You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2879 lines
85KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file mpegaudiodec.c
  23. * MPEG Audio decoder.
  24. */
  25. //#define DEBUG
  26. #include "avcodec.h"
  27. #include "bitstream.h"
  28. #include "dsputil.h"
  29. /*
  30. * TODO:
  31. * - in low precision mode, use more 16 bit multiplies in synth filter
  32. * - test lsf / mpeg25 extensively.
  33. */
  34. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  35. audio decoder */
  36. #ifdef CONFIG_MPEGAUDIO_HP
  37. # define USE_HIGHPRECISION
  38. #endif
  39. #include "mpegaudio.h"
  40. #include "mathops.h"
  41. #define FRAC_ONE (1 << FRAC_BITS)
  42. #define FIX(a) ((int)((a) * FRAC_ONE))
  43. /* WARNING: only correct for posititive numbers */
  44. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  45. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  46. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  47. /****************/
  48. #define HEADER_SIZE 4
  49. #define BACKSTEP_SIZE 512
  50. #define EXTRABYTES 24
  51. struct GranuleDef;
  52. typedef struct MPADecodeContext {
  53. DECLARE_ALIGNED_8(uint8_t, last_buf[2*BACKSTEP_SIZE + EXTRABYTES]);
  54. int last_buf_size;
  55. int frame_size;
  56. /* next header (used in free format parsing) */
  57. uint32_t free_format_next_header;
  58. int error_protection;
  59. int layer;
  60. int sample_rate;
  61. int sample_rate_index; /* between 0 and 8 */
  62. int bit_rate;
  63. GetBitContext gb;
  64. GetBitContext in_gb;
  65. int nb_channels;
  66. int mode;
  67. int mode_ext;
  68. int lsf;
  69. MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16)));
  70. int synth_buf_offset[MPA_MAX_CHANNELS];
  71. int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16)));
  72. int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  73. #ifdef DEBUG
  74. int frame_count;
  75. #endif
  76. void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g);
  77. int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
  78. int dither_state;
  79. int error_resilience;
  80. AVCodecContext* avctx;
  81. } MPADecodeContext;
  82. /**
  83. * Context for MP3On4 decoder
  84. */
  85. typedef struct MP3On4DecodeContext {
  86. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  87. int chan_cfg; ///< channel config number
  88. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  89. } MP3On4DecodeContext;
  90. /* layer 3 "granule" */
  91. typedef struct GranuleDef {
  92. uint8_t scfsi;
  93. int part2_3_length;
  94. int big_values;
  95. int global_gain;
  96. int scalefac_compress;
  97. uint8_t block_type;
  98. uint8_t switch_point;
  99. int table_select[3];
  100. int subblock_gain[3];
  101. uint8_t scalefac_scale;
  102. uint8_t count1table_select;
  103. int region_size[3]; /* number of huffman codes in each region */
  104. int preflag;
  105. int short_start, long_end; /* long/short band indexes */
  106. uint8_t scale_factors[40];
  107. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  108. } GranuleDef;
  109. #define MODE_EXT_MS_STEREO 2
  110. #define MODE_EXT_I_STEREO 1
  111. /* layer 3 huffman tables */
  112. typedef struct HuffTable {
  113. int xsize;
  114. const uint8_t *bits;
  115. const uint16_t *codes;
  116. } HuffTable;
  117. #include "mpegaudiodectab.h"
  118. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  119. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  120. /* vlc structure for decoding layer 3 huffman tables */
  121. static VLC huff_vlc[16];
  122. static VLC huff_quad_vlc[2];
  123. /* computed from band_size_long */
  124. static uint16_t band_index_long[9][23];
  125. /* XXX: free when all decoders are closed */
  126. #define TABLE_4_3_SIZE (8191 + 16)*4
  127. static int8_t table_4_3_exp[TABLE_4_3_SIZE];
  128. static uint32_t table_4_3_value[TABLE_4_3_SIZE];
  129. static uint32_t exp_table[512];
  130. static uint32_t expval_table[512][16];
  131. /* intensity stereo coef table */
  132. static int32_t is_table[2][16];
  133. static int32_t is_table_lsf[2][2][16];
  134. static int32_t csa_table[8][4];
  135. static float csa_table_float[8][4];
  136. static int32_t mdct_win[8][36];
  137. /* lower 2 bits: modulo 3, higher bits: shift */
  138. static uint16_t scale_factor_modshift[64];
  139. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  140. static int32_t scale_factor_mult[15][3];
  141. /* mult table for layer 2 group quantization */
  142. #define SCALE_GEN(v) \
  143. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  144. static const int32_t scale_factor_mult2[3][3] = {
  145. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  146. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  147. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  148. };
  149. static MPA_INT window[512] __attribute__((aligned(16)));
  150. /* layer 1 unscaling */
  151. /* n = number of bits of the mantissa minus 1 */
  152. static inline int l1_unscale(int n, int mant, int scale_factor)
  153. {
  154. int shift, mod;
  155. int64_t val;
  156. shift = scale_factor_modshift[scale_factor];
  157. mod = shift & 3;
  158. shift >>= 2;
  159. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  160. shift += n;
  161. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  162. return (int)((val + (1LL << (shift - 1))) >> shift);
  163. }
  164. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  165. {
  166. int shift, mod, val;
  167. shift = scale_factor_modshift[scale_factor];
  168. mod = shift & 3;
  169. shift >>= 2;
  170. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  171. /* NOTE: at this point, 0 <= shift <= 21 */
  172. if (shift > 0)
  173. val = (val + (1 << (shift - 1))) >> shift;
  174. return val;
  175. }
  176. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  177. static inline int l3_unscale(int value, int exponent)
  178. {
  179. unsigned int m;
  180. int e;
  181. e = table_4_3_exp [4*value + (exponent&3)];
  182. m = table_4_3_value[4*value + (exponent&3)];
  183. e -= (exponent >> 2);
  184. assert(e>=1);
  185. if (e > 31)
  186. return 0;
  187. m = (m + (1 << (e-1))) >> e;
  188. return m;
  189. }
  190. /* all integer n^(4/3) computation code */
  191. #define DEV_ORDER 13
  192. #define POW_FRAC_BITS 24
  193. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  194. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  195. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  196. static int dev_4_3_coefs[DEV_ORDER];
  197. #if 0 /* unused */
  198. static int pow_mult3[3] = {
  199. POW_FIX(1.0),
  200. POW_FIX(1.25992104989487316476),
  201. POW_FIX(1.58740105196819947474),
  202. };
  203. #endif
  204. static void int_pow_init(void)
  205. {
  206. int i, a;
  207. a = POW_FIX(1.0);
  208. for(i=0;i<DEV_ORDER;i++) {
  209. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  210. dev_4_3_coefs[i] = a;
  211. }
  212. }
  213. #if 0 /* unused, remove? */
  214. /* return the mantissa and the binary exponent */
  215. static int int_pow(int i, int *exp_ptr)
  216. {
  217. int e, er, eq, j;
  218. int a, a1;
  219. /* renormalize */
  220. a = i;
  221. e = POW_FRAC_BITS;
  222. while (a < (1 << (POW_FRAC_BITS - 1))) {
  223. a = a << 1;
  224. e--;
  225. }
  226. a -= (1 << POW_FRAC_BITS);
  227. a1 = 0;
  228. for(j = DEV_ORDER - 1; j >= 0; j--)
  229. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  230. a = (1 << POW_FRAC_BITS) + a1;
  231. /* exponent compute (exact) */
  232. e = e * 4;
  233. er = e % 3;
  234. eq = e / 3;
  235. a = POW_MULL(a, pow_mult3[er]);
  236. while (a >= 2 * POW_FRAC_ONE) {
  237. a = a >> 1;
  238. eq++;
  239. }
  240. /* convert to float */
  241. while (a < POW_FRAC_ONE) {
  242. a = a << 1;
  243. eq--;
  244. }
  245. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  246. #if POW_FRAC_BITS > FRAC_BITS
  247. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  248. /* correct overflow */
  249. if (a >= 2 * (1 << FRAC_BITS)) {
  250. a = a >> 1;
  251. eq++;
  252. }
  253. #endif
  254. *exp_ptr = eq;
  255. return a;
  256. }
  257. #endif
  258. static int decode_init(AVCodecContext * avctx)
  259. {
  260. MPADecodeContext *s = avctx->priv_data;
  261. static int init=0;
  262. int i, j, k;
  263. s->avctx = avctx;
  264. #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
  265. avctx->sample_fmt= SAMPLE_FMT_S32;
  266. #else
  267. avctx->sample_fmt= SAMPLE_FMT_S16;
  268. #endif
  269. s->error_resilience= avctx->error_resilience;
  270. if(avctx->antialias_algo != FF_AA_FLOAT)
  271. s->compute_antialias= compute_antialias_integer;
  272. else
  273. s->compute_antialias= compute_antialias_float;
  274. if (!init && !avctx->parse_only) {
  275. /* scale factors table for layer 1/2 */
  276. for(i=0;i<64;i++) {
  277. int shift, mod;
  278. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  279. shift = (i / 3);
  280. mod = i % 3;
  281. scale_factor_modshift[i] = mod | (shift << 2);
  282. }
  283. /* scale factor multiply for layer 1 */
  284. for(i=0;i<15;i++) {
  285. int n, norm;
  286. n = i + 2;
  287. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  288. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  289. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  290. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  291. dprintf(avctx, "%d: norm=%x s=%x %x %x\n",
  292. i, norm,
  293. scale_factor_mult[i][0],
  294. scale_factor_mult[i][1],
  295. scale_factor_mult[i][2]);
  296. }
  297. ff_mpa_synth_init(window);
  298. /* huffman decode tables */
  299. for(i=1;i<16;i++) {
  300. const HuffTable *h = &mpa_huff_tables[i];
  301. int xsize, x, y;
  302. unsigned int n;
  303. uint8_t tmp_bits [512];
  304. uint16_t tmp_codes[512];
  305. memset(tmp_bits , 0, sizeof(tmp_bits ));
  306. memset(tmp_codes, 0, sizeof(tmp_codes));
  307. xsize = h->xsize;
  308. n = xsize * xsize;
  309. j = 0;
  310. for(x=0;x<xsize;x++) {
  311. for(y=0;y<xsize;y++){
  312. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  313. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  314. }
  315. }
  316. /* XXX: fail test */
  317. init_vlc(&huff_vlc[i], 7, 512,
  318. tmp_bits, 1, 1, tmp_codes, 2, 2, 1);
  319. }
  320. for(i=0;i<2;i++) {
  321. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  322. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
  323. }
  324. for(i=0;i<9;i++) {
  325. k = 0;
  326. for(j=0;j<22;j++) {
  327. band_index_long[i][j] = k;
  328. k += band_size_long[i][j];
  329. }
  330. band_index_long[i][22] = k;
  331. }
  332. /* compute n ^ (4/3) and store it in mantissa/exp format */
  333. int_pow_init();
  334. for(i=1;i<TABLE_4_3_SIZE;i++) {
  335. double f, fm;
  336. int e, m;
  337. f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
  338. fm = frexp(f, &e);
  339. m = (uint32_t)(fm*(1LL<<31) + 0.5);
  340. e+= FRAC_BITS - 31 + 5 - 100;
  341. /* normalized to FRAC_BITS */
  342. table_4_3_value[i] = m;
  343. // av_log(NULL, AV_LOG_DEBUG, "%d %d %f\n", i, m, pow((double)i, 4.0 / 3.0));
  344. table_4_3_exp[i] = -e;
  345. }
  346. for(i=0; i<512*16; i++){
  347. int exponent= (i>>4);
  348. double f= pow(i&15, 4.0 / 3.0) * pow(2, (exponent-400)*0.25 + FRAC_BITS + 5);
  349. expval_table[exponent][i&15]= llrint(f);
  350. if((i&15)==1)
  351. exp_table[exponent]= llrint(f);
  352. }
  353. for(i=0;i<7;i++) {
  354. float f;
  355. int v;
  356. if (i != 6) {
  357. f = tan((double)i * M_PI / 12.0);
  358. v = FIXR(f / (1.0 + f));
  359. } else {
  360. v = FIXR(1.0);
  361. }
  362. is_table[0][i] = v;
  363. is_table[1][6 - i] = v;
  364. }
  365. /* invalid values */
  366. for(i=7;i<16;i++)
  367. is_table[0][i] = is_table[1][i] = 0.0;
  368. for(i=0;i<16;i++) {
  369. double f;
  370. int e, k;
  371. for(j=0;j<2;j++) {
  372. e = -(j + 1) * ((i + 1) >> 1);
  373. f = pow(2.0, e / 4.0);
  374. k = i & 1;
  375. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  376. is_table_lsf[j][k][i] = FIXR(1.0);
  377. dprintf(avctx, "is_table_lsf %d %d: %x %x\n",
  378. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  379. }
  380. }
  381. for(i=0;i<8;i++) {
  382. float ci, cs, ca;
  383. ci = ci_table[i];
  384. cs = 1.0 / sqrt(1.0 + ci * ci);
  385. ca = cs * ci;
  386. csa_table[i][0] = FIXHR(cs/4);
  387. csa_table[i][1] = FIXHR(ca/4);
  388. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  389. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  390. csa_table_float[i][0] = cs;
  391. csa_table_float[i][1] = ca;
  392. csa_table_float[i][2] = ca + cs;
  393. csa_table_float[i][3] = ca - cs;
  394. // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
  395. // av_log(NULL, AV_LOG_DEBUG,"%f %f %f %f\n", cs, ca, ca+cs, ca-cs);
  396. }
  397. /* compute mdct windows */
  398. for(i=0;i<36;i++) {
  399. for(j=0; j<4; j++){
  400. double d;
  401. if(j==2 && i%3 != 1)
  402. continue;
  403. d= sin(M_PI * (i + 0.5) / 36.0);
  404. if(j==1){
  405. if (i>=30) d= 0;
  406. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  407. else if(i>=18) d= 1;
  408. }else if(j==3){
  409. if (i< 6) d= 0;
  410. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  411. else if(i< 18) d= 1;
  412. }
  413. //merge last stage of imdct into the window coefficients
  414. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  415. if(j==2)
  416. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  417. else
  418. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  419. // av_log(NULL, AV_LOG_DEBUG, "%2d %d %f\n", i,j,d / (1<<5));
  420. }
  421. }
  422. /* NOTE: we do frequency inversion adter the MDCT by changing
  423. the sign of the right window coefs */
  424. for(j=0;j<4;j++) {
  425. for(i=0;i<36;i+=2) {
  426. mdct_win[j + 4][i] = mdct_win[j][i];
  427. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  428. }
  429. }
  430. #if defined(DEBUG)
  431. for(j=0;j<8;j++) {
  432. av_log(avctx, AV_LOG_DEBUG, "win%d=\n", j);
  433. for(i=0;i<36;i++)
  434. av_log(avctx, AV_LOG_DEBUG, "%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  435. av_log(avctx, AV_LOG_DEBUG, "\n");
  436. }
  437. #endif
  438. init = 1;
  439. }
  440. #ifdef DEBUG
  441. s->frame_count = 0;
  442. #endif
  443. if (avctx->codec_id == CODEC_ID_MP3ADU)
  444. s->adu_mode = 1;
  445. return 0;
  446. }
  447. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  448. /* cos(i*pi/64) */
  449. #define COS0_0 FIXHR(0.50060299823519630134/2)
  450. #define COS0_1 FIXHR(0.50547095989754365998/2)
  451. #define COS0_2 FIXHR(0.51544730992262454697/2)
  452. #define COS0_3 FIXHR(0.53104259108978417447/2)
  453. #define COS0_4 FIXHR(0.55310389603444452782/2)
  454. #define COS0_5 FIXHR(0.58293496820613387367/2)
  455. #define COS0_6 FIXHR(0.62250412303566481615/2)
  456. #define COS0_7 FIXHR(0.67480834145500574602/2)
  457. #define COS0_8 FIXHR(0.74453627100229844977/2)
  458. #define COS0_9 FIXHR(0.83934964541552703873/2)
  459. #define COS0_10 FIXHR(0.97256823786196069369/2)
  460. #define COS0_11 FIXHR(1.16943993343288495515/4)
  461. #define COS0_12 FIXHR(1.48416461631416627724/4)
  462. #define COS0_13 FIXHR(2.05778100995341155085/8)
  463. #define COS0_14 FIXHR(3.40760841846871878570/8)
  464. #define COS0_15 FIXHR(10.19000812354805681150/32)
  465. #define COS1_0 FIXHR(0.50241928618815570551/2)
  466. #define COS1_1 FIXHR(0.52249861493968888062/2)
  467. #define COS1_2 FIXHR(0.56694403481635770368/2)
  468. #define COS1_3 FIXHR(0.64682178335999012954/2)
  469. #define COS1_4 FIXHR(0.78815462345125022473/2)
  470. #define COS1_5 FIXHR(1.06067768599034747134/4)
  471. #define COS1_6 FIXHR(1.72244709823833392782/4)
  472. #define COS1_7 FIXHR(5.10114861868916385802/16)
  473. #define COS2_0 FIXHR(0.50979557910415916894/2)
  474. #define COS2_1 FIXHR(0.60134488693504528054/2)
  475. #define COS2_2 FIXHR(0.89997622313641570463/2)
  476. #define COS2_3 FIXHR(2.56291544774150617881/8)
  477. #define COS3_0 FIXHR(0.54119610014619698439/2)
  478. #define COS3_1 FIXHR(1.30656296487637652785/4)
  479. #define COS4_0 FIXHR(0.70710678118654752439/2)
  480. /* butterfly operator */
  481. #define BF(a, b, c, s)\
  482. {\
  483. tmp0 = tab[a] + tab[b];\
  484. tmp1 = tab[a] - tab[b];\
  485. tab[a] = tmp0;\
  486. tab[b] = MULH(tmp1<<(s), c);\
  487. }
  488. #define BF1(a, b, c, d)\
  489. {\
  490. BF(a, b, COS4_0, 1);\
  491. BF(c, d,-COS4_0, 1);\
  492. tab[c] += tab[d];\
  493. }
  494. #define BF2(a, b, c, d)\
  495. {\
  496. BF(a, b, COS4_0, 1);\
  497. BF(c, d,-COS4_0, 1);\
  498. tab[c] += tab[d];\
  499. tab[a] += tab[c];\
  500. tab[c] += tab[b];\
  501. tab[b] += tab[d];\
  502. }
  503. #define ADD(a, b) tab[a] += tab[b]
  504. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  505. static void dct32(int32_t *out, int32_t *tab)
  506. {
  507. int tmp0, tmp1;
  508. /* pass 1 */
  509. BF( 0, 31, COS0_0 , 1);
  510. BF(15, 16, COS0_15, 5);
  511. /* pass 2 */
  512. BF( 0, 15, COS1_0 , 1);
  513. BF(16, 31,-COS1_0 , 1);
  514. /* pass 1 */
  515. BF( 7, 24, COS0_7 , 1);
  516. BF( 8, 23, COS0_8 , 1);
  517. /* pass 2 */
  518. BF( 7, 8, COS1_7 , 4);
  519. BF(23, 24,-COS1_7 , 4);
  520. /* pass 3 */
  521. BF( 0, 7, COS2_0 , 1);
  522. BF( 8, 15,-COS2_0 , 1);
  523. BF(16, 23, COS2_0 , 1);
  524. BF(24, 31,-COS2_0 , 1);
  525. /* pass 1 */
  526. BF( 3, 28, COS0_3 , 1);
  527. BF(12, 19, COS0_12, 2);
  528. /* pass 2 */
  529. BF( 3, 12, COS1_3 , 1);
  530. BF(19, 28,-COS1_3 , 1);
  531. /* pass 1 */
  532. BF( 4, 27, COS0_4 , 1);
  533. BF(11, 20, COS0_11, 2);
  534. /* pass 2 */
  535. BF( 4, 11, COS1_4 , 1);
  536. BF(20, 27,-COS1_4 , 1);
  537. /* pass 3 */
  538. BF( 3, 4, COS2_3 , 3);
  539. BF(11, 12,-COS2_3 , 3);
  540. BF(19, 20, COS2_3 , 3);
  541. BF(27, 28,-COS2_3 , 3);
  542. /* pass 4 */
  543. BF( 0, 3, COS3_0 , 1);
  544. BF( 4, 7,-COS3_0 , 1);
  545. BF( 8, 11, COS3_0 , 1);
  546. BF(12, 15,-COS3_0 , 1);
  547. BF(16, 19, COS3_0 , 1);
  548. BF(20, 23,-COS3_0 , 1);
  549. BF(24, 27, COS3_0 , 1);
  550. BF(28, 31,-COS3_0 , 1);
  551. /* pass 1 */
  552. BF( 1, 30, COS0_1 , 1);
  553. BF(14, 17, COS0_14, 3);
  554. /* pass 2 */
  555. BF( 1, 14, COS1_1 , 1);
  556. BF(17, 30,-COS1_1 , 1);
  557. /* pass 1 */
  558. BF( 6, 25, COS0_6 , 1);
  559. BF( 9, 22, COS0_9 , 1);
  560. /* pass 2 */
  561. BF( 6, 9, COS1_6 , 2);
  562. BF(22, 25,-COS1_6 , 2);
  563. /* pass 3 */
  564. BF( 1, 6, COS2_1 , 1);
  565. BF( 9, 14,-COS2_1 , 1);
  566. BF(17, 22, COS2_1 , 1);
  567. BF(25, 30,-COS2_1 , 1);
  568. /* pass 1 */
  569. BF( 2, 29, COS0_2 , 1);
  570. BF(13, 18, COS0_13, 3);
  571. /* pass 2 */
  572. BF( 2, 13, COS1_2 , 1);
  573. BF(18, 29,-COS1_2 , 1);
  574. /* pass 1 */
  575. BF( 5, 26, COS0_5 , 1);
  576. BF(10, 21, COS0_10, 1);
  577. /* pass 2 */
  578. BF( 5, 10, COS1_5 , 2);
  579. BF(21, 26,-COS1_5 , 2);
  580. /* pass 3 */
  581. BF( 2, 5, COS2_2 , 1);
  582. BF(10, 13,-COS2_2 , 1);
  583. BF(18, 21, COS2_2 , 1);
  584. BF(26, 29,-COS2_2 , 1);
  585. /* pass 4 */
  586. BF( 1, 2, COS3_1 , 2);
  587. BF( 5, 6,-COS3_1 , 2);
  588. BF( 9, 10, COS3_1 , 2);
  589. BF(13, 14,-COS3_1 , 2);
  590. BF(17, 18, COS3_1 , 2);
  591. BF(21, 22,-COS3_1 , 2);
  592. BF(25, 26, COS3_1 , 2);
  593. BF(29, 30,-COS3_1 , 2);
  594. /* pass 5 */
  595. BF1( 0, 1, 2, 3);
  596. BF2( 4, 5, 6, 7);
  597. BF1( 8, 9, 10, 11);
  598. BF2(12, 13, 14, 15);
  599. BF1(16, 17, 18, 19);
  600. BF2(20, 21, 22, 23);
  601. BF1(24, 25, 26, 27);
  602. BF2(28, 29, 30, 31);
  603. /* pass 6 */
  604. ADD( 8, 12);
  605. ADD(12, 10);
  606. ADD(10, 14);
  607. ADD(14, 9);
  608. ADD( 9, 13);
  609. ADD(13, 11);
  610. ADD(11, 15);
  611. out[ 0] = tab[0];
  612. out[16] = tab[1];
  613. out[ 8] = tab[2];
  614. out[24] = tab[3];
  615. out[ 4] = tab[4];
  616. out[20] = tab[5];
  617. out[12] = tab[6];
  618. out[28] = tab[7];
  619. out[ 2] = tab[8];
  620. out[18] = tab[9];
  621. out[10] = tab[10];
  622. out[26] = tab[11];
  623. out[ 6] = tab[12];
  624. out[22] = tab[13];
  625. out[14] = tab[14];
  626. out[30] = tab[15];
  627. ADD(24, 28);
  628. ADD(28, 26);
  629. ADD(26, 30);
  630. ADD(30, 25);
  631. ADD(25, 29);
  632. ADD(29, 27);
  633. ADD(27, 31);
  634. out[ 1] = tab[16] + tab[24];
  635. out[17] = tab[17] + tab[25];
  636. out[ 9] = tab[18] + tab[26];
  637. out[25] = tab[19] + tab[27];
  638. out[ 5] = tab[20] + tab[28];
  639. out[21] = tab[21] + tab[29];
  640. out[13] = tab[22] + tab[30];
  641. out[29] = tab[23] + tab[31];
  642. out[ 3] = tab[24] + tab[20];
  643. out[19] = tab[25] + tab[21];
  644. out[11] = tab[26] + tab[22];
  645. out[27] = tab[27] + tab[23];
  646. out[ 7] = tab[28] + tab[18];
  647. out[23] = tab[29] + tab[19];
  648. out[15] = tab[30] + tab[17];
  649. out[31] = tab[31];
  650. }
  651. #if FRAC_BITS <= 15
  652. static inline int round_sample(int *sum)
  653. {
  654. int sum1;
  655. sum1 = (*sum) >> OUT_SHIFT;
  656. *sum &= (1<<OUT_SHIFT)-1;
  657. if (sum1 < OUT_MIN)
  658. sum1 = OUT_MIN;
  659. else if (sum1 > OUT_MAX)
  660. sum1 = OUT_MAX;
  661. return sum1;
  662. }
  663. /* signed 16x16 -> 32 multiply add accumulate */
  664. #define MACS(rt, ra, rb) MAC16(rt, ra, rb)
  665. /* signed 16x16 -> 32 multiply */
  666. #define MULS(ra, rb) MUL16(ra, rb)
  667. #else
  668. static inline int round_sample(int64_t *sum)
  669. {
  670. int sum1;
  671. sum1 = (int)((*sum) >> OUT_SHIFT);
  672. *sum &= (1<<OUT_SHIFT)-1;
  673. if (sum1 < OUT_MIN)
  674. sum1 = OUT_MIN;
  675. else if (sum1 > OUT_MAX)
  676. sum1 = OUT_MAX;
  677. return sum1;
  678. }
  679. # define MULS(ra, rb) MUL64(ra, rb)
  680. #endif
  681. #define SUM8(sum, op, w, p) \
  682. { \
  683. sum op MULS((w)[0 * 64], p[0 * 64]);\
  684. sum op MULS((w)[1 * 64], p[1 * 64]);\
  685. sum op MULS((w)[2 * 64], p[2 * 64]);\
  686. sum op MULS((w)[3 * 64], p[3 * 64]);\
  687. sum op MULS((w)[4 * 64], p[4 * 64]);\
  688. sum op MULS((w)[5 * 64], p[5 * 64]);\
  689. sum op MULS((w)[6 * 64], p[6 * 64]);\
  690. sum op MULS((w)[7 * 64], p[7 * 64]);\
  691. }
  692. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  693. { \
  694. int tmp;\
  695. tmp = p[0 * 64];\
  696. sum1 op1 MULS((w1)[0 * 64], tmp);\
  697. sum2 op2 MULS((w2)[0 * 64], tmp);\
  698. tmp = p[1 * 64];\
  699. sum1 op1 MULS((w1)[1 * 64], tmp);\
  700. sum2 op2 MULS((w2)[1 * 64], tmp);\
  701. tmp = p[2 * 64];\
  702. sum1 op1 MULS((w1)[2 * 64], tmp);\
  703. sum2 op2 MULS((w2)[2 * 64], tmp);\
  704. tmp = p[3 * 64];\
  705. sum1 op1 MULS((w1)[3 * 64], tmp);\
  706. sum2 op2 MULS((w2)[3 * 64], tmp);\
  707. tmp = p[4 * 64];\
  708. sum1 op1 MULS((w1)[4 * 64], tmp);\
  709. sum2 op2 MULS((w2)[4 * 64], tmp);\
  710. tmp = p[5 * 64];\
  711. sum1 op1 MULS((w1)[5 * 64], tmp);\
  712. sum2 op2 MULS((w2)[5 * 64], tmp);\
  713. tmp = p[6 * 64];\
  714. sum1 op1 MULS((w1)[6 * 64], tmp);\
  715. sum2 op2 MULS((w2)[6 * 64], tmp);\
  716. tmp = p[7 * 64];\
  717. sum1 op1 MULS((w1)[7 * 64], tmp);\
  718. sum2 op2 MULS((w2)[7 * 64], tmp);\
  719. }
  720. void ff_mpa_synth_init(MPA_INT *window)
  721. {
  722. int i;
  723. /* max = 18760, max sum over all 16 coefs : 44736 */
  724. for(i=0;i<257;i++) {
  725. int v;
  726. v = mpa_enwindow[i];
  727. #if WFRAC_BITS < 16
  728. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  729. #endif
  730. window[i] = v;
  731. if ((i & 63) != 0)
  732. v = -v;
  733. if (i != 0)
  734. window[512 - i] = v;
  735. }
  736. }
  737. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  738. 32 samples. */
  739. /* XXX: optimize by avoiding ring buffer usage */
  740. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  741. MPA_INT *window, int *dither_state,
  742. OUT_INT *samples, int incr,
  743. int32_t sb_samples[SBLIMIT])
  744. {
  745. int32_t tmp[32];
  746. register MPA_INT *synth_buf;
  747. register const MPA_INT *w, *w2, *p;
  748. int j, offset, v;
  749. OUT_INT *samples2;
  750. #if FRAC_BITS <= 15
  751. int sum, sum2;
  752. #else
  753. int64_t sum, sum2;
  754. #endif
  755. dct32(tmp, sb_samples);
  756. offset = *synth_buf_offset;
  757. synth_buf = synth_buf_ptr + offset;
  758. for(j=0;j<32;j++) {
  759. v = tmp[j];
  760. #if FRAC_BITS <= 15
  761. /* NOTE: can cause a loss in precision if very high amplitude
  762. sound */
  763. if (v > 32767)
  764. v = 32767;
  765. else if (v < -32768)
  766. v = -32768;
  767. #endif
  768. synth_buf[j] = v;
  769. }
  770. /* copy to avoid wrap */
  771. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  772. samples2 = samples + 31 * incr;
  773. w = window;
  774. w2 = window + 31;
  775. sum = *dither_state;
  776. p = synth_buf + 16;
  777. SUM8(sum, +=, w, p);
  778. p = synth_buf + 48;
  779. SUM8(sum, -=, w + 32, p);
  780. *samples = round_sample(&sum);
  781. samples += incr;
  782. w++;
  783. /* we calculate two samples at the same time to avoid one memory
  784. access per two sample */
  785. for(j=1;j<16;j++) {
  786. sum2 = 0;
  787. p = synth_buf + 16 + j;
  788. SUM8P2(sum, +=, sum2, -=, w, w2, p);
  789. p = synth_buf + 48 - j;
  790. SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
  791. *samples = round_sample(&sum);
  792. samples += incr;
  793. sum += sum2;
  794. *samples2 = round_sample(&sum);
  795. samples2 -= incr;
  796. w++;
  797. w2--;
  798. }
  799. p = synth_buf + 32;
  800. SUM8(sum, -=, w + 32, p);
  801. *samples = round_sample(&sum);
  802. *dither_state= sum;
  803. offset = (offset - 32) & 511;
  804. *synth_buf_offset = offset;
  805. }
  806. #define C3 FIXHR(0.86602540378443864676/2)
  807. /* 0.5 / cos(pi*(2*i+1)/36) */
  808. static const int icos36[9] = {
  809. FIXR(0.50190991877167369479),
  810. FIXR(0.51763809020504152469), //0
  811. FIXR(0.55168895948124587824),
  812. FIXR(0.61038729438072803416),
  813. FIXR(0.70710678118654752439), //1
  814. FIXR(0.87172339781054900991),
  815. FIXR(1.18310079157624925896),
  816. FIXR(1.93185165257813657349), //2
  817. FIXR(5.73685662283492756461),
  818. };
  819. /* 0.5 / cos(pi*(2*i+1)/36) */
  820. static const int icos36h[9] = {
  821. FIXHR(0.50190991877167369479/2),
  822. FIXHR(0.51763809020504152469/2), //0
  823. FIXHR(0.55168895948124587824/2),
  824. FIXHR(0.61038729438072803416/2),
  825. FIXHR(0.70710678118654752439/2), //1
  826. FIXHR(0.87172339781054900991/2),
  827. FIXHR(1.18310079157624925896/4),
  828. FIXHR(1.93185165257813657349/4), //2
  829. // FIXHR(5.73685662283492756461),
  830. };
  831. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  832. cases. */
  833. static void imdct12(int *out, int *in)
  834. {
  835. int in0, in1, in2, in3, in4, in5, t1, t2;
  836. in0= in[0*3];
  837. in1= in[1*3] + in[0*3];
  838. in2= in[2*3] + in[1*3];
  839. in3= in[3*3] + in[2*3];
  840. in4= in[4*3] + in[3*3];
  841. in5= in[5*3] + in[4*3];
  842. in5 += in3;
  843. in3 += in1;
  844. in2= MULH(2*in2, C3);
  845. in3= MULH(4*in3, C3);
  846. t1 = in0 - in4;
  847. t2 = MULH(2*(in1 - in5), icos36h[4]);
  848. out[ 7]=
  849. out[10]= t1 + t2;
  850. out[ 1]=
  851. out[ 4]= t1 - t2;
  852. in0 += in4>>1;
  853. in4 = in0 + in2;
  854. in5 += 2*in1;
  855. in1 = MULH(in5 + in3, icos36h[1]);
  856. out[ 8]=
  857. out[ 9]= in4 + in1;
  858. out[ 2]=
  859. out[ 3]= in4 - in1;
  860. in0 -= in2;
  861. in5 = MULH(2*(in5 - in3), icos36h[7]);
  862. out[ 0]=
  863. out[ 5]= in0 - in5;
  864. out[ 6]=
  865. out[11]= in0 + in5;
  866. }
  867. /* cos(pi*i/18) */
  868. #define C1 FIXHR(0.98480775301220805936/2)
  869. #define C2 FIXHR(0.93969262078590838405/2)
  870. #define C3 FIXHR(0.86602540378443864676/2)
  871. #define C4 FIXHR(0.76604444311897803520/2)
  872. #define C5 FIXHR(0.64278760968653932632/2)
  873. #define C6 FIXHR(0.5/2)
  874. #define C7 FIXHR(0.34202014332566873304/2)
  875. #define C8 FIXHR(0.17364817766693034885/2)
  876. /* using Lee like decomposition followed by hand coded 9 points DCT */
  877. static void imdct36(int *out, int *buf, int *in, int *win)
  878. {
  879. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  880. int tmp[18], *tmp1, *in1;
  881. for(i=17;i>=1;i--)
  882. in[i] += in[i-1];
  883. for(i=17;i>=3;i-=2)
  884. in[i] += in[i-2];
  885. for(j=0;j<2;j++) {
  886. tmp1 = tmp + j;
  887. in1 = in + j;
  888. #if 0
  889. //more accurate but slower
  890. int64_t t0, t1, t2, t3;
  891. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  892. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  893. t1 = in1[2*0] - in1[2*6];
  894. tmp1[ 6] = t1 - (t2>>1);
  895. tmp1[16] = t1 + t2;
  896. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  897. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  898. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  899. tmp1[10] = (t3 - t0 - t2) >> 32;
  900. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  901. tmp1[14] = (t3 + t2 - t1) >> 32;
  902. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  903. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  904. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  905. t0 = MUL64(2*in1[2*3], C3);
  906. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  907. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  908. tmp1[12] = (t2 + t1 - t0) >> 32;
  909. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  910. #else
  911. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  912. t3 = in1[2*0] + (in1[2*6]>>1);
  913. t1 = in1[2*0] - in1[2*6];
  914. tmp1[ 6] = t1 - (t2>>1);
  915. tmp1[16] = t1 + t2;
  916. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  917. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  918. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  919. tmp1[10] = t3 - t0 - t2;
  920. tmp1[ 2] = t3 + t0 + t1;
  921. tmp1[14] = t3 + t2 - t1;
  922. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  923. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  924. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  925. t0 = MULH(2*in1[2*3], C3);
  926. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  927. tmp1[ 0] = t2 + t3 + t0;
  928. tmp1[12] = t2 + t1 - t0;
  929. tmp1[ 8] = t3 - t1 - t0;
  930. #endif
  931. }
  932. i = 0;
  933. for(j=0;j<4;j++) {
  934. t0 = tmp[i];
  935. t1 = tmp[i + 2];
  936. s0 = t1 + t0;
  937. s2 = t1 - t0;
  938. t2 = tmp[i + 1];
  939. t3 = tmp[i + 3];
  940. s1 = MULH(2*(t3 + t2), icos36h[j]);
  941. s3 = MULL(t3 - t2, icos36[8 - j]);
  942. t0 = s0 + s1;
  943. t1 = s0 - s1;
  944. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  945. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  946. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  947. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  948. t0 = s2 + s3;
  949. t1 = s2 - s3;
  950. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  951. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  952. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  953. buf[ + j] = MULH(t0, win[18 + j]);
  954. i += 4;
  955. }
  956. s0 = tmp[16];
  957. s1 = MULH(2*tmp[17], icos36h[4]);
  958. t0 = s0 + s1;
  959. t1 = s0 - s1;
  960. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  961. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  962. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  963. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  964. }
  965. /* header decoding. MUST check the header before because no
  966. consistency check is done there. Return 1 if free format found and
  967. that the frame size must be computed externally */
  968. static int decode_header(MPADecodeContext *s, uint32_t header)
  969. {
  970. int sample_rate, frame_size, mpeg25, padding;
  971. int sample_rate_index, bitrate_index;
  972. if (header & (1<<20)) {
  973. s->lsf = (header & (1<<19)) ? 0 : 1;
  974. mpeg25 = 0;
  975. } else {
  976. s->lsf = 1;
  977. mpeg25 = 1;
  978. }
  979. s->layer = 4 - ((header >> 17) & 3);
  980. /* extract frequency */
  981. sample_rate_index = (header >> 10) & 3;
  982. sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
  983. sample_rate_index += 3 * (s->lsf + mpeg25);
  984. s->sample_rate_index = sample_rate_index;
  985. s->error_protection = ((header >> 16) & 1) ^ 1;
  986. s->sample_rate = sample_rate;
  987. bitrate_index = (header >> 12) & 0xf;
  988. padding = (header >> 9) & 1;
  989. //extension = (header >> 8) & 1;
  990. s->mode = (header >> 6) & 3;
  991. s->mode_ext = (header >> 4) & 3;
  992. //copyright = (header >> 3) & 1;
  993. //original = (header >> 2) & 1;
  994. //emphasis = header & 3;
  995. if (s->mode == MPA_MONO)
  996. s->nb_channels = 1;
  997. else
  998. s->nb_channels = 2;
  999. if (bitrate_index != 0) {
  1000. frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
  1001. s->bit_rate = frame_size * 1000;
  1002. switch(s->layer) {
  1003. case 1:
  1004. frame_size = (frame_size * 12000) / sample_rate;
  1005. frame_size = (frame_size + padding) * 4;
  1006. break;
  1007. case 2:
  1008. frame_size = (frame_size * 144000) / sample_rate;
  1009. frame_size += padding;
  1010. break;
  1011. default:
  1012. case 3:
  1013. frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
  1014. frame_size += padding;
  1015. break;
  1016. }
  1017. s->frame_size = frame_size;
  1018. } else {
  1019. /* if no frame size computed, signal it */
  1020. return 1;
  1021. }
  1022. #if defined(DEBUG)
  1023. dprintf(s->avctx, "layer%d, %d Hz, %d kbits/s, ",
  1024. s->layer, s->sample_rate, s->bit_rate);
  1025. if (s->nb_channels == 2) {
  1026. if (s->layer == 3) {
  1027. if (s->mode_ext & MODE_EXT_MS_STEREO)
  1028. dprintf(s->avctx, "ms-");
  1029. if (s->mode_ext & MODE_EXT_I_STEREO)
  1030. dprintf(s->avctx, "i-");
  1031. }
  1032. dprintf(s->avctx, "stereo");
  1033. } else {
  1034. dprintf(s->avctx, "mono");
  1035. }
  1036. dprintf(s->avctx, "\n");
  1037. #endif
  1038. return 0;
  1039. }
  1040. /* useful helper to get mpeg audio stream infos. Return -1 if error in
  1041. header, otherwise the coded frame size in bytes */
  1042. int mpa_decode_header(AVCodecContext *avctx, uint32_t head, int *sample_rate)
  1043. {
  1044. MPADecodeContext s1, *s = &s1;
  1045. s1.avctx = avctx;
  1046. if (ff_mpa_check_header(head) != 0)
  1047. return -1;
  1048. if (decode_header(s, head) != 0) {
  1049. return -1;
  1050. }
  1051. switch(s->layer) {
  1052. case 1:
  1053. avctx->frame_size = 384;
  1054. break;
  1055. case 2:
  1056. avctx->frame_size = 1152;
  1057. break;
  1058. default:
  1059. case 3:
  1060. if (s->lsf)
  1061. avctx->frame_size = 576;
  1062. else
  1063. avctx->frame_size = 1152;
  1064. break;
  1065. }
  1066. *sample_rate = s->sample_rate;
  1067. avctx->channels = s->nb_channels;
  1068. avctx->bit_rate = s->bit_rate;
  1069. avctx->sub_id = s->layer;
  1070. return s->frame_size;
  1071. }
  1072. /* return the number of decoded frames */
  1073. static int mp_decode_layer1(MPADecodeContext *s)
  1074. {
  1075. int bound, i, v, n, ch, j, mant;
  1076. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  1077. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  1078. if (s->mode == MPA_JSTEREO)
  1079. bound = (s->mode_ext + 1) * 4;
  1080. else
  1081. bound = SBLIMIT;
  1082. /* allocation bits */
  1083. for(i=0;i<bound;i++) {
  1084. for(ch=0;ch<s->nb_channels;ch++) {
  1085. allocation[ch][i] = get_bits(&s->gb, 4);
  1086. }
  1087. }
  1088. for(i=bound;i<SBLIMIT;i++) {
  1089. allocation[0][i] = get_bits(&s->gb, 4);
  1090. }
  1091. /* scale factors */
  1092. for(i=0;i<bound;i++) {
  1093. for(ch=0;ch<s->nb_channels;ch++) {
  1094. if (allocation[ch][i])
  1095. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1096. }
  1097. }
  1098. for(i=bound;i<SBLIMIT;i++) {
  1099. if (allocation[0][i]) {
  1100. scale_factors[0][i] = get_bits(&s->gb, 6);
  1101. scale_factors[1][i] = get_bits(&s->gb, 6);
  1102. }
  1103. }
  1104. /* compute samples */
  1105. for(j=0;j<12;j++) {
  1106. for(i=0;i<bound;i++) {
  1107. for(ch=0;ch<s->nb_channels;ch++) {
  1108. n = allocation[ch][i];
  1109. if (n) {
  1110. mant = get_bits(&s->gb, n + 1);
  1111. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1112. } else {
  1113. v = 0;
  1114. }
  1115. s->sb_samples[ch][j][i] = v;
  1116. }
  1117. }
  1118. for(i=bound;i<SBLIMIT;i++) {
  1119. n = allocation[0][i];
  1120. if (n) {
  1121. mant = get_bits(&s->gb, n + 1);
  1122. v = l1_unscale(n, mant, scale_factors[0][i]);
  1123. s->sb_samples[0][j][i] = v;
  1124. v = l1_unscale(n, mant, scale_factors[1][i]);
  1125. s->sb_samples[1][j][i] = v;
  1126. } else {
  1127. s->sb_samples[0][j][i] = 0;
  1128. s->sb_samples[1][j][i] = 0;
  1129. }
  1130. }
  1131. }
  1132. return 12;
  1133. }
  1134. /* bitrate is in kb/s */
  1135. int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
  1136. {
  1137. int ch_bitrate, table;
  1138. ch_bitrate = bitrate / nb_channels;
  1139. if (!lsf) {
  1140. if ((freq == 48000 && ch_bitrate >= 56) ||
  1141. (ch_bitrate >= 56 && ch_bitrate <= 80))
  1142. table = 0;
  1143. else if (freq != 48000 && ch_bitrate >= 96)
  1144. table = 1;
  1145. else if (freq != 32000 && ch_bitrate <= 48)
  1146. table = 2;
  1147. else
  1148. table = 3;
  1149. } else {
  1150. table = 4;
  1151. }
  1152. return table;
  1153. }
  1154. static int mp_decode_layer2(MPADecodeContext *s)
  1155. {
  1156. int sblimit; /* number of used subbands */
  1157. const unsigned char *alloc_table;
  1158. int table, bit_alloc_bits, i, j, ch, bound, v;
  1159. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1160. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1161. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1162. int scale, qindex, bits, steps, k, l, m, b;
  1163. /* select decoding table */
  1164. table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1165. s->sample_rate, s->lsf);
  1166. sblimit = sblimit_table[table];
  1167. alloc_table = alloc_tables[table];
  1168. if (s->mode == MPA_JSTEREO)
  1169. bound = (s->mode_ext + 1) * 4;
  1170. else
  1171. bound = sblimit;
  1172. dprintf(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
  1173. /* sanity check */
  1174. if( bound > sblimit ) bound = sblimit;
  1175. /* parse bit allocation */
  1176. j = 0;
  1177. for(i=0;i<bound;i++) {
  1178. bit_alloc_bits = alloc_table[j];
  1179. for(ch=0;ch<s->nb_channels;ch++) {
  1180. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1181. }
  1182. j += 1 << bit_alloc_bits;
  1183. }
  1184. for(i=bound;i<sblimit;i++) {
  1185. bit_alloc_bits = alloc_table[j];
  1186. v = get_bits(&s->gb, bit_alloc_bits);
  1187. bit_alloc[0][i] = v;
  1188. bit_alloc[1][i] = v;
  1189. j += 1 << bit_alloc_bits;
  1190. }
  1191. #ifdef DEBUG
  1192. {
  1193. for(ch=0;ch<s->nb_channels;ch++) {
  1194. for(i=0;i<sblimit;i++)
  1195. dprintf(s->avctx, " %d", bit_alloc[ch][i]);
  1196. dprintf(s->avctx, "\n");
  1197. }
  1198. }
  1199. #endif
  1200. /* scale codes */
  1201. for(i=0;i<sblimit;i++) {
  1202. for(ch=0;ch<s->nb_channels;ch++) {
  1203. if (bit_alloc[ch][i])
  1204. scale_code[ch][i] = get_bits(&s->gb, 2);
  1205. }
  1206. }
  1207. /* scale factors */
  1208. for(i=0;i<sblimit;i++) {
  1209. for(ch=0;ch<s->nb_channels;ch++) {
  1210. if (bit_alloc[ch][i]) {
  1211. sf = scale_factors[ch][i];
  1212. switch(scale_code[ch][i]) {
  1213. default:
  1214. case 0:
  1215. sf[0] = get_bits(&s->gb, 6);
  1216. sf[1] = get_bits(&s->gb, 6);
  1217. sf[2] = get_bits(&s->gb, 6);
  1218. break;
  1219. case 2:
  1220. sf[0] = get_bits(&s->gb, 6);
  1221. sf[1] = sf[0];
  1222. sf[2] = sf[0];
  1223. break;
  1224. case 1:
  1225. sf[0] = get_bits(&s->gb, 6);
  1226. sf[2] = get_bits(&s->gb, 6);
  1227. sf[1] = sf[0];
  1228. break;
  1229. case 3:
  1230. sf[0] = get_bits(&s->gb, 6);
  1231. sf[2] = get_bits(&s->gb, 6);
  1232. sf[1] = sf[2];
  1233. break;
  1234. }
  1235. }
  1236. }
  1237. }
  1238. #ifdef DEBUG
  1239. for(ch=0;ch<s->nb_channels;ch++) {
  1240. for(i=0;i<sblimit;i++) {
  1241. if (bit_alloc[ch][i]) {
  1242. sf = scale_factors[ch][i];
  1243. dprintf(s->avctx, " %d %d %d", sf[0], sf[1], sf[2]);
  1244. } else {
  1245. dprintf(s->avctx, " -");
  1246. }
  1247. }
  1248. dprintf(s->avctx, "\n");
  1249. }
  1250. #endif
  1251. /* samples */
  1252. for(k=0;k<3;k++) {
  1253. for(l=0;l<12;l+=3) {
  1254. j = 0;
  1255. for(i=0;i<bound;i++) {
  1256. bit_alloc_bits = alloc_table[j];
  1257. for(ch=0;ch<s->nb_channels;ch++) {
  1258. b = bit_alloc[ch][i];
  1259. if (b) {
  1260. scale = scale_factors[ch][i][k];
  1261. qindex = alloc_table[j+b];
  1262. bits = quant_bits[qindex];
  1263. if (bits < 0) {
  1264. /* 3 values at the same time */
  1265. v = get_bits(&s->gb, -bits);
  1266. steps = quant_steps[qindex];
  1267. s->sb_samples[ch][k * 12 + l + 0][i] =
  1268. l2_unscale_group(steps, v % steps, scale);
  1269. v = v / steps;
  1270. s->sb_samples[ch][k * 12 + l + 1][i] =
  1271. l2_unscale_group(steps, v % steps, scale);
  1272. v = v / steps;
  1273. s->sb_samples[ch][k * 12 + l + 2][i] =
  1274. l2_unscale_group(steps, v, scale);
  1275. } else {
  1276. for(m=0;m<3;m++) {
  1277. v = get_bits(&s->gb, bits);
  1278. v = l1_unscale(bits - 1, v, scale);
  1279. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1280. }
  1281. }
  1282. } else {
  1283. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1284. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1285. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1286. }
  1287. }
  1288. /* next subband in alloc table */
  1289. j += 1 << bit_alloc_bits;
  1290. }
  1291. /* XXX: find a way to avoid this duplication of code */
  1292. for(i=bound;i<sblimit;i++) {
  1293. bit_alloc_bits = alloc_table[j];
  1294. b = bit_alloc[0][i];
  1295. if (b) {
  1296. int mant, scale0, scale1;
  1297. scale0 = scale_factors[0][i][k];
  1298. scale1 = scale_factors[1][i][k];
  1299. qindex = alloc_table[j+b];
  1300. bits = quant_bits[qindex];
  1301. if (bits < 0) {
  1302. /* 3 values at the same time */
  1303. v = get_bits(&s->gb, -bits);
  1304. steps = quant_steps[qindex];
  1305. mant = v % steps;
  1306. v = v / steps;
  1307. s->sb_samples[0][k * 12 + l + 0][i] =
  1308. l2_unscale_group(steps, mant, scale0);
  1309. s->sb_samples[1][k * 12 + l + 0][i] =
  1310. l2_unscale_group(steps, mant, scale1);
  1311. mant = v % steps;
  1312. v = v / steps;
  1313. s->sb_samples[0][k * 12 + l + 1][i] =
  1314. l2_unscale_group(steps, mant, scale0);
  1315. s->sb_samples[1][k * 12 + l + 1][i] =
  1316. l2_unscale_group(steps, mant, scale1);
  1317. s->sb_samples[0][k * 12 + l + 2][i] =
  1318. l2_unscale_group(steps, v, scale0);
  1319. s->sb_samples[1][k * 12 + l + 2][i] =
  1320. l2_unscale_group(steps, v, scale1);
  1321. } else {
  1322. for(m=0;m<3;m++) {
  1323. mant = get_bits(&s->gb, bits);
  1324. s->sb_samples[0][k * 12 + l + m][i] =
  1325. l1_unscale(bits - 1, mant, scale0);
  1326. s->sb_samples[1][k * 12 + l + m][i] =
  1327. l1_unscale(bits - 1, mant, scale1);
  1328. }
  1329. }
  1330. } else {
  1331. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1332. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1333. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1334. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1335. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1336. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1337. }
  1338. /* next subband in alloc table */
  1339. j += 1 << bit_alloc_bits;
  1340. }
  1341. /* fill remaining samples to zero */
  1342. for(i=sblimit;i<SBLIMIT;i++) {
  1343. for(ch=0;ch<s->nb_channels;ch++) {
  1344. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1345. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1346. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1347. }
  1348. }
  1349. }
  1350. }
  1351. return 3 * 12;
  1352. }
  1353. static inline void lsf_sf_expand(int *slen,
  1354. int sf, int n1, int n2, int n3)
  1355. {
  1356. if (n3) {
  1357. slen[3] = sf % n3;
  1358. sf /= n3;
  1359. } else {
  1360. slen[3] = 0;
  1361. }
  1362. if (n2) {
  1363. slen[2] = sf % n2;
  1364. sf /= n2;
  1365. } else {
  1366. slen[2] = 0;
  1367. }
  1368. slen[1] = sf % n1;
  1369. sf /= n1;
  1370. slen[0] = sf;
  1371. }
  1372. static void exponents_from_scale_factors(MPADecodeContext *s,
  1373. GranuleDef *g,
  1374. int16_t *exponents)
  1375. {
  1376. const uint8_t *bstab, *pretab;
  1377. int len, i, j, k, l, v0, shift, gain, gains[3];
  1378. int16_t *exp_ptr;
  1379. exp_ptr = exponents;
  1380. gain = g->global_gain - 210;
  1381. shift = g->scalefac_scale + 1;
  1382. bstab = band_size_long[s->sample_rate_index];
  1383. pretab = mpa_pretab[g->preflag];
  1384. for(i=0;i<g->long_end;i++) {
  1385. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  1386. len = bstab[i];
  1387. for(j=len;j>0;j--)
  1388. *exp_ptr++ = v0;
  1389. }
  1390. if (g->short_start < 13) {
  1391. bstab = band_size_short[s->sample_rate_index];
  1392. gains[0] = gain - (g->subblock_gain[0] << 3);
  1393. gains[1] = gain - (g->subblock_gain[1] << 3);
  1394. gains[2] = gain - (g->subblock_gain[2] << 3);
  1395. k = g->long_end;
  1396. for(i=g->short_start;i<13;i++) {
  1397. len = bstab[i];
  1398. for(l=0;l<3;l++) {
  1399. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  1400. for(j=len;j>0;j--)
  1401. *exp_ptr++ = v0;
  1402. }
  1403. }
  1404. }
  1405. }
  1406. /* handle n = 0 too */
  1407. static inline int get_bitsz(GetBitContext *s, int n)
  1408. {
  1409. if (n == 0)
  1410. return 0;
  1411. else
  1412. return get_bits(s, n);
  1413. }
  1414. static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
  1415. if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
  1416. s->gb= s->in_gb;
  1417. s->in_gb.buffer=NULL;
  1418. assert((get_bits_count(&s->gb) & 7) == 0);
  1419. skip_bits_long(&s->gb, *pos - *end_pos);
  1420. *end_pos2=
  1421. *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
  1422. *pos= get_bits_count(&s->gb);
  1423. }
  1424. }
  1425. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1426. int16_t *exponents, int end_pos2)
  1427. {
  1428. int s_index;
  1429. int i;
  1430. int last_pos, bits_left;
  1431. VLC *vlc;
  1432. int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
  1433. /* low frequencies (called big values) */
  1434. s_index = 0;
  1435. for(i=0;i<3;i++) {
  1436. int j, k, l, linbits;
  1437. j = g->region_size[i];
  1438. if (j == 0)
  1439. continue;
  1440. /* select vlc table */
  1441. k = g->table_select[i];
  1442. l = mpa_huff_data[k][0];
  1443. linbits = mpa_huff_data[k][1];
  1444. vlc = &huff_vlc[l];
  1445. if(!l){
  1446. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
  1447. s_index += 2*j;
  1448. continue;
  1449. }
  1450. /* read huffcode and compute each couple */
  1451. for(;j>0;j--) {
  1452. int exponent, x, y, v;
  1453. int pos= get_bits_count(&s->gb);
  1454. if (pos >= end_pos){
  1455. // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1456. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1457. // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
  1458. if(pos >= end_pos)
  1459. break;
  1460. }
  1461. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  1462. if(!y){
  1463. g->sb_hybrid[s_index ] =
  1464. g->sb_hybrid[s_index+1] = 0;
  1465. s_index += 2;
  1466. continue;
  1467. }
  1468. exponent= exponents[s_index];
  1469. dprintf(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
  1470. i, g->region_size[i] - j, x, y, exponent);
  1471. if(y&16){
  1472. x = y >> 5;
  1473. y = y & 0x0f;
  1474. if (x < 15){
  1475. v = expval_table[ exponent ][ x ];
  1476. // v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
  1477. }else{
  1478. x += get_bitsz(&s->gb, linbits);
  1479. v = l3_unscale(x, exponent);
  1480. }
  1481. if (get_bits1(&s->gb))
  1482. v = -v;
  1483. g->sb_hybrid[s_index] = v;
  1484. if (y < 15){
  1485. v = expval_table[ exponent ][ y ];
  1486. }else{
  1487. y += get_bitsz(&s->gb, linbits);
  1488. v = l3_unscale(y, exponent);
  1489. }
  1490. if (get_bits1(&s->gb))
  1491. v = -v;
  1492. g->sb_hybrid[s_index+1] = v;
  1493. }else{
  1494. x = y >> 5;
  1495. y = y & 0x0f;
  1496. x += y;
  1497. if (x < 15){
  1498. v = expval_table[ exponent ][ x ];
  1499. }else{
  1500. x += get_bitsz(&s->gb, linbits);
  1501. v = l3_unscale(x, exponent);
  1502. }
  1503. if (get_bits1(&s->gb))
  1504. v = -v;
  1505. g->sb_hybrid[s_index+!!y] = v;
  1506. g->sb_hybrid[s_index+ !y] = 0;
  1507. }
  1508. s_index+=2;
  1509. }
  1510. }
  1511. /* high frequencies */
  1512. vlc = &huff_quad_vlc[g->count1table_select];
  1513. last_pos=0;
  1514. while (s_index <= 572) {
  1515. int pos, code;
  1516. pos = get_bits_count(&s->gb);
  1517. if (pos >= end_pos) {
  1518. if (pos > end_pos2 && last_pos){
  1519. /* some encoders generate an incorrect size for this
  1520. part. We must go back into the data */
  1521. s_index -= 4;
  1522. skip_bits_long(&s->gb, last_pos - pos);
  1523. av_log(NULL, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  1524. if(s->error_resilience >= FF_ER_COMPLIANT)
  1525. s_index=0;
  1526. break;
  1527. }
  1528. // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1529. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1530. // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
  1531. if(pos >= end_pos)
  1532. break;
  1533. }
  1534. last_pos= pos;
  1535. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  1536. dprintf(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
  1537. g->sb_hybrid[s_index+0]=
  1538. g->sb_hybrid[s_index+1]=
  1539. g->sb_hybrid[s_index+2]=
  1540. g->sb_hybrid[s_index+3]= 0;
  1541. while(code){
  1542. static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
  1543. int v;
  1544. int pos= s_index+idxtab[code];
  1545. code ^= 8>>idxtab[code];
  1546. v = exp_table[ exponents[pos] ];
  1547. // v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
  1548. if(get_bits1(&s->gb))
  1549. v = -v;
  1550. g->sb_hybrid[pos] = v;
  1551. }
  1552. s_index+=4;
  1553. }
  1554. /* skip extension bits */
  1555. bits_left = end_pos2 - get_bits_count(&s->gb);
  1556. //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
  1557. if (bits_left < 0/* || bits_left > 500*/) {
  1558. av_log(NULL, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1559. s_index=0;
  1560. }else if(bits_left > 0 && s->error_resilience >= FF_ER_AGGRESSIVE){
  1561. av_log(NULL, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1562. s_index=0;
  1563. }
  1564. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
  1565. skip_bits_long(&s->gb, bits_left);
  1566. i= get_bits_count(&s->gb);
  1567. switch_buffer(s, &i, &end_pos, &end_pos2);
  1568. return 0;
  1569. }
  1570. /* Reorder short blocks from bitstream order to interleaved order. It
  1571. would be faster to do it in parsing, but the code would be far more
  1572. complicated */
  1573. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1574. {
  1575. int i, j, len;
  1576. int32_t *ptr, *dst, *ptr1;
  1577. int32_t tmp[576];
  1578. if (g->block_type != 2)
  1579. return;
  1580. if (g->switch_point) {
  1581. if (s->sample_rate_index != 8) {
  1582. ptr = g->sb_hybrid + 36;
  1583. } else {
  1584. ptr = g->sb_hybrid + 48;
  1585. }
  1586. } else {
  1587. ptr = g->sb_hybrid;
  1588. }
  1589. for(i=g->short_start;i<13;i++) {
  1590. len = band_size_short[s->sample_rate_index][i];
  1591. ptr1 = ptr;
  1592. dst = tmp;
  1593. for(j=len;j>0;j--) {
  1594. *dst++ = ptr[0*len];
  1595. *dst++ = ptr[1*len];
  1596. *dst++ = ptr[2*len];
  1597. ptr++;
  1598. }
  1599. ptr+=2*len;
  1600. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  1601. }
  1602. }
  1603. #define ISQRT2 FIXR(0.70710678118654752440)
  1604. static void compute_stereo(MPADecodeContext *s,
  1605. GranuleDef *g0, GranuleDef *g1)
  1606. {
  1607. int i, j, k, l;
  1608. int32_t v1, v2;
  1609. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1610. int32_t (*is_tab)[16];
  1611. int32_t *tab0, *tab1;
  1612. int non_zero_found_short[3];
  1613. /* intensity stereo */
  1614. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1615. if (!s->lsf) {
  1616. is_tab = is_table;
  1617. sf_max = 7;
  1618. } else {
  1619. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1620. sf_max = 16;
  1621. }
  1622. tab0 = g0->sb_hybrid + 576;
  1623. tab1 = g1->sb_hybrid + 576;
  1624. non_zero_found_short[0] = 0;
  1625. non_zero_found_short[1] = 0;
  1626. non_zero_found_short[2] = 0;
  1627. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1628. for(i = 12;i >= g1->short_start;i--) {
  1629. /* for last band, use previous scale factor */
  1630. if (i != 11)
  1631. k -= 3;
  1632. len = band_size_short[s->sample_rate_index][i];
  1633. for(l=2;l>=0;l--) {
  1634. tab0 -= len;
  1635. tab1 -= len;
  1636. if (!non_zero_found_short[l]) {
  1637. /* test if non zero band. if so, stop doing i-stereo */
  1638. for(j=0;j<len;j++) {
  1639. if (tab1[j] != 0) {
  1640. non_zero_found_short[l] = 1;
  1641. goto found1;
  1642. }
  1643. }
  1644. sf = g1->scale_factors[k + l];
  1645. if (sf >= sf_max)
  1646. goto found1;
  1647. v1 = is_tab[0][sf];
  1648. v2 = is_tab[1][sf];
  1649. for(j=0;j<len;j++) {
  1650. tmp0 = tab0[j];
  1651. tab0[j] = MULL(tmp0, v1);
  1652. tab1[j] = MULL(tmp0, v2);
  1653. }
  1654. } else {
  1655. found1:
  1656. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1657. /* lower part of the spectrum : do ms stereo
  1658. if enabled */
  1659. for(j=0;j<len;j++) {
  1660. tmp0 = tab0[j];
  1661. tmp1 = tab1[j];
  1662. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1663. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1664. }
  1665. }
  1666. }
  1667. }
  1668. }
  1669. non_zero_found = non_zero_found_short[0] |
  1670. non_zero_found_short[1] |
  1671. non_zero_found_short[2];
  1672. for(i = g1->long_end - 1;i >= 0;i--) {
  1673. len = band_size_long[s->sample_rate_index][i];
  1674. tab0 -= len;
  1675. tab1 -= len;
  1676. /* test if non zero band. if so, stop doing i-stereo */
  1677. if (!non_zero_found) {
  1678. for(j=0;j<len;j++) {
  1679. if (tab1[j] != 0) {
  1680. non_zero_found = 1;
  1681. goto found2;
  1682. }
  1683. }
  1684. /* for last band, use previous scale factor */
  1685. k = (i == 21) ? 20 : i;
  1686. sf = g1->scale_factors[k];
  1687. if (sf >= sf_max)
  1688. goto found2;
  1689. v1 = is_tab[0][sf];
  1690. v2 = is_tab[1][sf];
  1691. for(j=0;j<len;j++) {
  1692. tmp0 = tab0[j];
  1693. tab0[j] = MULL(tmp0, v1);
  1694. tab1[j] = MULL(tmp0, v2);
  1695. }
  1696. } else {
  1697. found2:
  1698. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1699. /* lower part of the spectrum : do ms stereo
  1700. if enabled */
  1701. for(j=0;j<len;j++) {
  1702. tmp0 = tab0[j];
  1703. tmp1 = tab1[j];
  1704. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1705. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1706. }
  1707. }
  1708. }
  1709. }
  1710. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1711. /* ms stereo ONLY */
  1712. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1713. global gain */
  1714. tab0 = g0->sb_hybrid;
  1715. tab1 = g1->sb_hybrid;
  1716. for(i=0;i<576;i++) {
  1717. tmp0 = tab0[i];
  1718. tmp1 = tab1[i];
  1719. tab0[i] = tmp0 + tmp1;
  1720. tab1[i] = tmp0 - tmp1;
  1721. }
  1722. }
  1723. }
  1724. static void compute_antialias_integer(MPADecodeContext *s,
  1725. GranuleDef *g)
  1726. {
  1727. int32_t *ptr, *csa;
  1728. int n, i;
  1729. /* we antialias only "long" bands */
  1730. if (g->block_type == 2) {
  1731. if (!g->switch_point)
  1732. return;
  1733. /* XXX: check this for 8000Hz case */
  1734. n = 1;
  1735. } else {
  1736. n = SBLIMIT - 1;
  1737. }
  1738. ptr = g->sb_hybrid + 18;
  1739. for(i = n;i > 0;i--) {
  1740. int tmp0, tmp1, tmp2;
  1741. csa = &csa_table[0][0];
  1742. #define INT_AA(j) \
  1743. tmp0 = ptr[-1-j];\
  1744. tmp1 = ptr[ j];\
  1745. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1746. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1747. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1748. INT_AA(0)
  1749. INT_AA(1)
  1750. INT_AA(2)
  1751. INT_AA(3)
  1752. INT_AA(4)
  1753. INT_AA(5)
  1754. INT_AA(6)
  1755. INT_AA(7)
  1756. ptr += 18;
  1757. }
  1758. }
  1759. static void compute_antialias_float(MPADecodeContext *s,
  1760. GranuleDef *g)
  1761. {
  1762. int32_t *ptr;
  1763. int n, i;
  1764. /* we antialias only "long" bands */
  1765. if (g->block_type == 2) {
  1766. if (!g->switch_point)
  1767. return;
  1768. /* XXX: check this for 8000Hz case */
  1769. n = 1;
  1770. } else {
  1771. n = SBLIMIT - 1;
  1772. }
  1773. ptr = g->sb_hybrid + 18;
  1774. for(i = n;i > 0;i--) {
  1775. float tmp0, tmp1;
  1776. float *csa = &csa_table_float[0][0];
  1777. #define FLOAT_AA(j)\
  1778. tmp0= ptr[-1-j];\
  1779. tmp1= ptr[ j];\
  1780. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1781. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1782. FLOAT_AA(0)
  1783. FLOAT_AA(1)
  1784. FLOAT_AA(2)
  1785. FLOAT_AA(3)
  1786. FLOAT_AA(4)
  1787. FLOAT_AA(5)
  1788. FLOAT_AA(6)
  1789. FLOAT_AA(7)
  1790. ptr += 18;
  1791. }
  1792. }
  1793. static void compute_imdct(MPADecodeContext *s,
  1794. GranuleDef *g,
  1795. int32_t *sb_samples,
  1796. int32_t *mdct_buf)
  1797. {
  1798. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1799. int32_t out2[12];
  1800. int i, j, mdct_long_end, v, sblimit;
  1801. /* find last non zero block */
  1802. ptr = g->sb_hybrid + 576;
  1803. ptr1 = g->sb_hybrid + 2 * 18;
  1804. while (ptr >= ptr1) {
  1805. ptr -= 6;
  1806. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1807. if (v != 0)
  1808. break;
  1809. }
  1810. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1811. if (g->block_type == 2) {
  1812. /* XXX: check for 8000 Hz */
  1813. if (g->switch_point)
  1814. mdct_long_end = 2;
  1815. else
  1816. mdct_long_end = 0;
  1817. } else {
  1818. mdct_long_end = sblimit;
  1819. }
  1820. buf = mdct_buf;
  1821. ptr = g->sb_hybrid;
  1822. for(j=0;j<mdct_long_end;j++) {
  1823. /* apply window & overlap with previous buffer */
  1824. out_ptr = sb_samples + j;
  1825. /* select window */
  1826. if (g->switch_point && j < 2)
  1827. win1 = mdct_win[0];
  1828. else
  1829. win1 = mdct_win[g->block_type];
  1830. /* select frequency inversion */
  1831. win = win1 + ((4 * 36) & -(j & 1));
  1832. imdct36(out_ptr, buf, ptr, win);
  1833. out_ptr += 18*SBLIMIT;
  1834. ptr += 18;
  1835. buf += 18;
  1836. }
  1837. for(j=mdct_long_end;j<sblimit;j++) {
  1838. /* select frequency inversion */
  1839. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1840. out_ptr = sb_samples + j;
  1841. for(i=0; i<6; i++){
  1842. *out_ptr = buf[i];
  1843. out_ptr += SBLIMIT;
  1844. }
  1845. imdct12(out2, ptr + 0);
  1846. for(i=0;i<6;i++) {
  1847. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1848. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1849. out_ptr += SBLIMIT;
  1850. }
  1851. imdct12(out2, ptr + 1);
  1852. for(i=0;i<6;i++) {
  1853. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1854. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1855. out_ptr += SBLIMIT;
  1856. }
  1857. imdct12(out2, ptr + 2);
  1858. for(i=0;i<6;i++) {
  1859. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1860. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1861. buf[i + 6*2] = 0;
  1862. }
  1863. ptr += 18;
  1864. buf += 18;
  1865. }
  1866. /* zero bands */
  1867. for(j=sblimit;j<SBLIMIT;j++) {
  1868. /* overlap */
  1869. out_ptr = sb_samples + j;
  1870. for(i=0;i<18;i++) {
  1871. *out_ptr = buf[i];
  1872. buf[i] = 0;
  1873. out_ptr += SBLIMIT;
  1874. }
  1875. buf += 18;
  1876. }
  1877. }
  1878. #if defined(DEBUG)
  1879. void sample_dump(int fnum, int32_t *tab, int n)
  1880. {
  1881. static FILE *files[16], *f;
  1882. char buf[512];
  1883. int i;
  1884. int32_t v;
  1885. f = files[fnum];
  1886. if (!f) {
  1887. snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
  1888. fnum,
  1889. #ifdef USE_HIGHPRECISION
  1890. "hp"
  1891. #else
  1892. "lp"
  1893. #endif
  1894. );
  1895. f = fopen(buf, "w");
  1896. if (!f)
  1897. return;
  1898. files[fnum] = f;
  1899. }
  1900. if (fnum == 0) {
  1901. static int pos = 0;
  1902. av_log(NULL, AV_LOG_DEBUG, "pos=%d\n", pos);
  1903. for(i=0;i<n;i++) {
  1904. av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
  1905. if ((i % 18) == 17)
  1906. av_log(NULL, AV_LOG_DEBUG, "\n");
  1907. }
  1908. pos += n;
  1909. }
  1910. for(i=0;i<n;i++) {
  1911. /* normalize to 23 frac bits */
  1912. v = tab[i] << (23 - FRAC_BITS);
  1913. fwrite(&v, 1, sizeof(int32_t), f);
  1914. }
  1915. }
  1916. #endif
  1917. /* main layer3 decoding function */
  1918. static int mp_decode_layer3(MPADecodeContext *s)
  1919. {
  1920. int nb_granules, main_data_begin, private_bits;
  1921. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1922. GranuleDef granules[2][2], *g;
  1923. int16_t exponents[576];
  1924. /* read side info */
  1925. if (s->lsf) {
  1926. main_data_begin = get_bits(&s->gb, 8);
  1927. private_bits = get_bits(&s->gb, s->nb_channels);
  1928. nb_granules = 1;
  1929. } else {
  1930. main_data_begin = get_bits(&s->gb, 9);
  1931. if (s->nb_channels == 2)
  1932. private_bits = get_bits(&s->gb, 3);
  1933. else
  1934. private_bits = get_bits(&s->gb, 5);
  1935. nb_granules = 2;
  1936. for(ch=0;ch<s->nb_channels;ch++) {
  1937. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1938. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1939. }
  1940. }
  1941. for(gr=0;gr<nb_granules;gr++) {
  1942. for(ch=0;ch<s->nb_channels;ch++) {
  1943. dprintf(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
  1944. g = &granules[ch][gr];
  1945. g->part2_3_length = get_bits(&s->gb, 12);
  1946. g->big_values = get_bits(&s->gb, 9);
  1947. if(g->big_values > 288){
  1948. av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
  1949. return -1;
  1950. }
  1951. g->global_gain = get_bits(&s->gb, 8);
  1952. /* if MS stereo only is selected, we precompute the
  1953. 1/sqrt(2) renormalization factor */
  1954. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1955. MODE_EXT_MS_STEREO)
  1956. g->global_gain -= 2;
  1957. if (s->lsf)
  1958. g->scalefac_compress = get_bits(&s->gb, 9);
  1959. else
  1960. g->scalefac_compress = get_bits(&s->gb, 4);
  1961. blocksplit_flag = get_bits(&s->gb, 1);
  1962. if (blocksplit_flag) {
  1963. g->block_type = get_bits(&s->gb, 2);
  1964. if (g->block_type == 0){
  1965. av_log(NULL, AV_LOG_ERROR, "invalid block type\n");
  1966. return -1;
  1967. }
  1968. g->switch_point = get_bits(&s->gb, 1);
  1969. for(i=0;i<2;i++)
  1970. g->table_select[i] = get_bits(&s->gb, 5);
  1971. for(i=0;i<3;i++)
  1972. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1973. /* compute huffman coded region sizes */
  1974. if (g->block_type == 2)
  1975. g->region_size[0] = (36 / 2);
  1976. else {
  1977. if (s->sample_rate_index <= 2)
  1978. g->region_size[0] = (36 / 2);
  1979. else if (s->sample_rate_index != 8)
  1980. g->region_size[0] = (54 / 2);
  1981. else
  1982. g->region_size[0] = (108 / 2);
  1983. }
  1984. g->region_size[1] = (576 / 2);
  1985. } else {
  1986. int region_address1, region_address2, l;
  1987. g->block_type = 0;
  1988. g->switch_point = 0;
  1989. for(i=0;i<3;i++)
  1990. g->table_select[i] = get_bits(&s->gb, 5);
  1991. /* compute huffman coded region sizes */
  1992. region_address1 = get_bits(&s->gb, 4);
  1993. region_address2 = get_bits(&s->gb, 3);
  1994. dprintf(s->avctx, "region1=%d region2=%d\n",
  1995. region_address1, region_address2);
  1996. g->region_size[0] =
  1997. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  1998. l = region_address1 + region_address2 + 2;
  1999. /* should not overflow */
  2000. if (l > 22)
  2001. l = 22;
  2002. g->region_size[1] =
  2003. band_index_long[s->sample_rate_index][l] >> 1;
  2004. }
  2005. /* convert region offsets to region sizes and truncate
  2006. size to big_values */
  2007. g->region_size[2] = (576 / 2);
  2008. j = 0;
  2009. for(i=0;i<3;i++) {
  2010. k = FFMIN(g->region_size[i], g->big_values);
  2011. g->region_size[i] = k - j;
  2012. j = k;
  2013. }
  2014. /* compute band indexes */
  2015. if (g->block_type == 2) {
  2016. if (g->switch_point) {
  2017. /* if switched mode, we handle the 36 first samples as
  2018. long blocks. For 8000Hz, we handle the 48 first
  2019. exponents as long blocks (XXX: check this!) */
  2020. if (s->sample_rate_index <= 2)
  2021. g->long_end = 8;
  2022. else if (s->sample_rate_index != 8)
  2023. g->long_end = 6;
  2024. else
  2025. g->long_end = 4; /* 8000 Hz */
  2026. g->short_start = 2 + (s->sample_rate_index != 8);
  2027. } else {
  2028. g->long_end = 0;
  2029. g->short_start = 0;
  2030. }
  2031. } else {
  2032. g->short_start = 13;
  2033. g->long_end = 22;
  2034. }
  2035. g->preflag = 0;
  2036. if (!s->lsf)
  2037. g->preflag = get_bits(&s->gb, 1);
  2038. g->scalefac_scale = get_bits(&s->gb, 1);
  2039. g->count1table_select = get_bits(&s->gb, 1);
  2040. dprintf(s->avctx, "block_type=%d switch_point=%d\n",
  2041. g->block_type, g->switch_point);
  2042. }
  2043. }
  2044. if (!s->adu_mode) {
  2045. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  2046. assert((get_bits_count(&s->gb) & 7) == 0);
  2047. /* now we get bits from the main_data_begin offset */
  2048. dprintf(s->avctx, "seekback: %d\n", main_data_begin);
  2049. //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  2050. memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
  2051. s->in_gb= s->gb;
  2052. init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
  2053. skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
  2054. }
  2055. for(gr=0;gr<nb_granules;gr++) {
  2056. for(ch=0;ch<s->nb_channels;ch++) {
  2057. g = &granules[ch][gr];
  2058. if(get_bits_count(&s->gb)<0){
  2059. av_log(NULL, AV_LOG_ERROR, "mdb:%d, lastbuf:%d skipping granule %d\n",
  2060. main_data_begin, s->last_buf_size, gr);
  2061. skip_bits_long(&s->gb, g->part2_3_length);
  2062. memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
  2063. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
  2064. skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
  2065. s->gb= s->in_gb;
  2066. s->in_gb.buffer=NULL;
  2067. }
  2068. continue;
  2069. }
  2070. bits_pos = get_bits_count(&s->gb);
  2071. if (!s->lsf) {
  2072. uint8_t *sc;
  2073. int slen, slen1, slen2;
  2074. /* MPEG1 scale factors */
  2075. slen1 = slen_table[0][g->scalefac_compress];
  2076. slen2 = slen_table[1][g->scalefac_compress];
  2077. dprintf(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
  2078. if (g->block_type == 2) {
  2079. n = g->switch_point ? 17 : 18;
  2080. j = 0;
  2081. if(slen1){
  2082. for(i=0;i<n;i++)
  2083. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  2084. }else{
  2085. for(i=0;i<n;i++)
  2086. g->scale_factors[j++] = 0;
  2087. }
  2088. if(slen2){
  2089. for(i=0;i<18;i++)
  2090. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  2091. for(i=0;i<3;i++)
  2092. g->scale_factors[j++] = 0;
  2093. }else{
  2094. for(i=0;i<21;i++)
  2095. g->scale_factors[j++] = 0;
  2096. }
  2097. } else {
  2098. sc = granules[ch][0].scale_factors;
  2099. j = 0;
  2100. for(k=0;k<4;k++) {
  2101. n = (k == 0 ? 6 : 5);
  2102. if ((g->scfsi & (0x8 >> k)) == 0) {
  2103. slen = (k < 2) ? slen1 : slen2;
  2104. if(slen){
  2105. for(i=0;i<n;i++)
  2106. g->scale_factors[j++] = get_bits(&s->gb, slen);
  2107. }else{
  2108. for(i=0;i<n;i++)
  2109. g->scale_factors[j++] = 0;
  2110. }
  2111. } else {
  2112. /* simply copy from last granule */
  2113. for(i=0;i<n;i++) {
  2114. g->scale_factors[j] = sc[j];
  2115. j++;
  2116. }
  2117. }
  2118. }
  2119. g->scale_factors[j++] = 0;
  2120. }
  2121. #if defined(DEBUG)
  2122. {
  2123. dprintf(s->avctx, "scfsi=%x gr=%d ch=%d scale_factors:\n",
  2124. g->scfsi, gr, ch);
  2125. for(i=0;i<j;i++)
  2126. dprintf(s->avctx, " %d", g->scale_factors[i]);
  2127. dprintf(s->avctx, "\n");
  2128. }
  2129. #endif
  2130. } else {
  2131. int tindex, tindex2, slen[4], sl, sf;
  2132. /* LSF scale factors */
  2133. if (g->block_type == 2) {
  2134. tindex = g->switch_point ? 2 : 1;
  2135. } else {
  2136. tindex = 0;
  2137. }
  2138. sf = g->scalefac_compress;
  2139. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  2140. /* intensity stereo case */
  2141. sf >>= 1;
  2142. if (sf < 180) {
  2143. lsf_sf_expand(slen, sf, 6, 6, 0);
  2144. tindex2 = 3;
  2145. } else if (sf < 244) {
  2146. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  2147. tindex2 = 4;
  2148. } else {
  2149. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  2150. tindex2 = 5;
  2151. }
  2152. } else {
  2153. /* normal case */
  2154. if (sf < 400) {
  2155. lsf_sf_expand(slen, sf, 5, 4, 4);
  2156. tindex2 = 0;
  2157. } else if (sf < 500) {
  2158. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2159. tindex2 = 1;
  2160. } else {
  2161. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2162. tindex2 = 2;
  2163. g->preflag = 1;
  2164. }
  2165. }
  2166. j = 0;
  2167. for(k=0;k<4;k++) {
  2168. n = lsf_nsf_table[tindex2][tindex][k];
  2169. sl = slen[k];
  2170. if(sl){
  2171. for(i=0;i<n;i++)
  2172. g->scale_factors[j++] = get_bits(&s->gb, sl);
  2173. }else{
  2174. for(i=0;i<n;i++)
  2175. g->scale_factors[j++] = 0;
  2176. }
  2177. }
  2178. /* XXX: should compute exact size */
  2179. for(;j<40;j++)
  2180. g->scale_factors[j] = 0;
  2181. #if defined(DEBUG)
  2182. {
  2183. dprintf(s->avctx, "gr=%d ch=%d scale_factors:\n",
  2184. gr, ch);
  2185. for(i=0;i<40;i++)
  2186. dprintf(s->avctx, " %d", g->scale_factors[i]);
  2187. dprintf(s->avctx, "\n");
  2188. }
  2189. #endif
  2190. }
  2191. exponents_from_scale_factors(s, g, exponents);
  2192. /* read Huffman coded residue */
  2193. huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
  2194. #if defined(DEBUG)
  2195. sample_dump(0, g->sb_hybrid, 576);
  2196. #endif
  2197. } /* ch */
  2198. if (s->nb_channels == 2)
  2199. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2200. for(ch=0;ch<s->nb_channels;ch++) {
  2201. g = &granules[ch][gr];
  2202. reorder_block(s, g);
  2203. #if defined(DEBUG)
  2204. sample_dump(0, g->sb_hybrid, 576);
  2205. #endif
  2206. s->compute_antialias(s, g);
  2207. #if defined(DEBUG)
  2208. sample_dump(1, g->sb_hybrid, 576);
  2209. #endif
  2210. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2211. #if defined(DEBUG)
  2212. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2213. #endif
  2214. }
  2215. } /* gr */
  2216. if(get_bits_count(&s->gb)<0)
  2217. skip_bits_long(&s->gb, -get_bits_count(&s->gb));
  2218. return nb_granules * 18;
  2219. }
  2220. static int mp_decode_frame(MPADecodeContext *s,
  2221. OUT_INT *samples, const uint8_t *buf, int buf_size)
  2222. {
  2223. int i, nb_frames, ch;
  2224. OUT_INT *samples_ptr;
  2225. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
  2226. /* skip error protection field */
  2227. if (s->error_protection)
  2228. get_bits(&s->gb, 16);
  2229. dprintf(s->avctx, "frame %d:\n", s->frame_count);
  2230. switch(s->layer) {
  2231. case 1:
  2232. nb_frames = mp_decode_layer1(s);
  2233. break;
  2234. case 2:
  2235. nb_frames = mp_decode_layer2(s);
  2236. break;
  2237. case 3:
  2238. default:
  2239. nb_frames = mp_decode_layer3(s);
  2240. s->last_buf_size=0;
  2241. if(s->in_gb.buffer){
  2242. align_get_bits(&s->gb);
  2243. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2244. if(i >= 0 && i <= BACKSTEP_SIZE){
  2245. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  2246. s->last_buf_size=i;
  2247. }else
  2248. av_log(NULL, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  2249. s->gb= s->in_gb;
  2250. s->in_gb.buffer= NULL;
  2251. }
  2252. align_get_bits(&s->gb);
  2253. assert((get_bits_count(&s->gb) & 7) == 0);
  2254. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2255. if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
  2256. av_log(NULL, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  2257. i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  2258. }
  2259. assert(i <= buf_size - HEADER_SIZE && i>= 0);
  2260. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  2261. s->last_buf_size += i;
  2262. break;
  2263. }
  2264. #if defined(DEBUG)
  2265. for(i=0;i<nb_frames;i++) {
  2266. for(ch=0;ch<s->nb_channels;ch++) {
  2267. int j;
  2268. dprintf(s->avctx, "%d-%d:", i, ch);
  2269. for(j=0;j<SBLIMIT;j++)
  2270. dprintf(s->avctx, " %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2271. dprintf(s->avctx, "\n");
  2272. }
  2273. }
  2274. #endif
  2275. /* apply the synthesis filter */
  2276. for(ch=0;ch<s->nb_channels;ch++) {
  2277. samples_ptr = samples + ch;
  2278. for(i=0;i<nb_frames;i++) {
  2279. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  2280. window, &s->dither_state,
  2281. samples_ptr, s->nb_channels,
  2282. s->sb_samples[ch][i]);
  2283. samples_ptr += 32 * s->nb_channels;
  2284. }
  2285. }
  2286. #ifdef DEBUG
  2287. s->frame_count++;
  2288. #endif
  2289. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  2290. }
  2291. static int decode_frame(AVCodecContext * avctx,
  2292. void *data, int *data_size,
  2293. uint8_t * buf, int buf_size)
  2294. {
  2295. MPADecodeContext *s = avctx->priv_data;
  2296. uint32_t header;
  2297. int out_size;
  2298. OUT_INT *out_samples = data;
  2299. retry:
  2300. if(buf_size < HEADER_SIZE)
  2301. return -1;
  2302. header = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
  2303. if(ff_mpa_check_header(header) < 0){
  2304. buf++;
  2305. // buf_size--;
  2306. av_log(avctx, AV_LOG_ERROR, "Header missing skipping one byte.\n");
  2307. goto retry;
  2308. }
  2309. if (decode_header(s, header) == 1) {
  2310. /* free format: prepare to compute frame size */
  2311. s->frame_size = -1;
  2312. return -1;
  2313. }
  2314. /* update codec info */
  2315. avctx->channels = s->nb_channels;
  2316. avctx->bit_rate = s->bit_rate;
  2317. avctx->sub_id = s->layer;
  2318. switch(s->layer) {
  2319. case 1:
  2320. avctx->frame_size = 384;
  2321. break;
  2322. case 2:
  2323. avctx->frame_size = 1152;
  2324. break;
  2325. case 3:
  2326. if (s->lsf)
  2327. avctx->frame_size = 576;
  2328. else
  2329. avctx->frame_size = 1152;
  2330. break;
  2331. }
  2332. if(s->frame_size<=0 || s->frame_size > buf_size){
  2333. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  2334. return -1;
  2335. }else if(s->frame_size < buf_size){
  2336. av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
  2337. }
  2338. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2339. if(out_size>=0){
  2340. *data_size = out_size;
  2341. avctx->sample_rate = s->sample_rate;
  2342. //FIXME maybe move the other codec info stuff from above here too
  2343. }else
  2344. av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
  2345. s->frame_size = 0;
  2346. return buf_size;
  2347. }
  2348. static void flush(AVCodecContext *avctx){
  2349. MPADecodeContext *s = avctx->priv_data;
  2350. s->last_buf_size= 0;
  2351. }
  2352. #ifdef CONFIG_MP3ADU_DECODER
  2353. static int decode_frame_adu(AVCodecContext * avctx,
  2354. void *data, int *data_size,
  2355. uint8_t * buf, int buf_size)
  2356. {
  2357. MPADecodeContext *s = avctx->priv_data;
  2358. uint32_t header;
  2359. int len, out_size;
  2360. OUT_INT *out_samples = data;
  2361. len = buf_size;
  2362. // Discard too short frames
  2363. if (buf_size < HEADER_SIZE) {
  2364. *data_size = 0;
  2365. return buf_size;
  2366. }
  2367. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2368. len = MPA_MAX_CODED_FRAME_SIZE;
  2369. // Get header and restore sync word
  2370. header = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3] | 0xffe00000;
  2371. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2372. *data_size = 0;
  2373. return buf_size;
  2374. }
  2375. decode_header(s, header);
  2376. /* update codec info */
  2377. avctx->sample_rate = s->sample_rate;
  2378. avctx->channels = s->nb_channels;
  2379. avctx->bit_rate = s->bit_rate;
  2380. avctx->sub_id = s->layer;
  2381. avctx->frame_size=s->frame_size = len;
  2382. if (avctx->parse_only) {
  2383. out_size = buf_size;
  2384. } else {
  2385. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2386. }
  2387. *data_size = out_size;
  2388. return buf_size;
  2389. }
  2390. #endif /* CONFIG_MP3ADU_DECODER */
  2391. #ifdef CONFIG_MP3ON4_DECODER
  2392. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2393. static int mp3Frames[16] = {0,1,1,2,3,3,4,5,2}; /* number of mp3 decoder instances */
  2394. static int mp3Channels[16] = {0,1,2,3,4,5,6,8,4}; /* total output channels */
  2395. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2396. static int chan_offset[9][5] = {
  2397. {0},
  2398. {0}, // C
  2399. {0}, // FLR
  2400. {2,0}, // C FLR
  2401. {2,0,3}, // C FLR BS
  2402. {4,0,2}, // C FLR BLRS
  2403. {4,0,2,5}, // C FLR BLRS LFE
  2404. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2405. {0,2} // FLR BLRS
  2406. };
  2407. static int decode_init_mp3on4(AVCodecContext * avctx)
  2408. {
  2409. MP3On4DecodeContext *s = avctx->priv_data;
  2410. int i;
  2411. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2412. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2413. return -1;
  2414. }
  2415. s->chan_cfg = (((unsigned char *)avctx->extradata)[1] >> 3) & 0x0f;
  2416. s->frames = mp3Frames[s->chan_cfg];
  2417. if(!s->frames) {
  2418. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2419. return -1;
  2420. }
  2421. avctx->channels = mp3Channels[s->chan_cfg];
  2422. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2423. * We replace avctx->priv_data with the context of the first decoder so that
  2424. * decode_init() does not have to be changed.
  2425. * Other decoders will be inited here copying data from the first context
  2426. */
  2427. // Allocate zeroed memory for the first decoder context
  2428. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2429. // Put decoder context in place to make init_decode() happy
  2430. avctx->priv_data = s->mp3decctx[0];
  2431. decode_init(avctx);
  2432. // Restore mp3on4 context pointer
  2433. avctx->priv_data = s;
  2434. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2435. /* Create a separate codec/context for each frame (first is already ok).
  2436. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2437. */
  2438. for (i = 1; i < s->frames; i++) {
  2439. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2440. s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
  2441. s->mp3decctx[i]->adu_mode = 1;
  2442. s->mp3decctx[i]->avctx = avctx;
  2443. }
  2444. return 0;
  2445. }
  2446. static int decode_close_mp3on4(AVCodecContext * avctx)
  2447. {
  2448. MP3On4DecodeContext *s = avctx->priv_data;
  2449. int i;
  2450. for (i = 0; i < s->frames; i++)
  2451. if (s->mp3decctx[i])
  2452. av_free(s->mp3decctx[i]);
  2453. return 0;
  2454. }
  2455. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2456. void *data, int *data_size,
  2457. uint8_t * buf, int buf_size)
  2458. {
  2459. MP3On4DecodeContext *s = avctx->priv_data;
  2460. MPADecodeContext *m;
  2461. int len, out_size = 0;
  2462. uint32_t header;
  2463. OUT_INT *out_samples = data;
  2464. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2465. OUT_INT *outptr, *bp;
  2466. int fsize;
  2467. unsigned char *start2 = buf, *start;
  2468. int fr, i, j, n;
  2469. int off = avctx->channels;
  2470. int *coff = chan_offset[s->chan_cfg];
  2471. len = buf_size;
  2472. // Discard too short frames
  2473. if (buf_size < HEADER_SIZE) {
  2474. *data_size = 0;
  2475. return buf_size;
  2476. }
  2477. // If only one decoder interleave is not needed
  2478. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2479. for (fr = 0; fr < s->frames; fr++) {
  2480. start = start2;
  2481. fsize = (start[0] << 4) | (start[1] >> 4);
  2482. start2 += fsize;
  2483. if (fsize > len)
  2484. fsize = len;
  2485. len -= fsize;
  2486. if (fsize > MPA_MAX_CODED_FRAME_SIZE)
  2487. fsize = MPA_MAX_CODED_FRAME_SIZE;
  2488. m = s->mp3decctx[fr];
  2489. assert (m != NULL);
  2490. // Get header
  2491. header = (start[0] << 24) | (start[1] << 16) | (start[2] << 8) | start[3] | 0xfff00000;
  2492. if (ff_mpa_check_header(header) < 0) { // Bad header, discard block
  2493. *data_size = 0;
  2494. return buf_size;
  2495. }
  2496. decode_header(m, header);
  2497. mp_decode_frame(m, decoded_buf, start, fsize);
  2498. n = MPA_FRAME_SIZE * m->nb_channels;
  2499. out_size += n * sizeof(OUT_INT);
  2500. if(s->frames > 1) {
  2501. /* interleave output data */
  2502. bp = out_samples + coff[fr];
  2503. if(m->nb_channels == 1) {
  2504. for(j = 0; j < n; j++) {
  2505. *bp = decoded_buf[j];
  2506. bp += off;
  2507. }
  2508. } else {
  2509. for(j = 0; j < n; j++) {
  2510. bp[0] = decoded_buf[j++];
  2511. bp[1] = decoded_buf[j];
  2512. bp += off;
  2513. }
  2514. }
  2515. }
  2516. }
  2517. /* update codec info */
  2518. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2519. avctx->frame_size= buf_size;
  2520. avctx->bit_rate = 0;
  2521. for (i = 0; i < s->frames; i++)
  2522. avctx->bit_rate += s->mp3decctx[i]->bit_rate;
  2523. *data_size = out_size;
  2524. return buf_size;
  2525. }
  2526. #endif /* CONFIG_MP3ON4_DECODER */
  2527. #ifdef CONFIG_MP2_DECODER
  2528. AVCodec mp2_decoder =
  2529. {
  2530. "mp2",
  2531. CODEC_TYPE_AUDIO,
  2532. CODEC_ID_MP2,
  2533. sizeof(MPADecodeContext),
  2534. decode_init,
  2535. NULL,
  2536. NULL,
  2537. decode_frame,
  2538. CODEC_CAP_PARSE_ONLY,
  2539. };
  2540. #endif
  2541. #ifdef CONFIG_MP3_DECODER
  2542. AVCodec mp3_decoder =
  2543. {
  2544. "mp3",
  2545. CODEC_TYPE_AUDIO,
  2546. CODEC_ID_MP3,
  2547. sizeof(MPADecodeContext),
  2548. decode_init,
  2549. NULL,
  2550. NULL,
  2551. decode_frame,
  2552. CODEC_CAP_PARSE_ONLY,
  2553. .flush= flush,
  2554. };
  2555. #endif
  2556. #ifdef CONFIG_MP3ADU_DECODER
  2557. AVCodec mp3adu_decoder =
  2558. {
  2559. "mp3adu",
  2560. CODEC_TYPE_AUDIO,
  2561. CODEC_ID_MP3ADU,
  2562. sizeof(MPADecodeContext),
  2563. decode_init,
  2564. NULL,
  2565. NULL,
  2566. decode_frame_adu,
  2567. CODEC_CAP_PARSE_ONLY,
  2568. .flush= flush,
  2569. };
  2570. #endif
  2571. #ifdef CONFIG_MP3ON4_DECODER
  2572. AVCodec mp3on4_decoder =
  2573. {
  2574. "mp3on4",
  2575. CODEC_TYPE_AUDIO,
  2576. CODEC_ID_MP3ON4,
  2577. sizeof(MP3On4DecodeContext),
  2578. decode_init_mp3on4,
  2579. NULL,
  2580. decode_close_mp3on4,
  2581. decode_frame_mp3on4,
  2582. .flush= flush,
  2583. };
  2584. #endif