You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

725 lines
26KB

  1. /*
  2. * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
  3. * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Chinese AVS video (AVS1-P2, JiZhun profile) decoder
  24. * @author Stefan Gehrer <stefan.gehrer@gmx.de>
  25. */
  26. #include "avcodec.h"
  27. #include "get_bits.h"
  28. #include "golomb.h"
  29. #include "cavs.h"
  30. static const uint8_t mv_scan[4] = {
  31. MV_FWD_X0,MV_FWD_X1,
  32. MV_FWD_X2,MV_FWD_X3
  33. };
  34. static const uint8_t cbp_tab[64][2] = {
  35. {63, 0},{15,15},{31,63},{47,31},{ 0,16},{14,32},{13,47},{11,13},
  36. { 7,14},{ 5,11},{10,12},{ 8, 5},{12,10},{61, 7},{ 4,48},{55, 3},
  37. { 1, 2},{ 2, 8},{59, 4},{ 3, 1},{62,61},{ 9,55},{ 6,59},{29,62},
  38. {45,29},{51,27},{23,23},{39,19},{27,30},{46,28},{53, 9},{30, 6},
  39. {43,60},{37,21},{60,44},{16,26},{21,51},{28,35},{19,18},{35,20},
  40. {42,24},{26,53},{44,17},{32,37},{58,39},{24,45},{20,58},{17,43},
  41. {18,42},{48,46},{22,36},{33,33},{25,34},{49,40},{40,52},{36,49},
  42. {34,50},{50,56},{52,25},{54,22},{41,54},{56,57},{38,41},{57,38}
  43. };
  44. /*****************************************************************************
  45. *
  46. * motion vector prediction
  47. *
  48. ****************************************************************************/
  49. static inline void store_mvs(AVSContext *h) {
  50. h->col_mv[h->mbidx*4 + 0] = h->mv[MV_FWD_X0];
  51. h->col_mv[h->mbidx*4 + 1] = h->mv[MV_FWD_X1];
  52. h->col_mv[h->mbidx*4 + 2] = h->mv[MV_FWD_X2];
  53. h->col_mv[h->mbidx*4 + 3] = h->mv[MV_FWD_X3];
  54. }
  55. static inline void mv_pred_direct(AVSContext *h, cavs_vector *pmv_fw,
  56. cavs_vector *col_mv) {
  57. cavs_vector *pmv_bw = pmv_fw + MV_BWD_OFFS;
  58. int den = h->direct_den[col_mv->ref];
  59. int m = col_mv->x >> 31;
  60. pmv_fw->dist = h->dist[1];
  61. pmv_bw->dist = h->dist[0];
  62. pmv_fw->ref = 1;
  63. pmv_bw->ref = 0;
  64. /* scale the co-located motion vector according to its temporal span */
  65. pmv_fw->x = (((den+(den*col_mv->x*pmv_fw->dist^m)-m-1)>>14)^m)-m;
  66. pmv_bw->x = m-(((den+(den*col_mv->x*pmv_bw->dist^m)-m-1)>>14)^m);
  67. m = col_mv->y >> 31;
  68. pmv_fw->y = (((den+(den*col_mv->y*pmv_fw->dist^m)-m-1)>>14)^m)-m;
  69. pmv_bw->y = m-(((den+(den*col_mv->y*pmv_bw->dist^m)-m-1)>>14)^m);
  70. }
  71. static inline void mv_pred_sym(AVSContext *h, cavs_vector *src, enum cavs_block size) {
  72. cavs_vector *dst = src + MV_BWD_OFFS;
  73. /* backward mv is the scaled and negated forward mv */
  74. dst->x = -((src->x * h->sym_factor + 256) >> 9);
  75. dst->y = -((src->y * h->sym_factor + 256) >> 9);
  76. dst->ref = 0;
  77. dst->dist = h->dist[0];
  78. set_mvs(dst, size);
  79. }
  80. /*****************************************************************************
  81. *
  82. * residual data decoding
  83. *
  84. ****************************************************************************/
  85. /** kth-order exponential golomb code */
  86. static inline int get_ue_code(GetBitContext *gb, int order) {
  87. if(order) {
  88. int ret = get_ue_golomb(gb) << order;
  89. return ret + get_bits(gb,order);
  90. }
  91. return get_ue_golomb(gb);
  92. }
  93. /**
  94. * decode coefficients from one 8x8 block, dequantize, inverse transform
  95. * and add them to sample block
  96. * @param r pointer to 2D VLC table
  97. * @param esc_golomb_order escape codes are k-golomb with this order k
  98. * @param qp quantizer
  99. * @param dst location of sample block
  100. * @param stride line stride in frame buffer
  101. */
  102. static int decode_residual_block(AVSContext *h, GetBitContext *gb,
  103. const struct dec_2dvlc *r, int esc_golomb_order,
  104. int qp, uint8_t *dst, int stride) {
  105. int i, esc_code, level, mask;
  106. unsigned int level_code, run;
  107. DCTELEM level_buf[65];
  108. uint8_t run_buf[65];
  109. DCTELEM *block = h->block;
  110. for(i=0;i<65;i++) {
  111. level_code = get_ue_code(gb,r->golomb_order);
  112. if(level_code >= ESCAPE_CODE) {
  113. run = ((level_code - ESCAPE_CODE) >> 1) + 1;
  114. esc_code = get_ue_code(gb,esc_golomb_order);
  115. level = esc_code + (run > r->max_run ? 1 : r->level_add[run]);
  116. while(level > r->inc_limit)
  117. r++;
  118. mask = -(level_code & 1);
  119. level = (level^mask) - mask;
  120. } else {
  121. level = r->rltab[level_code][0];
  122. if(!level) //end of block signal
  123. break;
  124. run = r->rltab[level_code][1];
  125. r += r->rltab[level_code][2];
  126. }
  127. level_buf[i] = level;
  128. run_buf[i] = run;
  129. }
  130. if(dequant(h,level_buf, run_buf, block, ff_cavs_dequant_mul[qp],
  131. ff_cavs_dequant_shift[qp], i))
  132. return -1;
  133. h->cdsp.cavs_idct8_add(dst,block,stride);
  134. h->s.dsp.clear_block(block);
  135. return 0;
  136. }
  137. static inline void decode_residual_chroma(AVSContext *h) {
  138. if(h->cbp & (1<<4))
  139. decode_residual_block(h,&h->s.gb,ff_cavs_chroma_dec,0,
  140. ff_cavs_chroma_qp[h->qp],h->cu,h->c_stride);
  141. if(h->cbp & (1<<5))
  142. decode_residual_block(h,&h->s.gb,ff_cavs_chroma_dec,0,
  143. ff_cavs_chroma_qp[h->qp],h->cv,h->c_stride);
  144. }
  145. static inline int decode_residual_inter(AVSContext *h) {
  146. int block;
  147. /* get coded block pattern */
  148. int cbp= get_ue_golomb(&h->s.gb);
  149. if(cbp > 63U){
  150. av_log(h->s.avctx, AV_LOG_ERROR, "illegal inter cbp\n");
  151. return -1;
  152. }
  153. h->cbp = cbp_tab[cbp][1];
  154. /* get quantizer */
  155. if(h->cbp && !h->qp_fixed)
  156. h->qp = (h->qp + get_se_golomb(&h->s.gb)) & 63;
  157. for(block=0;block<4;block++)
  158. if(h->cbp & (1<<block))
  159. decode_residual_block(h,&h->s.gb,ff_cavs_inter_dec,0,h->qp,
  160. h->cy + h->luma_scan[block], h->l_stride);
  161. decode_residual_chroma(h);
  162. return 0;
  163. }
  164. /*****************************************************************************
  165. *
  166. * macroblock level
  167. *
  168. ****************************************************************************/
  169. static int decode_mb_i(AVSContext *h, int cbp_code) {
  170. GetBitContext *gb = &h->s.gb;
  171. int block, pred_mode_uv;
  172. uint8_t top[18];
  173. uint8_t *left = NULL;
  174. uint8_t *d;
  175. ff_cavs_init_mb(h);
  176. /* get intra prediction modes from stream */
  177. for(block=0;block<4;block++) {
  178. int nA,nB,predpred;
  179. int pos = ff_cavs_scan3x3[block];
  180. nA = h->pred_mode_Y[pos-1];
  181. nB = h->pred_mode_Y[pos-3];
  182. predpred = FFMIN(nA,nB);
  183. if(predpred == NOT_AVAIL) // if either is not available
  184. predpred = INTRA_L_LP;
  185. if(!get_bits1(gb)){
  186. int rem_mode= get_bits(gb, 2);
  187. predpred = rem_mode + (rem_mode >= predpred);
  188. }
  189. h->pred_mode_Y[pos] = predpred;
  190. }
  191. pred_mode_uv = get_ue_golomb(gb);
  192. if(pred_mode_uv > 6) {
  193. av_log(h->s.avctx, AV_LOG_ERROR, "illegal intra chroma pred mode\n");
  194. return -1;
  195. }
  196. ff_cavs_modify_mb_i(h, &pred_mode_uv);
  197. /* get coded block pattern */
  198. if(h->pic_type == AV_PICTURE_TYPE_I)
  199. cbp_code = get_ue_golomb(gb);
  200. if(cbp_code > 63U){
  201. av_log(h->s.avctx, AV_LOG_ERROR, "illegal intra cbp\n");
  202. return -1;
  203. }
  204. h->cbp = cbp_tab[cbp_code][0];
  205. if(h->cbp && !h->qp_fixed)
  206. h->qp = (h->qp + get_se_golomb(gb)) & 63; //qp_delta
  207. /* luma intra prediction interleaved with residual decode/transform/add */
  208. for(block=0;block<4;block++) {
  209. d = h->cy + h->luma_scan[block];
  210. ff_cavs_load_intra_pred_luma(h, top, &left, block);
  211. h->intra_pred_l[h->pred_mode_Y[ff_cavs_scan3x3[block]]]
  212. (d, top, left, h->l_stride);
  213. if(h->cbp & (1<<block))
  214. decode_residual_block(h,gb,ff_cavs_intra_dec,1,h->qp,d,h->l_stride);
  215. }
  216. /* chroma intra prediction */
  217. ff_cavs_load_intra_pred_chroma(h);
  218. h->intra_pred_c[pred_mode_uv](h->cu, &h->top_border_u[h->mbx*10],
  219. h->left_border_u, h->c_stride);
  220. h->intra_pred_c[pred_mode_uv](h->cv, &h->top_border_v[h->mbx*10],
  221. h->left_border_v, h->c_stride);
  222. decode_residual_chroma(h);
  223. ff_cavs_filter(h,I_8X8);
  224. set_mv_intra(h);
  225. return 0;
  226. }
  227. static void decode_mb_p(AVSContext *h, enum cavs_mb mb_type) {
  228. GetBitContext *gb = &h->s.gb;
  229. int ref[4];
  230. ff_cavs_init_mb(h);
  231. switch(mb_type) {
  232. case P_SKIP:
  233. ff_cavs_mv(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_PSKIP, BLK_16X16, 0);
  234. break;
  235. case P_16X16:
  236. ref[0] = h->ref_flag ? 0 : get_bits1(gb);
  237. ff_cavs_mv(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_MEDIAN, BLK_16X16,ref[0]);
  238. break;
  239. case P_16X8:
  240. ref[0] = h->ref_flag ? 0 : get_bits1(gb);
  241. ref[2] = h->ref_flag ? 0 : get_bits1(gb);
  242. ff_cavs_mv(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_TOP, BLK_16X8, ref[0]);
  243. ff_cavs_mv(h, MV_FWD_X2, MV_FWD_A1, MV_PRED_LEFT, BLK_16X8, ref[2]);
  244. break;
  245. case P_8X16:
  246. ref[0] = h->ref_flag ? 0 : get_bits1(gb);
  247. ref[1] = h->ref_flag ? 0 : get_bits1(gb);
  248. ff_cavs_mv(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_LEFT, BLK_8X16, ref[0]);
  249. ff_cavs_mv(h, MV_FWD_X1, MV_FWD_C2, MV_PRED_TOPRIGHT,BLK_8X16, ref[1]);
  250. break;
  251. case P_8X8:
  252. ref[0] = h->ref_flag ? 0 : get_bits1(gb);
  253. ref[1] = h->ref_flag ? 0 : get_bits1(gb);
  254. ref[2] = h->ref_flag ? 0 : get_bits1(gb);
  255. ref[3] = h->ref_flag ? 0 : get_bits1(gb);
  256. ff_cavs_mv(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_MEDIAN, BLK_8X8, ref[0]);
  257. ff_cavs_mv(h, MV_FWD_X1, MV_FWD_C2, MV_PRED_MEDIAN, BLK_8X8, ref[1]);
  258. ff_cavs_mv(h, MV_FWD_X2, MV_FWD_X1, MV_PRED_MEDIAN, BLK_8X8, ref[2]);
  259. ff_cavs_mv(h, MV_FWD_X3, MV_FWD_X0, MV_PRED_MEDIAN, BLK_8X8, ref[3]);
  260. }
  261. ff_cavs_inter(h, mb_type);
  262. set_intra_mode_default(h);
  263. store_mvs(h);
  264. if(mb_type != P_SKIP)
  265. decode_residual_inter(h);
  266. ff_cavs_filter(h,mb_type);
  267. h->col_type_base[h->mbidx] = mb_type;
  268. }
  269. static void decode_mb_b(AVSContext *h, enum cavs_mb mb_type) {
  270. int block;
  271. enum cavs_sub_mb sub_type[4];
  272. int flags;
  273. ff_cavs_init_mb(h);
  274. /* reset all MVs */
  275. h->mv[MV_FWD_X0] = ff_cavs_dir_mv;
  276. set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
  277. h->mv[MV_BWD_X0] = ff_cavs_dir_mv;
  278. set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
  279. switch(mb_type) {
  280. case B_SKIP:
  281. case B_DIRECT:
  282. if(!h->col_type_base[h->mbidx]) {
  283. /* intra MB at co-location, do in-plane prediction */
  284. ff_cavs_mv(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_BSKIP, BLK_16X16, 1);
  285. ff_cavs_mv(h, MV_BWD_X0, MV_BWD_C2, MV_PRED_BSKIP, BLK_16X16, 0);
  286. } else
  287. /* direct prediction from co-located P MB, block-wise */
  288. for(block=0;block<4;block++)
  289. mv_pred_direct(h,&h->mv[mv_scan[block]],
  290. &h->col_mv[h->mbidx*4 + block]);
  291. break;
  292. case B_FWD_16X16:
  293. ff_cavs_mv(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_MEDIAN, BLK_16X16, 1);
  294. break;
  295. case B_SYM_16X16:
  296. ff_cavs_mv(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_MEDIAN, BLK_16X16, 1);
  297. mv_pred_sym(h, &h->mv[MV_FWD_X0], BLK_16X16);
  298. break;
  299. case B_BWD_16X16:
  300. ff_cavs_mv(h, MV_BWD_X0, MV_BWD_C2, MV_PRED_MEDIAN, BLK_16X16, 0);
  301. break;
  302. case B_8X8:
  303. for(block=0;block<4;block++)
  304. sub_type[block] = get_bits(&h->s.gb,2);
  305. for(block=0;block<4;block++) {
  306. switch(sub_type[block]) {
  307. case B_SUB_DIRECT:
  308. if(!h->col_type_base[h->mbidx]) {
  309. /* intra MB at co-location, do in-plane prediction */
  310. ff_cavs_mv(h, mv_scan[block], mv_scan[block]-3,
  311. MV_PRED_BSKIP, BLK_8X8, 1);
  312. ff_cavs_mv(h, mv_scan[block]+MV_BWD_OFFS,
  313. mv_scan[block]-3+MV_BWD_OFFS,
  314. MV_PRED_BSKIP, BLK_8X8, 0);
  315. } else
  316. mv_pred_direct(h,&h->mv[mv_scan[block]],
  317. &h->col_mv[h->mbidx*4 + block]);
  318. break;
  319. case B_SUB_FWD:
  320. ff_cavs_mv(h, mv_scan[block], mv_scan[block]-3,
  321. MV_PRED_MEDIAN, BLK_8X8, 1);
  322. break;
  323. case B_SUB_SYM:
  324. ff_cavs_mv(h, mv_scan[block], mv_scan[block]-3,
  325. MV_PRED_MEDIAN, BLK_8X8, 1);
  326. mv_pred_sym(h, &h->mv[mv_scan[block]], BLK_8X8);
  327. break;
  328. }
  329. }
  330. for(block=0;block<4;block++) {
  331. if(sub_type[block] == B_SUB_BWD)
  332. ff_cavs_mv(h, mv_scan[block]+MV_BWD_OFFS,
  333. mv_scan[block]+MV_BWD_OFFS-3,
  334. MV_PRED_MEDIAN, BLK_8X8, 0);
  335. }
  336. break;
  337. default:
  338. assert((mb_type > B_SYM_16X16) && (mb_type < B_8X8));
  339. flags = ff_cavs_partition_flags[mb_type];
  340. if(mb_type & 1) { /* 16x8 macroblock types */
  341. if(flags & FWD0)
  342. ff_cavs_mv(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_TOP, BLK_16X8, 1);
  343. if(flags & SYM0)
  344. mv_pred_sym(h, &h->mv[MV_FWD_X0], BLK_16X8);
  345. if(flags & FWD1)
  346. ff_cavs_mv(h, MV_FWD_X2, MV_FWD_A1, MV_PRED_LEFT, BLK_16X8, 1);
  347. if(flags & SYM1)
  348. mv_pred_sym(h, &h->mv[MV_FWD_X2], BLK_16X8);
  349. if(flags & BWD0)
  350. ff_cavs_mv(h, MV_BWD_X0, MV_BWD_C2, MV_PRED_TOP, BLK_16X8, 0);
  351. if(flags & BWD1)
  352. ff_cavs_mv(h, MV_BWD_X2, MV_BWD_A1, MV_PRED_LEFT, BLK_16X8, 0);
  353. } else { /* 8x16 macroblock types */
  354. if(flags & FWD0)
  355. ff_cavs_mv(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_LEFT, BLK_8X16, 1);
  356. if(flags & SYM0)
  357. mv_pred_sym(h, &h->mv[MV_FWD_X0], BLK_8X16);
  358. if(flags & FWD1)
  359. ff_cavs_mv(h,MV_FWD_X1,MV_FWD_C2,MV_PRED_TOPRIGHT,BLK_8X16,1);
  360. if(flags & SYM1)
  361. mv_pred_sym(h, &h->mv[MV_FWD_X1], BLK_8X16);
  362. if(flags & BWD0)
  363. ff_cavs_mv(h, MV_BWD_X0, MV_BWD_B3, MV_PRED_LEFT, BLK_8X16, 0);
  364. if(flags & BWD1)
  365. ff_cavs_mv(h,MV_BWD_X1,MV_BWD_C2,MV_PRED_TOPRIGHT,BLK_8X16,0);
  366. }
  367. }
  368. ff_cavs_inter(h, mb_type);
  369. set_intra_mode_default(h);
  370. if(mb_type != B_SKIP)
  371. decode_residual_inter(h);
  372. ff_cavs_filter(h,mb_type);
  373. }
  374. /*****************************************************************************
  375. *
  376. * slice level
  377. *
  378. ****************************************************************************/
  379. static inline int decode_slice_header(AVSContext *h, GetBitContext *gb) {
  380. if(h->stc > 0xAF)
  381. av_log(h->s.avctx, AV_LOG_ERROR, "unexpected start code 0x%02x\n", h->stc);
  382. h->mby = h->stc;
  383. h->mbidx = h->mby*h->mb_width;
  384. /* mark top macroblocks as unavailable */
  385. h->flags &= ~(B_AVAIL|C_AVAIL);
  386. if((h->mby == 0) && (!h->qp_fixed)){
  387. h->qp_fixed = get_bits1(gb);
  388. h->qp = get_bits(gb,6);
  389. }
  390. /* inter frame or second slice can have weighting params */
  391. if((h->pic_type != AV_PICTURE_TYPE_I) || (!h->pic_structure && h->mby >= h->mb_width/2))
  392. if(get_bits1(gb)) { //slice_weighting_flag
  393. av_log(h->s.avctx, AV_LOG_ERROR,
  394. "weighted prediction not yet supported\n");
  395. }
  396. return 0;
  397. }
  398. static inline int check_for_slice(AVSContext *h) {
  399. GetBitContext *gb = &h->s.gb;
  400. int align;
  401. if(h->mbx)
  402. return 0;
  403. align = (-get_bits_count(gb)) & 7;
  404. /* check for stuffing byte */
  405. if(!align && (show_bits(gb,8) == 0x80))
  406. align = 8;
  407. if((show_bits_long(gb,24+align) & 0xFFFFFF) == 0x000001) {
  408. skip_bits_long(gb,24+align);
  409. h->stc = get_bits(gb,8);
  410. decode_slice_header(h,gb);
  411. return 1;
  412. }
  413. return 0;
  414. }
  415. /*****************************************************************************
  416. *
  417. * frame level
  418. *
  419. ****************************************************************************/
  420. static int decode_pic(AVSContext *h) {
  421. MpegEncContext *s = &h->s;
  422. int skip_count = -1;
  423. enum cavs_mb mb_type;
  424. if (!s->context_initialized) {
  425. s->avctx->idct_algo = FF_IDCT_CAVS;
  426. if (MPV_common_init(s) < 0)
  427. return -1;
  428. ff_init_scantable(s->dsp.idct_permutation,&h->scantable,ff_zigzag_direct);
  429. }
  430. skip_bits(&s->gb,16);//bbv_dwlay
  431. if(h->stc == PIC_PB_START_CODE) {
  432. h->pic_type = get_bits(&s->gb,2) + AV_PICTURE_TYPE_I;
  433. if(h->pic_type > AV_PICTURE_TYPE_B) {
  434. av_log(s->avctx, AV_LOG_ERROR, "illegal picture type\n");
  435. return -1;
  436. }
  437. /* make sure we have the reference frames we need */
  438. if(!h->DPB[0].f.data[0] ||
  439. (!h->DPB[1].f.data[0] && h->pic_type == AV_PICTURE_TYPE_B))
  440. return -1;
  441. } else {
  442. h->pic_type = AV_PICTURE_TYPE_I;
  443. if(get_bits1(&s->gb))
  444. skip_bits(&s->gb,24);//time_code
  445. /* old sample clips were all progressive and no low_delay,
  446. bump stream revision if detected otherwise */
  447. if((s->low_delay) || !(show_bits(&s->gb,9) & 1))
  448. h->stream_revision = 1;
  449. /* similarly test top_field_first and repeat_first_field */
  450. else if(show_bits(&s->gb,11) & 3)
  451. h->stream_revision = 1;
  452. if(h->stream_revision > 0)
  453. skip_bits(&s->gb,1); //marker_bit
  454. }
  455. /* release last B frame */
  456. if(h->picture.f.data[0])
  457. s->avctx->release_buffer(s->avctx, (AVFrame *)&h->picture);
  458. s->avctx->get_buffer(s->avctx, (AVFrame *)&h->picture);
  459. ff_cavs_init_pic(h);
  460. h->picture.poc = get_bits(&s->gb,8)*2;
  461. /* get temporal distances and MV scaling factors */
  462. if(h->pic_type != AV_PICTURE_TYPE_B) {
  463. h->dist[0] = (h->picture.poc - h->DPB[0].poc + 512) % 512;
  464. } else {
  465. h->dist[0] = (h->DPB[0].poc - h->picture.poc + 512) % 512;
  466. }
  467. h->dist[1] = (h->picture.poc - h->DPB[1].poc + 512) % 512;
  468. h->scale_den[0] = h->dist[0] ? 512/h->dist[0] : 0;
  469. h->scale_den[1] = h->dist[1] ? 512/h->dist[1] : 0;
  470. if(h->pic_type == AV_PICTURE_TYPE_B) {
  471. h->sym_factor = h->dist[0]*h->scale_den[1];
  472. } else {
  473. h->direct_den[0] = h->dist[0] ? 16384/h->dist[0] : 0;
  474. h->direct_den[1] = h->dist[1] ? 16384/h->dist[1] : 0;
  475. }
  476. if(s->low_delay)
  477. get_ue_golomb(&s->gb); //bbv_check_times
  478. h->progressive = get_bits1(&s->gb);
  479. h->pic_structure = 1;
  480. if(!h->progressive)
  481. h->pic_structure = get_bits1(&s->gb);
  482. if(!h->pic_structure && h->stc == PIC_PB_START_CODE)
  483. skip_bits1(&s->gb); //advanced_pred_mode_disable
  484. skip_bits1(&s->gb); //top_field_first
  485. skip_bits1(&s->gb); //repeat_first_field
  486. h->qp_fixed = get_bits1(&s->gb);
  487. h->qp = get_bits(&s->gb,6);
  488. if(h->pic_type == AV_PICTURE_TYPE_I) {
  489. if(!h->progressive && !h->pic_structure)
  490. skip_bits1(&s->gb);//what is this?
  491. skip_bits(&s->gb,4); //reserved bits
  492. } else {
  493. if(!(h->pic_type == AV_PICTURE_TYPE_B && h->pic_structure == 1))
  494. h->ref_flag = get_bits1(&s->gb);
  495. skip_bits(&s->gb,4); //reserved bits
  496. h->skip_mode_flag = get_bits1(&s->gb);
  497. }
  498. h->loop_filter_disable = get_bits1(&s->gb);
  499. if(!h->loop_filter_disable && get_bits1(&s->gb)) {
  500. h->alpha_offset = get_se_golomb(&s->gb);
  501. h->beta_offset = get_se_golomb(&s->gb);
  502. } else {
  503. h->alpha_offset = h->beta_offset = 0;
  504. }
  505. if(h->pic_type == AV_PICTURE_TYPE_I) {
  506. do {
  507. check_for_slice(h);
  508. decode_mb_i(h, 0);
  509. } while(ff_cavs_next_mb(h));
  510. } else if(h->pic_type == AV_PICTURE_TYPE_P) {
  511. do {
  512. if(check_for_slice(h))
  513. skip_count = -1;
  514. if(h->skip_mode_flag && (skip_count < 0))
  515. skip_count = get_ue_golomb(&s->gb);
  516. if(h->skip_mode_flag && skip_count--) {
  517. decode_mb_p(h,P_SKIP);
  518. } else {
  519. mb_type = get_ue_golomb(&s->gb) + P_SKIP + h->skip_mode_flag;
  520. if(mb_type > P_8X8)
  521. decode_mb_i(h, mb_type - P_8X8 - 1);
  522. else
  523. decode_mb_p(h,mb_type);
  524. }
  525. } while(ff_cavs_next_mb(h));
  526. } else { /* AV_PICTURE_TYPE_B */
  527. do {
  528. if(check_for_slice(h))
  529. skip_count = -1;
  530. if(h->skip_mode_flag && (skip_count < 0))
  531. skip_count = get_ue_golomb(&s->gb);
  532. if(h->skip_mode_flag && skip_count--) {
  533. decode_mb_b(h,B_SKIP);
  534. } else {
  535. mb_type = get_ue_golomb(&s->gb) + B_SKIP + h->skip_mode_flag;
  536. if(mb_type > B_8X8)
  537. decode_mb_i(h, mb_type - B_8X8 - 1);
  538. else
  539. decode_mb_b(h,mb_type);
  540. }
  541. } while(ff_cavs_next_mb(h));
  542. }
  543. if(h->pic_type != AV_PICTURE_TYPE_B) {
  544. if(h->DPB[1].f.data[0])
  545. s->avctx->release_buffer(s->avctx, (AVFrame *)&h->DPB[1]);
  546. h->DPB[1] = h->DPB[0];
  547. h->DPB[0] = h->picture;
  548. memset(&h->picture,0,sizeof(Picture));
  549. }
  550. return 0;
  551. }
  552. /*****************************************************************************
  553. *
  554. * headers and interface
  555. *
  556. ****************************************************************************/
  557. static int decode_seq_header(AVSContext *h) {
  558. MpegEncContext *s = &h->s;
  559. int frame_rate_code;
  560. h->profile = get_bits(&s->gb,8);
  561. h->level = get_bits(&s->gb,8);
  562. skip_bits1(&s->gb); //progressive sequence
  563. s->width = get_bits(&s->gb,14);
  564. s->height = get_bits(&s->gb,14);
  565. skip_bits(&s->gb,2); //chroma format
  566. skip_bits(&s->gb,3); //sample_precision
  567. h->aspect_ratio = get_bits(&s->gb,4);
  568. frame_rate_code = get_bits(&s->gb,4);
  569. skip_bits(&s->gb,18);//bit_rate_lower
  570. skip_bits1(&s->gb); //marker_bit
  571. skip_bits(&s->gb,12);//bit_rate_upper
  572. s->low_delay = get_bits1(&s->gb);
  573. h->mb_width = (s->width + 15) >> 4;
  574. h->mb_height = (s->height + 15) >> 4;
  575. h->s.avctx->time_base.den = ff_frame_rate_tab[frame_rate_code].num;
  576. h->s.avctx->time_base.num = ff_frame_rate_tab[frame_rate_code].den;
  577. h->s.avctx->width = s->width;
  578. h->s.avctx->height = s->height;
  579. if(!h->top_qp)
  580. ff_cavs_init_top_lines(h);
  581. return 0;
  582. }
  583. static void cavs_flush(AVCodecContext * avctx) {
  584. AVSContext *h = avctx->priv_data;
  585. h->got_keyframe = 0;
  586. }
  587. static int cavs_decode_frame(AVCodecContext * avctx,void *data, int *data_size,
  588. AVPacket *avpkt) {
  589. const uint8_t *buf = avpkt->data;
  590. int buf_size = avpkt->size;
  591. AVSContext *h = avctx->priv_data;
  592. MpegEncContext *s = &h->s;
  593. int input_size;
  594. const uint8_t *buf_end;
  595. const uint8_t *buf_ptr;
  596. AVFrame *picture = data;
  597. uint32_t stc = -1;
  598. s->avctx = avctx;
  599. if (buf_size == 0) {
  600. if (!s->low_delay && h->DPB[0].f.data[0]) {
  601. *data_size = sizeof(AVPicture);
  602. *picture = *(AVFrame *) &h->DPB[0];
  603. }
  604. return 0;
  605. }
  606. buf_ptr = buf;
  607. buf_end = buf + buf_size;
  608. for(;;) {
  609. buf_ptr = ff_find_start_code(buf_ptr,buf_end, &stc);
  610. if(stc & 0xFFFFFE00)
  611. return FFMAX(0, buf_ptr - buf - s->parse_context.last_index);
  612. input_size = (buf_end - buf_ptr)*8;
  613. switch(stc) {
  614. case CAVS_START_CODE:
  615. init_get_bits(&s->gb, buf_ptr, input_size);
  616. decode_seq_header(h);
  617. break;
  618. case PIC_I_START_CODE:
  619. if(!h->got_keyframe) {
  620. if(h->DPB[0].f.data[0])
  621. avctx->release_buffer(avctx, (AVFrame *)&h->DPB[0]);
  622. if(h->DPB[1].f.data[0])
  623. avctx->release_buffer(avctx, (AVFrame *)&h->DPB[1]);
  624. h->got_keyframe = 1;
  625. }
  626. case PIC_PB_START_CODE:
  627. *data_size = 0;
  628. if(!h->got_keyframe)
  629. break;
  630. init_get_bits(&s->gb, buf_ptr, input_size);
  631. h->stc = stc;
  632. if(decode_pic(h))
  633. break;
  634. *data_size = sizeof(AVPicture);
  635. if(h->pic_type != AV_PICTURE_TYPE_B) {
  636. if(h->DPB[1].f.data[0]) {
  637. *picture = *(AVFrame *) &h->DPB[1];
  638. } else {
  639. *data_size = 0;
  640. }
  641. } else
  642. *picture = *(AVFrame *) &h->picture;
  643. break;
  644. case EXT_START_CODE:
  645. //mpeg_decode_extension(avctx,buf_ptr, input_size);
  646. break;
  647. case USER_START_CODE:
  648. //mpeg_decode_user_data(avctx,buf_ptr, input_size);
  649. break;
  650. default:
  651. if (stc <= SLICE_MAX_START_CODE) {
  652. init_get_bits(&s->gb, buf_ptr, input_size);
  653. decode_slice_header(h, &s->gb);
  654. }
  655. break;
  656. }
  657. }
  658. }
  659. AVCodec ff_cavs_decoder = {
  660. .name = "cavs",
  661. .type = AVMEDIA_TYPE_VIDEO,
  662. .id = CODEC_ID_CAVS,
  663. .priv_data_size = sizeof(AVSContext),
  664. .init = ff_cavs_init,
  665. .close = ff_cavs_end,
  666. .decode = cavs_decode_frame,
  667. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  668. .flush= cavs_flush,
  669. .long_name= NULL_IF_CONFIG_SMALL("Chinese AVS video (AVS1-P2, JiZhun profile)"),
  670. };