.buf_ref) {
  2461. HEVCSEIA53Caption *a53 = &s->sei.a53_caption;
  2462. AVFrameSideData *sd = av_frame_new_side_data_from_buf(out, AV_FRAME_DATA_A53_CC, a53->buf_ref);
  2463. if (!sd)
  2464. av_buffer_unref(&a53->buf_ref);
  2465. a53->buf_ref = NULL;
  2466. }
  2467. for (int i = 0; i < s->sei.unregistered.nb_buf_ref; i++) {
  2468. HEVCSEIUnregistered *unreg = &s->sei.unregistered;
  2469. if (unreg->buf_ref[i]) {
  2470. AVFrameSideData *sd = av_frame_new_side_data_from_buf(out,
  2471. AV_FRAME_DATA_SEI_UNREGISTERED,
  2472. unreg->buf_ref[i]);
  2473. if (!sd)
  2474. av_buffer_unref(&unreg->buf_ref[i]);
  2475. unreg->buf_ref[i] = NULL;
  2476. }
  2477. }
  2478. s->sei.unregistered.nb_buf_ref = 0;
  2479. if (s->sei.timecode.present) {
  2480. uint32_t *tc_sd;
  2481. char tcbuf[AV_TIMECODE_STR_SIZE];
  2482. AVFrameSideData *tcside = av_frame_new_side_data(out, AV_FRAME_DATA_S12M_TIMECODE,
  2483. sizeof(uint32_t) * 4);
  2484. if (!tcside)
  2485. return AVERROR(ENOMEM);
  2486. tc_sd = (uint32_t*)tcside->data;
  2487. tc_sd[0] = s->sei.timecode.num_clock_ts;
  2488. for (int i = 0; i < tc_sd[0]; i++) {
  2489. int drop = s->sei.timecode.cnt_dropped_flag[i];
  2490. int hh = s->sei.timecode.hours_value[i];
  2491. int mm = s->sei.timecode.minutes_value[i];
  2492. int ss = s->sei.timecode.seconds_value[i];
  2493. int ff = s->sei.timecode.n_frames[i];
  2494. tc_sd[i + 1] = av_timecode_get_smpte(s->avctx->framerate, drop, hh, mm, ss, ff);
  2495. av_timecode_make_smpte_tc_string2(tcbuf, s->avctx->framerate, tc_sd[i + 1], 0, 0);
  2496. av_dict_set(&out->metadata, "timecode", tcbuf, 0);
  2497. }
  2498. s->sei.timecode.num_clock_ts = 0;
  2499. }
  2500. return 0;
  2501. }
  2502. static int hevc_frame_start(HEVCContext *s)
  2503. {
  2504. HEVCLocalContext *lc = s->HEVClc;
  2505. int pic_size_in_ctb = ((s->ps.sps->width >> s->ps.sps->log2_min_cb_size) + 1) *
  2506. ((s->ps.sps->height >> s->ps.sps->log2_min_cb_size) + 1);
  2507. int ret;
  2508. memset(s->horizontal_bs, 0, s->bs_width * s->bs_height);
  2509. memset(s->vertical_bs, 0, s->bs_width * s->bs_height);
  2510. memset(s->cbf_luma, 0, s->ps.sps->min_tb_width * s->ps.sps->min_tb_height);
  2511. memset(s->is_pcm, 0, (s->ps.sps->min_pu_width + 1) * (s->ps.sps->min_pu_height + 1));
  2512. memset(s->tab_slice_address, -1, pic_size_in_ctb * sizeof(*s->tab_slice_address));
  2513. s->is_decoded = 0;
  2514. s->first_nal_type = s->nal_unit_type;
  2515. s->no_rasl_output_flag = IS_IDR(s) || IS_BLA(s) || (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos);
  2516. if (s->ps.pps->tiles_enabled_flag)
  2517. lc->end_of_tiles_x = s->ps.pps->column_width[0] << s->ps.sps->log2_ctb_size;
  2518. ret = ff_hevc_set_new_ref(s, &s->frame, s->poc);
  2519. if (ret < 0)
  2520. goto fail;
  2521. ret = ff_hevc_frame_rps(s);
  2522. if (ret < 0) {
  2523. av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
  2524. goto fail;
  2525. }
  2526. s->ref->frame->key_frame = IS_IRAP(s);
  2527. ret = set_side_data(s);
  2528. if (ret < 0)
  2529. goto fail;
  2530. s->frame->pict_type = 3 - s->sh.slice_type;
  2531. if (!IS_IRAP(s))
  2532. ff_hevc_bump_frame(s);
  2533. av_frame_unref(s->output_frame);
  2534. ret = ff_hevc_output_frame(s, s->output_frame, 0);
  2535. if (ret < 0)
  2536. goto fail;
  2537. if (!s->avctx->hwaccel)
  2538. ff_thread_finish_setup(s->avctx);
  2539. return 0;
  2540. fail:
  2541. if (s->ref)
  2542. ff_hevc_unref_frame(s, s->ref, ~0);
  2543. s->ref = NULL;
  2544. return ret;
  2545. }
  2546. static int decode_nal_unit(HEVCContext *s, const H2645NAL *nal)
  2547. {
  2548. HEVCLocalContext *lc = s->HEVClc;
  2549. GetBitContext *gb = &lc->gb;
  2550. int ctb_addr_ts, ret;
  2551. *gb = nal->gb;
  2552. s->nal_unit_type = nal->type;
  2553. s->temporal_id = nal->temporal_id;
  2554. switch (s->nal_unit_type) {
  2555. case HEVC_NAL_VPS:
  2556. if (s->avctx->hwaccel && s->avctx->hwaccel->decode_params) {
  2557. ret = s->avctx->hwaccel->decode_params(s->avctx,
  2558. nal->type,
  2559. nal->raw_data,
  2560. nal->raw_size);
  2561. if (ret < 0)
  2562. goto fail;
  2563. }
  2564. ret = ff_hevc_decode_nal_vps(gb, s->avctx, &s->ps);
  2565. if (ret < 0)
  2566. goto fail;
  2567. break;
  2568. case HEVC_NAL_SPS:
  2569. if (s->avctx->hwaccel && s->avctx->hwaccel->decode_params) {
  2570. ret = s->avctx->hwaccel->decode_params(s->avctx,
  2571. nal->type,
  2572. nal->raw_data,
  2573. nal->raw_size);
  2574. if (ret < 0)
  2575. goto fail;
  2576. }
  2577. ret = ff_hevc_decode_nal_sps(gb, s->avctx, &s->ps,
  2578. s->apply_defdispwin);
  2579. if (ret < 0)
  2580. goto fail;
  2581. break;
  2582. case HEVC_NAL_PPS:
  2583. if (s->avctx->hwaccel && s->avctx->hwaccel->decode_params) {
  2584. ret = s->avctx->hwaccel->decode_params(s->avctx,
  2585. nal->type,
  2586. nal->raw_data,
  2587. nal->raw_size);
  2588. if (ret < 0)
  2589. goto fail;
  2590. }
  2591. ret = ff_hevc_decode_nal_pps(gb, s->avctx, &s->ps);
  2592. if (ret < 0)
  2593. goto fail;
  2594. break;
  2595. case HEVC_NAL_SEI_PREFIX:
  2596. case HEVC_NAL_SEI_SUFFIX:
  2597. if (s->avctx->hwaccel && s->avctx->hwaccel->decode_params) {
  2598. ret = s->avctx->hwaccel->decode_params(s->avctx,
  2599. nal->type,
  2600. nal->raw_data,
  2601. nal->raw_size);
  2602. if (ret < 0)
  2603. goto fail;
  2604. }
  2605. ret = ff_hevc_decode_nal_sei(gb, s->avctx, &s->sei, &s->ps, s->nal_unit_type);
  2606. if (ret < 0)
  2607. goto fail;
  2608. break;
  2609. case HEVC_NAL_TRAIL_R:
  2610. case HEVC_NAL_TRAIL_N:
  2611. case HEVC_NAL_TSA_N:
  2612. case HEVC_NAL_TSA_R:
  2613. case HEVC_NAL_STSA_N:
  2614. case HEVC_NAL_STSA_R:
  2615. case HEVC_NAL_BLA_W_LP:
  2616. case HEVC_NAL_BLA_W_RADL:
  2617. case HEVC_NAL_BLA_N_LP:
  2618. case HEVC_NAL_IDR_W_RADL:
  2619. case HEVC_NAL_IDR_N_LP:
  2620. case HEVC_NAL_CRA_NUT:
  2621. case HEVC_NAL_RADL_N:
  2622. case HEVC_NAL_RADL_R:
  2623. case HEVC_NAL_RASL_N:
  2624. case HEVC_NAL_RASL_R:
  2625. ret = hls_slice_header(s);
  2626. if (ret < 0)
  2627. return ret;
  2628. if (ret == 1) {
  2629. ret = AVERROR_INVALIDDATA;
  2630. goto fail;
  2631. }
  2632. if (
  2633. (s->avctx->skip_frame >= AVDISCARD_BIDIR && s->sh.slice_type == HEVC_SLICE_B) ||
  2634. (s->avctx->skip_frame >= AVDISCARD_NONINTRA && s->sh.slice_type != HEVC_SLICE_I) ||
  2635. (s->avctx->skip_frame >= AVDISCARD_NONKEY && !IS_IRAP(s))) {
  2636. break;
  2637. }
  2638. if (s->sh.first_slice_in_pic_flag) {
  2639. if (s->max_ra == INT_MAX) {
  2640. if (s->nal_unit_type == HEVC_NAL_CRA_NUT || IS_BLA(s)) {
  2641. s->max_ra = s->poc;
  2642. } else {
  2643. if (IS_IDR(s))
  2644. s->max_ra = INT_MIN;
  2645. }
  2646. }
  2647. if ((s->nal_unit_type == HEVC_NAL_RASL_R || s->nal_unit_type == HEVC_NAL_RASL_N) &&
  2648. s->poc <= s->max_ra) {
  2649. s->is_decoded = 0;
  2650. break;
  2651. } else {
  2652. if (s->nal_unit_type == HEVC_NAL_RASL_R && s->poc > s->max_ra)
  2653. s->max_ra = INT_MIN;
  2654. }
  2655. s->overlap ++;
  2656. ret = hevc_frame_start(s);
  2657. if (ret < 0)
  2658. return ret;
  2659. } else if (!s->ref) {
  2660. av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
  2661. goto fail;
  2662. }
  2663. if (s->nal_unit_type != s->first_nal_type) {
  2664. av_log(s->avctx, AV_LOG_ERROR,
  2665. "Non-matching NAL types of the VCL NALUs: %d %d\n",
  2666. s->first_nal_type, s->nal_unit_type);
  2667. return AVERROR_INVALIDDATA;
  2668. }
  2669. if (!s->sh.dependent_slice_segment_flag &&
  2670. s->sh.slice_type != HEVC_SLICE_I) {
  2671. ret = ff_hevc_slice_rpl(s);
  2672. if (ret < 0) {
  2673. av_log(s->avctx, AV_LOG_WARNING,
  2674. "Error constructing the reference lists for the current slice.\n");
  2675. goto fail;
  2676. }
  2677. }
  2678. if (s->sh.first_slice_in_pic_flag && s->avctx->hwaccel) {
  2679. ret = s->avctx->hwaccel->start_frame(s->avctx, NULL, 0);
  2680. if (ret < 0)
  2681. goto fail;
  2682. }
  2683. if (s->avctx->hwaccel) {
  2684. ret = s->avctx->hwaccel->decode_slice(s->avctx, nal->raw_data, nal->raw_size);
  2685. if (ret < 0)
  2686. goto fail;
  2687. } else {
  2688. if (s->threads_number > 1 && s->sh.num_entry_point_offsets > 0)
  2689. ctb_addr_ts = hls_slice_data_wpp(s, nal);
  2690. else
  2691. ctb_addr_ts = hls_slice_data(s);
  2692. if (ctb_addr_ts >= (s->ps.sps->ctb_width * s->ps.sps->ctb_height)) {
  2693. s->is_decoded = 1;
  2694. }
  2695. if (ctb_addr_ts < 0) {
  2696. ret = ctb_addr_ts;
  2697. goto fail;
  2698. }
  2699. }
  2700. break;
  2701. case HEVC_NAL_EOS_NUT:
  2702. case HEVC_NAL_EOB_NUT:
  2703. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2704. s->max_ra = INT_MAX;
  2705. break;
  2706. case HEVC_NAL_AUD:
  2707. case HEVC_NAL_FD_NUT:
  2708. break;
  2709. default:
  2710. av_log(s->avctx, AV_LOG_INFO,
  2711. "Skipping NAL unit %d\n", s->nal_unit_type);
  2712. }
  2713. return 0;
  2714. fail:
  2715. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  2716. return ret;
  2717. return 0;
  2718. }
  2719. static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
  2720. {
  2721. int i, ret = 0;
  2722. int eos_at_start = 1;
  2723. s->ref = NULL;
  2724. s->last_eos = s->eos;
  2725. s->eos = 0;
  2726. s->overlap = 0;
  2727. /* split the input packet into NAL units, so we know the upper bound on the
  2728. * number of slices in the frame */
  2729. ret = ff_h2645_packet_split(&s->pkt, buf, length, s->avctx, s->is_nalff,
  2730. s->nal_length_size, s->avctx->codec_id, 1, 0);
  2731. if (ret < 0) {
  2732. av_log(s->avctx, AV_LOG_ERROR,
  2733. "Error splitting the input into NAL units.\n");
  2734. return ret;
  2735. }
  2736. for (i = 0; i < s->pkt.nb_nals; i++) {
  2737. if (s->pkt.nals[i].type == HEVC_NAL_EOB_NUT ||
  2738. s->pkt.nals[i].type == HEVC_NAL_EOS_NUT) {
  2739. if (eos_at_start) {
  2740. s->last_eos = 1;
  2741. } else {
  2742. s->eos = 1;
  2743. }
  2744. } else {
  2745. eos_at_start = 0;
  2746. }
  2747. }
  2748. /* decode the NAL units */
  2749. for (i = 0; i < s->pkt.nb_nals; i++) {
  2750. H2645NAL *nal = &s->pkt.nals[i];
  2751. if (s->avctx->skip_frame >= AVDISCARD_ALL ||
  2752. (s->avctx->skip_frame >= AVDISCARD_NONREF
  2753. && ff_hevc_nal_is_nonref(nal->type)) || nal->nuh_layer_id > 0)
  2754. continue;
  2755. ret = decode_nal_unit(s, nal);
  2756. if (ret >= 0 && s->overlap > 2)
  2757. ret = AVERROR_INVALIDDATA;
  2758. if (ret < 0) {
  2759. av_log(s->avctx, AV_LOG_WARNING,
  2760. "Error parsing NAL unit #%d.\n", i);
  2761. goto fail;
  2762. }
  2763. }
  2764. fail:
  2765. if (s->ref && s->threads_type == FF_THREAD_FRAME)
  2766. ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
  2767. return ret;
  2768. }
  2769. static void print_md5(void *log_ctx, int level, uint8_t md5[16])
  2770. {
  2771. int i;
  2772. for (i = 0; i < 16; i++)
  2773. av_log(log_ctx, level, "%02"PRIx8, md5[i]);
  2774. }
  2775. static int verify_md5(HEVCContext *s, AVFrame *frame)
  2776. {
  2777. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
  2778. int pixel_shift;
  2779. int i, j;
  2780. if (!desc)
  2781. return AVERROR(EINVAL);
  2782. pixel_shift = desc->comp[0].depth > 8;
  2783. av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
  2784. s->poc);
  2785. /* the checksums are LE, so we have to byteswap for >8bpp formats
  2786. * on BE arches */
  2787. #if HAVE_BIGENDIAN
  2788. if (pixel_shift && !s->checksum_buf) {
  2789. av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
  2790. FFMAX3(frame->linesize[0], frame->linesize[1],
  2791. frame->linesize[2]));
  2792. if (!s->checksum_buf)
  2793. return AVERROR(ENOMEM);
  2794. }
  2795. #endif
  2796. for (i = 0; frame->data[i]; i++) {
  2797. int width = s->avctx->coded_width;
  2798. int height = s->avctx->coded_height;
  2799. int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width;
  2800. int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
  2801. uint8_t md5[16];
  2802. av_md5_init(s->md5_ctx);
  2803. for (j = 0; j < h; j++) {
  2804. const uint8_t *src = frame->data[i] + j * frame->linesize[i];
  2805. #if HAVE_BIGENDIAN
  2806. if (pixel_shift) {
  2807. s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
  2808. (const uint16_t *) src, w);
  2809. src = s->checksum_buf;
  2810. }
  2811. #endif
  2812. av_md5_update(s->md5_ctx, src, w << pixel_shift);
  2813. }
  2814. av_md5_final(s->md5_ctx, md5);
  2815. if (!memcmp(md5, s->sei.picture_hash.md5[i], 16)) {
  2816. av_log (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
  2817. print_md5(s->avctx, AV_LOG_DEBUG, md5);
  2818. av_log (s->avctx, AV_LOG_DEBUG, "; ");
  2819. } else {
  2820. av_log (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
  2821. print_md5(s->avctx, AV_LOG_ERROR, md5);
  2822. av_log (s->avctx, AV_LOG_ERROR, " != ");
  2823. print_md5(s->avctx, AV_LOG_ERROR, s->sei.picture_hash.md5[i]);
  2824. av_log (s->avctx, AV_LOG_ERROR, "\n");
  2825. return AVERROR_INVALIDDATA;
  2826. }
  2827. }
  2828. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  2829. return 0;
  2830. }
  2831. static int hevc_decode_extradata(HEVCContext *s, uint8_t *buf, int length, int first)
  2832. {
  2833. int ret, i;
  2834. ret = ff_hevc_decode_extradata(buf, length, &s->ps, &s->sei, &s->is_nalff,
  2835. &s->nal_length_size, s->avctx->err_recognition,
  2836. s->apply_defdispwin, s->avctx);
  2837. if (ret < 0)
  2838. return ret;
  2839. /* export stream parameters from the first SPS */
  2840. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2841. if (first && s->ps.sps_list[i]) {
  2842. const HEVCSPS *sps = (const HEVCSPS*)s->ps.sps_list[i]->data;
  2843. export_stream_params(s, sps);
  2844. break;
  2845. }
  2846. }
  2847. /* export stream parameters from SEI */
  2848. ret = export_stream_params_from_sei(s);
  2849. if (ret < 0)
  2850. return ret;
  2851. return 0;
  2852. }
  2853. static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
  2854. AVPacket *avpkt)
  2855. {
  2856. int ret;
  2857. int new_extradata_size;
  2858. uint8_t *new_extradata;
  2859. HEVCContext *s = avctx->priv_data;
  2860. if (!avpkt->size) {
  2861. ret = ff_hevc_output_frame(s, data, 1);
  2862. if (ret < 0)
  2863. return ret;
  2864. *got_output = ret;
  2865. return 0;
  2866. }
  2867. new_extradata = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA,
  2868. &new_extradata_size);
  2869. if (new_extradata && new_extradata_size > 0) {
  2870. ret = hevc_decode_extradata(s, new_extradata, new_extradata_size, 0);
  2871. if (ret < 0)
  2872. return ret;
  2873. }
  2874. s->ref = NULL;
  2875. ret = decode_nal_units(s, avpkt->data, avpkt->size);
  2876. if (ret < 0)
  2877. return ret;
  2878. if (avctx->hwaccel) {
  2879. if (s->ref && (ret = avctx->hwaccel->end_frame(avctx)) < 0) {
  2880. av_log(avctx, AV_LOG_ERROR,
  2881. "hardware accelerator failed to decode picture\n");
  2882. ff_hevc_unref_frame(s, s->ref, ~0);
  2883. return ret;
  2884. }
  2885. } else {
  2886. /* verify the SEI checksum */
  2887. if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
  2888. s->sei.picture_hash.is_md5) {
  2889. ret = verify_md5(s, s->ref->frame);
  2890. if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
  2891. ff_hevc_unref_frame(s, s->ref, ~0);
  2892. return ret;
  2893. }
  2894. }
  2895. }
  2896. s->sei.picture_hash.is_md5 = 0;
  2897. if (s->is_decoded) {
  2898. av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
  2899. s->is_decoded = 0;
  2900. }
  2901. if (s->output_frame->buf[0]) {
  2902. av_frame_move_ref(data, s->output_frame);
  2903. *got_output = 1;
  2904. }
  2905. return avpkt->size;
  2906. }
  2907. static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
  2908. {
  2909. int ret;
  2910. ret = ff_thread_ref_frame(&dst->tf, &src->tf);
  2911. if (ret < 0)
  2912. return ret;
  2913. dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
  2914. if (!dst->tab_mvf_buf)
  2915. goto fail;
  2916. dst->tab_mvf = src->tab_mvf;
  2917. dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
  2918. if (!dst->rpl_tab_buf)
  2919. goto fail;
  2920. dst->rpl_tab = src->rpl_tab;
  2921. dst->rpl_buf = av_buffer_ref(src->rpl_buf);
  2922. if (!dst->rpl_buf)
  2923. goto fail;
  2924. dst->poc = src->poc;
  2925. dst->ctb_count = src->ctb_count;
  2926. dst->flags = src->flags;
  2927. dst->sequence = src->sequence;
  2928. if (src->hwaccel_picture_private) {
  2929. dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf);
  2930. if (!dst->hwaccel_priv_buf)
  2931. goto fail;
  2932. dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data;
  2933. }
  2934. return 0;
  2935. fail:
  2936. ff_hevc_unref_frame(s, dst, ~0);
  2937. return AVERROR(ENOMEM);
  2938. }
  2939. static av_cold int hevc_decode_free(AVCodecContext *avctx)
  2940. {
  2941. HEVCContext *s = avctx->priv_data;
  2942. int i;
  2943. pic_arrays_free(s);
  2944. av_freep(&s->md5_ctx);
  2945. av_freep(&s->cabac_state);
  2946. for (i = 0; i < 3; i++) {
  2947. av_freep(&s->sao_pixel_buffer_h[i]);
  2948. av_freep(&s->sao_pixel_buffer_v[i]);
  2949. }
  2950. av_frame_free(&s->output_frame);
  2951. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2952. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2953. av_frame_free(&s->DPB[i].frame);
  2954. }
  2955. ff_hevc_ps_uninit(&s->ps);
  2956. av_freep(&s->sh.entry_point_offset);
  2957. av_freep(&s->sh.offset);
  2958. av_freep(&s->sh.size);
  2959. for (i = 1; i < s->threads_number; i++) {
  2960. HEVCLocalContext *lc = s->HEVClcList[i];
  2961. if (lc) {
  2962. av_freep(&s->HEVClcList[i]);
  2963. av_freep(&s->sList[i]);
  2964. }
  2965. }
  2966. if (s->HEVClc == s->HEVClcList[0])
  2967. s->HEVClc = NULL;
  2968. av_freep(&s->HEVClcList[0]);
  2969. ff_h2645_packet_uninit(&s->pkt);
  2970. ff_hevc_reset_sei(&s->sei);
  2971. return 0;
  2972. }
  2973. static av_cold int hevc_init_context(AVCodecContext *avctx)
  2974. {
  2975. HEVCContext *s = avctx->priv_data;
  2976. int i;
  2977. s->avctx = avctx;
  2978. s->HEVClc = av_mallocz(sizeof(HEVCLocalContext));
  2979. if (!s->HEVClc)
  2980. goto fail;
  2981. s->HEVClcList[0] = s->HEVClc;
  2982. s->sList[0] = s;
  2983. s->cabac_state = av_malloc(HEVC_CONTEXTS);
  2984. if (!s->cabac_state)
  2985. goto fail;
  2986. s->output_frame = av_frame_alloc();
  2987. if (!s->output_frame)
  2988. goto fail;
  2989. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2990. s->DPB[i].frame = av_frame_alloc();
  2991. if (!s->DPB[i].frame)
  2992. goto fail;
  2993. s->DPB[i].tf.f = s->DPB[i].frame;
  2994. }
  2995. s->max_ra = INT_MAX;
  2996. s->md5_ctx = av_md5_alloc();
  2997. if (!s->md5_ctx)
  2998. goto fail;
  2999. ff_bswapdsp_init(&s->bdsp);
  3000. s->context_initialized = 1;
  3001. s->eos = 0;
  3002. ff_hevc_reset_sei(&s->sei);
  3003. return 0;
  3004. fail:
  3005. hevc_decode_free(avctx);
  3006. return AVERROR(ENOMEM);
  3007. }
  3008. #if HAVE_THREADS
  3009. static int hevc_update_thread_context(AVCodecContext *dst,
  3010. const AVCodecContext *src)
  3011. {
  3012. HEVCContext *s = dst->priv_data;
  3013. HEVCContext *s0 = src->priv_data;
  3014. int i, ret;
  3015. if (!s->context_initialized) {
  3016. ret = hevc_init_context(dst);
  3017. if (ret < 0)
  3018. return ret;
  3019. }
  3020. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  3021. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  3022. if (s0->DPB[i].frame->buf[0]) {
  3023. ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
  3024. if (ret < 0)
  3025. return ret;
  3026. }
  3027. }
  3028. if (s->ps.sps != s0->ps.sps)
  3029. s->ps.sps = NULL;
  3030. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++) {
  3031. av_buffer_unref(&s->ps.vps_list[i]);
  3032. if (s0->ps.vps_list[i]) {
  3033. s->ps.vps_list[i] = av_buffer_ref(s0->ps.vps_list[i]);
  3034. if (!s->ps.vps_list[i])
  3035. return AVERROR(ENOMEM);
  3036. }
  3037. }
  3038. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  3039. av_buffer_unref(&s->ps.sps_list[i]);
  3040. if (s0->ps.sps_list[i]) {
  3041. s->ps.sps_list[i] = av_buffer_ref(s0->ps.sps_list[i]);
  3042. if (!s->ps.sps_list[i])
  3043. return AVERROR(ENOMEM);
  3044. }
  3045. }
  3046. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++) {
  3047. av_buffer_unref(&s->ps.pps_list[i]);
  3048. if (s0->ps.pps_list[i]) {
  3049. s->ps.pps_list[i] = av_buffer_ref(s0->ps.pps_list[i]);
  3050. if (!s->ps.pps_list[i])
  3051. return AVERROR(ENOMEM);
  3052. }
  3053. }
  3054. if (s->ps.sps != s0->ps.sps)
  3055. if ((ret = set_sps(s, s0->ps.sps, src->pix_fmt)) < 0)
  3056. return ret;
  3057. s->seq_decode = s0->seq_decode;
  3058. s->seq_output = s0->seq_output;
  3059. s->pocTid0 = s0->pocTid0;
  3060. s->max_ra = s0->max_ra;
  3061. s->eos = s0->eos;
  3062. s->no_rasl_output_flag = s0->no_rasl_output_flag;
  3063. s->is_nalff = s0->is_nalff;
  3064. s->nal_length_size = s0->nal_length_size;
  3065. s->threads_number = s0->threads_number;
  3066. s->threads_type = s0->threads_type;
  3067. if (s0->eos) {
  3068. s->seq_decode = (s->seq_decode + 1) & 0xff;
  3069. s->max_ra = INT_MAX;
  3070. }
  3071. av_buffer_unref(&s->sei.a53_caption.buf_ref);
  3072. if (s0->sei.a53_caption.buf_ref) {
  3073. s->sei.a53_caption.buf_ref = av_buffer_ref(s0->sei.a53_caption.buf_ref);
  3074. if (!s->sei.a53_caption.buf_ref)
  3075. return AVERROR(ENOMEM);
  3076. }
  3077. for (i = 0; i < s->sei.unregistered.nb_buf_ref; i++)
  3078. av_buffer_unref(&s->sei.unregistered.buf_ref[i]);
  3079. s->sei.unregistered.nb_buf_ref = 0;
  3080. if (s0->sei.unregistered.nb_buf_ref) {
  3081. ret = av_reallocp_array(&s->sei.unregistered.buf_ref,
  3082. s0->sei.unregistered.nb_buf_ref,
  3083. sizeof(*s->sei.unregistered.buf_ref));
  3084. if (ret < 0)
  3085. return ret;
  3086. for (i = 0; i < s0->sei.unregistered.nb_buf_ref; i++) {
  3087. s->sei.unregistered.buf_ref[i] = av_buffer_ref(s0->sei.unregistered.buf_ref[i]);
  3088. if (!s->sei.unregistered.buf_ref[i])
  3089. return AVERROR(ENOMEM);
  3090. s->sei.unregistered.nb_buf_ref++;
  3091. }
  3092. }
  3093. s->sei.frame_packing = s0->sei.frame_packing;
  3094. s->sei.display_orientation = s0->sei.display_orientation;
  3095. s->sei.mastering_display = s0->sei.mastering_display;
  3096. s->sei.content_light = s0->sei.content_light;
  3097. s->sei.alternative_transfer = s0->sei.alternative_transfer;
  3098. ret = export_stream_params_from_sei(s);
  3099. if (ret < 0)
  3100. return ret;
  3101. return 0;
  3102. }
  3103. #endif
  3104. static av_cold int hevc_decode_init(AVCodecContext *avctx)
  3105. {
  3106. HEVCContext *s = avctx->priv_data;
  3107. int ret;
  3108. ret = hevc_init_context(avctx);
  3109. if (ret < 0)
  3110. return ret;
  3111. s->enable_parallel_tiles = 0;
  3112. s->sei.picture_timing.picture_struct = 0;
  3113. s->eos = 1;
  3114. atomic_init(&s->wpp_err, 0);
  3115. if(avctx->active_thread_type & FF_THREAD_SLICE)
  3116. s->threads_number = avctx->thread_count;
  3117. else
  3118. s->threads_number = 1;
  3119. if (!avctx->internal->is_copy) {
  3120. if (avctx->extradata_size > 0 && avctx->extradata) {
  3121. ret = hevc_decode_extradata(s, avctx->extradata, avctx->extradata_size, 1);
  3122. if (ret < 0) {
  3123. hevc_decode_free(avctx);
  3124. return ret;
  3125. }
  3126. }
  3127. }
  3128. if((avctx->active_thread_type & FF_THREAD_FRAME) && avctx->thread_count > 1)
  3129. s->threads_type = FF_THREAD_FRAME;
  3130. else
  3131. s->threads_type = FF_THREAD_SLICE;
  3132. return 0;
  3133. }
  3134. static void hevc_decode_flush(AVCodecContext *avctx)
  3135. {
  3136. HEVCContext *s = avctx->priv_data;
  3137. ff_hevc_flush_dpb(s);
  3138. ff_hevc_reset_sei(&s->sei);
  3139. s->max_ra = INT_MAX;
  3140. s->eos = 1;
  3141. }
  3142. #define OFFSET(x) offsetof(HEVCContext, x)
  3143. #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
  3144. static const AVOption options[] = {
  3145. { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
  3146. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  3147. { "strict-displaywin", "stricly apply default display window size", OFFSET(apply_defdispwin),
  3148. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  3149. { NULL },
  3150. };
  3151. static const AVClass hevc_decoder_class = {
  3152. .class_name = "HEVC decoder",
  3153. .item_name = av_default_item_name,
  3154. .option = options,
  3155. .version = LIBAVUTIL_VERSION_INT,
  3156. };
  3157. AVCodec ff_hevc_decoder = {
  3158. .name = "hevc",
  3159. .long_name = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
  3160. .type = AVMEDIA_TYPE_VIDEO,
  3161. .id = AV_CODEC_ID_HEVC,
  3162. .priv_data_size = sizeof(HEVCContext),
  3163. .priv_class = &hevc_decoder_class,
  3164. .init = hevc_decode_init,
  3165. .close = hevc_decode_free,
  3166. .decode = hevc_decode_frame,
  3167. .flush = hevc_decode_flush,
  3168. .update_thread_context = ONLY_IF_THREADS_ENABLED(hevc_update_thread_context),
  3169. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
  3170. AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS,
  3171. .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_EXPORTS_CROPPING |
  3172. FF_CODEC_CAP_ALLOCATE_PROGRESS,
  3173. .profiles = NULL_IF_CONFIG_SMALL(ff_hevc_profiles),
  3174. .hw_configs = (const AVCodecHWConfigInternal*[]) {
  3175. #if CONFIG_HEVC_DXVA2_HWACCEL
  3176. HWACCEL_DXVA2(hevc),
  3177. #endif
  3178. #if CONFIG_HEVC_D3D11VA_HWACCEL
  3179. HWACCEL_D3D11VA(hevc),
  3180. #endif
  3181. #if CONFIG_HEVC_D3D11VA2_HWACCEL
  3182. HWACCEL_D3D11VA2(hevc),
  3183. #endif
  3184. #if CONFIG_HEVC_NVDEC_HWACCEL
  3185. HWACCEL_NVDEC(hevc),
  3186. #endif
  3187. #if CONFIG_HEVC_VAAPI_HWACCEL
  3188. HWACCEL_VAAPI(hevc),
  3189. #endif
  3190. #if CONFIG_HEVC_VDPAU_HWACCEL
  3191. HWACCEL_VDPAU(hevc),
  3192. #endif
  3193. #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
  3194. HWACCEL_VIDEOTOOLBOX(hevc),
  3195. #endif
  3196. NULL
  3197. },
  3198. };