You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2046 lines
69KB

  1. /*
  2. * Copyright (C) 2007 Marco Gerards <marco@gnu.org>
  3. * Copyright (C) 2009 David Conrad
  4. * Copyright (C) 2011 Jordi Ortiz
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Dirac Decoder
  25. * @author Marco Gerards <marco@gnu.org>, David Conrad, Jordi Ortiz <nenjordi@gmail.com>
  26. */
  27. #include "avcodec.h"
  28. #include "get_bits.h"
  29. #include "bytestream.h"
  30. #include "internal.h"
  31. #include "golomb.h"
  32. #include "dirac_arith.h"
  33. #include "mpeg12data.h"
  34. #include "libavcodec/mpegvideo.h"
  35. #include "mpegvideoencdsp.h"
  36. #include "dirac_dwt.h"
  37. #include "dirac.h"
  38. #include "diracdsp.h"
  39. #include "videodsp.h"
  40. /**
  41. * The spec limits the number of wavelet decompositions to 4 for both
  42. * level 1 (VC-2) and 128 (long-gop default).
  43. * 5 decompositions is the maximum before >16-bit buffers are needed.
  44. * Schroedinger allows this for DD 9,7 and 13,7 wavelets only, limiting
  45. * the others to 4 decompositions (or 3 for the fidelity filter).
  46. *
  47. * We use this instead of MAX_DECOMPOSITIONS to save some memory.
  48. */
  49. #define MAX_DWT_LEVELS 5
  50. /**
  51. * The spec limits this to 3 for frame coding, but in practice can be as high as 6
  52. */
  53. #define MAX_REFERENCE_FRAMES 8
  54. #define MAX_DELAY 5 /* limit for main profile for frame coding (TODO: field coding) */
  55. #define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1)
  56. #define MAX_QUANT 68 /* max quant for VC-2 */
  57. #define MAX_BLOCKSIZE 32 /* maximum xblen/yblen we support */
  58. /**
  59. * DiracBlock->ref flags, if set then the block does MC from the given ref
  60. */
  61. #define DIRAC_REF_MASK_REF1 1
  62. #define DIRAC_REF_MASK_REF2 2
  63. #define DIRAC_REF_MASK_GLOBAL 4
  64. /**
  65. * Value of Picture.reference when Picture is not a reference picture, but
  66. * is held for delayed output.
  67. */
  68. #define DELAYED_PIC_REF 4
  69. #define CALC_PADDING(size, depth) \
  70. (((size + (1 << depth) - 1) >> depth) << depth)
  71. #define DIVRNDUP(a, b) (((a) + (b) - 1) / (b))
  72. typedef struct {
  73. AVFrame *avframe;
  74. int interpolated[3]; /* 1 if hpel[] is valid */
  75. uint8_t *hpel[3][4];
  76. uint8_t *hpel_base[3][4];
  77. } DiracFrame;
  78. typedef struct {
  79. union {
  80. int16_t mv[2][2];
  81. int16_t dc[3];
  82. } u; /* anonymous unions aren't in C99 :( */
  83. uint8_t ref;
  84. } DiracBlock;
  85. typedef struct SubBand {
  86. int level;
  87. int orientation;
  88. int stride;
  89. int width;
  90. int height;
  91. int quant;
  92. IDWTELEM *ibuf;
  93. struct SubBand *parent;
  94. /* for low delay */
  95. unsigned length;
  96. const uint8_t *coeff_data;
  97. } SubBand;
  98. typedef struct Plane {
  99. int width;
  100. int height;
  101. ptrdiff_t stride;
  102. int idwt_width;
  103. int idwt_height;
  104. int idwt_stride;
  105. IDWTELEM *idwt_buf;
  106. IDWTELEM *idwt_buf_base;
  107. IDWTELEM *idwt_tmp;
  108. /* block length */
  109. uint8_t xblen;
  110. uint8_t yblen;
  111. /* block separation (block n+1 starts after this many pixels in block n) */
  112. uint8_t xbsep;
  113. uint8_t ybsep;
  114. /* amount of overspill on each edge (half of the overlap between blocks) */
  115. uint8_t xoffset;
  116. uint8_t yoffset;
  117. SubBand band[MAX_DWT_LEVELS][4];
  118. } Plane;
  119. typedef struct DiracContext {
  120. AVCodecContext *avctx;
  121. MpegvideoEncDSPContext mpvencdsp;
  122. VideoDSPContext vdsp;
  123. DiracDSPContext diracdsp;
  124. GetBitContext gb;
  125. dirac_source_params source;
  126. int seen_sequence_header;
  127. int frame_number; /* number of the next frame to display */
  128. Plane plane[3];
  129. int chroma_x_shift;
  130. int chroma_y_shift;
  131. int zero_res; /* zero residue flag */
  132. int is_arith; /* whether coeffs use arith or golomb coding */
  133. int low_delay; /* use the low delay syntax */
  134. int globalmc_flag; /* use global motion compensation */
  135. int num_refs; /* number of reference pictures */
  136. /* wavelet decoding */
  137. unsigned wavelet_depth; /* depth of the IDWT */
  138. unsigned wavelet_idx;
  139. /**
  140. * schroedinger older than 1.0.8 doesn't store
  141. * quant delta if only one codebook exists in a band
  142. */
  143. unsigned old_delta_quant;
  144. unsigned codeblock_mode;
  145. struct {
  146. unsigned width;
  147. unsigned height;
  148. } codeblock[MAX_DWT_LEVELS+1];
  149. struct {
  150. unsigned num_x; /* number of horizontal slices */
  151. unsigned num_y; /* number of vertical slices */
  152. AVRational bytes; /* average bytes per slice */
  153. uint8_t quant[MAX_DWT_LEVELS][4]; /* [DIRAC_STD] E.1 */
  154. } lowdelay;
  155. struct {
  156. int pan_tilt[2]; /* pan/tilt vector */
  157. int zrs[2][2]; /* zoom/rotate/shear matrix */
  158. int perspective[2]; /* perspective vector */
  159. unsigned zrs_exp;
  160. unsigned perspective_exp;
  161. } globalmc[2];
  162. /* motion compensation */
  163. uint8_t mv_precision; /* [DIRAC_STD] REFS_WT_PRECISION */
  164. int16_t weight[2]; /* [DIRAC_STD] REF1_WT and REF2_WT */
  165. unsigned weight_log2denom; /* [DIRAC_STD] REFS_WT_PRECISION */
  166. int blwidth; /* number of blocks (horizontally) */
  167. int blheight; /* number of blocks (vertically) */
  168. int sbwidth; /* number of superblocks (horizontally) */
  169. int sbheight; /* number of superblocks (vertically) */
  170. uint8_t *sbsplit;
  171. DiracBlock *blmotion;
  172. uint8_t *edge_emu_buffer[4];
  173. uint8_t *edge_emu_buffer_base;
  174. uint16_t *mctmp; /* buffer holding the MC data multiplied by OBMC weights */
  175. uint8_t *mcscratch;
  176. int buffer_stride;
  177. DECLARE_ALIGNED(16, uint8_t, obmc_weight)[3][MAX_BLOCKSIZE*MAX_BLOCKSIZE];
  178. void (*put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
  179. void (*avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
  180. void (*add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen);
  181. dirac_weight_func weight_func;
  182. dirac_biweight_func biweight_func;
  183. DiracFrame *current_picture;
  184. DiracFrame *ref_pics[2];
  185. DiracFrame *ref_frames[MAX_REFERENCE_FRAMES+1];
  186. DiracFrame *delay_frames[MAX_DELAY+1];
  187. DiracFrame all_frames[MAX_FRAMES];
  188. } DiracContext;
  189. /**
  190. * Dirac Specification ->
  191. * Parse code values. 9.6.1 Table 9.1
  192. */
  193. enum dirac_parse_code {
  194. pc_seq_header = 0x00,
  195. pc_eos = 0x10,
  196. pc_aux_data = 0x20,
  197. pc_padding = 0x30,
  198. };
  199. enum dirac_subband {
  200. subband_ll = 0,
  201. subband_hl = 1,
  202. subband_lh = 2,
  203. subband_hh = 3,
  204. subband_nb,
  205. };
  206. static const uint8_t default_qmat[][4][4] = {
  207. { { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} },
  208. { { 4, 2, 2, 0}, { 0, 4, 4, 2}, { 0, 5, 5, 3}, { 0, 7, 7, 5} },
  209. { { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} },
  210. { { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} },
  211. { { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} },
  212. { { 0, 4, 4, 8}, { 0, 8, 8, 12}, { 0, 13, 13, 17}, { 0, 17, 17, 21} },
  213. { { 3, 1, 1, 0}, { 0, 4, 4, 2}, { 0, 6, 6, 5}, { 0, 9, 9, 7} },
  214. };
  215. static const int qscale_tab[MAX_QUANT+1] = {
  216. 4, 5, 6, 7, 8, 10, 11, 13,
  217. 16, 19, 23, 27, 32, 38, 45, 54,
  218. 64, 76, 91, 108, 128, 152, 181, 215,
  219. 256, 304, 362, 431, 512, 609, 724, 861,
  220. 1024, 1218, 1448, 1722, 2048, 2435, 2896, 3444,
  221. 4096, 4871, 5793, 6889, 8192, 9742, 11585, 13777,
  222. 16384, 19484, 23170, 27554, 32768, 38968, 46341, 55109,
  223. 65536, 77936
  224. };
  225. static const int qoffset_intra_tab[MAX_QUANT+1] = {
  226. 1, 2, 3, 4, 4, 5, 6, 7,
  227. 8, 10, 12, 14, 16, 19, 23, 27,
  228. 32, 38, 46, 54, 64, 76, 91, 108,
  229. 128, 152, 181, 216, 256, 305, 362, 431,
  230. 512, 609, 724, 861, 1024, 1218, 1448, 1722,
  231. 2048, 2436, 2897, 3445, 4096, 4871, 5793, 6889,
  232. 8192, 9742, 11585, 13777, 16384, 19484, 23171, 27555,
  233. 32768, 38968
  234. };
  235. static const int qoffset_inter_tab[MAX_QUANT+1] = {
  236. 1, 2, 2, 3, 3, 4, 4, 5,
  237. 6, 7, 9, 10, 12, 14, 17, 20,
  238. 24, 29, 34, 41, 48, 57, 68, 81,
  239. 96, 114, 136, 162, 192, 228, 272, 323,
  240. 384, 457, 543, 646, 768, 913, 1086, 1292,
  241. 1536, 1827, 2172, 2583, 3072, 3653, 4344, 5166,
  242. 6144, 7307, 8689, 10333, 12288, 14613, 17378, 20666,
  243. 24576, 29226
  244. };
  245. /* magic number division by 3 from schroedinger */
  246. static inline int divide3(int x)
  247. {
  248. return ((x+1)*21845 + 10922) >> 16;
  249. }
  250. static DiracFrame *remove_frame(DiracFrame *framelist[], int picnum)
  251. {
  252. DiracFrame *remove_pic = NULL;
  253. int i, remove_idx = -1;
  254. for (i = 0; framelist[i]; i++)
  255. if (framelist[i]->avframe->display_picture_number == picnum) {
  256. remove_pic = framelist[i];
  257. remove_idx = i;
  258. }
  259. if (remove_pic)
  260. for (i = remove_idx; framelist[i]; i++)
  261. framelist[i] = framelist[i+1];
  262. return remove_pic;
  263. }
  264. static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
  265. {
  266. int i;
  267. for (i = 0; i < maxframes; i++)
  268. if (!framelist[i]) {
  269. framelist[i] = frame;
  270. return 0;
  271. }
  272. return -1;
  273. }
  274. static int alloc_sequence_buffers(DiracContext *s)
  275. {
  276. int sbwidth = DIVRNDUP(s->source.width, 4);
  277. int sbheight = DIVRNDUP(s->source.height, 4);
  278. int i, w, h, top_padding;
  279. /* todo: think more about this / use or set Plane here */
  280. for (i = 0; i < 3; i++) {
  281. int max_xblen = MAX_BLOCKSIZE >> (i ? s->chroma_x_shift : 0);
  282. int max_yblen = MAX_BLOCKSIZE >> (i ? s->chroma_y_shift : 0);
  283. w = s->source.width >> (i ? s->chroma_x_shift : 0);
  284. h = s->source.height >> (i ? s->chroma_y_shift : 0);
  285. /* we allocate the max we support here since num decompositions can
  286. * change from frame to frame. Stride is aligned to 16 for SIMD, and
  287. * 1<<MAX_DWT_LEVELS top padding to avoid if(y>0) in arith decoding
  288. * MAX_BLOCKSIZE padding for MC: blocks can spill up to half of that
  289. * on each side */
  290. top_padding = FFMAX(1<<MAX_DWT_LEVELS, max_yblen/2);
  291. w = FFALIGN(CALC_PADDING(w, MAX_DWT_LEVELS), 8); /* FIXME: Should this be 16 for SSE??? */
  292. h = top_padding + CALC_PADDING(h, MAX_DWT_LEVELS) + max_yblen/2;
  293. s->plane[i].idwt_buf_base = av_mallocz_array((w+max_xblen), h * sizeof(IDWTELEM));
  294. s->plane[i].idwt_tmp = av_malloc_array((w+16), sizeof(IDWTELEM));
  295. s->plane[i].idwt_buf = s->plane[i].idwt_buf_base + top_padding*w;
  296. if (!s->plane[i].idwt_buf_base || !s->plane[i].idwt_tmp)
  297. return AVERROR(ENOMEM);
  298. }
  299. /* fixme: allocate using real stride here */
  300. s->sbsplit = av_malloc_array(sbwidth, sbheight);
  301. s->blmotion = av_malloc_array(sbwidth, sbheight * 16 * sizeof(*s->blmotion));
  302. if (!s->sbsplit || !s->blmotion)
  303. return AVERROR(ENOMEM);
  304. return 0;
  305. }
  306. static int alloc_buffers(DiracContext *s, int stride)
  307. {
  308. int w = s->source.width;
  309. int h = s->source.height;
  310. av_assert0(stride >= w);
  311. stride += 64;
  312. if (s->buffer_stride >= stride)
  313. return 0;
  314. s->buffer_stride = 0;
  315. av_freep(&s->edge_emu_buffer_base);
  316. memset(s->edge_emu_buffer, 0, sizeof(s->edge_emu_buffer));
  317. av_freep(&s->mctmp);
  318. av_freep(&s->mcscratch);
  319. s->edge_emu_buffer_base = av_malloc_array(stride, MAX_BLOCKSIZE);
  320. s->mctmp = av_malloc_array((stride+MAX_BLOCKSIZE), (h+MAX_BLOCKSIZE) * sizeof(*s->mctmp));
  321. s->mcscratch = av_malloc_array(stride, MAX_BLOCKSIZE);
  322. if (!s->edge_emu_buffer_base || !s->mctmp || !s->mcscratch)
  323. return AVERROR(ENOMEM);
  324. s->buffer_stride = stride;
  325. return 0;
  326. }
  327. static void free_sequence_buffers(DiracContext *s)
  328. {
  329. int i, j, k;
  330. for (i = 0; i < MAX_FRAMES; i++) {
  331. if (s->all_frames[i].avframe->data[0]) {
  332. av_frame_unref(s->all_frames[i].avframe);
  333. memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
  334. }
  335. for (j = 0; j < 3; j++)
  336. for (k = 1; k < 4; k++)
  337. av_freep(&s->all_frames[i].hpel_base[j][k]);
  338. }
  339. memset(s->ref_frames, 0, sizeof(s->ref_frames));
  340. memset(s->delay_frames, 0, sizeof(s->delay_frames));
  341. for (i = 0; i < 3; i++) {
  342. av_freep(&s->plane[i].idwt_buf_base);
  343. av_freep(&s->plane[i].idwt_tmp);
  344. }
  345. s->buffer_stride = 0;
  346. av_freep(&s->sbsplit);
  347. av_freep(&s->blmotion);
  348. av_freep(&s->edge_emu_buffer_base);
  349. av_freep(&s->mctmp);
  350. av_freep(&s->mcscratch);
  351. }
  352. static av_cold int dirac_decode_init(AVCodecContext *avctx)
  353. {
  354. DiracContext *s = avctx->priv_data;
  355. int i;
  356. s->avctx = avctx;
  357. s->frame_number = -1;
  358. ff_diracdsp_init(&s->diracdsp);
  359. ff_mpegvideoencdsp_init(&s->mpvencdsp, avctx);
  360. ff_videodsp_init(&s->vdsp, 8);
  361. for (i = 0; i < MAX_FRAMES; i++) {
  362. s->all_frames[i].avframe = av_frame_alloc();
  363. if (!s->all_frames[i].avframe) {
  364. while (i > 0)
  365. av_frame_free(&s->all_frames[--i].avframe);
  366. return AVERROR(ENOMEM);
  367. }
  368. }
  369. return 0;
  370. }
  371. static void dirac_decode_flush(AVCodecContext *avctx)
  372. {
  373. DiracContext *s = avctx->priv_data;
  374. free_sequence_buffers(s);
  375. s->seen_sequence_header = 0;
  376. s->frame_number = -1;
  377. }
  378. static av_cold int dirac_decode_end(AVCodecContext *avctx)
  379. {
  380. DiracContext *s = avctx->priv_data;
  381. int i;
  382. dirac_decode_flush(avctx);
  383. for (i = 0; i < MAX_FRAMES; i++)
  384. av_frame_free(&s->all_frames[i].avframe);
  385. return 0;
  386. }
  387. #define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
  388. static inline void coeff_unpack_arith(DiracArith *c, int qfactor, int qoffset,
  389. SubBand *b, IDWTELEM *buf, int x, int y)
  390. {
  391. int coeff, sign;
  392. int sign_pred = 0;
  393. int pred_ctx = CTX_ZPZN_F1;
  394. /* Check if the parent subband has a 0 in the corresponding position */
  395. if (b->parent)
  396. pred_ctx += !!b->parent->ibuf[b->parent->stride * (y>>1) + (x>>1)] << 1;
  397. if (b->orientation == subband_hl)
  398. sign_pred = buf[-b->stride];
  399. /* Determine if the pixel has only zeros in its neighbourhood */
  400. if (x) {
  401. pred_ctx += !(buf[-1] | buf[-b->stride] | buf[-1-b->stride]);
  402. if (b->orientation == subband_lh)
  403. sign_pred = buf[-1];
  404. } else {
  405. pred_ctx += !buf[-b->stride];
  406. }
  407. coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA);
  408. if (coeff) {
  409. coeff = (coeff * qfactor + qoffset + 2) >> 2;
  410. sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred));
  411. coeff = (coeff ^ -sign) + sign;
  412. }
  413. *buf = coeff;
  414. }
  415. static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
  416. {
  417. int sign, coeff;
  418. coeff = svq3_get_ue_golomb(gb);
  419. if (coeff) {
  420. coeff = (coeff * qfactor + qoffset + 2) >> 2;
  421. sign = get_bits1(gb);
  422. coeff = (coeff ^ -sign) + sign;
  423. }
  424. return coeff;
  425. }
  426. /**
  427. * Decode the coeffs in the rectangle defined by left, right, top, bottom
  428. * [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock()
  429. */
  430. static inline void codeblock(DiracContext *s, SubBand *b,
  431. GetBitContext *gb, DiracArith *c,
  432. int left, int right, int top, int bottom,
  433. int blockcnt_one, int is_arith)
  434. {
  435. int x, y, zero_block;
  436. int qoffset, qfactor;
  437. IDWTELEM *buf;
  438. /* check for any coded coefficients in this codeblock */
  439. if (!blockcnt_one) {
  440. if (is_arith)
  441. zero_block = dirac_get_arith_bit(c, CTX_ZERO_BLOCK);
  442. else
  443. zero_block = get_bits1(gb);
  444. if (zero_block)
  445. return;
  446. }
  447. if (s->codeblock_mode && !(s->old_delta_quant && blockcnt_one)) {
  448. int quant = b->quant;
  449. if (is_arith)
  450. quant += dirac_get_arith_int(c, CTX_DELTA_Q_F, CTX_DELTA_Q_DATA);
  451. else
  452. quant += dirac_get_se_golomb(gb);
  453. if (quant < 0) {
  454. av_log(s->avctx, AV_LOG_ERROR, "Invalid quant\n");
  455. return;
  456. }
  457. b->quant = quant;
  458. }
  459. b->quant = FFMIN(b->quant, MAX_QUANT);
  460. qfactor = qscale_tab[b->quant];
  461. /* TODO: context pointer? */
  462. if (!s->num_refs)
  463. qoffset = qoffset_intra_tab[b->quant];
  464. else
  465. qoffset = qoffset_inter_tab[b->quant];
  466. buf = b->ibuf + top * b->stride;
  467. for (y = top; y < bottom; y++) {
  468. for (x = left; x < right; x++) {
  469. /* [DIRAC_STD] 13.4.4 Subband coefficients. coeff_unpack() */
  470. if (is_arith)
  471. coeff_unpack_arith(c, qfactor, qoffset, b, buf+x, x, y);
  472. else
  473. buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
  474. }
  475. buf += b->stride;
  476. }
  477. }
  478. /**
  479. * Dirac Specification ->
  480. * 13.3 intra_dc_prediction(band)
  481. */
  482. static inline void intra_dc_prediction(SubBand *b)
  483. {
  484. IDWTELEM *buf = b->ibuf;
  485. int x, y;
  486. for (x = 1; x < b->width; x++)
  487. buf[x] += buf[x-1];
  488. buf += b->stride;
  489. for (y = 1; y < b->height; y++) {
  490. buf[0] += buf[-b->stride];
  491. for (x = 1; x < b->width; x++) {
  492. int pred = buf[x - 1] + buf[x - b->stride] + buf[x - b->stride-1];
  493. buf[x] += divide3(pred);
  494. }
  495. buf += b->stride;
  496. }
  497. }
  498. /**
  499. * Dirac Specification ->
  500. * 13.4.2 Non-skipped subbands. subband_coeffs()
  501. */
  502. static av_always_inline void decode_subband_internal(DiracContext *s, SubBand *b, int is_arith)
  503. {
  504. int cb_x, cb_y, left, right, top, bottom;
  505. DiracArith c;
  506. GetBitContext gb;
  507. int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width;
  508. int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height;
  509. int blockcnt_one = (cb_width + cb_height) == 2;
  510. if (!b->length)
  511. return;
  512. init_get_bits8(&gb, b->coeff_data, b->length);
  513. if (is_arith)
  514. ff_dirac_init_arith_decoder(&c, &gb, b->length);
  515. top = 0;
  516. for (cb_y = 0; cb_y < cb_height; cb_y++) {
  517. bottom = (b->height * (cb_y+1LL)) / cb_height;
  518. left = 0;
  519. for (cb_x = 0; cb_x < cb_width; cb_x++) {
  520. right = (b->width * (cb_x+1LL)) / cb_width;
  521. codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith);
  522. left = right;
  523. }
  524. top = bottom;
  525. }
  526. if (b->orientation == subband_ll && s->num_refs == 0)
  527. intra_dc_prediction(b);
  528. }
  529. static int decode_subband_arith(AVCodecContext *avctx, void *b)
  530. {
  531. DiracContext *s = avctx->priv_data;
  532. decode_subband_internal(s, b, 1);
  533. return 0;
  534. }
  535. static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
  536. {
  537. DiracContext *s = avctx->priv_data;
  538. SubBand **b = arg;
  539. decode_subband_internal(s, *b, 0);
  540. return 0;
  541. }
  542. /**
  543. * Dirac Specification ->
  544. * [DIRAC_STD] 13.4.1 core_transform_data()
  545. */
  546. static void decode_component(DiracContext *s, int comp)
  547. {
  548. AVCodecContext *avctx = s->avctx;
  549. SubBand *bands[3*MAX_DWT_LEVELS+1];
  550. enum dirac_subband orientation;
  551. int level, num_bands = 0;
  552. /* Unpack all subbands at all levels. */
  553. for (level = 0; level < s->wavelet_depth; level++) {
  554. for (orientation = !!level; orientation < 4; orientation++) {
  555. SubBand *b = &s->plane[comp].band[level][orientation];
  556. bands[num_bands++] = b;
  557. align_get_bits(&s->gb);
  558. /* [DIRAC_STD] 13.4.2 subband() */
  559. b->length = svq3_get_ue_golomb(&s->gb);
  560. if (b->length) {
  561. b->quant = svq3_get_ue_golomb(&s->gb);
  562. align_get_bits(&s->gb);
  563. b->coeff_data = s->gb.buffer + get_bits_count(&s->gb)/8;
  564. b->length = FFMIN(b->length, FFMAX(get_bits_left(&s->gb)/8, 0));
  565. skip_bits_long(&s->gb, b->length*8);
  566. }
  567. }
  568. /* arithmetic coding has inter-level dependencies, so we can only execute one level at a time */
  569. if (s->is_arith)
  570. avctx->execute(avctx, decode_subband_arith, &s->plane[comp].band[level][!!level],
  571. NULL, 4-!!level, sizeof(SubBand));
  572. }
  573. /* golomb coding has no inter-level dependencies, so we can execute all subbands in parallel */
  574. if (!s->is_arith)
  575. avctx->execute(avctx, decode_subband_golomb, bands, NULL, num_bands, sizeof(SubBand*));
  576. }
  577. /* [DIRAC_STD] 13.5.5.2 Luma slice subband data. luma_slice_band(level,orient,sx,sy) --> if b2 == NULL */
  578. /* [DIRAC_STD] 13.5.5.3 Chroma slice subband data. chroma_slice_band(level,orient,sx,sy) --> if b2 != NULL */
  579. static void lowdelay_subband(DiracContext *s, GetBitContext *gb, int quant,
  580. int slice_x, int slice_y, int bits_end,
  581. SubBand *b1, SubBand *b2)
  582. {
  583. int left = b1->width * slice_x / s->lowdelay.num_x;
  584. int right = b1->width *(slice_x+1) / s->lowdelay.num_x;
  585. int top = b1->height * slice_y / s->lowdelay.num_y;
  586. int bottom = b1->height *(slice_y+1) / s->lowdelay.num_y;
  587. int qfactor = qscale_tab[FFMIN(quant, MAX_QUANT)];
  588. int qoffset = qoffset_intra_tab[FFMIN(quant, MAX_QUANT)];
  589. IDWTELEM *buf1 = b1->ibuf + top * b1->stride;
  590. IDWTELEM *buf2 = b2 ? b2->ibuf + top * b2->stride : NULL;
  591. int x, y;
  592. /* we have to constantly check for overread since the spec explicitly
  593. requires this, with the meaning that all remaining coeffs are set to 0 */
  594. if (get_bits_count(gb) >= bits_end)
  595. return;
  596. for (y = top; y < bottom; y++) {
  597. for (x = left; x < right; x++) {
  598. buf1[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
  599. if (get_bits_count(gb) >= bits_end)
  600. return;
  601. if (buf2) {
  602. buf2[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
  603. if (get_bits_count(gb) >= bits_end)
  604. return;
  605. }
  606. }
  607. buf1 += b1->stride;
  608. if (buf2)
  609. buf2 += b2->stride;
  610. }
  611. }
  612. struct lowdelay_slice {
  613. GetBitContext gb;
  614. int slice_x;
  615. int slice_y;
  616. int bytes;
  617. };
  618. /**
  619. * Dirac Specification ->
  620. * 13.5.2 Slices. slice(sx,sy)
  621. */
  622. static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
  623. {
  624. DiracContext *s = avctx->priv_data;
  625. struct lowdelay_slice *slice = arg;
  626. GetBitContext *gb = &slice->gb;
  627. enum dirac_subband orientation;
  628. int level, quant, chroma_bits, chroma_end;
  629. int quant_base = get_bits(gb, 7); /*[DIRAC_STD] qindex */
  630. int length_bits = av_log2(8 * slice->bytes)+1;
  631. int luma_bits = get_bits_long(gb, length_bits);
  632. int luma_end = get_bits_count(gb) + FFMIN(luma_bits, get_bits_left(gb));
  633. /* [DIRAC_STD] 13.5.5.2 luma_slice_band */
  634. for (level = 0; level < s->wavelet_depth; level++)
  635. for (orientation = !!level; orientation < 4; orientation++) {
  636. quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
  637. lowdelay_subband(s, gb, quant, slice->slice_x, slice->slice_y, luma_end,
  638. &s->plane[0].band[level][orientation], NULL);
  639. }
  640. /* consume any unused bits from luma */
  641. skip_bits_long(gb, get_bits_count(gb) - luma_end);
  642. chroma_bits = 8*slice->bytes - 7 - length_bits - luma_bits;
  643. chroma_end = get_bits_count(gb) + FFMIN(chroma_bits, get_bits_left(gb));
  644. /* [DIRAC_STD] 13.5.5.3 chroma_slice_band */
  645. for (level = 0; level < s->wavelet_depth; level++)
  646. for (orientation = !!level; orientation < 4; orientation++) {
  647. quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
  648. lowdelay_subband(s, gb, quant, slice->slice_x, slice->slice_y, chroma_end,
  649. &s->plane[1].band[level][orientation],
  650. &s->plane[2].band[level][orientation]);
  651. }
  652. return 0;
  653. }
  654. /**
  655. * Dirac Specification ->
  656. * 13.5.1 low_delay_transform_data()
  657. */
  658. static int decode_lowdelay(DiracContext *s)
  659. {
  660. AVCodecContext *avctx = s->avctx;
  661. int slice_x, slice_y, bytes, bufsize;
  662. const uint8_t *buf;
  663. struct lowdelay_slice *slices;
  664. int slice_num = 0;
  665. slices = av_mallocz_array(s->lowdelay.num_x, s->lowdelay.num_y * sizeof(struct lowdelay_slice));
  666. if (!slices)
  667. return AVERROR(ENOMEM);
  668. align_get_bits(&s->gb);
  669. /*[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) */
  670. buf = s->gb.buffer + get_bits_count(&s->gb)/8;
  671. bufsize = get_bits_left(&s->gb);
  672. for (slice_y = 0; bufsize > 0 && slice_y < s->lowdelay.num_y; slice_y++)
  673. for (slice_x = 0; bufsize > 0 && slice_x < s->lowdelay.num_x; slice_x++) {
  674. bytes = (slice_num+1) * s->lowdelay.bytes.num / s->lowdelay.bytes.den
  675. - slice_num * s->lowdelay.bytes.num / s->lowdelay.bytes.den;
  676. slices[slice_num].bytes = bytes;
  677. slices[slice_num].slice_x = slice_x;
  678. slices[slice_num].slice_y = slice_y;
  679. init_get_bits(&slices[slice_num].gb, buf, bufsize);
  680. slice_num++;
  681. buf += bytes;
  682. if (bufsize/8 >= bytes)
  683. bufsize -= bytes*8;
  684. else
  685. bufsize = 0;
  686. }
  687. avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num,
  688. sizeof(struct lowdelay_slice)); /* [DIRAC_STD] 13.5.2 Slices */
  689. intra_dc_prediction(&s->plane[0].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  690. intra_dc_prediction(&s->plane[1].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  691. intra_dc_prediction(&s->plane[2].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  692. av_free(slices);
  693. return 0;
  694. }
  695. static void init_planes(DiracContext *s)
  696. {
  697. int i, w, h, level, orientation;
  698. for (i = 0; i < 3; i++) {
  699. Plane *p = &s->plane[i];
  700. p->width = s->source.width >> (i ? s->chroma_x_shift : 0);
  701. p->height = s->source.height >> (i ? s->chroma_y_shift : 0);
  702. p->idwt_width = w = CALC_PADDING(p->width , s->wavelet_depth);
  703. p->idwt_height = h = CALC_PADDING(p->height, s->wavelet_depth);
  704. p->idwt_stride = FFALIGN(p->idwt_width, 8);
  705. for (level = s->wavelet_depth-1; level >= 0; level--) {
  706. w = w>>1;
  707. h = h>>1;
  708. for (orientation = !!level; orientation < 4; orientation++) {
  709. SubBand *b = &p->band[level][orientation];
  710. b->ibuf = p->idwt_buf;
  711. b->level = level;
  712. b->stride = p->idwt_stride << (s->wavelet_depth - level);
  713. b->width = w;
  714. b->height = h;
  715. b->orientation = orientation;
  716. if (orientation & 1)
  717. b->ibuf += w;
  718. if (orientation > 1)
  719. b->ibuf += b->stride>>1;
  720. if (level)
  721. b->parent = &p->band[level-1][orientation];
  722. }
  723. }
  724. if (i > 0) {
  725. p->xblen = s->plane[0].xblen >> s->chroma_x_shift;
  726. p->yblen = s->plane[0].yblen >> s->chroma_y_shift;
  727. p->xbsep = s->plane[0].xbsep >> s->chroma_x_shift;
  728. p->ybsep = s->plane[0].ybsep >> s->chroma_y_shift;
  729. }
  730. p->xoffset = (p->xblen - p->xbsep)/2;
  731. p->yoffset = (p->yblen - p->ybsep)/2;
  732. }
  733. }
  734. /**
  735. * Unpack the motion compensation parameters
  736. * Dirac Specification ->
  737. * 11.2 Picture prediction data. picture_prediction()
  738. */
  739. static int dirac_unpack_prediction_parameters(DiracContext *s)
  740. {
  741. static const uint8_t default_blen[] = { 4, 12, 16, 24 };
  742. GetBitContext *gb = &s->gb;
  743. unsigned idx, ref;
  744. align_get_bits(gb);
  745. /* [DIRAC_STD] 11.2.2 Block parameters. block_parameters() */
  746. /* Luma and Chroma are equal. 11.2.3 */
  747. idx = svq3_get_ue_golomb(gb); /* [DIRAC_STD] index */
  748. if (idx > 4) {
  749. av_log(s->avctx, AV_LOG_ERROR, "Block prediction index too high\n");
  750. return AVERROR_INVALIDDATA;
  751. }
  752. if (idx == 0) {
  753. s->plane[0].xblen = svq3_get_ue_golomb(gb);
  754. s->plane[0].yblen = svq3_get_ue_golomb(gb);
  755. s->plane[0].xbsep = svq3_get_ue_golomb(gb);
  756. s->plane[0].ybsep = svq3_get_ue_golomb(gb);
  757. } else {
  758. /*[DIRAC_STD] preset_block_params(index). Table 11.1 */
  759. s->plane[0].xblen = default_blen[idx-1];
  760. s->plane[0].yblen = default_blen[idx-1];
  761. s->plane[0].xbsep = 4 * idx;
  762. s->plane[0].ybsep = 4 * idx;
  763. }
  764. /*[DIRAC_STD] 11.2.4 motion_data_dimensions()
  765. Calculated in function dirac_unpack_block_motion_data */
  766. if (s->plane[0].xblen % (1 << s->chroma_x_shift) != 0 ||
  767. s->plane[0].yblen % (1 << s->chroma_y_shift) != 0 ||
  768. !s->plane[0].xblen || !s->plane[0].yblen) {
  769. av_log(s->avctx, AV_LOG_ERROR,
  770. "invalid x/y block length (%d/%d) for x/y chroma shift (%d/%d)\n",
  771. s->plane[0].xblen, s->plane[0].yblen, s->chroma_x_shift, s->chroma_y_shift);
  772. return AVERROR_INVALIDDATA;
  773. }
  774. if (!s->plane[0].xbsep || !s->plane[0].ybsep || s->plane[0].xbsep < s->plane[0].xblen/2 || s->plane[0].ybsep < s->plane[0].yblen/2) {
  775. av_log(s->avctx, AV_LOG_ERROR, "Block separation too small\n");
  776. return AVERROR_INVALIDDATA;
  777. }
  778. if (s->plane[0].xbsep > s->plane[0].xblen || s->plane[0].ybsep > s->plane[0].yblen) {
  779. av_log(s->avctx, AV_LOG_ERROR, "Block separation greater than size\n");
  780. return AVERROR_INVALIDDATA;
  781. }
  782. if (FFMAX(s->plane[0].xblen, s->plane[0].yblen) > MAX_BLOCKSIZE) {
  783. av_log(s->avctx, AV_LOG_ERROR, "Unsupported large block size\n");
  784. return AVERROR_PATCHWELCOME;
  785. }
  786. /*[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision()
  787. Read motion vector precision */
  788. s->mv_precision = svq3_get_ue_golomb(gb);
  789. if (s->mv_precision > 3) {
  790. av_log(s->avctx, AV_LOG_ERROR, "MV precision finer than eighth-pel\n");
  791. return AVERROR_INVALIDDATA;
  792. }
  793. /*[DIRAC_STD] 11.2.6 Global motion. global_motion()
  794. Read the global motion compensation parameters */
  795. s->globalmc_flag = get_bits1(gb);
  796. if (s->globalmc_flag) {
  797. memset(s->globalmc, 0, sizeof(s->globalmc));
  798. /* [DIRAC_STD] pan_tilt(gparams) */
  799. for (ref = 0; ref < s->num_refs; ref++) {
  800. if (get_bits1(gb)) {
  801. s->globalmc[ref].pan_tilt[0] = dirac_get_se_golomb(gb);
  802. s->globalmc[ref].pan_tilt[1] = dirac_get_se_golomb(gb);
  803. }
  804. /* [DIRAC_STD] zoom_rotate_shear(gparams)
  805. zoom/rotation/shear parameters */
  806. if (get_bits1(gb)) {
  807. s->globalmc[ref].zrs_exp = svq3_get_ue_golomb(gb);
  808. s->globalmc[ref].zrs[0][0] = dirac_get_se_golomb(gb);
  809. s->globalmc[ref].zrs[0][1] = dirac_get_se_golomb(gb);
  810. s->globalmc[ref].zrs[1][0] = dirac_get_se_golomb(gb);
  811. s->globalmc[ref].zrs[1][1] = dirac_get_se_golomb(gb);
  812. } else {
  813. s->globalmc[ref].zrs[0][0] = 1;
  814. s->globalmc[ref].zrs[1][1] = 1;
  815. }
  816. /* [DIRAC_STD] perspective(gparams) */
  817. if (get_bits1(gb)) {
  818. s->globalmc[ref].perspective_exp = svq3_get_ue_golomb(gb);
  819. s->globalmc[ref].perspective[0] = dirac_get_se_golomb(gb);
  820. s->globalmc[ref].perspective[1] = dirac_get_se_golomb(gb);
  821. }
  822. }
  823. }
  824. /*[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode()
  825. Picture prediction mode, not currently used. */
  826. if (svq3_get_ue_golomb(gb)) {
  827. av_log(s->avctx, AV_LOG_ERROR, "Unknown picture prediction mode\n");
  828. return AVERROR_INVALIDDATA;
  829. }
  830. /* [DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights()
  831. just data read, weight calculation will be done later on. */
  832. s->weight_log2denom = 1;
  833. s->weight[0] = 1;
  834. s->weight[1] = 1;
  835. if (get_bits1(gb)) {
  836. s->weight_log2denom = svq3_get_ue_golomb(gb);
  837. s->weight[0] = dirac_get_se_golomb(gb);
  838. if (s->num_refs == 2)
  839. s->weight[1] = dirac_get_se_golomb(gb);
  840. }
  841. return 0;
  842. }
  843. /**
  844. * Dirac Specification ->
  845. * 11.3 Wavelet transform data. wavelet_transform()
  846. */
  847. static int dirac_unpack_idwt_params(DiracContext *s)
  848. {
  849. GetBitContext *gb = &s->gb;
  850. int i, level;
  851. unsigned tmp;
  852. #define CHECKEDREAD(dst, cond, errmsg) \
  853. tmp = svq3_get_ue_golomb(gb); \
  854. if (cond) { \
  855. av_log(s->avctx, AV_LOG_ERROR, errmsg); \
  856. return AVERROR_INVALIDDATA; \
  857. }\
  858. dst = tmp;
  859. align_get_bits(gb);
  860. s->zero_res = s->num_refs ? get_bits1(gb) : 0;
  861. if (s->zero_res)
  862. return 0;
  863. /*[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() */
  864. CHECKEDREAD(s->wavelet_idx, tmp > 6, "wavelet_idx is too big\n")
  865. CHECKEDREAD(s->wavelet_depth, tmp > MAX_DWT_LEVELS || tmp < 1, "invalid number of DWT decompositions\n")
  866. if (!s->low_delay) {
  867. /* Codeblock parameters (core syntax only) */
  868. if (get_bits1(gb)) {
  869. for (i = 0; i <= s->wavelet_depth; i++) {
  870. CHECKEDREAD(s->codeblock[i].width , tmp < 1 || tmp > (s->avctx->width >>s->wavelet_depth-i), "codeblock width invalid\n")
  871. CHECKEDREAD(s->codeblock[i].height, tmp < 1 || tmp > (s->avctx->height>>s->wavelet_depth-i), "codeblock height invalid\n")
  872. }
  873. CHECKEDREAD(s->codeblock_mode, tmp > 1, "unknown codeblock mode\n")
  874. } else
  875. for (i = 0; i <= s->wavelet_depth; i++)
  876. s->codeblock[i].width = s->codeblock[i].height = 1;
  877. } else {
  878. /* Slice parameters + quantization matrix*/
  879. /*[DIRAC_STD] 11.3.4 Slice coding Parameters (low delay syntax only). slice_parameters() */
  880. s->lowdelay.num_x = svq3_get_ue_golomb(gb);
  881. s->lowdelay.num_y = svq3_get_ue_golomb(gb);
  882. s->lowdelay.bytes.num = svq3_get_ue_golomb(gb);
  883. s->lowdelay.bytes.den = svq3_get_ue_golomb(gb);
  884. if (s->lowdelay.bytes.den <= 0) {
  885. av_log(s->avctx,AV_LOG_ERROR,"Invalid lowdelay.bytes.den\n");
  886. return AVERROR_INVALIDDATA;
  887. }
  888. /* [DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() */
  889. if (get_bits1(gb)) {
  890. av_log(s->avctx,AV_LOG_DEBUG,"Low Delay: Has Custom Quantization Matrix!\n");
  891. /* custom quantization matrix */
  892. s->lowdelay.quant[0][0] = svq3_get_ue_golomb(gb);
  893. for (level = 0; level < s->wavelet_depth; level++) {
  894. s->lowdelay.quant[level][1] = svq3_get_ue_golomb(gb);
  895. s->lowdelay.quant[level][2] = svq3_get_ue_golomb(gb);
  896. s->lowdelay.quant[level][3] = svq3_get_ue_golomb(gb);
  897. }
  898. } else {
  899. if (s->wavelet_depth > 4) {
  900. av_log(s->avctx,AV_LOG_ERROR,"Mandatory custom low delay matrix missing for depth %d\n", s->wavelet_depth);
  901. return AVERROR_INVALIDDATA;
  902. }
  903. /* default quantization matrix */
  904. for (level = 0; level < s->wavelet_depth; level++)
  905. for (i = 0; i < 4; i++) {
  906. s->lowdelay.quant[level][i] = default_qmat[s->wavelet_idx][level][i];
  907. /* haar with no shift differs for different depths */
  908. if (s->wavelet_idx == 3)
  909. s->lowdelay.quant[level][i] += 4*(s->wavelet_depth-1 - level);
  910. }
  911. }
  912. }
  913. return 0;
  914. }
  915. static inline int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
  916. {
  917. static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 };
  918. if (!(x|y))
  919. return 0;
  920. else if (!y)
  921. return sbsplit[-1];
  922. else if (!x)
  923. return sbsplit[-stride];
  924. return avgsplit[sbsplit[-1] + sbsplit[-stride] + sbsplit[-stride-1]];
  925. }
  926. static inline int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
  927. {
  928. int pred;
  929. if (!(x|y))
  930. return 0;
  931. else if (!y)
  932. return block[-1].ref & refmask;
  933. else if (!x)
  934. return block[-stride].ref & refmask;
  935. /* return the majority */
  936. pred = (block[-1].ref & refmask) + (block[-stride].ref & refmask) + (block[-stride-1].ref & refmask);
  937. return (pred >> 1) & refmask;
  938. }
  939. static inline void pred_block_dc(DiracBlock *block, int stride, int x, int y)
  940. {
  941. int i, n = 0;
  942. memset(block->u.dc, 0, sizeof(block->u.dc));
  943. if (x && !(block[-1].ref & 3)) {
  944. for (i = 0; i < 3; i++)
  945. block->u.dc[i] += block[-1].u.dc[i];
  946. n++;
  947. }
  948. if (y && !(block[-stride].ref & 3)) {
  949. for (i = 0; i < 3; i++)
  950. block->u.dc[i] += block[-stride].u.dc[i];
  951. n++;
  952. }
  953. if (x && y && !(block[-1-stride].ref & 3)) {
  954. for (i = 0; i < 3; i++)
  955. block->u.dc[i] += block[-1-stride].u.dc[i];
  956. n++;
  957. }
  958. if (n == 2) {
  959. for (i = 0; i < 3; i++)
  960. block->u.dc[i] = (block->u.dc[i]+1)>>1;
  961. } else if (n == 3) {
  962. for (i = 0; i < 3; i++)
  963. block->u.dc[i] = divide3(block->u.dc[i]);
  964. }
  965. }
  966. static inline void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
  967. {
  968. int16_t *pred[3];
  969. int refmask = ref+1;
  970. int mask = refmask | DIRAC_REF_MASK_GLOBAL; /* exclude gmc blocks */
  971. int n = 0;
  972. if (x && (block[-1].ref & mask) == refmask)
  973. pred[n++] = block[-1].u.mv[ref];
  974. if (y && (block[-stride].ref & mask) == refmask)
  975. pred[n++] = block[-stride].u.mv[ref];
  976. if (x && y && (block[-stride-1].ref & mask) == refmask)
  977. pred[n++] = block[-stride-1].u.mv[ref];
  978. switch (n) {
  979. case 0:
  980. block->u.mv[ref][0] = 0;
  981. block->u.mv[ref][1] = 0;
  982. break;
  983. case 1:
  984. block->u.mv[ref][0] = pred[0][0];
  985. block->u.mv[ref][1] = pred[0][1];
  986. break;
  987. case 2:
  988. block->u.mv[ref][0] = (pred[0][0] + pred[1][0] + 1) >> 1;
  989. block->u.mv[ref][1] = (pred[0][1] + pred[1][1] + 1) >> 1;
  990. break;
  991. case 3:
  992. block->u.mv[ref][0] = mid_pred(pred[0][0], pred[1][0], pred[2][0]);
  993. block->u.mv[ref][1] = mid_pred(pred[0][1], pred[1][1], pred[2][1]);
  994. break;
  995. }
  996. }
  997. static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
  998. {
  999. int ez = s->globalmc[ref].zrs_exp;
  1000. int ep = s->globalmc[ref].perspective_exp;
  1001. int (*A)[2] = s->globalmc[ref].zrs;
  1002. int *b = s->globalmc[ref].pan_tilt;
  1003. int *c = s->globalmc[ref].perspective;
  1004. int m = (1<<ep) - (c[0]*x + c[1]*y);
  1005. int mx = m * ((A[0][0] * x + A[0][1]*y) + (1<<ez) * b[0]);
  1006. int my = m * ((A[1][0] * x + A[1][1]*y) + (1<<ez) * b[1]);
  1007. block->u.mv[ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep);
  1008. block->u.mv[ref][1] = (my + (1<<(ez+ep))) >> (ez+ep);
  1009. }
  1010. static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block,
  1011. int stride, int x, int y)
  1012. {
  1013. int i;
  1014. block->ref = pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF1);
  1015. block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF1);
  1016. if (s->num_refs == 2) {
  1017. block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF2);
  1018. block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF2) << 1;
  1019. }
  1020. if (!block->ref) {
  1021. pred_block_dc(block, stride, x, y);
  1022. for (i = 0; i < 3; i++)
  1023. block->u.dc[i] += dirac_get_arith_int(arith+1+i, CTX_DC_F1, CTX_DC_DATA);
  1024. return;
  1025. }
  1026. if (s->globalmc_flag) {
  1027. block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_GLOBAL);
  1028. block->ref ^= dirac_get_arith_bit(arith, CTX_GLOBAL_BLOCK) << 2;
  1029. }
  1030. for (i = 0; i < s->num_refs; i++)
  1031. if (block->ref & (i+1)) {
  1032. if (block->ref & DIRAC_REF_MASK_GLOBAL) {
  1033. global_mv(s, block, x, y, i);
  1034. } else {
  1035. pred_mv(block, stride, x, y, i);
  1036. block->u.mv[i][0] += dirac_get_arith_int(arith + 4 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
  1037. block->u.mv[i][1] += dirac_get_arith_int(arith + 5 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
  1038. }
  1039. }
  1040. }
  1041. /**
  1042. * Copies the current block to the other blocks covered by the current superblock split mode
  1043. */
  1044. static void propagate_block_data(DiracBlock *block, int stride, int size)
  1045. {
  1046. int x, y;
  1047. DiracBlock *dst = block;
  1048. for (x = 1; x < size; x++)
  1049. dst[x] = *block;
  1050. for (y = 1; y < size; y++) {
  1051. dst += stride;
  1052. for (x = 0; x < size; x++)
  1053. dst[x] = *block;
  1054. }
  1055. }
  1056. /**
  1057. * Dirac Specification ->
  1058. * 12. Block motion data syntax
  1059. */
  1060. static int dirac_unpack_block_motion_data(DiracContext *s)
  1061. {
  1062. GetBitContext *gb = &s->gb;
  1063. uint8_t *sbsplit = s->sbsplit;
  1064. int i, x, y, q, p;
  1065. DiracArith arith[8];
  1066. align_get_bits(gb);
  1067. /* [DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks */
  1068. s->sbwidth = DIVRNDUP(s->source.width, 4*s->plane[0].xbsep);
  1069. s->sbheight = DIVRNDUP(s->source.height, 4*s->plane[0].ybsep);
  1070. s->blwidth = 4 * s->sbwidth;
  1071. s->blheight = 4 * s->sbheight;
  1072. /* [DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes()
  1073. decode superblock split modes */
  1074. ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb)); /* svq3_get_ue_golomb(gb) is the length */
  1075. for (y = 0; y < s->sbheight; y++) {
  1076. for (x = 0; x < s->sbwidth; x++) {
  1077. unsigned int split = dirac_get_arith_uint(arith, CTX_SB_F1, CTX_SB_DATA);
  1078. if (split > 2)
  1079. return AVERROR_INVALIDDATA;
  1080. sbsplit[x] = (split + pred_sbsplit(sbsplit+x, s->sbwidth, x, y)) % 3;
  1081. }
  1082. sbsplit += s->sbwidth;
  1083. }
  1084. /* setup arith decoding */
  1085. ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb));
  1086. for (i = 0; i < s->num_refs; i++) {
  1087. ff_dirac_init_arith_decoder(arith + 4 + 2 * i, gb, svq3_get_ue_golomb(gb));
  1088. ff_dirac_init_arith_decoder(arith + 5 + 2 * i, gb, svq3_get_ue_golomb(gb));
  1089. }
  1090. for (i = 0; i < 3; i++)
  1091. ff_dirac_init_arith_decoder(arith+1+i, gb, svq3_get_ue_golomb(gb));
  1092. for (y = 0; y < s->sbheight; y++)
  1093. for (x = 0; x < s->sbwidth; x++) {
  1094. int blkcnt = 1 << s->sbsplit[y * s->sbwidth + x];
  1095. int step = 4 >> s->sbsplit[y * s->sbwidth + x];
  1096. for (q = 0; q < blkcnt; q++)
  1097. for (p = 0; p < blkcnt; p++) {
  1098. int bx = 4 * x + p*step;
  1099. int by = 4 * y + q*step;
  1100. DiracBlock *block = &s->blmotion[by*s->blwidth + bx];
  1101. decode_block_params(s, arith, block, s->blwidth, bx, by);
  1102. propagate_block_data(block, s->blwidth, step);
  1103. }
  1104. }
  1105. return 0;
  1106. }
  1107. static int weight(int i, int blen, int offset)
  1108. {
  1109. #define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \
  1110. (1 + (6*(i) + offset - 1) / (2*offset - 1))
  1111. if (i < 2*offset)
  1112. return ROLLOFF(i);
  1113. else if (i > blen-1 - 2*offset)
  1114. return ROLLOFF(blen-1 - i);
  1115. return 8;
  1116. }
  1117. static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride,
  1118. int left, int right, int wy)
  1119. {
  1120. int x;
  1121. for (x = 0; left && x < p->xblen >> 1; x++)
  1122. obmc_weight[x] = wy*8;
  1123. for (; x < p->xblen >> right; x++)
  1124. obmc_weight[x] = wy*weight(x, p->xblen, p->xoffset);
  1125. for (; x < p->xblen; x++)
  1126. obmc_weight[x] = wy*8;
  1127. for (; x < stride; x++)
  1128. obmc_weight[x] = 0;
  1129. }
  1130. static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride,
  1131. int left, int right, int top, int bottom)
  1132. {
  1133. int y;
  1134. for (y = 0; top && y < p->yblen >> 1; y++) {
  1135. init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
  1136. obmc_weight += stride;
  1137. }
  1138. for (; y < p->yblen >> bottom; y++) {
  1139. int wy = weight(y, p->yblen, p->yoffset);
  1140. init_obmc_weight_row(p, obmc_weight, stride, left, right, wy);
  1141. obmc_weight += stride;
  1142. }
  1143. for (; y < p->yblen; y++) {
  1144. init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
  1145. obmc_weight += stride;
  1146. }
  1147. }
  1148. static void init_obmc_weights(DiracContext *s, Plane *p, int by)
  1149. {
  1150. int top = !by;
  1151. int bottom = by == s->blheight-1;
  1152. /* don't bother re-initing for rows 2 to blheight-2, the weights don't change */
  1153. if (top || bottom || by == 1) {
  1154. init_obmc_weight(p, s->obmc_weight[0], MAX_BLOCKSIZE, 1, 0, top, bottom);
  1155. init_obmc_weight(p, s->obmc_weight[1], MAX_BLOCKSIZE, 0, 0, top, bottom);
  1156. init_obmc_weight(p, s->obmc_weight[2], MAX_BLOCKSIZE, 0, 1, top, bottom);
  1157. }
  1158. }
  1159. static const uint8_t epel_weights[4][4][4] = {
  1160. {{ 16, 0, 0, 0 },
  1161. { 12, 4, 0, 0 },
  1162. { 8, 8, 0, 0 },
  1163. { 4, 12, 0, 0 }},
  1164. {{ 12, 0, 4, 0 },
  1165. { 9, 3, 3, 1 },
  1166. { 6, 6, 2, 2 },
  1167. { 3, 9, 1, 3 }},
  1168. {{ 8, 0, 8, 0 },
  1169. { 6, 2, 6, 2 },
  1170. { 4, 4, 4, 4 },
  1171. { 2, 6, 2, 6 }},
  1172. {{ 4, 0, 12, 0 },
  1173. { 3, 1, 9, 3 },
  1174. { 2, 2, 6, 6 },
  1175. { 1, 3, 3, 9 }}
  1176. };
  1177. /**
  1178. * For block x,y, determine which of the hpel planes to do bilinear
  1179. * interpolation from and set src[] to the location in each hpel plane
  1180. * to MC from.
  1181. *
  1182. * @return the index of the put_dirac_pixels_tab function to use
  1183. * 0 for 1 plane (fpel,hpel), 1 for 2 planes (qpel), 2 for 4 planes (qpel), and 3 for epel
  1184. */
  1185. static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5],
  1186. int x, int y, int ref, int plane)
  1187. {
  1188. Plane *p = &s->plane[plane];
  1189. uint8_t **ref_hpel = s->ref_pics[ref]->hpel[plane];
  1190. int motion_x = block->u.mv[ref][0];
  1191. int motion_y = block->u.mv[ref][1];
  1192. int mx, my, i, epel, nplanes = 0;
  1193. if (plane) {
  1194. motion_x >>= s->chroma_x_shift;
  1195. motion_y >>= s->chroma_y_shift;
  1196. }
  1197. mx = motion_x & ~(-1U << s->mv_precision);
  1198. my = motion_y & ~(-1U << s->mv_precision);
  1199. motion_x >>= s->mv_precision;
  1200. motion_y >>= s->mv_precision;
  1201. /* normalize subpel coordinates to epel */
  1202. /* TODO: template this function? */
  1203. mx <<= 3 - s->mv_precision;
  1204. my <<= 3 - s->mv_precision;
  1205. x += motion_x;
  1206. y += motion_y;
  1207. epel = (mx|my)&1;
  1208. /* hpel position */
  1209. if (!((mx|my)&3)) {
  1210. nplanes = 1;
  1211. src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->stride + x;
  1212. } else {
  1213. /* qpel or epel */
  1214. nplanes = 4;
  1215. for (i = 0; i < 4; i++)
  1216. src[i] = ref_hpel[i] + y*p->stride + x;
  1217. /* if we're interpolating in the right/bottom halves, adjust the planes as needed
  1218. we increment x/y because the edge changes for half of the pixels */
  1219. if (mx > 4) {
  1220. src[0] += 1;
  1221. src[2] += 1;
  1222. x++;
  1223. }
  1224. if (my > 4) {
  1225. src[0] += p->stride;
  1226. src[1] += p->stride;
  1227. y++;
  1228. }
  1229. /* hpel planes are:
  1230. [0]: F [1]: H
  1231. [2]: V [3]: C */
  1232. if (!epel) {
  1233. /* check if we really only need 2 planes since either mx or my is
  1234. a hpel position. (epel weights of 0 handle this there) */
  1235. if (!(mx&3)) {
  1236. /* mx == 0: average [0] and [2]
  1237. mx == 4: average [1] and [3] */
  1238. src[!mx] = src[2 + !!mx];
  1239. nplanes = 2;
  1240. } else if (!(my&3)) {
  1241. src[0] = src[(my>>1) ];
  1242. src[1] = src[(my>>1)+1];
  1243. nplanes = 2;
  1244. }
  1245. } else {
  1246. /* adjust the ordering if needed so the weights work */
  1247. if (mx > 4) {
  1248. FFSWAP(const uint8_t *, src[0], src[1]);
  1249. FFSWAP(const uint8_t *, src[2], src[3]);
  1250. }
  1251. if (my > 4) {
  1252. FFSWAP(const uint8_t *, src[0], src[2]);
  1253. FFSWAP(const uint8_t *, src[1], src[3]);
  1254. }
  1255. src[4] = epel_weights[my&3][mx&3];
  1256. }
  1257. }
  1258. /* fixme: v/h _edge_pos */
  1259. if (x + p->xblen > p->width +EDGE_WIDTH/2 ||
  1260. y + p->yblen > p->height+EDGE_WIDTH/2 ||
  1261. x < 0 || y < 0) {
  1262. for (i = 0; i < nplanes; i++) {
  1263. s->vdsp.emulated_edge_mc(s->edge_emu_buffer[i], src[i],
  1264. p->stride, p->stride,
  1265. p->xblen, p->yblen, x, y,
  1266. p->width+EDGE_WIDTH/2, p->height+EDGE_WIDTH/2);
  1267. src[i] = s->edge_emu_buffer[i];
  1268. }
  1269. }
  1270. return (nplanes>>1) + epel;
  1271. }
  1272. static void add_dc(uint16_t *dst, int dc, int stride,
  1273. uint8_t *obmc_weight, int xblen, int yblen)
  1274. {
  1275. int x, y;
  1276. dc += 128;
  1277. for (y = 0; y < yblen; y++) {
  1278. for (x = 0; x < xblen; x += 2) {
  1279. dst[x ] += dc * obmc_weight[x ];
  1280. dst[x+1] += dc * obmc_weight[x+1];
  1281. }
  1282. dst += stride;
  1283. obmc_weight += MAX_BLOCKSIZE;
  1284. }
  1285. }
  1286. static void block_mc(DiracContext *s, DiracBlock *block,
  1287. uint16_t *mctmp, uint8_t *obmc_weight,
  1288. int plane, int dstx, int dsty)
  1289. {
  1290. Plane *p = &s->plane[plane];
  1291. const uint8_t *src[5];
  1292. int idx;
  1293. switch (block->ref&3) {
  1294. case 0: /* DC */
  1295. add_dc(mctmp, block->u.dc[plane], p->stride, obmc_weight, p->xblen, p->yblen);
  1296. return;
  1297. case 1:
  1298. case 2:
  1299. idx = mc_subpel(s, block, src, dstx, dsty, (block->ref&3)-1, plane);
  1300. s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1301. if (s->weight_func)
  1302. s->weight_func(s->mcscratch, p->stride, s->weight_log2denom,
  1303. s->weight[0] + s->weight[1], p->yblen);
  1304. break;
  1305. case 3:
  1306. idx = mc_subpel(s, block, src, dstx, dsty, 0, plane);
  1307. s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1308. idx = mc_subpel(s, block, src, dstx, dsty, 1, plane);
  1309. if (s->biweight_func) {
  1310. /* fixme: +32 is a quick hack */
  1311. s->put_pixels_tab[idx](s->mcscratch + 32, src, p->stride, p->yblen);
  1312. s->biweight_func(s->mcscratch, s->mcscratch+32, p->stride, s->weight_log2denom,
  1313. s->weight[0], s->weight[1], p->yblen);
  1314. } else
  1315. s->avg_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1316. break;
  1317. }
  1318. s->add_obmc(mctmp, s->mcscratch, p->stride, obmc_weight, p->yblen);
  1319. }
  1320. static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
  1321. {
  1322. Plane *p = &s->plane[plane];
  1323. int x, dstx = p->xbsep - p->xoffset;
  1324. block_mc(s, block, mctmp, s->obmc_weight[0], plane, -p->xoffset, dsty);
  1325. mctmp += p->xbsep;
  1326. for (x = 1; x < s->blwidth-1; x++) {
  1327. block_mc(s, block+x, mctmp, s->obmc_weight[1], plane, dstx, dsty);
  1328. dstx += p->xbsep;
  1329. mctmp += p->xbsep;
  1330. }
  1331. block_mc(s, block+x, mctmp, s->obmc_weight[2], plane, dstx, dsty);
  1332. }
  1333. static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
  1334. {
  1335. int idx = 0;
  1336. if (xblen > 8)
  1337. idx = 1;
  1338. if (xblen > 16)
  1339. idx = 2;
  1340. memcpy(s->put_pixels_tab, s->diracdsp.put_dirac_pixels_tab[idx], sizeof(s->put_pixels_tab));
  1341. memcpy(s->avg_pixels_tab, s->diracdsp.avg_dirac_pixels_tab[idx], sizeof(s->avg_pixels_tab));
  1342. s->add_obmc = s->diracdsp.add_dirac_obmc[idx];
  1343. if (s->weight_log2denom > 1 || s->weight[0] != 1 || s->weight[1] != 1) {
  1344. s->weight_func = s->diracdsp.weight_dirac_pixels_tab[idx];
  1345. s->biweight_func = s->diracdsp.biweight_dirac_pixels_tab[idx];
  1346. } else {
  1347. s->weight_func = NULL;
  1348. s->biweight_func = NULL;
  1349. }
  1350. }
  1351. static int interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height)
  1352. {
  1353. /* chroma allocates an edge of 8 when subsampled
  1354. which for 4:2:2 means an h edge of 16 and v edge of 8
  1355. just use 8 for everything for the moment */
  1356. int i, edge = EDGE_WIDTH/2;
  1357. ref->hpel[plane][0] = ref->avframe->data[plane];
  1358. s->mpvencdsp.draw_edges(ref->hpel[plane][0], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); /* EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured */
  1359. /* no need for hpel if we only have fpel vectors */
  1360. if (!s->mv_precision)
  1361. return 0;
  1362. for (i = 1; i < 4; i++) {
  1363. if (!ref->hpel_base[plane][i])
  1364. ref->hpel_base[plane][i] = av_malloc((height+2*edge) * ref->avframe->linesize[plane] + 32);
  1365. if (!ref->hpel_base[plane][i]) {
  1366. return AVERROR(ENOMEM);
  1367. }
  1368. /* we need to be 16-byte aligned even for chroma */
  1369. ref->hpel[plane][i] = ref->hpel_base[plane][i] + edge*ref->avframe->linesize[plane] + 16;
  1370. }
  1371. if (!ref->interpolated[plane]) {
  1372. s->diracdsp.dirac_hpel_filter(ref->hpel[plane][1], ref->hpel[plane][2],
  1373. ref->hpel[plane][3], ref->hpel[plane][0],
  1374. ref->avframe->linesize[plane], width, height);
  1375. s->mpvencdsp.draw_edges(ref->hpel[plane][1], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1376. s->mpvencdsp.draw_edges(ref->hpel[plane][2], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1377. s->mpvencdsp.draw_edges(ref->hpel[plane][3], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1378. }
  1379. ref->interpolated[plane] = 1;
  1380. return 0;
  1381. }
  1382. /**
  1383. * Dirac Specification ->
  1384. * 13.0 Transform data syntax. transform_data()
  1385. */
  1386. static int dirac_decode_frame_internal(DiracContext *s)
  1387. {
  1388. DWTContext d;
  1389. int y, i, comp, dsty;
  1390. int ret;
  1391. if (s->low_delay) {
  1392. /* [DIRAC_STD] 13.5.1 low_delay_transform_data() */
  1393. for (comp = 0; comp < 3; comp++) {
  1394. Plane *p = &s->plane[comp];
  1395. memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height * sizeof(IDWTELEM));
  1396. }
  1397. if (!s->zero_res) {
  1398. if ((ret = decode_lowdelay(s)) < 0)
  1399. return ret;
  1400. }
  1401. }
  1402. for (comp = 0; comp < 3; comp++) {
  1403. Plane *p = &s->plane[comp];
  1404. uint8_t *frame = s->current_picture->avframe->data[comp];
  1405. /* FIXME: small resolutions */
  1406. for (i = 0; i < 4; i++)
  1407. s->edge_emu_buffer[i] = s->edge_emu_buffer_base + i*FFALIGN(p->width, 16);
  1408. if (!s->zero_res && !s->low_delay)
  1409. {
  1410. memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height * sizeof(IDWTELEM));
  1411. decode_component(s, comp); /* [DIRAC_STD] 13.4.1 core_transform_data() */
  1412. }
  1413. ret = ff_spatial_idwt_init2(&d, p->idwt_buf, p->idwt_width, p->idwt_height, p->idwt_stride,
  1414. s->wavelet_idx+2, s->wavelet_depth, p->idwt_tmp);
  1415. if (ret < 0)
  1416. return ret;
  1417. if (!s->num_refs) { /* intra */
  1418. for (y = 0; y < p->height; y += 16) {
  1419. ff_spatial_idwt_slice2(&d, y+16); /* decode */
  1420. s->diracdsp.put_signed_rect_clamped(frame + y*p->stride, p->stride,
  1421. p->idwt_buf + y*p->idwt_stride, p->idwt_stride, p->width, 16);
  1422. }
  1423. } else { /* inter */
  1424. int rowheight = p->ybsep*p->stride;
  1425. select_dsp_funcs(s, p->width, p->height, p->xblen, p->yblen);
  1426. for (i = 0; i < s->num_refs; i++) {
  1427. int ret = interpolate_refplane(s, s->ref_pics[i], comp, p->width, p->height);
  1428. if (ret < 0)
  1429. return ret;
  1430. }
  1431. memset(s->mctmp, 0, 4*p->yoffset*p->stride);
  1432. dsty = -p->yoffset;
  1433. for (y = 0; y < s->blheight; y++) {
  1434. int h = 0,
  1435. start = FFMAX(dsty, 0);
  1436. uint16_t *mctmp = s->mctmp + y*rowheight;
  1437. DiracBlock *blocks = s->blmotion + y*s->blwidth;
  1438. init_obmc_weights(s, p, y);
  1439. if (y == s->blheight-1 || start+p->ybsep > p->height)
  1440. h = p->height - start;
  1441. else
  1442. h = p->ybsep - (start - dsty);
  1443. if (h < 0)
  1444. break;
  1445. memset(mctmp+2*p->yoffset*p->stride, 0, 2*rowheight);
  1446. mc_row(s, blocks, mctmp, comp, dsty);
  1447. mctmp += (start - dsty)*p->stride + p->xoffset;
  1448. ff_spatial_idwt_slice2(&d, start + h); /* decode */
  1449. s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride,
  1450. p->idwt_buf + start*p->idwt_stride, p->idwt_stride, p->width, h);
  1451. dsty += p->ybsep;
  1452. }
  1453. }
  1454. }
  1455. return 0;
  1456. }
  1457. static int get_buffer_with_edge(AVCodecContext *avctx, AVFrame *f, int flags)
  1458. {
  1459. int ret, i;
  1460. int chroma_x_shift, chroma_y_shift;
  1461. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &chroma_x_shift, &chroma_y_shift);
  1462. f->width = avctx->width + 2 * EDGE_WIDTH;
  1463. f->height = avctx->height + 2 * EDGE_WIDTH + 2;
  1464. ret = ff_get_buffer(avctx, f, flags);
  1465. if (ret < 0)
  1466. return ret;
  1467. for (i = 0; f->data[i]; i++) {
  1468. int offset = (EDGE_WIDTH >> (i && i<3 ? chroma_y_shift : 0)) *
  1469. f->linesize[i] + 32;
  1470. f->data[i] += offset;
  1471. }
  1472. f->width = avctx->width;
  1473. f->height = avctx->height;
  1474. return 0;
  1475. }
  1476. /**
  1477. * Dirac Specification ->
  1478. * 11.1.1 Picture Header. picture_header()
  1479. */
  1480. static int dirac_decode_picture_header(DiracContext *s)
  1481. {
  1482. unsigned retire, picnum;
  1483. int i, j, ret;
  1484. int64_t refdist, refnum;
  1485. GetBitContext *gb = &s->gb;
  1486. /* [DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM */
  1487. picnum = s->current_picture->avframe->display_picture_number = get_bits_long(gb, 32);
  1488. av_log(s->avctx,AV_LOG_DEBUG,"PICTURE_NUM: %d\n",picnum);
  1489. /* if this is the first keyframe after a sequence header, start our
  1490. reordering from here */
  1491. if (s->frame_number < 0)
  1492. s->frame_number = picnum;
  1493. s->ref_pics[0] = s->ref_pics[1] = NULL;
  1494. for (i = 0; i < s->num_refs; i++) {
  1495. refnum = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
  1496. refdist = INT64_MAX;
  1497. /* find the closest reference to the one we want */
  1498. /* Jordi: this is needed if the referenced picture hasn't yet arrived */
  1499. for (j = 0; j < MAX_REFERENCE_FRAMES && refdist; j++)
  1500. if (s->ref_frames[j]
  1501. && FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum) < refdist) {
  1502. s->ref_pics[i] = s->ref_frames[j];
  1503. refdist = FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum);
  1504. }
  1505. if (!s->ref_pics[i] || refdist)
  1506. av_log(s->avctx, AV_LOG_DEBUG, "Reference not found\n");
  1507. /* if there were no references at all, allocate one */
  1508. if (!s->ref_pics[i])
  1509. for (j = 0; j < MAX_FRAMES; j++)
  1510. if (!s->all_frames[j].avframe->data[0]) {
  1511. s->ref_pics[i] = &s->all_frames[j];
  1512. get_buffer_with_edge(s->avctx, s->ref_pics[i]->avframe, AV_GET_BUFFER_FLAG_REF);
  1513. break;
  1514. }
  1515. if (!s->ref_pics[i]) {
  1516. av_log(s->avctx, AV_LOG_ERROR, "Reference could not be allocated\n");
  1517. return AVERROR_INVALIDDATA;
  1518. }
  1519. }
  1520. /* retire the reference frames that are not used anymore */
  1521. if (s->current_picture->avframe->reference) {
  1522. retire = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
  1523. if (retire != picnum) {
  1524. DiracFrame *retire_pic = remove_frame(s->ref_frames, retire);
  1525. if (retire_pic)
  1526. retire_pic->avframe->reference &= DELAYED_PIC_REF;
  1527. else
  1528. av_log(s->avctx, AV_LOG_DEBUG, "Frame to retire not found\n");
  1529. }
  1530. /* if reference array is full, remove the oldest as per the spec */
  1531. while (add_frame(s->ref_frames, MAX_REFERENCE_FRAMES, s->current_picture)) {
  1532. av_log(s->avctx, AV_LOG_ERROR, "Reference frame overflow\n");
  1533. remove_frame(s->ref_frames, s->ref_frames[0]->avframe->display_picture_number)->avframe->reference &= DELAYED_PIC_REF;
  1534. }
  1535. }
  1536. if (s->num_refs) {
  1537. ret = dirac_unpack_prediction_parameters(s); /* [DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() */
  1538. if (ret < 0)
  1539. return ret;
  1540. ret = dirac_unpack_block_motion_data(s); /* [DIRAC_STD] 12. Block motion data syntax */
  1541. if (ret < 0)
  1542. return ret;
  1543. }
  1544. ret = dirac_unpack_idwt_params(s); /* [DIRAC_STD] 11.3 Wavelet transform data */
  1545. if (ret < 0)
  1546. return ret;
  1547. init_planes(s);
  1548. return 0;
  1549. }
  1550. static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
  1551. {
  1552. DiracFrame *out = s->delay_frames[0];
  1553. int i, out_idx = 0;
  1554. int ret;
  1555. /* find frame with lowest picture number */
  1556. for (i = 1; s->delay_frames[i]; i++)
  1557. if (s->delay_frames[i]->avframe->display_picture_number < out->avframe->display_picture_number) {
  1558. out = s->delay_frames[i];
  1559. out_idx = i;
  1560. }
  1561. for (i = out_idx; s->delay_frames[i]; i++)
  1562. s->delay_frames[i] = s->delay_frames[i+1];
  1563. if (out) {
  1564. out->avframe->reference ^= DELAYED_PIC_REF;
  1565. *got_frame = 1;
  1566. if((ret = av_frame_ref(picture, out->avframe)) < 0)
  1567. return ret;
  1568. }
  1569. return 0;
  1570. }
  1571. /**
  1572. * Dirac Specification ->
  1573. * 9.6 Parse Info Header Syntax. parse_info()
  1574. * 4 byte start code + byte parse code + 4 byte size + 4 byte previous size
  1575. */
  1576. #define DATA_UNIT_HEADER_SIZE 13
  1577. /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3
  1578. inside the function parse_sequence() */
  1579. static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
  1580. {
  1581. DiracContext *s = avctx->priv_data;
  1582. DiracFrame *pic = NULL;
  1583. int ret, i, parse_code;
  1584. unsigned tmp;
  1585. if (size < DATA_UNIT_HEADER_SIZE)
  1586. return AVERROR_INVALIDDATA;
  1587. parse_code = buf[4];
  1588. init_get_bits(&s->gb, &buf[13], 8*(size - DATA_UNIT_HEADER_SIZE));
  1589. if (parse_code == pc_seq_header) {
  1590. if (s->seen_sequence_header)
  1591. return 0;
  1592. /* [DIRAC_STD] 10. Sequence header */
  1593. ret = avpriv_dirac_parse_sequence_header(avctx, &s->gb, &s->source);
  1594. if (ret < 0)
  1595. return ret;
  1596. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
  1597. ret = alloc_sequence_buffers(s);
  1598. if (ret < 0)
  1599. return ret;
  1600. s->seen_sequence_header = 1;
  1601. } else if (parse_code == pc_eos) { /* [DIRAC_STD] End of Sequence */
  1602. free_sequence_buffers(s);
  1603. s->seen_sequence_header = 0;
  1604. } else if (parse_code == pc_aux_data) {
  1605. if (buf[13] == 1) { /* encoder implementation/version */
  1606. int ver[3];
  1607. /* versions older than 1.0.8 don't store quant delta for
  1608. subbands with only one codeblock */
  1609. if (sscanf(buf+14, "Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3)
  1610. if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7)
  1611. s->old_delta_quant = 1;
  1612. }
  1613. } else if (parse_code & 0x8) { /* picture data unit */
  1614. if (!s->seen_sequence_header) {
  1615. av_log(avctx, AV_LOG_DEBUG, "Dropping frame without sequence header\n");
  1616. return AVERROR_INVALIDDATA;
  1617. }
  1618. /* find an unused frame */
  1619. for (i = 0; i < MAX_FRAMES; i++)
  1620. if (s->all_frames[i].avframe->data[0] == NULL)
  1621. pic = &s->all_frames[i];
  1622. if (!pic) {
  1623. av_log(avctx, AV_LOG_ERROR, "framelist full\n");
  1624. return AVERROR_INVALIDDATA;
  1625. }
  1626. av_frame_unref(pic->avframe);
  1627. /* [DIRAC_STD] Defined in 9.6.1 ... */
  1628. tmp = parse_code & 0x03; /* [DIRAC_STD] num_refs() */
  1629. if (tmp > 2) {
  1630. av_log(avctx, AV_LOG_ERROR, "num_refs of 3\n");
  1631. return AVERROR_INVALIDDATA;
  1632. }
  1633. s->num_refs = tmp;
  1634. s->is_arith = (parse_code & 0x48) == 0x08; /* [DIRAC_STD] using_ac() */
  1635. s->low_delay = (parse_code & 0x88) == 0x88; /* [DIRAC_STD] is_low_delay() */
  1636. pic->avframe->reference = (parse_code & 0x0C) == 0x0C; /* [DIRAC_STD] is_reference() */
  1637. pic->avframe->key_frame = s->num_refs == 0; /* [DIRAC_STD] is_intra() */
  1638. pic->avframe->pict_type = s->num_refs + 1; /* Definition of AVPictureType in avutil.h */
  1639. if ((ret = get_buffer_with_edge(avctx, pic->avframe, (parse_code & 0x0C) == 0x0C ? AV_GET_BUFFER_FLAG_REF : 0)) < 0)
  1640. return ret;
  1641. s->current_picture = pic;
  1642. s->plane[0].stride = pic->avframe->linesize[0];
  1643. s->plane[1].stride = pic->avframe->linesize[1];
  1644. s->plane[2].stride = pic->avframe->linesize[2];
  1645. if (alloc_buffers(s, FFMAX3(FFABS(s->plane[0].stride), FFABS(s->plane[1].stride), FFABS(s->plane[2].stride))) < 0)
  1646. return AVERROR(ENOMEM);
  1647. /* [DIRAC_STD] 11.1 Picture parse. picture_parse() */
  1648. ret = dirac_decode_picture_header(s);
  1649. if (ret < 0)
  1650. return ret;
  1651. /* [DIRAC_STD] 13.0 Transform data syntax. transform_data() */
  1652. ret = dirac_decode_frame_internal(s);
  1653. if (ret < 0)
  1654. return ret;
  1655. }
  1656. return 0;
  1657. }
  1658. static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
  1659. {
  1660. DiracContext *s = avctx->priv_data;
  1661. AVFrame *picture = data;
  1662. uint8_t *buf = pkt->data;
  1663. int buf_size = pkt->size;
  1664. int i, buf_idx = 0;
  1665. int ret;
  1666. unsigned data_unit_size;
  1667. /* release unused frames */
  1668. for (i = 0; i < MAX_FRAMES; i++)
  1669. if (s->all_frames[i].avframe->data[0] && !s->all_frames[i].avframe->reference) {
  1670. av_frame_unref(s->all_frames[i].avframe);
  1671. memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
  1672. }
  1673. s->current_picture = NULL;
  1674. *got_frame = 0;
  1675. /* end of stream, so flush delayed pics */
  1676. if (buf_size == 0)
  1677. return get_delayed_pic(s, (AVFrame *)data, got_frame);
  1678. for (;;) {
  1679. /*[DIRAC_STD] Here starts the code from parse_info() defined in 9.6
  1680. [DIRAC_STD] PARSE_INFO_PREFIX = "BBCD" as defined in ISO/IEC 646
  1681. BBCD start code search */
  1682. for (; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size; buf_idx++) {
  1683. if (buf[buf_idx ] == 'B' && buf[buf_idx+1] == 'B' &&
  1684. buf[buf_idx+2] == 'C' && buf[buf_idx+3] == 'D')
  1685. break;
  1686. }
  1687. /* BBCD found or end of data */
  1688. if (buf_idx + DATA_UNIT_HEADER_SIZE >= buf_size)
  1689. break;
  1690. data_unit_size = AV_RB32(buf+buf_idx+5);
  1691. if (data_unit_size > buf_size - buf_idx || !data_unit_size) {
  1692. if(data_unit_size > buf_size - buf_idx)
  1693. av_log(s->avctx, AV_LOG_ERROR,
  1694. "Data unit with size %d is larger than input buffer, discarding\n",
  1695. data_unit_size);
  1696. buf_idx += 4;
  1697. continue;
  1698. }
  1699. /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */
  1700. ret = dirac_decode_data_unit(avctx, buf+buf_idx, data_unit_size);
  1701. if (ret < 0)
  1702. {
  1703. av_log(s->avctx, AV_LOG_ERROR,"Error in dirac_decode_data_unit\n");
  1704. return ret;
  1705. }
  1706. buf_idx += data_unit_size;
  1707. }
  1708. if (!s->current_picture)
  1709. return buf_size;
  1710. if (s->current_picture->avframe->display_picture_number > s->frame_number) {
  1711. DiracFrame *delayed_frame = remove_frame(s->delay_frames, s->frame_number);
  1712. s->current_picture->avframe->reference |= DELAYED_PIC_REF;
  1713. if (add_frame(s->delay_frames, MAX_DELAY, s->current_picture)) {
  1714. int min_num = s->delay_frames[0]->avframe->display_picture_number;
  1715. /* Too many delayed frames, so we display the frame with the lowest pts */
  1716. av_log(avctx, AV_LOG_ERROR, "Delay frame overflow\n");
  1717. for (i = 1; s->delay_frames[i]; i++)
  1718. if (s->delay_frames[i]->avframe->display_picture_number < min_num)
  1719. min_num = s->delay_frames[i]->avframe->display_picture_number;
  1720. delayed_frame = remove_frame(s->delay_frames, min_num);
  1721. add_frame(s->delay_frames, MAX_DELAY, s->current_picture);
  1722. }
  1723. if (delayed_frame) {
  1724. delayed_frame->avframe->reference ^= DELAYED_PIC_REF;
  1725. if((ret=av_frame_ref(data, delayed_frame->avframe)) < 0)
  1726. return ret;
  1727. *got_frame = 1;
  1728. }
  1729. } else if (s->current_picture->avframe->display_picture_number == s->frame_number) {
  1730. /* The right frame at the right time :-) */
  1731. if((ret=av_frame_ref(data, s->current_picture->avframe)) < 0)
  1732. return ret;
  1733. *got_frame = 1;
  1734. }
  1735. if (*got_frame)
  1736. s->frame_number = picture->display_picture_number + 1;
  1737. return buf_idx;
  1738. }
  1739. AVCodec ff_dirac_decoder = {
  1740. .name = "dirac",
  1741. .long_name = NULL_IF_CONFIG_SMALL("BBC Dirac VC-2"),
  1742. .type = AVMEDIA_TYPE_VIDEO,
  1743. .id = AV_CODEC_ID_DIRAC,
  1744. .priv_data_size = sizeof(DiracContext),
  1745. .init = dirac_decode_init,
  1746. .close = dirac_decode_end,
  1747. .decode = dirac_decode_frame,
  1748. .capabilities = AV_CODEC_CAP_DELAY,
  1749. .flush = dirac_decode_flush,
  1750. };