You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1025 lines
34KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Rate control for video encoders.
  25. */
  26. #include "libavutil/attributes.h"
  27. #include "libavutil/internal.h"
  28. #include "avcodec.h"
  29. #include "internal.h"
  30. #include "ratecontrol.h"
  31. #include "mpegutils.h"
  32. #include "mpegvideo.h"
  33. #include "libavutil/eval.h"
  34. #undef NDEBUG // Always check asserts, the speed effect is far too small to disable them.
  35. #include <assert.h>
  36. #ifndef M_E
  37. #define M_E 2.718281828
  38. #endif
  39. static int init_pass2(MpegEncContext *s);
  40. static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
  41. double rate_factor, int frame_num);
  42. static inline double qp2bits(RateControlEntry *rce, double qp)
  43. {
  44. if (qp <= 0.0) {
  45. av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
  46. }
  47. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / qp;
  48. }
  49. static inline double bits2qp(RateControlEntry *rce, double bits)
  50. {
  51. if (bits < 0.9) {
  52. av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
  53. }
  54. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / bits;
  55. }
  56. av_cold int ff_rate_control_init(MpegEncContext *s)
  57. {
  58. RateControlContext *rcc = &s->rc_context;
  59. int i, res;
  60. static const char * const const_names[] = {
  61. "PI",
  62. "E",
  63. "iTex",
  64. "pTex",
  65. "tex",
  66. "mv",
  67. "fCode",
  68. "iCount",
  69. "mcVar",
  70. "var",
  71. "isI",
  72. "isP",
  73. "isB",
  74. "avgQP",
  75. "qComp",
  76. "avgIITex",
  77. "avgPITex",
  78. "avgPPTex",
  79. "avgBPTex",
  80. "avgTex",
  81. NULL
  82. };
  83. static double (* const func1[])(void *, double) = {
  84. (void *)bits2qp,
  85. (void *)qp2bits,
  86. NULL
  87. };
  88. static const char * const func1_names[] = {
  89. "bits2qp",
  90. "qp2bits",
  91. NULL
  92. };
  93. emms_c();
  94. res = av_expr_parse(&rcc->rc_eq_eval,
  95. s->rc_eq ? s->rc_eq : "tex^qComp",
  96. const_names, func1_names, func1,
  97. NULL, NULL, 0, s->avctx);
  98. if (res < 0) {
  99. av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\"\n", s->rc_eq);
  100. return res;
  101. }
  102. #if FF_API_RC_STRATEGY
  103. FF_DISABLE_DEPRECATION_WARNINGS
  104. if (!s->rc_strategy)
  105. s->rc_strategy = s->avctx->rc_strategy;
  106. FF_ENABLE_DEPRECATION_WARNINGS
  107. #endif
  108. for (i = 0; i < 5; i++) {
  109. rcc->pred[i].coeff = FF_QP2LAMBDA * 7.0;
  110. rcc->pred[i].count = 1.0;
  111. rcc->pred[i].decay = 0.4;
  112. rcc->i_cplx_sum [i] =
  113. rcc->p_cplx_sum [i] =
  114. rcc->mv_bits_sum[i] =
  115. rcc->qscale_sum [i] =
  116. rcc->frame_count[i] = 1; // 1 is better because of 1/0 and such
  117. rcc->last_qscale_for[i] = FF_QP2LAMBDA * 5;
  118. }
  119. rcc->buffer_index = s->avctx->rc_initial_buffer_occupancy;
  120. if (s->avctx->flags & AV_CODEC_FLAG_PASS2) {
  121. int i;
  122. char *p;
  123. /* find number of pics */
  124. p = s->avctx->stats_in;
  125. for (i = -1; p; i++)
  126. p = strchr(p + 1, ';');
  127. i += s->max_b_frames;
  128. if (i <= 0 || i >= INT_MAX / sizeof(RateControlEntry))
  129. return -1;
  130. rcc->entry = av_mallocz(i * sizeof(RateControlEntry));
  131. rcc->num_entries = i;
  132. if (!rcc->entry)
  133. return AVERROR(ENOMEM);
  134. /* init all to skipped P-frames
  135. * (with B-frames we might have a not encoded frame at the end FIXME) */
  136. for (i = 0; i < rcc->num_entries; i++) {
  137. RateControlEntry *rce = &rcc->entry[i];
  138. rce->pict_type = rce->new_pict_type = AV_PICTURE_TYPE_P;
  139. rce->qscale = rce->new_qscale = FF_QP2LAMBDA * 2;
  140. rce->misc_bits = s->mb_num + 10;
  141. rce->mb_var_sum = s->mb_num * 100;
  142. }
  143. /* read stats */
  144. p = s->avctx->stats_in;
  145. for (i = 0; i < rcc->num_entries - s->max_b_frames; i++) {
  146. RateControlEntry *rce;
  147. int picture_number;
  148. int e;
  149. char *next;
  150. next = strchr(p, ';');
  151. if (next) {
  152. (*next) = 0; // sscanf is unbelievably slow on looong strings // FIXME copy / do not write
  153. next++;
  154. }
  155. e = sscanf(p, " in:%d ", &picture_number);
  156. assert(picture_number >= 0);
  157. assert(picture_number < rcc->num_entries);
  158. rce = &rcc->entry[picture_number];
  159. e += sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
  160. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits,
  161. &rce->mv_bits, &rce->misc_bits,
  162. &rce->f_code, &rce->b_code,
  163. &rce->mc_mb_var_sum, &rce->mb_var_sum,
  164. &rce->i_count, &rce->skip_count, &rce->header_bits);
  165. if (e != 14) {
  166. av_log(s->avctx, AV_LOG_ERROR,
  167. "statistics are damaged at line %d, parser out=%d\n",
  168. i, e);
  169. return -1;
  170. }
  171. p = next;
  172. }
  173. if (init_pass2(s) < 0) {
  174. ff_rate_control_uninit(s);
  175. return -1;
  176. }
  177. // FIXME maybe move to end
  178. if ((s->avctx->flags & AV_CODEC_FLAG_PASS2) && s->rc_strategy == 1) {
  179. #if CONFIG_LIBXVID
  180. return ff_xvid_rate_control_init(s);
  181. #else
  182. av_log(s->avctx, AV_LOG_ERROR,
  183. "Xvid ratecontrol requires libavcodec compiled with Xvid support.\n");
  184. return -1;
  185. #endif
  186. }
  187. }
  188. if (!(s->avctx->flags & AV_CODEC_FLAG_PASS2)) {
  189. rcc->short_term_qsum = 0.001;
  190. rcc->short_term_qcount = 0.001;
  191. rcc->pass1_rc_eq_output_sum = 0.001;
  192. rcc->pass1_wanted_bits = 0.001;
  193. if (s->avctx->qblur > 1.0) {
  194. av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
  195. return -1;
  196. }
  197. /* init stuff with the user specified complexity */
  198. if (s->rc_initial_cplx) {
  199. for (i = 0; i < 60 * 30; i++) {
  200. double bits = s->rc_initial_cplx * (i / 10000.0 + 1.0) * s->mb_num;
  201. RateControlEntry rce;
  202. if (i % ((s->gop_size + 3) / 4) == 0)
  203. rce.pict_type = AV_PICTURE_TYPE_I;
  204. else if (i % (s->max_b_frames + 1))
  205. rce.pict_type = AV_PICTURE_TYPE_B;
  206. else
  207. rce.pict_type = AV_PICTURE_TYPE_P;
  208. rce.new_pict_type = rce.pict_type;
  209. rce.mc_mb_var_sum = bits * s->mb_num / 100000;
  210. rce.mb_var_sum = s->mb_num;
  211. rce.qscale = FF_QP2LAMBDA * 2;
  212. rce.f_code = 2;
  213. rce.b_code = 1;
  214. rce.misc_bits = 1;
  215. if (s->pict_type == AV_PICTURE_TYPE_I) {
  216. rce.i_count = s->mb_num;
  217. rce.i_tex_bits = bits;
  218. rce.p_tex_bits = 0;
  219. rce.mv_bits = 0;
  220. } else {
  221. rce.i_count = 0; // FIXME we do know this approx
  222. rce.i_tex_bits = 0;
  223. rce.p_tex_bits = bits * 0.9;
  224. rce.mv_bits = bits * 0.1;
  225. }
  226. rcc->i_cplx_sum[rce.pict_type] += rce.i_tex_bits * rce.qscale;
  227. rcc->p_cplx_sum[rce.pict_type] += rce.p_tex_bits * rce.qscale;
  228. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  229. rcc->frame_count[rce.pict_type]++;
  230. get_qscale(s, &rce, rcc->pass1_wanted_bits / rcc->pass1_rc_eq_output_sum, i);
  231. // FIXME misbehaves a little for variable fps
  232. rcc->pass1_wanted_bits += s->bit_rate / (1 / av_q2d(s->avctx->time_base));
  233. }
  234. }
  235. }
  236. return 0;
  237. }
  238. av_cold void ff_rate_control_uninit(MpegEncContext *s)
  239. {
  240. RateControlContext *rcc = &s->rc_context;
  241. emms_c();
  242. av_expr_free(rcc->rc_eq_eval);
  243. av_freep(&rcc->entry);
  244. #if CONFIG_LIBXVID
  245. if ((s->avctx->flags & AV_CODEC_FLAG_PASS2) && s->rc_strategy == 1)
  246. ff_xvid_rate_control_uninit(s);
  247. #endif
  248. }
  249. int ff_vbv_update(MpegEncContext *s, int frame_size)
  250. {
  251. RateControlContext *rcc = &s->rc_context;
  252. const double fps = 1 / av_q2d(s->avctx->time_base);
  253. const int buffer_size = s->avctx->rc_buffer_size;
  254. const double min_rate = s->avctx->rc_min_rate / fps;
  255. const double max_rate = s->avctx->rc_max_rate / fps;
  256. ff_dlog(s, "%d %f %d %f %f\n",
  257. buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
  258. if (buffer_size) {
  259. int left;
  260. rcc->buffer_index -= frame_size;
  261. if (rcc->buffer_index < 0) {
  262. av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
  263. rcc->buffer_index = 0;
  264. }
  265. left = buffer_size - rcc->buffer_index - 1;
  266. rcc->buffer_index += av_clip(left, min_rate, max_rate);
  267. if (rcc->buffer_index > buffer_size) {
  268. int stuffing = ceil((rcc->buffer_index - buffer_size) / 8);
  269. if (stuffing < 4 && s->codec_id == AV_CODEC_ID_MPEG4)
  270. stuffing = 4;
  271. rcc->buffer_index -= 8 * stuffing;
  272. if (s->avctx->debug & FF_DEBUG_RC)
  273. av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
  274. return stuffing;
  275. }
  276. }
  277. return 0;
  278. }
  279. /**
  280. * Modify the bitrate curve from pass1 for one frame.
  281. */
  282. static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
  283. double rate_factor, int frame_num)
  284. {
  285. RateControlContext *rcc = &s->rc_context;
  286. AVCodecContext *a = s->avctx;
  287. const int pict_type = rce->new_pict_type;
  288. const double mb_num = s->mb_num;
  289. double q, bits;
  290. int i;
  291. double const_values[] = {
  292. M_PI,
  293. M_E,
  294. rce->i_tex_bits * rce->qscale,
  295. rce->p_tex_bits * rce->qscale,
  296. (rce->i_tex_bits + rce->p_tex_bits) * (double)rce->qscale,
  297. rce->mv_bits / mb_num,
  298. rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code) * 0.5 : rce->f_code,
  299. rce->i_count / mb_num,
  300. rce->mc_mb_var_sum / mb_num,
  301. rce->mb_var_sum / mb_num,
  302. rce->pict_type == AV_PICTURE_TYPE_I,
  303. rce->pict_type == AV_PICTURE_TYPE_P,
  304. rce->pict_type == AV_PICTURE_TYPE_B,
  305. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  306. a->qcompress,
  307. rcc->i_cplx_sum[AV_PICTURE_TYPE_I] / (double)rcc->frame_count[AV_PICTURE_TYPE_I],
  308. rcc->i_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  309. rcc->p_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  310. rcc->p_cplx_sum[AV_PICTURE_TYPE_B] / (double)rcc->frame_count[AV_PICTURE_TYPE_B],
  311. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  312. 0
  313. };
  314. bits = av_expr_eval(rcc->rc_eq_eval, const_values, rce);
  315. if (isnan(bits)) {
  316. av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->rc_eq);
  317. return -1;
  318. }
  319. rcc->pass1_rc_eq_output_sum += bits;
  320. bits *= rate_factor;
  321. if (bits < 0.0)
  322. bits = 0.0;
  323. bits += 1.0; // avoid 1/0 issues
  324. /* user override */
  325. for (i = 0; i < s->avctx->rc_override_count; i++) {
  326. RcOverride *rco = s->avctx->rc_override;
  327. if (rco[i].start_frame > frame_num)
  328. continue;
  329. if (rco[i].end_frame < frame_num)
  330. continue;
  331. if (rco[i].qscale)
  332. bits = qp2bits(rce, rco[i].qscale); // FIXME move at end to really force it?
  333. else
  334. bits *= rco[i].quality_factor;
  335. }
  336. q = bits2qp(rce, bits);
  337. /* I/B difference */
  338. if (pict_type == AV_PICTURE_TYPE_I && s->avctx->i_quant_factor < 0.0)
  339. q = -q * s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  340. else if (pict_type == AV_PICTURE_TYPE_B && s->avctx->b_quant_factor < 0.0)
  341. q = -q * s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  342. if (q < 1)
  343. q = 1;
  344. return q;
  345. }
  346. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q)
  347. {
  348. RateControlContext *rcc = &s->rc_context;
  349. AVCodecContext *a = s->avctx;
  350. const int pict_type = rce->new_pict_type;
  351. const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P];
  352. const double last_non_b_q = rcc->last_qscale_for[rcc->last_non_b_pict_type];
  353. if (pict_type == AV_PICTURE_TYPE_I &&
  354. (a->i_quant_factor > 0.0 || rcc->last_non_b_pict_type == AV_PICTURE_TYPE_P))
  355. q = last_p_q * FFABS(a->i_quant_factor) + a->i_quant_offset;
  356. else if (pict_type == AV_PICTURE_TYPE_B &&
  357. a->b_quant_factor > 0.0)
  358. q = last_non_b_q * a->b_quant_factor + a->b_quant_offset;
  359. if (q < 1)
  360. q = 1;
  361. /* last qscale / qdiff stuff */
  362. if (rcc->last_non_b_pict_type == pict_type || pict_type != AV_PICTURE_TYPE_I) {
  363. double last_q = rcc->last_qscale_for[pict_type];
  364. const int maxdiff = FF_QP2LAMBDA * a->max_qdiff;
  365. if (q > last_q + maxdiff)
  366. q = last_q + maxdiff;
  367. else if (q < last_q - maxdiff)
  368. q = last_q - maxdiff;
  369. }
  370. rcc->last_qscale_for[pict_type] = q; // Note we cannot do that after blurring
  371. if (pict_type != AV_PICTURE_TYPE_B)
  372. rcc->last_non_b_pict_type = pict_type;
  373. return q;
  374. }
  375. /**
  376. * Get the qmin & qmax for pict_type.
  377. */
  378. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type)
  379. {
  380. int qmin = s->lmin;
  381. int qmax = s->lmax;
  382. assert(qmin <= qmax);
  383. switch (pict_type) {
  384. case AV_PICTURE_TYPE_B:
  385. qmin = (int)(qmin * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
  386. qmax = (int)(qmax * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
  387. break;
  388. case AV_PICTURE_TYPE_I:
  389. qmin = (int)(qmin * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
  390. qmax = (int)(qmax * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
  391. break;
  392. }
  393. qmin = av_clip(qmin, 1, FF_LAMBDA_MAX);
  394. qmax = av_clip(qmax, 1, FF_LAMBDA_MAX);
  395. if (qmax < qmin)
  396. qmax = qmin;
  397. *qmin_ret = qmin;
  398. *qmax_ret = qmax;
  399. }
  400. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce,
  401. double q, int frame_num)
  402. {
  403. RateControlContext *rcc = &s->rc_context;
  404. const double buffer_size = s->avctx->rc_buffer_size;
  405. const double fps = 1 / av_q2d(s->avctx->time_base);
  406. const double min_rate = s->avctx->rc_min_rate / fps;
  407. const double max_rate = s->avctx->rc_max_rate / fps;
  408. const int pict_type = rce->new_pict_type;
  409. int qmin, qmax;
  410. get_qminmax(&qmin, &qmax, s, pict_type);
  411. /* modulation */
  412. if (s->rc_qmod_freq &&
  413. frame_num % s->rc_qmod_freq == 0 &&
  414. pict_type == AV_PICTURE_TYPE_P)
  415. q *= s->rc_qmod_amp;
  416. /* buffer overflow/underflow protection */
  417. if (buffer_size) {
  418. double expected_size = rcc->buffer_index;
  419. double q_limit;
  420. if (min_rate) {
  421. double d = 2 * (buffer_size - expected_size) / buffer_size;
  422. if (d > 1.0)
  423. d = 1.0;
  424. else if (d < 0.0001)
  425. d = 0.0001;
  426. q *= pow(d, 1.0 / s->rc_buffer_aggressivity);
  427. q_limit = bits2qp(rce,
  428. FFMAX((min_rate - buffer_size + rcc->buffer_index) *
  429. s->avctx->rc_min_vbv_overflow_use, 1));
  430. if (q > q_limit) {
  431. if (s->avctx->debug & FF_DEBUG_RC)
  432. av_log(s->avctx, AV_LOG_DEBUG,
  433. "limiting QP %f -> %f\n", q, q_limit);
  434. q = q_limit;
  435. }
  436. }
  437. if (max_rate) {
  438. double d = 2 * expected_size / buffer_size;
  439. if (d > 1.0)
  440. d = 1.0;
  441. else if (d < 0.0001)
  442. d = 0.0001;
  443. q /= pow(d, 1.0 / s->rc_buffer_aggressivity);
  444. q_limit = bits2qp(rce,
  445. FFMAX(rcc->buffer_index *
  446. s->avctx->rc_max_available_vbv_use,
  447. 1));
  448. if (q < q_limit) {
  449. if (s->avctx->debug & FF_DEBUG_RC)
  450. av_log(s->avctx, AV_LOG_DEBUG,
  451. "limiting QP %f -> %f\n", q, q_limit);
  452. q = q_limit;
  453. }
  454. }
  455. }
  456. ff_dlog(s, "q:%f max:%f min:%f size:%f index:%f agr:%f\n",
  457. q, max_rate, min_rate, buffer_size, rcc->buffer_index,
  458. s->rc_buffer_aggressivity);
  459. if (s->rc_qsquish == 0.0 || qmin == qmax) {
  460. if (q < qmin)
  461. q = qmin;
  462. else if (q > qmax)
  463. q = qmax;
  464. } else {
  465. double min2 = log(qmin);
  466. double max2 = log(qmax);
  467. q = log(q);
  468. q = (q - min2) / (max2 - min2) - 0.5;
  469. q *= -4.0;
  470. q = 1.0 / (1.0 + exp(q));
  471. q = q * (max2 - min2) + min2;
  472. q = exp(q);
  473. }
  474. return q;
  475. }
  476. // ----------------------------------
  477. // 1 Pass Code
  478. static double predict_size(Predictor *p, double q, double var)
  479. {
  480. return p->coeff * var / (q * p->count);
  481. }
  482. static void update_predictor(Predictor *p, double q, double var, double size)
  483. {
  484. double new_coeff = size * q / (var + 1);
  485. if (var < 10)
  486. return;
  487. p->count *= p->decay;
  488. p->coeff *= p->decay;
  489. p->count++;
  490. p->coeff += new_coeff;
  491. }
  492. static void adaptive_quantization(MpegEncContext *s, double q)
  493. {
  494. int i;
  495. const float lumi_masking = s->avctx->lumi_masking / (128.0 * 128.0);
  496. const float dark_masking = s->avctx->dark_masking / (128.0 * 128.0);
  497. const float temp_cplx_masking = s->avctx->temporal_cplx_masking;
  498. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  499. const float p_masking = s->avctx->p_masking;
  500. const float border_masking = s->border_masking;
  501. float bits_sum = 0.0;
  502. float cplx_sum = 0.0;
  503. float *cplx_tab = s->cplx_tab;
  504. float *bits_tab = s->bits_tab;
  505. const int qmin = s->avctx->mb_lmin;
  506. const int qmax = s->avctx->mb_lmax;
  507. Picture *const pic = &s->current_picture;
  508. const int mb_width = s->mb_width;
  509. const int mb_height = s->mb_height;
  510. for (i = 0; i < s->mb_num; i++) {
  511. const int mb_xy = s->mb_index2xy[i];
  512. float temp_cplx = sqrt(pic->mc_mb_var[mb_xy]); // FIXME merge in pow()
  513. float spat_cplx = sqrt(pic->mb_var[mb_xy]);
  514. const int lumi = pic->mb_mean[mb_xy];
  515. float bits, cplx, factor;
  516. int mb_x = mb_xy % s->mb_stride;
  517. int mb_y = mb_xy / s->mb_stride;
  518. int mb_distance;
  519. float mb_factor = 0.0;
  520. if (spat_cplx < 4)
  521. spat_cplx = 4; // FIXME fine-tune
  522. if (temp_cplx < 4)
  523. temp_cplx = 4; // FIXME fine-tune
  524. if ((s->mb_type[mb_xy] & CANDIDATE_MB_TYPE_INTRA)) { // FIXME hq mode
  525. cplx = spat_cplx;
  526. factor = 1.0 + p_masking;
  527. } else {
  528. cplx = temp_cplx;
  529. factor = pow(temp_cplx, -temp_cplx_masking);
  530. }
  531. factor *= pow(spat_cplx, -spatial_cplx_masking);
  532. if (lumi > 127)
  533. factor *= (1.0 - (lumi - 128) * (lumi - 128) * lumi_masking);
  534. else
  535. factor *= (1.0 - (lumi - 128) * (lumi - 128) * dark_masking);
  536. if (mb_x < mb_width / 5) {
  537. mb_distance = mb_width / 5 - mb_x;
  538. mb_factor = (float)mb_distance / (float)(mb_width / 5);
  539. } else if (mb_x > 4 * mb_width / 5) {
  540. mb_distance = mb_x - 4 * mb_width / 5;
  541. mb_factor = (float)mb_distance / (float)(mb_width / 5);
  542. }
  543. if (mb_y < mb_height / 5) {
  544. mb_distance = mb_height / 5 - mb_y;
  545. mb_factor = FFMAX(mb_factor,
  546. (float)mb_distance / (float)(mb_height / 5));
  547. } else if (mb_y > 4 * mb_height / 5) {
  548. mb_distance = mb_y - 4 * mb_height / 5;
  549. mb_factor = FFMAX(mb_factor,
  550. (float)mb_distance / (float)(mb_height / 5));
  551. }
  552. factor *= 1.0 - border_masking * mb_factor;
  553. if (factor < 0.00001)
  554. factor = 0.00001;
  555. bits = cplx * factor;
  556. cplx_sum += cplx;
  557. bits_sum += bits;
  558. cplx_tab[i] = cplx;
  559. bits_tab[i] = bits;
  560. }
  561. /* handle qmin/qmax clipping */
  562. if (s->mpv_flags & FF_MPV_FLAG_NAQ) {
  563. float factor = bits_sum / cplx_sum;
  564. for (i = 0; i < s->mb_num; i++) {
  565. float newq = q * cplx_tab[i] / bits_tab[i];
  566. newq *= factor;
  567. if (newq > qmax) {
  568. bits_sum -= bits_tab[i];
  569. cplx_sum -= cplx_tab[i] * q / qmax;
  570. } else if (newq < qmin) {
  571. bits_sum -= bits_tab[i];
  572. cplx_sum -= cplx_tab[i] * q / qmin;
  573. }
  574. }
  575. if (bits_sum < 0.001)
  576. bits_sum = 0.001;
  577. if (cplx_sum < 0.001)
  578. cplx_sum = 0.001;
  579. }
  580. for (i = 0; i < s->mb_num; i++) {
  581. const int mb_xy = s->mb_index2xy[i];
  582. float newq = q * cplx_tab[i] / bits_tab[i];
  583. int intq;
  584. if (s->mpv_flags & FF_MPV_FLAG_NAQ) {
  585. newq *= bits_sum / cplx_sum;
  586. }
  587. intq = (int)(newq + 0.5);
  588. if (intq > qmax)
  589. intq = qmax;
  590. else if (intq < qmin)
  591. intq = qmin;
  592. s->lambda_table[mb_xy] = intq;
  593. }
  594. }
  595. void ff_get_2pass_fcode(MpegEncContext *s)
  596. {
  597. RateControlContext *rcc = &s->rc_context;
  598. RateControlEntry *rce = &rcc->entry[s->picture_number];
  599. s->f_code = rce->f_code;
  600. s->b_code = rce->b_code;
  601. }
  602. // FIXME rd or at least approx for dquant
  603. float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
  604. {
  605. float q;
  606. int qmin, qmax;
  607. float br_compensation;
  608. double diff;
  609. double short_term_q;
  610. double fps;
  611. int picture_number = s->picture_number;
  612. int64_t wanted_bits;
  613. RateControlContext *rcc = &s->rc_context;
  614. AVCodecContext *a = s->avctx;
  615. RateControlEntry local_rce, *rce;
  616. double bits;
  617. double rate_factor;
  618. int var;
  619. const int pict_type = s->pict_type;
  620. Picture * const pic = &s->current_picture;
  621. emms_c();
  622. #if CONFIG_LIBXVID
  623. if ((s->avctx->flags & AV_CODEC_FLAG_PASS2) && s->rc_strategy == 1)
  624. return ff_xvid_rate_estimate_qscale(s, dry_run);
  625. #endif
  626. get_qminmax(&qmin, &qmax, s, pict_type);
  627. fps = 1 / av_q2d(s->avctx->time_base);
  628. /* update predictors */
  629. if (picture_number > 2 && !dry_run) {
  630. const int last_var = s->last_pict_type == AV_PICTURE_TYPE_I ? rcc->last_mb_var_sum
  631. : rcc->last_mc_mb_var_sum;
  632. update_predictor(&rcc->pred[s->last_pict_type],
  633. rcc->last_qscale,
  634. sqrt(last_var), s->frame_bits);
  635. }
  636. if (s->avctx->flags & AV_CODEC_FLAG_PASS2) {
  637. assert(picture_number >= 0);
  638. assert(picture_number < rcc->num_entries);
  639. rce = &rcc->entry[picture_number];
  640. wanted_bits = rce->expected_bits;
  641. } else {
  642. Picture *dts_pic;
  643. rce = &local_rce;
  644. /* FIXME add a dts field to AVFrame and ensure it is set and use it
  645. * here instead of reordering but the reordering is simpler for now
  646. * until H.264 B-pyramid must be handled. */
  647. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
  648. dts_pic = s->current_picture_ptr;
  649. else
  650. dts_pic = s->last_picture_ptr;
  651. if (!dts_pic || dts_pic->f->pts == AV_NOPTS_VALUE)
  652. wanted_bits = (uint64_t)(s->bit_rate * (double)picture_number / fps);
  653. else
  654. wanted_bits = (uint64_t)(s->bit_rate * (double)dts_pic->f->pts / fps);
  655. }
  656. diff = s->total_bits - wanted_bits;
  657. br_compensation = (a->bit_rate_tolerance - diff) / a->bit_rate_tolerance;
  658. if (br_compensation <= 0.0)
  659. br_compensation = 0.001;
  660. var = pict_type == AV_PICTURE_TYPE_I ? pic->mb_var_sum : pic->mc_mb_var_sum;
  661. short_term_q = 0; /* avoid warning */
  662. if (s->avctx->flags & AV_CODEC_FLAG_PASS2) {
  663. if (pict_type != AV_PICTURE_TYPE_I)
  664. assert(pict_type == rce->new_pict_type);
  665. q = rce->new_qscale / br_compensation;
  666. ff_dlog(s, "%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale,
  667. br_compensation, s->frame_bits, var, pict_type);
  668. } else {
  669. rce->pict_type =
  670. rce->new_pict_type = pict_type;
  671. rce->mc_mb_var_sum = pic->mc_mb_var_sum;
  672. rce->mb_var_sum = pic->mb_var_sum;
  673. rce->qscale = FF_QP2LAMBDA * 2;
  674. rce->f_code = s->f_code;
  675. rce->b_code = s->b_code;
  676. rce->misc_bits = 1;
  677. bits = predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  678. if (pict_type == AV_PICTURE_TYPE_I) {
  679. rce->i_count = s->mb_num;
  680. rce->i_tex_bits = bits;
  681. rce->p_tex_bits = 0;
  682. rce->mv_bits = 0;
  683. } else {
  684. rce->i_count = 0; // FIXME we do know this approx
  685. rce->i_tex_bits = 0;
  686. rce->p_tex_bits = bits * 0.9;
  687. rce->mv_bits = bits * 0.1;
  688. }
  689. rcc->i_cplx_sum[pict_type] += rce->i_tex_bits * rce->qscale;
  690. rcc->p_cplx_sum[pict_type] += rce->p_tex_bits * rce->qscale;
  691. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  692. rcc->frame_count[pict_type]++;
  693. bits = rce->i_tex_bits + rce->p_tex_bits;
  694. rate_factor = rcc->pass1_wanted_bits /
  695. rcc->pass1_rc_eq_output_sum * br_compensation;
  696. q = get_qscale(s, rce, rate_factor, picture_number);
  697. if (q < 0)
  698. return -1;
  699. assert(q > 0.0);
  700. q = get_diff_limited_q(s, rce, q);
  701. assert(q > 0.0);
  702. // FIXME type dependent blur like in 2-pass
  703. if (pict_type == AV_PICTURE_TYPE_P || s->intra_only) {
  704. rcc->short_term_qsum *= a->qblur;
  705. rcc->short_term_qcount *= a->qblur;
  706. rcc->short_term_qsum += q;
  707. rcc->short_term_qcount++;
  708. q = short_term_q = rcc->short_term_qsum / rcc->short_term_qcount;
  709. }
  710. assert(q > 0.0);
  711. q = modify_qscale(s, rce, q, picture_number);
  712. rcc->pass1_wanted_bits += s->bit_rate / fps;
  713. assert(q > 0.0);
  714. }
  715. if (s->avctx->debug & FF_DEBUG_RC) {
  716. av_log(s->avctx, AV_LOG_DEBUG,
  717. "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f "
  718. "size:%d var:%d/%d br:%d fps:%d\n",
  719. av_get_picture_type_char(pict_type),
  720. qmin, q, qmax, picture_number,
  721. (int)wanted_bits / 1000, (int)s->total_bits / 1000,
  722. br_compensation, short_term_q, s->frame_bits,
  723. pic->mb_var_sum, pic->mc_mb_var_sum,
  724. s->bit_rate / 1000, (int)fps);
  725. }
  726. if (q < qmin)
  727. q = qmin;
  728. else if (q > qmax)
  729. q = qmax;
  730. if (s->adaptive_quant)
  731. adaptive_quantization(s, q);
  732. else
  733. q = (int)(q + 0.5);
  734. if (!dry_run) {
  735. rcc->last_qscale = q;
  736. rcc->last_mc_mb_var_sum = pic->mc_mb_var_sum;
  737. rcc->last_mb_var_sum = pic->mb_var_sum;
  738. }
  739. return q;
  740. }
  741. // ----------------------------------------------
  742. // 2-Pass code
  743. static int init_pass2(MpegEncContext *s)
  744. {
  745. RateControlContext *rcc = &s->rc_context;
  746. AVCodecContext *a = s->avctx;
  747. int i, toobig;
  748. double fps = 1 / av_q2d(s->avctx->time_base);
  749. double complexity[5] = { 0 }; // approximate bits at quant=1
  750. uint64_t const_bits[5] = { 0 }; // quantizer independent bits
  751. uint64_t all_const_bits;
  752. uint64_t all_available_bits = (uint64_t)(s->bit_rate *
  753. (double)rcc->num_entries / fps);
  754. double rate_factor = 0;
  755. double step;
  756. const int filter_size = (int)(a->qblur * 4) | 1;
  757. double expected_bits;
  758. double *qscale, *blurred_qscale, qscale_sum;
  759. /* find complexity & const_bits & decide the pict_types */
  760. for (i = 0; i < rcc->num_entries; i++) {
  761. RateControlEntry *rce = &rcc->entry[i];
  762. rce->new_pict_type = rce->pict_type;
  763. rcc->i_cplx_sum[rce->pict_type] += rce->i_tex_bits * rce->qscale;
  764. rcc->p_cplx_sum[rce->pict_type] += rce->p_tex_bits * rce->qscale;
  765. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  766. rcc->frame_count[rce->pict_type]++;
  767. complexity[rce->new_pict_type] += (rce->i_tex_bits + rce->p_tex_bits) *
  768. (double)rce->qscale;
  769. const_bits[rce->new_pict_type] += rce->mv_bits + rce->misc_bits;
  770. }
  771. all_const_bits = const_bits[AV_PICTURE_TYPE_I] +
  772. const_bits[AV_PICTURE_TYPE_P] +
  773. const_bits[AV_PICTURE_TYPE_B];
  774. if (all_available_bits < all_const_bits) {
  775. av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
  776. return -1;
  777. }
  778. qscale = av_malloc(sizeof(double) * rcc->num_entries);
  779. blurred_qscale = av_malloc(sizeof(double) * rcc->num_entries);
  780. if (!qscale || !blurred_qscale) {
  781. av_free(qscale);
  782. av_free(blurred_qscale);
  783. return AVERROR(ENOMEM);
  784. }
  785. toobig = 0;
  786. for (step = 256 * 256; step > 0.0000001; step *= 0.5) {
  787. expected_bits = 0;
  788. rate_factor += step;
  789. rcc->buffer_index = s->avctx->rc_buffer_size / 2;
  790. /* find qscale */
  791. for (i = 0; i < rcc->num_entries; i++) {
  792. RateControlEntry *rce = &rcc->entry[i];
  793. qscale[i] = get_qscale(s, &rcc->entry[i], rate_factor, i);
  794. rcc->last_qscale_for[rce->pict_type] = qscale[i];
  795. }
  796. assert(filter_size % 2 == 1);
  797. /* fixed I/B QP relative to P mode */
  798. for (i = rcc->num_entries - 1; i >= 0; i--) {
  799. RateControlEntry *rce = &rcc->entry[i];
  800. qscale[i] = get_diff_limited_q(s, rce, qscale[i]);
  801. }
  802. /* smooth curve */
  803. for (i = 0; i < rcc->num_entries; i++) {
  804. RateControlEntry *rce = &rcc->entry[i];
  805. const int pict_type = rce->new_pict_type;
  806. int j;
  807. double q = 0.0, sum = 0.0;
  808. for (j = 0; j < filter_size; j++) {
  809. int index = i + j - filter_size / 2;
  810. double d = index - i;
  811. double coeff = a->qblur == 0 ? 1.0 : exp(-d * d / (a->qblur * a->qblur));
  812. if (index < 0 || index >= rcc->num_entries)
  813. continue;
  814. if (pict_type != rcc->entry[index].new_pict_type)
  815. continue;
  816. q += qscale[index] * coeff;
  817. sum += coeff;
  818. }
  819. blurred_qscale[i] = q / sum;
  820. }
  821. /* find expected bits */
  822. for (i = 0; i < rcc->num_entries; i++) {
  823. RateControlEntry *rce = &rcc->entry[i];
  824. double bits;
  825. rce->new_qscale = modify_qscale(s, rce, blurred_qscale[i], i);
  826. bits = qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  827. bits += 8 * ff_vbv_update(s, bits);
  828. rce->expected_bits = expected_bits;
  829. expected_bits += bits;
  830. }
  831. ff_dlog(s->avctx,
  832. "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
  833. expected_bits, (int)all_available_bits, rate_factor);
  834. if (expected_bits > all_available_bits) {
  835. rate_factor -= step;
  836. ++toobig;
  837. }
  838. }
  839. av_free(qscale);
  840. av_free(blurred_qscale);
  841. /* check bitrate calculations and print info */
  842. qscale_sum = 0.0;
  843. for (i = 0; i < rcc->num_entries; i++) {
  844. ff_dlog(s, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
  845. i,
  846. rcc->entry[i].new_qscale,
  847. rcc->entry[i].new_qscale / FF_QP2LAMBDA);
  848. qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA,
  849. s->avctx->qmin, s->avctx->qmax);
  850. }
  851. assert(toobig <= 40);
  852. av_log(s->avctx, AV_LOG_DEBUG,
  853. "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
  854. s->bit_rate,
  855. (int)(expected_bits / ((double)all_available_bits / s->bit_rate)));
  856. av_log(s->avctx, AV_LOG_DEBUG,
  857. "[lavc rc] estimated target average qp: %.3f\n",
  858. (float)qscale_sum / rcc->num_entries);
  859. if (toobig == 0) {
  860. av_log(s->avctx, AV_LOG_INFO,
  861. "[lavc rc] Using all of requested bitrate is not "
  862. "necessary for this video with these parameters.\n");
  863. } else if (toobig == 40) {
  864. av_log(s->avctx, AV_LOG_ERROR,
  865. "[lavc rc] Error: bitrate too low for this video "
  866. "with these parameters.\n");
  867. return -1;
  868. } else if (fabs(expected_bits / all_available_bits - 1.0) > 0.01) {
  869. av_log(s->avctx, AV_LOG_ERROR,
  870. "[lavc rc] Error: 2pass curve failed to converge\n");
  871. return -1;
  872. }
  873. return 0;
  874. }