You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

799 lines
24KB

  1. /*
  2. * The simplest mpeg audio layer 2 encoder
  3. * Copyright (c) 2000, 2001 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * The simplest mpeg audio layer 2 encoder.
  24. */
  25. #include "libavutil/channel_layout.h"
  26. #include "avcodec.h"
  27. #include "internal.h"
  28. #include "put_bits.h"
  29. #define FRAC_BITS 15 /* fractional bits for sb_samples and dct */
  30. #define WFRAC_BITS 14 /* fractional bits for window */
  31. /* define it to use floats in quantization (I don't like floats !) */
  32. #define USE_FLOATS
  33. #include "mpegaudio.h"
  34. #include "mpegaudiodsp.h"
  35. #include "mpegaudiodata.h"
  36. #include "mpegaudiotab.h"
  37. /* currently, cannot change these constants (need to modify
  38. quantization stage) */
  39. #define MUL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  40. #define SAMPLES_BUF_SIZE 4096
  41. typedef struct MpegAudioContext {
  42. PutBitContext pb;
  43. int nb_channels;
  44. int lsf; /* 1 if mpeg2 low bitrate selected */
  45. int bitrate_index; /* bit rate */
  46. int freq_index;
  47. int frame_size; /* frame size, in bits, without padding */
  48. /* padding computation */
  49. int frame_frac, frame_frac_incr, do_padding;
  50. short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */
  51. int samples_offset[MPA_MAX_CHANNELS]; /* offset in samples_buf */
  52. int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT];
  53. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */
  54. /* code to group 3 scale factors */
  55. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  56. int sblimit; /* number of used subbands */
  57. const unsigned char *alloc_table;
  58. int16_t filter_bank[512];
  59. int scale_factor_table[64];
  60. unsigned char scale_diff_table[128];
  61. #ifdef USE_FLOATS
  62. float scale_factor_inv_table[64];
  63. #else
  64. int8_t scale_factor_shift[64];
  65. unsigned short scale_factor_mult[64];
  66. #endif
  67. unsigned short total_quant_bits[17]; /* total number of bits per allocation group */
  68. } MpegAudioContext;
  69. static av_cold int MPA_encode_init(AVCodecContext *avctx)
  70. {
  71. MpegAudioContext *s = avctx->priv_data;
  72. int freq = avctx->sample_rate;
  73. int bitrate = avctx->bit_rate;
  74. int channels = avctx->channels;
  75. int i, v, table;
  76. float a;
  77. if (channels <= 0 || channels > 2){
  78. av_log(avctx, AV_LOG_ERROR, "encoding %d channel(s) is not allowed in mp2\n", channels);
  79. return AVERROR(EINVAL);
  80. }
  81. bitrate = bitrate / 1000;
  82. s->nb_channels = channels;
  83. avctx->frame_size = MPA_FRAME_SIZE;
  84. avctx->delay = 512 - 32 + 1;
  85. /* encoding freq */
  86. s->lsf = 0;
  87. for(i=0;i<3;i++) {
  88. if (avpriv_mpa_freq_tab[i] == freq)
  89. break;
  90. if ((avpriv_mpa_freq_tab[i] / 2) == freq) {
  91. s->lsf = 1;
  92. break;
  93. }
  94. }
  95. if (i == 3){
  96. av_log(avctx, AV_LOG_ERROR, "Sampling rate %d is not allowed in mp2\n", freq);
  97. return AVERROR(EINVAL);
  98. }
  99. s->freq_index = i;
  100. /* encoding bitrate & frequency */
  101. for(i=0;i<15;i++) {
  102. if (avpriv_mpa_bitrate_tab[s->lsf][1][i] == bitrate)
  103. break;
  104. }
  105. if (i == 15){
  106. av_log(avctx, AV_LOG_ERROR, "bitrate %d is not allowed in mp2\n", bitrate);
  107. return AVERROR(EINVAL);
  108. }
  109. s->bitrate_index = i;
  110. /* compute total header size & pad bit */
  111. a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0);
  112. s->frame_size = ((int)a) * 8;
  113. /* frame fractional size to compute padding */
  114. s->frame_frac = 0;
  115. s->frame_frac_incr = (int)((a - floor(a)) * 65536.0);
  116. /* select the right allocation table */
  117. table = ff_mpa_l2_select_table(bitrate, s->nb_channels, freq, s->lsf);
  118. /* number of used subbands */
  119. s->sblimit = ff_mpa_sblimit_table[table];
  120. s->alloc_table = ff_mpa_alloc_tables[table];
  121. av_dlog(avctx, "%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n",
  122. bitrate, freq, s->frame_size, table, s->frame_frac_incr);
  123. for(i=0;i<s->nb_channels;i++)
  124. s->samples_offset[i] = 0;
  125. for(i=0;i<257;i++) {
  126. int v;
  127. v = ff_mpa_enwindow[i];
  128. #if WFRAC_BITS != 16
  129. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  130. #endif
  131. s->filter_bank[i] = v;
  132. if ((i & 63) != 0)
  133. v = -v;
  134. if (i != 0)
  135. s->filter_bank[512 - i] = v;
  136. }
  137. for(i=0;i<64;i++) {
  138. v = (int)(exp2((3 - i) / 3.0) * (1 << 20));
  139. if (v <= 0)
  140. v = 1;
  141. s->scale_factor_table[i] = v;
  142. #ifdef USE_FLOATS
  143. s->scale_factor_inv_table[i] = exp2(-(3 - i) / 3.0) / (float)(1 << 20);
  144. #else
  145. #define P 15
  146. s->scale_factor_shift[i] = 21 - P - (i / 3);
  147. s->scale_factor_mult[i] = (1 << P) * exp2((i % 3) / 3.0);
  148. #endif
  149. }
  150. for(i=0;i<128;i++) {
  151. v = i - 64;
  152. if (v <= -3)
  153. v = 0;
  154. else if (v < 0)
  155. v = 1;
  156. else if (v == 0)
  157. v = 2;
  158. else if (v < 3)
  159. v = 3;
  160. else
  161. v = 4;
  162. s->scale_diff_table[i] = v;
  163. }
  164. for(i=0;i<17;i++) {
  165. v = ff_mpa_quant_bits[i];
  166. if (v < 0)
  167. v = -v;
  168. else
  169. v = v * 3;
  170. s->total_quant_bits[i] = 12 * v;
  171. }
  172. return 0;
  173. }
  174. /* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */
  175. static void idct32(int *out, int *tab)
  176. {
  177. int i, j;
  178. int *t, *t1, xr;
  179. const int *xp = costab32;
  180. for(j=31;j>=3;j-=2) tab[j] += tab[j - 2];
  181. t = tab + 30;
  182. t1 = tab + 2;
  183. do {
  184. t[0] += t[-4];
  185. t[1] += t[1 - 4];
  186. t -= 4;
  187. } while (t != t1);
  188. t = tab + 28;
  189. t1 = tab + 4;
  190. do {
  191. t[0] += t[-8];
  192. t[1] += t[1-8];
  193. t[2] += t[2-8];
  194. t[3] += t[3-8];
  195. t -= 8;
  196. } while (t != t1);
  197. t = tab;
  198. t1 = tab + 32;
  199. do {
  200. t[ 3] = -t[ 3];
  201. t[ 6] = -t[ 6];
  202. t[11] = -t[11];
  203. t[12] = -t[12];
  204. t[13] = -t[13];
  205. t[15] = -t[15];
  206. t += 16;
  207. } while (t != t1);
  208. t = tab;
  209. t1 = tab + 8;
  210. do {
  211. int x1, x2, x3, x4;
  212. x3 = MUL(t[16], FIX(SQRT2*0.5));
  213. x4 = t[0] - x3;
  214. x3 = t[0] + x3;
  215. x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5));
  216. x1 = MUL((t[8] - x2), xp[0]);
  217. x2 = MUL((t[8] + x2), xp[1]);
  218. t[ 0] = x3 + x1;
  219. t[ 8] = x4 - x2;
  220. t[16] = x4 + x2;
  221. t[24] = x3 - x1;
  222. t++;
  223. } while (t != t1);
  224. xp += 2;
  225. t = tab;
  226. t1 = tab + 4;
  227. do {
  228. xr = MUL(t[28],xp[0]);
  229. t[28] = (t[0] - xr);
  230. t[0] = (t[0] + xr);
  231. xr = MUL(t[4],xp[1]);
  232. t[ 4] = (t[24] - xr);
  233. t[24] = (t[24] + xr);
  234. xr = MUL(t[20],xp[2]);
  235. t[20] = (t[8] - xr);
  236. t[ 8] = (t[8] + xr);
  237. xr = MUL(t[12],xp[3]);
  238. t[12] = (t[16] - xr);
  239. t[16] = (t[16] + xr);
  240. t++;
  241. } while (t != t1);
  242. xp += 4;
  243. for (i = 0; i < 4; i++) {
  244. xr = MUL(tab[30-i*4],xp[0]);
  245. tab[30-i*4] = (tab[i*4] - xr);
  246. tab[ i*4] = (tab[i*4] + xr);
  247. xr = MUL(tab[ 2+i*4],xp[1]);
  248. tab[ 2+i*4] = (tab[28-i*4] - xr);
  249. tab[28-i*4] = (tab[28-i*4] + xr);
  250. xr = MUL(tab[31-i*4],xp[0]);
  251. tab[31-i*4] = (tab[1+i*4] - xr);
  252. tab[ 1+i*4] = (tab[1+i*4] + xr);
  253. xr = MUL(tab[ 3+i*4],xp[1]);
  254. tab[ 3+i*4] = (tab[29-i*4] - xr);
  255. tab[29-i*4] = (tab[29-i*4] + xr);
  256. xp += 2;
  257. }
  258. t = tab + 30;
  259. t1 = tab + 1;
  260. do {
  261. xr = MUL(t1[0], *xp);
  262. t1[0] = (t[0] - xr);
  263. t[0] = (t[0] + xr);
  264. t -= 2;
  265. t1 += 2;
  266. xp++;
  267. } while (t >= tab);
  268. for(i=0;i<32;i++) {
  269. out[i] = tab[bitinv32[i]];
  270. }
  271. }
  272. #define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS)
  273. static void filter(MpegAudioContext *s, int ch, const short *samples, int incr)
  274. {
  275. short *p, *q;
  276. int sum, offset, i, j;
  277. int tmp[64];
  278. int tmp1[32];
  279. int *out;
  280. offset = s->samples_offset[ch];
  281. out = &s->sb_samples[ch][0][0][0];
  282. for(j=0;j<36;j++) {
  283. /* 32 samples at once */
  284. for(i=0;i<32;i++) {
  285. s->samples_buf[ch][offset + (31 - i)] = samples[0];
  286. samples += incr;
  287. }
  288. /* filter */
  289. p = s->samples_buf[ch] + offset;
  290. q = s->filter_bank;
  291. /* maxsum = 23169 */
  292. for(i=0;i<64;i++) {
  293. sum = p[0*64] * q[0*64];
  294. sum += p[1*64] * q[1*64];
  295. sum += p[2*64] * q[2*64];
  296. sum += p[3*64] * q[3*64];
  297. sum += p[4*64] * q[4*64];
  298. sum += p[5*64] * q[5*64];
  299. sum += p[6*64] * q[6*64];
  300. sum += p[7*64] * q[7*64];
  301. tmp[i] = sum;
  302. p++;
  303. q++;
  304. }
  305. tmp1[0] = tmp[16] >> WSHIFT;
  306. for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT;
  307. for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT;
  308. idct32(out, tmp1);
  309. /* advance of 32 samples */
  310. offset -= 32;
  311. out += 32;
  312. /* handle the wrap around */
  313. if (offset < 0) {
  314. memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32),
  315. s->samples_buf[ch], (512 - 32) * 2);
  316. offset = SAMPLES_BUF_SIZE - 512;
  317. }
  318. }
  319. s->samples_offset[ch] = offset;
  320. }
  321. static void compute_scale_factors(MpegAudioContext *s,
  322. unsigned char scale_code[SBLIMIT],
  323. unsigned char scale_factors[SBLIMIT][3],
  324. int sb_samples[3][12][SBLIMIT],
  325. int sblimit)
  326. {
  327. int *p, vmax, v, n, i, j, k, code;
  328. int index, d1, d2;
  329. unsigned char *sf = &scale_factors[0][0];
  330. for(j=0;j<sblimit;j++) {
  331. for(i=0;i<3;i++) {
  332. /* find the max absolute value */
  333. p = &sb_samples[i][0][j];
  334. vmax = abs(*p);
  335. for(k=1;k<12;k++) {
  336. p += SBLIMIT;
  337. v = abs(*p);
  338. if (v > vmax)
  339. vmax = v;
  340. }
  341. /* compute the scale factor index using log 2 computations */
  342. if (vmax > 1) {
  343. n = av_log2(vmax);
  344. /* n is the position of the MSB of vmax. now
  345. use at most 2 compares to find the index */
  346. index = (21 - n) * 3 - 3;
  347. if (index >= 0) {
  348. while (vmax <= s->scale_factor_table[index+1])
  349. index++;
  350. } else {
  351. index = 0; /* very unlikely case of overflow */
  352. }
  353. } else {
  354. index = 62; /* value 63 is not allowed */
  355. }
  356. av_dlog(NULL, "%2d:%d in=%x %x %d\n",
  357. j, i, vmax, s->scale_factor_table[index], index);
  358. /* store the scale factor */
  359. av_assert2(index >=0 && index <= 63);
  360. sf[i] = index;
  361. }
  362. /* compute the transmission factor : look if the scale factors
  363. are close enough to each other */
  364. d1 = s->scale_diff_table[sf[0] - sf[1] + 64];
  365. d2 = s->scale_diff_table[sf[1] - sf[2] + 64];
  366. /* handle the 25 cases */
  367. switch(d1 * 5 + d2) {
  368. case 0*5+0:
  369. case 0*5+4:
  370. case 3*5+4:
  371. case 4*5+0:
  372. case 4*5+4:
  373. code = 0;
  374. break;
  375. case 0*5+1:
  376. case 0*5+2:
  377. case 4*5+1:
  378. case 4*5+2:
  379. code = 3;
  380. sf[2] = sf[1];
  381. break;
  382. case 0*5+3:
  383. case 4*5+3:
  384. code = 3;
  385. sf[1] = sf[2];
  386. break;
  387. case 1*5+0:
  388. case 1*5+4:
  389. case 2*5+4:
  390. code = 1;
  391. sf[1] = sf[0];
  392. break;
  393. case 1*5+1:
  394. case 1*5+2:
  395. case 2*5+0:
  396. case 2*5+1:
  397. case 2*5+2:
  398. code = 2;
  399. sf[1] = sf[2] = sf[0];
  400. break;
  401. case 2*5+3:
  402. case 3*5+3:
  403. code = 2;
  404. sf[0] = sf[1] = sf[2];
  405. break;
  406. case 3*5+0:
  407. case 3*5+1:
  408. case 3*5+2:
  409. code = 2;
  410. sf[0] = sf[2] = sf[1];
  411. break;
  412. case 1*5+3:
  413. code = 2;
  414. if (sf[0] > sf[2])
  415. sf[0] = sf[2];
  416. sf[1] = sf[2] = sf[0];
  417. break;
  418. default:
  419. av_assert2(0); //cannot happen
  420. code = 0; /* kill warning */
  421. }
  422. av_dlog(NULL, "%d: %2d %2d %2d %d %d -> %d\n", j,
  423. sf[0], sf[1], sf[2], d1, d2, code);
  424. scale_code[j] = code;
  425. sf += 3;
  426. }
  427. }
  428. /* The most important function : psycho acoustic module. In this
  429. encoder there is basically none, so this is the worst you can do,
  430. but also this is the simpler. */
  431. static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT])
  432. {
  433. int i;
  434. for(i=0;i<s->sblimit;i++) {
  435. smr[i] = (int)(fixed_smr[i] * 10);
  436. }
  437. }
  438. #define SB_NOTALLOCATED 0
  439. #define SB_ALLOCATED 1
  440. #define SB_NOMORE 2
  441. /* Try to maximize the smr while using a number of bits inferior to
  442. the frame size. I tried to make the code simpler, faster and
  443. smaller than other encoders :-) */
  444. static void compute_bit_allocation(MpegAudioContext *s,
  445. short smr1[MPA_MAX_CHANNELS][SBLIMIT],
  446. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  447. int *padding)
  448. {
  449. int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size;
  450. int incr;
  451. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  452. unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT];
  453. const unsigned char *alloc;
  454. memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT);
  455. memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT);
  456. memset(bit_alloc, 0, s->nb_channels * SBLIMIT);
  457. /* compute frame size and padding */
  458. max_frame_size = s->frame_size;
  459. s->frame_frac += s->frame_frac_incr;
  460. if (s->frame_frac >= 65536) {
  461. s->frame_frac -= 65536;
  462. s->do_padding = 1;
  463. max_frame_size += 8;
  464. } else {
  465. s->do_padding = 0;
  466. }
  467. /* compute the header + bit alloc size */
  468. current_frame_size = 32;
  469. alloc = s->alloc_table;
  470. for(i=0;i<s->sblimit;i++) {
  471. incr = alloc[0];
  472. current_frame_size += incr * s->nb_channels;
  473. alloc += 1 << incr;
  474. }
  475. for(;;) {
  476. /* look for the subband with the largest signal to mask ratio */
  477. max_sb = -1;
  478. max_ch = -1;
  479. max_smr = INT_MIN;
  480. for(ch=0;ch<s->nb_channels;ch++) {
  481. for(i=0;i<s->sblimit;i++) {
  482. if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) {
  483. max_smr = smr[ch][i];
  484. max_sb = i;
  485. max_ch = ch;
  486. }
  487. }
  488. }
  489. if (max_sb < 0)
  490. break;
  491. av_dlog(NULL, "current=%d max=%d max_sb=%d max_ch=%d alloc=%d\n",
  492. current_frame_size, max_frame_size, max_sb, max_ch,
  493. bit_alloc[max_ch][max_sb]);
  494. /* find alloc table entry (XXX: not optimal, should use
  495. pointer table) */
  496. alloc = s->alloc_table;
  497. for(i=0;i<max_sb;i++) {
  498. alloc += 1 << alloc[0];
  499. }
  500. if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) {
  501. /* nothing was coded for this band: add the necessary bits */
  502. incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6;
  503. incr += s->total_quant_bits[alloc[1]];
  504. } else {
  505. /* increments bit allocation */
  506. b = bit_alloc[max_ch][max_sb];
  507. incr = s->total_quant_bits[alloc[b + 1]] -
  508. s->total_quant_bits[alloc[b]];
  509. }
  510. if (current_frame_size + incr <= max_frame_size) {
  511. /* can increase size */
  512. b = ++bit_alloc[max_ch][max_sb];
  513. current_frame_size += incr;
  514. /* decrease smr by the resolution we added */
  515. smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]];
  516. /* max allocation size reached ? */
  517. if (b == ((1 << alloc[0]) - 1))
  518. subband_status[max_ch][max_sb] = SB_NOMORE;
  519. else
  520. subband_status[max_ch][max_sb] = SB_ALLOCATED;
  521. } else {
  522. /* cannot increase the size of this subband */
  523. subband_status[max_ch][max_sb] = SB_NOMORE;
  524. }
  525. }
  526. *padding = max_frame_size - current_frame_size;
  527. av_assert0(*padding >= 0);
  528. }
  529. /*
  530. * Output the mpeg audio layer 2 frame. Note how the code is small
  531. * compared to other encoders :-)
  532. */
  533. static void encode_frame(MpegAudioContext *s,
  534. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  535. int padding)
  536. {
  537. int i, j, k, l, bit_alloc_bits, b, ch;
  538. unsigned char *sf;
  539. int q[3];
  540. PutBitContext *p = &s->pb;
  541. /* header */
  542. put_bits(p, 12, 0xfff);
  543. put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */
  544. put_bits(p, 2, 4-2); /* layer 2 */
  545. put_bits(p, 1, 1); /* no error protection */
  546. put_bits(p, 4, s->bitrate_index);
  547. put_bits(p, 2, s->freq_index);
  548. put_bits(p, 1, s->do_padding); /* use padding */
  549. put_bits(p, 1, 0); /* private_bit */
  550. put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO);
  551. put_bits(p, 2, 0); /* mode_ext */
  552. put_bits(p, 1, 0); /* no copyright */
  553. put_bits(p, 1, 1); /* original */
  554. put_bits(p, 2, 0); /* no emphasis */
  555. /* bit allocation */
  556. j = 0;
  557. for(i=0;i<s->sblimit;i++) {
  558. bit_alloc_bits = s->alloc_table[j];
  559. for(ch=0;ch<s->nb_channels;ch++) {
  560. put_bits(p, bit_alloc_bits, bit_alloc[ch][i]);
  561. }
  562. j += 1 << bit_alloc_bits;
  563. }
  564. /* scale codes */
  565. for(i=0;i<s->sblimit;i++) {
  566. for(ch=0;ch<s->nb_channels;ch++) {
  567. if (bit_alloc[ch][i])
  568. put_bits(p, 2, s->scale_code[ch][i]);
  569. }
  570. }
  571. /* scale factors */
  572. for(i=0;i<s->sblimit;i++) {
  573. for(ch=0;ch<s->nb_channels;ch++) {
  574. if (bit_alloc[ch][i]) {
  575. sf = &s->scale_factors[ch][i][0];
  576. switch(s->scale_code[ch][i]) {
  577. case 0:
  578. put_bits(p, 6, sf[0]);
  579. put_bits(p, 6, sf[1]);
  580. put_bits(p, 6, sf[2]);
  581. break;
  582. case 3:
  583. case 1:
  584. put_bits(p, 6, sf[0]);
  585. put_bits(p, 6, sf[2]);
  586. break;
  587. case 2:
  588. put_bits(p, 6, sf[0]);
  589. break;
  590. }
  591. }
  592. }
  593. }
  594. /* quantization & write sub band samples */
  595. for(k=0;k<3;k++) {
  596. for(l=0;l<12;l+=3) {
  597. j = 0;
  598. for(i=0;i<s->sblimit;i++) {
  599. bit_alloc_bits = s->alloc_table[j];
  600. for(ch=0;ch<s->nb_channels;ch++) {
  601. b = bit_alloc[ch][i];
  602. if (b) {
  603. int qindex, steps, m, sample, bits;
  604. /* we encode 3 sub band samples of the same sub band at a time */
  605. qindex = s->alloc_table[j+b];
  606. steps = ff_mpa_quant_steps[qindex];
  607. for(m=0;m<3;m++) {
  608. sample = s->sb_samples[ch][k][l + m][i];
  609. /* divide by scale factor */
  610. #ifdef USE_FLOATS
  611. {
  612. float a;
  613. a = (float)sample * s->scale_factor_inv_table[s->scale_factors[ch][i][k]];
  614. q[m] = (int)((a + 1.0) * steps * 0.5);
  615. }
  616. #else
  617. {
  618. int q1, e, shift, mult;
  619. e = s->scale_factors[ch][i][k];
  620. shift = s->scale_factor_shift[e];
  621. mult = s->scale_factor_mult[e];
  622. /* normalize to P bits */
  623. if (shift < 0)
  624. q1 = sample << (-shift);
  625. else
  626. q1 = sample >> shift;
  627. q1 = (q1 * mult) >> P;
  628. q[m] = ((q1 + (1 << P)) * steps) >> (P + 1);
  629. }
  630. #endif
  631. if (q[m] >= steps)
  632. q[m] = steps - 1;
  633. av_assert2(q[m] >= 0 && q[m] < steps);
  634. }
  635. bits = ff_mpa_quant_bits[qindex];
  636. if (bits < 0) {
  637. /* group the 3 values to save bits */
  638. put_bits(p, -bits,
  639. q[0] + steps * (q[1] + steps * q[2]));
  640. } else {
  641. put_bits(p, bits, q[0]);
  642. put_bits(p, bits, q[1]);
  643. put_bits(p, bits, q[2]);
  644. }
  645. }
  646. }
  647. /* next subband in alloc table */
  648. j += 1 << bit_alloc_bits;
  649. }
  650. }
  651. }
  652. /* padding */
  653. for(i=0;i<padding;i++)
  654. put_bits(p, 1, 0);
  655. /* flush */
  656. flush_put_bits(p);
  657. }
  658. static int MPA_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
  659. const AVFrame *frame, int *got_packet_ptr)
  660. {
  661. MpegAudioContext *s = avctx->priv_data;
  662. const int16_t *samples = (const int16_t *)frame->data[0];
  663. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  664. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  665. int padding, i, ret;
  666. for(i=0;i<s->nb_channels;i++) {
  667. filter(s, i, samples + i, s->nb_channels);
  668. }
  669. for(i=0;i<s->nb_channels;i++) {
  670. compute_scale_factors(s, s->scale_code[i], s->scale_factors[i],
  671. s->sb_samples[i], s->sblimit);
  672. }
  673. for(i=0;i<s->nb_channels;i++) {
  674. psycho_acoustic_model(s, smr[i]);
  675. }
  676. compute_bit_allocation(s, smr, bit_alloc, &padding);
  677. if ((ret = ff_alloc_packet2(avctx, avpkt, MPA_MAX_CODED_FRAME_SIZE)) < 0)
  678. return ret;
  679. init_put_bits(&s->pb, avpkt->data, avpkt->size);
  680. encode_frame(s, bit_alloc, padding);
  681. if (frame->pts != AV_NOPTS_VALUE)
  682. avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->delay);
  683. avpkt->size = put_bits_count(&s->pb) / 8;
  684. *got_packet_ptr = 1;
  685. return 0;
  686. }
  687. static const AVCodecDefault mp2_defaults[] = {
  688. { "b", "128k" },
  689. { NULL },
  690. };
  691. AVCodec ff_mp2_encoder = {
  692. .name = "mp2",
  693. .long_name = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
  694. .type = AVMEDIA_TYPE_AUDIO,
  695. .id = AV_CODEC_ID_MP2,
  696. .priv_data_size = sizeof(MpegAudioContext),
  697. .init = MPA_encode_init,
  698. .encode2 = MPA_encode_frame,
  699. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
  700. AV_SAMPLE_FMT_NONE },
  701. .supported_samplerates = (const int[]){
  702. 44100, 48000, 32000, 22050, 24000, 16000, 0
  703. },
  704. .channel_layouts = (const uint64_t[]){ AV_CH_LAYOUT_MONO,
  705. AV_CH_LAYOUT_STEREO,
  706. 0 },
  707. .defaults = mp2_defaults,
  708. };