You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

355 lines
11KB

  1. /*
  2. * Flash Screen Video encoder
  3. * Copyright (C) 2004 Alex Beregszaszi
  4. * Copyright (C) 2006 Benjamin Larsson
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /* Encoding development sponsored by http://fh-campuswien.ac.at */
  23. /**
  24. * @file flashsvenc.c
  25. * Flash Screen Video encoder
  26. * @author Alex Beregszaszi
  27. * @author Benjamin Larsson
  28. */
  29. /* Bitstream description
  30. * The picture is divided into blocks that are zlib-compressed.
  31. *
  32. * The decoder is fed complete frames, the frameheader contains:
  33. * 4bits of block width
  34. * 12bits of frame width
  35. * 4bits of block height
  36. * 12bits of frame height
  37. *
  38. * Directly after the header are the compressed blocks. The blocks
  39. * have their compressed size represented with 16bits in the beginig.
  40. * If the size = 0 then the block is unchanged from the previous frame.
  41. * All blocks are decompressed until the buffer is consumed.
  42. *
  43. * Encoding ideas, a basic encoder would just use a fixed block size.
  44. * Block sizes can be multipels of 16, from 16 to 256. The blocks don't
  45. * have to be quadratic. A brute force search with a set of different
  46. * block sizes should give a better result than to just use a fixed size.
  47. */
  48. /* TODO:
  49. * Don't reencode the frame in brute force mode if the frame is a dupe. Speed up.
  50. * Make the difference check faster.
  51. */
  52. #include <stdio.h>
  53. #include <stdlib.h>
  54. #include <zlib.h>
  55. #include "avcodec.h"
  56. #include "bitstream.h"
  57. #include "bytestream.h"
  58. typedef struct FlashSVContext {
  59. AVCodecContext *avctx;
  60. uint8_t *previous_frame;
  61. AVFrame frame;
  62. int image_width, image_height;
  63. int block_width, block_height;
  64. uint8_t* tmpblock;
  65. uint8_t* encbuffer;
  66. int block_size;
  67. z_stream zstream;
  68. int last_key_frame;
  69. } FlashSVContext;
  70. static int copy_region_enc(uint8_t *sptr, uint8_t *dptr,
  71. int dx, int dy, int h, int w, int stride, uint8_t *pfptr) {
  72. int i,j;
  73. uint8_t *nsptr;
  74. uint8_t *npfptr;
  75. int diff = 0;
  76. for (i = dx+h; i > dx; i--) {
  77. nsptr = sptr+(i*stride)+dy*3;
  78. npfptr = pfptr+(i*stride)+dy*3;
  79. for (j=0 ; j<w*3 ; j++) {
  80. diff |=npfptr[j]^nsptr[j];
  81. dptr[j] = nsptr[j];
  82. }
  83. dptr += w*3;
  84. }
  85. if (diff)
  86. return 1;
  87. return 0;
  88. }
  89. static int flashsv_encode_init(AVCodecContext *avctx)
  90. {
  91. FlashSVContext *s = avctx->priv_data;
  92. s->avctx = avctx;
  93. if ((avctx->width > 4095) || (avctx->height > 4095)) {
  94. av_log(avctx, AV_LOG_ERROR, "Input dimensions too large, input must be max 4096x4096 !\n");
  95. return -1;
  96. }
  97. if (avcodec_check_dimensions(avctx, avctx->width, avctx->height) < 0) {
  98. return -1;
  99. }
  100. // Needed if zlib unused or init aborted before deflateInit
  101. memset(&(s->zstream), 0, sizeof(z_stream));
  102. /*
  103. s->zstream.zalloc = NULL; //av_malloc;
  104. s->zstream.zfree = NULL; //av_free;
  105. s->zstream.opaque = NULL;
  106. zret = deflateInit(&(s->zstream), 9);
  107. if (zret != Z_OK) {
  108. av_log(avctx, AV_LOG_ERROR, "Inflate init error: %d\n", zret);
  109. return -1;
  110. }
  111. */
  112. s->last_key_frame=0;
  113. s->image_width = avctx->width;
  114. s->image_height = avctx->height;
  115. s->tmpblock = av_mallocz(3*256*256);
  116. s->encbuffer = av_mallocz(s->image_width*s->image_height*3);
  117. if (!s->tmpblock || !s->encbuffer) {
  118. av_log(avctx, AV_LOG_ERROR, "Memory allocation failed.\n");
  119. return -1;
  120. }
  121. return 0;
  122. }
  123. static int encode_bitstream(FlashSVContext *s, AVFrame *p, uint8_t *buf, int buf_size,
  124. int block_width, int block_height, uint8_t *previous_frame, int* I_frame) {
  125. PutBitContext pb;
  126. int h_blocks, v_blocks, h_part, v_part, i, j;
  127. int buf_pos, res;
  128. int pred_blocks = 0;
  129. init_put_bits(&pb, buf, buf_size*8);
  130. put_bits(&pb, 4, (block_width/16)-1);
  131. put_bits(&pb, 12, s->image_width);
  132. put_bits(&pb, 4, (block_height/16)-1);
  133. put_bits(&pb, 12, s->image_height);
  134. flush_put_bits(&pb);
  135. buf_pos=4;
  136. h_blocks = s->image_width / block_width;
  137. h_part = s->image_width % block_width;
  138. v_blocks = s->image_height / block_height;
  139. v_part = s->image_height % block_height;
  140. /* loop over all block columns */
  141. for (j = 0; j < v_blocks + (v_part?1:0); j++)
  142. {
  143. int hp = j*block_height; // horiz position in frame
  144. int hs = (j<v_blocks)?block_height:v_part; // size of block
  145. /* loop over all block rows */
  146. for (i = 0; i < h_blocks + (h_part?1:0); i++)
  147. {
  148. int wp = i*block_width; // vert position in frame
  149. int ws = (i<h_blocks)?block_width:h_part; // size of block
  150. int ret=Z_OK;
  151. uint8_t *ptr;
  152. ptr = buf+buf_pos;
  153. //copy the block to the temp buffer before compression (if it differs from the previous frame's block)
  154. res = copy_region_enc(p->data[0], s->tmpblock, s->image_height-(hp+hs+1), wp, hs, ws, p->linesize[0], previous_frame);
  155. if (res || *I_frame) {
  156. unsigned long zsize;
  157. zsize = 3*block_width*block_height;
  158. ret = compress2(ptr+2, &zsize, s->tmpblock, 3*ws*hs, 9);
  159. //ret = deflateReset(&(s->zstream));
  160. if (ret != Z_OK)
  161. av_log(s->avctx, AV_LOG_ERROR, "error while compressing block %dx%d\n", i, j);
  162. /*
  163. s->zstream.next_in = s->tmpblock;
  164. s->zstream.avail_in = 3*ws*hs;
  165. s->zstream.total_in = 0;
  166. s->zstream.next_out = ptr+2;
  167. s->zstream.avail_out = buf_size-buf_pos-2;
  168. s->zstream.total_out = 0;
  169. ret = deflate(&(s->zstream), Z_FINISH);
  170. if ((ret != Z_OK) && (ret != Z_STREAM_END))
  171. av_log(s->avctx, AV_LOG_ERROR, "error while compressing block %dx%d\n", i, j);
  172. size = s->zstream.total_out;
  173. //av_log(avctx, AV_LOG_INFO, "compressed blocks: %d\n", size);
  174. */
  175. bytestream_put_be16(&ptr,(unsigned int)zsize);
  176. buf_pos += zsize+2;
  177. //av_log(avctx, AV_LOG_ERROR, "buf_pos = %d\n", buf_pos);
  178. } else {
  179. pred_blocks++;
  180. bytestream_put_be16(&ptr,0);
  181. buf_pos += 2;
  182. }
  183. }
  184. }
  185. if (pred_blocks)
  186. *I_frame = 0;
  187. else
  188. *I_frame = 1;
  189. return buf_pos;
  190. }
  191. static int flashsv_encode_frame(AVCodecContext *avctx, uint8_t *buf, int buf_size, void *data)
  192. {
  193. FlashSVContext * const s = avctx->priv_data;
  194. AVFrame *pict = data;
  195. AVFrame * const p = &s->frame;
  196. uint8_t *pfptr;
  197. int res;
  198. int I_frame = 0;
  199. int opt_w, opt_h;
  200. *p = *pict;
  201. /* First frame needs to be a keyframe */
  202. if (avctx->frame_number == 0) {
  203. s->previous_frame = av_mallocz(abs(p->linesize[0])*s->image_height);
  204. if (!s->previous_frame) {
  205. av_log(avctx, AV_LOG_ERROR, "Memory allocation failed.\n");
  206. return -1;
  207. }
  208. I_frame = 1;
  209. }
  210. if (p->linesize[0] < 0)
  211. pfptr = s->previous_frame - ((s->image_height-1) * p->linesize[0]);
  212. else
  213. pfptr = s->previous_frame;
  214. /* Check the placement of keyframes */
  215. if (avctx->gop_size > 0) {
  216. if (avctx->frame_number >= s->last_key_frame + avctx->gop_size) {
  217. I_frame = 1;
  218. }
  219. }
  220. #if 0
  221. int w, h;
  222. int optim_sizes[16][16];
  223. int smallest_size;
  224. //Try all possible combinations and store the encoded frame sizes
  225. for (w=1 ; w<17 ; w++) {
  226. for (h=1 ; h<17 ; h++) {
  227. optim_sizes[w-1][h-1] = encode_bitstream(s, p, s->encbuffer, s->image_width*s->image_height*4, w*16, h*16, s->previous_frame);
  228. //av_log(avctx, AV_LOG_ERROR, "[%d][%d]size = %d\n",w,h,optim_sizes[w-1][h-1]);
  229. }
  230. }
  231. //Search for the smallest framesize and encode the frame with those parameters
  232. smallest_size=optim_sizes[0][0];
  233. opt_w = 0;
  234. opt_h = 0;
  235. for (w=0 ; w<16 ; w++) {
  236. for (h=0 ; h<16 ; h++) {
  237. if (optim_sizes[w][h] < smallest_size) {
  238. smallest_size = optim_sizes[w][h];
  239. opt_w = w;
  240. opt_h = h;
  241. }
  242. }
  243. }
  244. res = encode_bitstream(s, p, buf, buf_size, (opt_w+1)*16, (opt_h+1)*16, s->previous_frame);
  245. av_log(avctx, AV_LOG_ERROR, "[%d][%d]optimal size = %d, res = %d|\n", opt_w, opt_h, smallest_size, res);
  246. if (buf_size < res)
  247. av_log(avctx, AV_LOG_ERROR, "buf_size %d < res %d\n", buf_size, res);
  248. #else
  249. opt_w=1;
  250. opt_h=1;
  251. if (buf_size < s->image_width*s->image_height*3) {
  252. //Conservative upper bound check for compressed data
  253. av_log(avctx, AV_LOG_ERROR, "buf_size %d < %d\n", buf_size, s->image_width*s->image_height*3);
  254. return -1;
  255. }
  256. res = encode_bitstream(s, p, buf, buf_size, opt_w*16, opt_h*16, pfptr, &I_frame);
  257. #endif
  258. //save the current frame
  259. if(p->linesize[0] > 0)
  260. memcpy(s->previous_frame, p->data[0], s->image_height*p->linesize[0]);
  261. else
  262. memcpy(s->previous_frame, p->data[0] + p->linesize[0] * (s->image_height-1), s->image_height*abs(p->linesize[0]));
  263. //mark the frame type so the muxer can mux it correctly
  264. if (I_frame) {
  265. p->pict_type = FF_I_TYPE;
  266. p->key_frame = 1;
  267. s->last_key_frame = avctx->frame_number;
  268. av_log(avctx, AV_LOG_DEBUG, "Inserting key frame at frame %d\n",avctx->frame_number);
  269. } else {
  270. p->pict_type = FF_P_TYPE;
  271. p->key_frame = 0;
  272. }
  273. avctx->coded_frame = p;
  274. return res;
  275. }
  276. static int flashsv_encode_end(AVCodecContext *avctx)
  277. {
  278. FlashSVContext *s = avctx->priv_data;
  279. deflateEnd(&(s->zstream));
  280. av_free(s->encbuffer);
  281. av_free(s->previous_frame);
  282. av_free(s->tmpblock);
  283. return 0;
  284. }
  285. AVCodec flashsv_encoder = {
  286. "flashsv",
  287. CODEC_TYPE_VIDEO,
  288. CODEC_ID_FLASHSV,
  289. sizeof(FlashSVContext),
  290. flashsv_encode_init,
  291. flashsv_encode_frame,
  292. flashsv_encode_end,
  293. .pix_fmts = (enum PixelFormat[]){PIX_FMT_BGR24, -1},
  294. };