You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3252 lines
90KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @section Filtergraph syntax
  14. A filtergraph can be represented using a textual representation, which
  15. is recognized by the @code{-vf} option of the ff*
  16. tools, and by the @code{avfilter_graph_parse()} function defined in
  17. @file{libavfilter/avfiltergraph.h}.
  18. A filterchain consists of a sequence of connected filters, each one
  19. connected to the previous one in the sequence. A filterchain is
  20. represented by a list of ","-separated filter descriptions.
  21. A filtergraph consists of a sequence of filterchains. A sequence of
  22. filterchains is represented by a list of ";"-separated filterchain
  23. descriptions.
  24. A filter is represented by a string of the form:
  25. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  26. @var{filter_name} is the name of the filter class of which the
  27. described filter is an instance of, and has to be the name of one of
  28. the filter classes registered in the program.
  29. The name of the filter class is optionally followed by a string
  30. "=@var{arguments}".
  31. @var{arguments} is a string which contains the parameters used to
  32. initialize the filter instance, and are described in the filter
  33. descriptions below.
  34. The list of arguments can be quoted using the character "'" as initial
  35. and ending mark, and the character '\' for escaping the characters
  36. within the quoted text; otherwise the argument string is considered
  37. terminated when the next special character (belonging to the set
  38. "[]=;,") is encountered.
  39. The name and arguments of the filter are optionally preceded and
  40. followed by a list of link labels.
  41. A link label allows to name a link and associate it to a filter output
  42. or input pad. The preceding labels @var{in_link_1}
  43. ... @var{in_link_N}, are associated to the filter input pads,
  44. the following labels @var{out_link_1} ... @var{out_link_M}, are
  45. associated to the output pads.
  46. When two link labels with the same name are found in the
  47. filtergraph, a link between the corresponding input and output pad is
  48. created.
  49. If an output pad is not labelled, it is linked by default to the first
  50. unlabelled input pad of the next filter in the filterchain.
  51. For example in the filterchain:
  52. @example
  53. nullsrc, split[L1], [L2]overlay, nullsink
  54. @end example
  55. the split filter instance has two output pads, and the overlay filter
  56. instance two input pads. The first output pad of split is labelled
  57. "L1", the first input pad of overlay is labelled "L2", and the second
  58. output pad of split is linked to the second input pad of overlay,
  59. which are both unlabelled.
  60. In a complete filterchain all the unlabelled filter input and output
  61. pads must be connected. A filtergraph is considered valid if all the
  62. filter input and output pads of all the filterchains are connected.
  63. Follows a BNF description for the filtergraph syntax:
  64. @example
  65. @var{NAME} ::= sequence of alphanumeric characters and '_'
  66. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  67. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  68. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  69. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  70. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  71. @var{FILTERGRAPH} ::= @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  72. @end example
  73. @c man end FILTERGRAPH DESCRIPTION
  74. @chapter Audio Filters
  75. @c man begin AUDIO FILTERS
  76. When you configure your FFmpeg build, you can disable any of the
  77. existing filters using --disable-filters.
  78. The configure output will show the audio filters included in your
  79. build.
  80. Below is a description of the currently available audio filters.
  81. @section aconvert
  82. Convert the input audio format to the specified formats.
  83. The filter accepts a string of the form:
  84. "@var{sample_format}:@var{channel_layout}:@var{packing_format}".
  85. @var{sample_format} specifies the sample format, and can be a string or
  86. the corresponding numeric value defined in @file{libavutil/samplefmt.h}.
  87. @var{channel_layout} specifies the channel layout, and can be a string
  88. or the corresponding number value defined in @file{libavutil/audioconvert.h}.
  89. @var{packing_format} specifies the type of packing in output, can be one
  90. of "planar" or "packed", or the corresponding numeric values "0" or "1".
  91. The special parameter "auto", signifies that the filter will
  92. automatically select the output format depending on the output filter.
  93. Some examples follow.
  94. @itemize
  95. @item
  96. Convert input to unsigned 8-bit, stereo, packed:
  97. @example
  98. aconvert=u8:stereo:packed
  99. @end example
  100. @item
  101. Convert input to unsigned 8-bit, automatically select out channel layout
  102. and packing format:
  103. @example
  104. aconvert=u8:auto:auto
  105. @end example
  106. @end itemize
  107. @section aformat
  108. Convert the input audio to one of the specified formats. The framework will
  109. negotiate the most appropriate format to minimize conversions.
  110. The filter accepts three lists of formats, separated by ":", in the form:
  111. "@var{sample_formats}:@var{channel_layouts}:@var{packing_formats}".
  112. Elements in each list are separated by "," which has to be escaped in the
  113. filtergraph specification.
  114. The special parameter "all", in place of a list of elements, signifies all
  115. supported formats.
  116. Some examples follow:
  117. @example
  118. aformat=u8\\,s16:mono:packed
  119. aformat=s16:mono\\,stereo:all
  120. @end example
  121. @section amerge
  122. Merge two audio streams into a single multi-channel stream.
  123. This filter does not need any argument.
  124. If the channel layouts of the inputs are disjoint, and therefore compatible,
  125. the channel layout of the output will be set accordingly and the channels
  126. will be reordered as necessary. If the channel layouts of the inputs are not
  127. disjoint, the output will have all the channels of the first input then all
  128. the channels of the second input, in that order, and the channel layout of
  129. the output will be the default value corresponding to the total number of
  130. channels.
  131. For example, if the first input is in 2.1 (FL+FR+LF) and the second input
  132. is FC+BL+BR, then the output will be in 5.1, with the channels in the
  133. following order: a1, a2, b1, a3, b2, b3 (a1 is the first channel of the
  134. first input, b1 is the first channel of the second input).
  135. On the other hand, if both input are in stereo, the output channels will be
  136. in the default order: a1, a2, b1, b2, and the channel layout will be
  137. arbitrarily set to 4.0, which may or may not be the expected value.
  138. Both inputs must have the same sample rate, format and packing.
  139. If inputs do not have the same duration, the output will stop with the
  140. shortest.
  141. Example: merge two mono files into a stereo stream:
  142. @example
  143. amovie=left.wav [l] ; amovie=right.mp3 [r] ; [l] [r] amerge
  144. @end example
  145. @section anull
  146. Pass the audio source unchanged to the output.
  147. @section aresample
  148. Resample the input audio to the specified sample rate.
  149. The filter accepts exactly one parameter, the output sample rate. If not
  150. specified then the filter will automatically convert between its input
  151. and output sample rates.
  152. For example, to resample the input audio to 44100Hz:
  153. @example
  154. aresample=44100
  155. @end example
  156. @section ashowinfo
  157. Show a line containing various information for each input audio frame.
  158. The input audio is not modified.
  159. The shown line contains a sequence of key/value pairs of the form
  160. @var{key}:@var{value}.
  161. A description of each shown parameter follows:
  162. @table @option
  163. @item n
  164. sequential number of the input frame, starting from 0
  165. @item pts
  166. presentation TimeStamp of the input frame, expressed as a number of
  167. time base units. The time base unit depends on the filter input pad, and
  168. is usually 1/@var{sample_rate}.
  169. @item pts_time
  170. presentation TimeStamp of the input frame, expressed as a number of
  171. seconds
  172. @item pos
  173. position of the frame in the input stream, -1 if this information in
  174. unavailable and/or meaningless (for example in case of synthetic audio)
  175. @item fmt
  176. sample format name
  177. @item chlayout
  178. channel layout description
  179. @item nb_samples
  180. number of samples (per each channel) contained in the filtered frame
  181. @item rate
  182. sample rate for the audio frame
  183. @item planar
  184. if the packing format is planar, 0 if packed
  185. @item checksum
  186. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  187. @item plane_checksum
  188. Adler-32 checksum (printed in hexadecimal) for each input frame plane,
  189. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3} @var{c4} @var{c5}
  190. @var{c6} @var{c7}]"
  191. @end table
  192. @section asplit
  193. Pass on the input audio to two outputs. Both outputs are identical to
  194. the input audio.
  195. For example:
  196. @example
  197. [in] asplit[out0], showaudio[out1]
  198. @end example
  199. will create two separate outputs from the same input, one cropped and
  200. one padded.
  201. @section astreamsync
  202. Forward two audio streams and control the order the buffers are forwarded.
  203. The argument to the filter is an expression deciding which stream should be
  204. forwarded next: if the result is negative, the first stream is forwarded; if
  205. the result is positive or zero, the second stream is forwarded. It can use
  206. the following variables:
  207. @table @var
  208. @item b1 b2
  209. number of buffers forwarded so far on each stream
  210. @item s1 s2
  211. number of samples forwarded so far on each stream
  212. @item t1 t2
  213. current timestamp of each stream
  214. @end table
  215. The default value is @code{t1-t2}, which means to always forward the stream
  216. that has a smaller timestamp.
  217. Example: stress-test @code{amerge} by randomly sending buffers on the wrong
  218. input, while avoiding too much of a desynchronization:
  219. @example
  220. amovie=file.ogg [a] ; amovie=file.mp3 [b] ;
  221. [a] [b] astreamsync=(2*random(1))-1+tanh(5*(t1-t2)) [a2] [b2] ;
  222. [a2] [b2] amerge
  223. @end example
  224. @section earwax
  225. Make audio easier to listen to on headphones.
  226. This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio
  227. so that when listened to on headphones the stereo image is moved from
  228. inside your head (standard for headphones) to outside and in front of
  229. the listener (standard for speakers).
  230. Ported from SoX.
  231. @section pan
  232. Mix channels with specific gain levels. The filter accepts the output
  233. channel layout followed by a set of channels definitions.
  234. The filter accepts parameters of the form:
  235. "@var{l}:@var{outdef}:@var{outdef}:..."
  236. @table @option
  237. @item l
  238. output channel layout or number of channels
  239. @item outdef
  240. output channel specification, of the form:
  241. "@var{out_name}=[@var{gain}*]@var{in_name}[+[@var{gain}*]@var{in_name}...]"
  242. @item out_name
  243. output channel to define, either a channel name (FL, FR, etc.) or a channel
  244. number (c0, c1, etc.)
  245. @item gain
  246. multiplicative coefficient for the channel, 1 leaving the volume unchanged
  247. @item in_name
  248. input channel to use, see out_name for details; it is not possible to mix
  249. named and numbered input channels
  250. @end table
  251. If the `=' in a channel specification is replaced by `<', then the gains for
  252. that specification will be renormalized so that the total is 1, thus
  253. avoiding clipping noise.
  254. For example, if you want to down-mix from stereo to mono, but with a bigger
  255. factor for the left channel:
  256. @example
  257. pan=1:c0=0.9*c0+0.1*c1
  258. @end example
  259. A customized down-mix to stereo that works automatically for 3-, 4-, 5- and
  260. 7-channels surround:
  261. @example
  262. pan=stereo: FL < FL + 0.5*FC + 0.6*BL + 0.6*SL : FR < FR + 0.5*FC + 0.6*BR + 0.6*SR
  263. @end example
  264. Note that @file{ffmpeg} integrates a default down-mix (and up-mix) system
  265. that should be preferred (see "-ac" option) unless you have very specific
  266. needs.
  267. @section volume
  268. Adjust the input audio volume.
  269. The filter accepts exactly one parameter @var{vol}, which expresses
  270. how the audio volume will be increased or decreased.
  271. Output values are clipped to the maximum value.
  272. If @var{vol} is expressed as a decimal number, and the output audio
  273. volume is given by the relation:
  274. @example
  275. @var{output_volume} = @var{vol} * @var{input_volume}
  276. @end example
  277. If @var{vol} is expressed as a decimal number followed by the string
  278. "dB", the value represents the requested change in decibels of the
  279. input audio power, and the output audio volume is given by the
  280. relation:
  281. @example
  282. @var{output_volume} = 10^(@var{vol}/20) * @var{input_volume}
  283. @end example
  284. Otherwise @var{vol} is considered an expression and its evaluated
  285. value is used for computing the output audio volume according to the
  286. first relation.
  287. Default value for @var{vol} is 1.0.
  288. @subsection Examples
  289. @itemize
  290. @item
  291. Half the input audio volume:
  292. @example
  293. volume=0.5
  294. @end example
  295. The above example is equivalent to:
  296. @example
  297. volume=1/2
  298. @end example
  299. @item
  300. Decrease input audio power by 12 decibels:
  301. @example
  302. volume=-12dB
  303. @end example
  304. @end itemize
  305. @c man end AUDIO FILTERS
  306. @chapter Audio Sources
  307. @c man begin AUDIO SOURCES
  308. Below is a description of the currently available audio sources.
  309. @section abuffer
  310. Buffer audio frames, and make them available to the filter chain.
  311. This source is mainly intended for a programmatic use, in particular
  312. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  313. It accepts the following mandatory parameters:
  314. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}:@var{packing}
  315. @table @option
  316. @item sample_rate
  317. The sample rate of the incoming audio buffers.
  318. @item sample_fmt
  319. The sample format of the incoming audio buffers.
  320. Either a sample format name or its corresponging integer representation from
  321. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  322. @item channel_layout
  323. The channel layout of the incoming audio buffers.
  324. Either a channel layout name from channel_layout_map in
  325. @file{libavutil/audioconvert.c} or its corresponding integer representation
  326. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  327. @item packing
  328. Either "packed" or "planar", or their integer representation: 0 or 1
  329. respectively.
  330. @end table
  331. For example:
  332. @example
  333. abuffer=44100:s16:stereo:planar
  334. @end example
  335. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  336. Since the sample format with name "s16" corresponds to the number
  337. 1 and the "stereo" channel layout corresponds to the value 3, this is
  338. equivalent to:
  339. @example
  340. abuffer=44100:1:3:1
  341. @end example
  342. @section aevalsrc
  343. Generate an audio signal specified by an expression.
  344. This source accepts in input one or more expressions (one for each
  345. channel), which are evaluated and used to generate a corresponding
  346. audio signal.
  347. It accepts the syntax: @var{exprs}[::@var{options}].
  348. @var{exprs} is a list of expressions separated by ":", one for each
  349. separate channel. The output channel layout depends on the number of
  350. provided expressions, up to 8 channels are supported.
  351. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  352. separated by ":".
  353. The description of the accepted options follows.
  354. @table @option
  355. @item duration, d
  356. Set the minimum duration of the sourced audio. See the function
  357. @code{av_parse_time()} for the accepted format.
  358. Note that the resulting duration may be greater than the specified
  359. duration, as the generated audio is always cut at the end of a
  360. complete frame.
  361. If not specified, or the expressed duration is negative, the audio is
  362. supposed to be generated forever.
  363. @item nb_samples, n
  364. Set the number of samples per channel per each output frame,
  365. default to 1024.
  366. @item sample_rate, s
  367. Specify the sample rate, default to 44100.
  368. @end table
  369. Each expression in @var{exprs} can contain the following constants:
  370. @table @option
  371. @item n
  372. number of the evaluated sample, starting from 0
  373. @item t
  374. time of the evaluated sample expressed in seconds, starting from 0
  375. @item s
  376. sample rate
  377. @end table
  378. @subsection Examples
  379. @itemize
  380. @item
  381. Generate silence:
  382. @example
  383. aevalsrc=0
  384. @end example
  385. @item
  386. Generate a sin signal with frequency of 440 Hz, set sample rate to
  387. 8000 Hz:
  388. @example
  389. aevalsrc="sin(440*2*PI*t)::s=8000"
  390. @end example
  391. @item
  392. Generate white noise:
  393. @example
  394. aevalsrc="-2+random(0)"
  395. @end example
  396. @item
  397. Generate an amplitude modulated signal:
  398. @example
  399. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  400. @end example
  401. @item
  402. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  403. @example
  404. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  405. @end example
  406. @end itemize
  407. @section amovie
  408. Read an audio stream from a movie container.
  409. It accepts the syntax: @var{movie_name}[:@var{options}] where
  410. @var{movie_name} is the name of the resource to read (not necessarily
  411. a file but also a device or a stream accessed through some protocol),
  412. and @var{options} is an optional sequence of @var{key}=@var{value}
  413. pairs, separated by ":".
  414. The description of the accepted options follows.
  415. @table @option
  416. @item format_name, f
  417. Specify the format assumed for the movie to read, and can be either
  418. the name of a container or an input device. If not specified the
  419. format is guessed from @var{movie_name} or by probing.
  420. @item seek_point, sp
  421. Specify the seek point in seconds, the frames will be output
  422. starting from this seek point, the parameter is evaluated with
  423. @code{av_strtod} so the numerical value may be suffixed by an IS
  424. postfix. Default value is "0".
  425. @item stream_index, si
  426. Specify the index of the audio stream to read. If the value is -1,
  427. the best suited audio stream will be automatically selected. Default
  428. value is "-1".
  429. @end table
  430. @section anullsrc
  431. Null audio source, return unprocessed audio frames. It is mainly useful
  432. as a template and to be employed in analysis / debugging tools, or as
  433. the source for filters which ignore the input data (for example the sox
  434. synth filter).
  435. It accepts an optional sequence of @var{key}=@var{value} pairs,
  436. separated by ":".
  437. The description of the accepted options follows.
  438. @table @option
  439. @item sample_rate, s
  440. Specify the sample rate, and defaults to 44100.
  441. @item channel_layout, cl
  442. Specify the channel layout, and can be either an integer or a string
  443. representing a channel layout. The default value of @var{channel_layout}
  444. is "stereo".
  445. Check the channel_layout_map definition in
  446. @file{libavcodec/audioconvert.c} for the mapping between strings and
  447. channel layout values.
  448. @item nb_samples, n
  449. Set the number of samples per requested frames.
  450. @end table
  451. Follow some examples:
  452. @example
  453. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  454. anullsrc=r=48000:cl=4
  455. # same as
  456. anullsrc=r=48000:cl=mono
  457. @end example
  458. @c man end AUDIO SOURCES
  459. @chapter Audio Sinks
  460. @c man begin AUDIO SINKS
  461. Below is a description of the currently available audio sinks.
  462. @section abuffersink
  463. Buffer audio frames, and make them available to the end of filter chain.
  464. This sink is mainly intended for programmatic use, in particular
  465. through the interface defined in @file{libavfilter/buffersink.h}.
  466. It requires a pointer to an AVABufferSinkContext structure, which
  467. defines the incoming buffers' formats, to be passed as the opaque
  468. parameter to @code{avfilter_init_filter} for initialization.
  469. @section anullsink
  470. Null audio sink, do absolutely nothing with the input audio. It is
  471. mainly useful as a template and to be employed in analysis / debugging
  472. tools.
  473. @c man end AUDIO SINKS
  474. @chapter Video Filters
  475. @c man begin VIDEO FILTERS
  476. When you configure your FFmpeg build, you can disable any of the
  477. existing filters using --disable-filters.
  478. The configure output will show the video filters included in your
  479. build.
  480. Below is a description of the currently available video filters.
  481. @section ass
  482. Draw ASS (Advanced Substation Alpha) subtitles on top of input video
  483. using the libass library.
  484. To enable compilation of this filter you need to configure FFmpeg with
  485. @code{--enable-libass}.
  486. This filter accepts in input the name of the ass file to render.
  487. For example, to render the file @file{sub.ass} on top of the input
  488. video, use the command:
  489. @example
  490. ass=sub.ass
  491. @end example
  492. @section blackframe
  493. Detect frames that are (almost) completely black. Can be useful to
  494. detect chapter transitions or commercials. Output lines consist of
  495. the frame number of the detected frame, the percentage of blackness,
  496. the position in the file if known or -1 and the timestamp in seconds.
  497. In order to display the output lines, you need to set the loglevel at
  498. least to the AV_LOG_INFO value.
  499. The filter accepts the syntax:
  500. @example
  501. blackframe[=@var{amount}:[@var{threshold}]]
  502. @end example
  503. @var{amount} is the percentage of the pixels that have to be below the
  504. threshold, and defaults to 98.
  505. @var{threshold} is the threshold below which a pixel value is
  506. considered black, and defaults to 32.
  507. @section boxblur
  508. Apply boxblur algorithm to the input video.
  509. This filter accepts the parameters:
  510. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  511. Chroma and alpha parameters are optional, if not specified they default
  512. to the corresponding values set for @var{luma_radius} and
  513. @var{luma_power}.
  514. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  515. the radius in pixels of the box used for blurring the corresponding
  516. input plane. They are expressions, and can contain the following
  517. constants:
  518. @table @option
  519. @item w, h
  520. the input width and height in pixels
  521. @item cw, ch
  522. the input chroma image width and height in pixels
  523. @item hsub, vsub
  524. horizontal and vertical chroma subsample values. For example for the
  525. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  526. @end table
  527. The radius must be a non-negative number, and must not be greater than
  528. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  529. and of @code{min(cw,ch)/2} for the chroma planes.
  530. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  531. how many times the boxblur filter is applied to the corresponding
  532. plane.
  533. Some examples follow:
  534. @itemize
  535. @item
  536. Apply a boxblur filter with luma, chroma, and alpha radius
  537. set to 2:
  538. @example
  539. boxblur=2:1
  540. @end example
  541. @item
  542. Set luma radius to 2, alpha and chroma radius to 0
  543. @example
  544. boxblur=2:1:0:0:0:0
  545. @end example
  546. @item
  547. Set luma and chroma radius to a fraction of the video dimension
  548. @example
  549. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  550. @end example
  551. @end itemize
  552. @section copy
  553. Copy the input source unchanged to the output. Mainly useful for
  554. testing purposes.
  555. @section crop
  556. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}.
  557. The parameters are expressions containing the following constants:
  558. @table @option
  559. @item x, y
  560. the computed values for @var{x} and @var{y}. They are evaluated for
  561. each new frame.
  562. @item in_w, in_h
  563. the input width and height
  564. @item iw, ih
  565. same as @var{in_w} and @var{in_h}
  566. @item out_w, out_h
  567. the output (cropped) width and height
  568. @item ow, oh
  569. same as @var{out_w} and @var{out_h}
  570. @item a
  571. same as @var{iw} / @var{ih}
  572. @item sar
  573. input sample aspect ratio
  574. @item dar
  575. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  576. @item hsub, vsub
  577. horizontal and vertical chroma subsample values. For example for the
  578. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  579. @item n
  580. the number of input frame, starting from 0
  581. @item pos
  582. the position in the file of the input frame, NAN if unknown
  583. @item t
  584. timestamp expressed in seconds, NAN if the input timestamp is unknown
  585. @end table
  586. The @var{out_w} and @var{out_h} parameters specify the expressions for
  587. the width and height of the output (cropped) video. They are
  588. evaluated just at the configuration of the filter.
  589. The default value of @var{out_w} is "in_w", and the default value of
  590. @var{out_h} is "in_h".
  591. The expression for @var{out_w} may depend on the value of @var{out_h},
  592. and the expression for @var{out_h} may depend on @var{out_w}, but they
  593. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  594. evaluated after @var{out_w} and @var{out_h}.
  595. The @var{x} and @var{y} parameters specify the expressions for the
  596. position of the top-left corner of the output (non-cropped) area. They
  597. are evaluated for each frame. If the evaluated value is not valid, it
  598. is approximated to the nearest valid value.
  599. The default value of @var{x} is "(in_w-out_w)/2", and the default
  600. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  601. the center of the input image.
  602. The expression for @var{x} may depend on @var{y}, and the expression
  603. for @var{y} may depend on @var{x}.
  604. Follow some examples:
  605. @example
  606. # crop the central input area with size 100x100
  607. crop=100:100
  608. # crop the central input area with size 2/3 of the input video
  609. "crop=2/3*in_w:2/3*in_h"
  610. # crop the input video central square
  611. crop=in_h
  612. # delimit the rectangle with the top-left corner placed at position
  613. # 100:100 and the right-bottom corner corresponding to the right-bottom
  614. # corner of the input image.
  615. crop=in_w-100:in_h-100:100:100
  616. # crop 10 pixels from the left and right borders, and 20 pixels from
  617. # the top and bottom borders
  618. "crop=in_w-2*10:in_h-2*20"
  619. # keep only the bottom right quarter of the input image
  620. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  621. # crop height for getting Greek harmony
  622. "crop=in_w:1/PHI*in_w"
  623. # trembling effect
  624. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  625. # erratic camera effect depending on timestamp
  626. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  627. # set x depending on the value of y
  628. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  629. @end example
  630. @section cropdetect
  631. Auto-detect crop size.
  632. Calculate necessary cropping parameters and prints the recommended
  633. parameters through the logging system. The detected dimensions
  634. correspond to the non-black area of the input video.
  635. It accepts the syntax:
  636. @example
  637. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  638. @end example
  639. @table @option
  640. @item limit
  641. Threshold, which can be optionally specified from nothing (0) to
  642. everything (255), defaults to 24.
  643. @item round
  644. Value which the width/height should be divisible by, defaults to
  645. 16. The offset is automatically adjusted to center the video. Use 2 to
  646. get only even dimensions (needed for 4:2:2 video). 16 is best when
  647. encoding to most video codecs.
  648. @item reset
  649. Counter that determines after how many frames cropdetect will reset
  650. the previously detected largest video area and start over to detect
  651. the current optimal crop area. Defaults to 0.
  652. This can be useful when channel logos distort the video area. 0
  653. indicates never reset and return the largest area encountered during
  654. playback.
  655. @end table
  656. @section delogo
  657. Suppress a TV station logo by a simple interpolation of the surrounding
  658. pixels. Just set a rectangle covering the logo and watch it disappear
  659. (and sometimes something even uglier appear - your mileage may vary).
  660. The filter accepts parameters as a string of the form
  661. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  662. @var{key}=@var{value} pairs, separated by ":".
  663. The description of the accepted parameters follows.
  664. @table @option
  665. @item x, y
  666. Specify the top left corner coordinates of the logo. They must be
  667. specified.
  668. @item w, h
  669. Specify the width and height of the logo to clear. They must be
  670. specified.
  671. @item band, t
  672. Specify the thickness of the fuzzy edge of the rectangle (added to
  673. @var{w} and @var{h}). The default value is 4.
  674. @item show
  675. When set to 1, a green rectangle is drawn on the screen to simplify
  676. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  677. @var{band} is set to 4. The default value is 0.
  678. @end table
  679. Some examples follow.
  680. @itemize
  681. @item
  682. Set a rectangle covering the area with top left corner coordinates 0,0
  683. and size 100x77, setting a band of size 10:
  684. @example
  685. delogo=0:0:100:77:10
  686. @end example
  687. @item
  688. As the previous example, but use named options:
  689. @example
  690. delogo=x=0:y=0:w=100:h=77:band=10
  691. @end example
  692. @end itemize
  693. @section deshake
  694. Attempt to fix small changes in horizontal and/or vertical shift. This
  695. filter helps remove camera shake from hand-holding a camera, bumping a
  696. tripod, moving on a vehicle, etc.
  697. The filter accepts parameters as a string of the form
  698. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  699. A description of the accepted parameters follows.
  700. @table @option
  701. @item x, y, w, h
  702. Specify a rectangular area where to limit the search for motion
  703. vectors.
  704. If desired the search for motion vectors can be limited to a
  705. rectangular area of the frame defined by its top left corner, width
  706. and height. These parameters have the same meaning as the drawbox
  707. filter which can be used to visualise the position of the bounding
  708. box.
  709. This is useful when simultaneous movement of subjects within the frame
  710. might be confused for camera motion by the motion vector search.
  711. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  712. then the full frame is used. This allows later options to be set
  713. without specifying the bounding box for the motion vector search.
  714. Default - search the whole frame.
  715. @item rx, ry
  716. Specify the maximum extent of movement in x and y directions in the
  717. range 0-64 pixels. Default 16.
  718. @item edge
  719. Specify how to generate pixels to fill blanks at the edge of the
  720. frame. An integer from 0 to 3 as follows:
  721. @table @option
  722. @item 0
  723. Fill zeroes at blank locations
  724. @item 1
  725. Original image at blank locations
  726. @item 2
  727. Extruded edge value at blank locations
  728. @item 3
  729. Mirrored edge at blank locations
  730. @end table
  731. The default setting is mirror edge at blank locations.
  732. @item blocksize
  733. Specify the blocksize to use for motion search. Range 4-128 pixels,
  734. default 8.
  735. @item contrast
  736. Specify the contrast threshold for blocks. Only blocks with more than
  737. the specified contrast (difference between darkest and lightest
  738. pixels) will be considered. Range 1-255, default 125.
  739. @item search
  740. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  741. search. Default - exhaustive search.
  742. @item filename
  743. If set then a detailed log of the motion search is written to the
  744. specified file.
  745. @end table
  746. @section drawbox
  747. Draw a colored box on the input image.
  748. It accepts the syntax:
  749. @example
  750. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  751. @end example
  752. @table @option
  753. @item x, y
  754. Specify the top left corner coordinates of the box. Default to 0.
  755. @item width, height
  756. Specify the width and height of the box, if 0 they are interpreted as
  757. the input width and height. Default to 0.
  758. @item color
  759. Specify the color of the box to write, it can be the name of a color
  760. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  761. @end table
  762. Follow some examples:
  763. @example
  764. # draw a black box around the edge of the input image
  765. drawbox
  766. # draw a box with color red and an opacity of 50%
  767. drawbox=10:20:200:60:red@@0.5"
  768. @end example
  769. @section drawtext
  770. Draw text string or text from specified file on top of video using the
  771. libfreetype library.
  772. To enable compilation of this filter you need to configure FFmpeg with
  773. @code{--enable-libfreetype}.
  774. The filter also recognizes strftime() sequences in the provided text
  775. and expands them accordingly. Check the documentation of strftime().
  776. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  777. separated by ":".
  778. The description of the accepted parameters follows.
  779. @table @option
  780. @item fontfile
  781. The font file to be used for drawing text. Path must be included.
  782. This parameter is mandatory.
  783. @item text
  784. The text string to be drawn. The text must be a sequence of UTF-8
  785. encoded characters.
  786. This parameter is mandatory if no file is specified with the parameter
  787. @var{textfile}.
  788. @item textfile
  789. A text file containing text to be drawn. The text must be a sequence
  790. of UTF-8 encoded characters.
  791. This parameter is mandatory if no text string is specified with the
  792. parameter @var{text}.
  793. If both text and textfile are specified, an error is thrown.
  794. @item x, y
  795. The expressions which specify the offsets where text will be drawn
  796. within the video frame. They are relative to the top/left border of the
  797. output image.
  798. The default value of @var{x} and @var{y} is "0".
  799. See below for the list of accepted constants.
  800. @item fontsize
  801. The font size to be used for drawing text.
  802. The default value of @var{fontsize} is 16.
  803. @item fontcolor
  804. The color to be used for drawing fonts.
  805. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  806. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  807. The default value of @var{fontcolor} is "black".
  808. @item boxcolor
  809. The color to be used for drawing box around text.
  810. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  811. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  812. The default value of @var{boxcolor} is "white".
  813. @item box
  814. Used to draw a box around text using background color.
  815. Value should be either 1 (enable) or 0 (disable).
  816. The default value of @var{box} is 0.
  817. @item shadowx, shadowy
  818. The x and y offsets for the text shadow position with respect to the
  819. position of the text. They can be either positive or negative
  820. values. Default value for both is "0".
  821. @item shadowcolor
  822. The color to be used for drawing a shadow behind the drawn text. It
  823. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  824. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  825. The default value of @var{shadowcolor} is "black".
  826. @item ft_load_flags
  827. Flags to be used for loading the fonts.
  828. The flags map the corresponding flags supported by libfreetype, and are
  829. a combination of the following values:
  830. @table @var
  831. @item default
  832. @item no_scale
  833. @item no_hinting
  834. @item render
  835. @item no_bitmap
  836. @item vertical_layout
  837. @item force_autohint
  838. @item crop_bitmap
  839. @item pedantic
  840. @item ignore_global_advance_width
  841. @item no_recurse
  842. @item ignore_transform
  843. @item monochrome
  844. @item linear_design
  845. @item no_autohint
  846. @item end table
  847. @end table
  848. Default value is "render".
  849. For more information consult the documentation for the FT_LOAD_*
  850. libfreetype flags.
  851. @item tabsize
  852. The size in number of spaces to use for rendering the tab.
  853. Default value is 4.
  854. @end table
  855. The parameters for @var{x} and @var{y} are expressions containing the
  856. following constants:
  857. @table @option
  858. @item W, H
  859. the input width and height
  860. @item tw, text_w
  861. the width of the rendered text
  862. @item th, text_h
  863. the height of the rendered text
  864. @item lh, line_h
  865. the height of each text line
  866. @item sar
  867. input sample aspect ratio
  868. @item dar
  869. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  870. @item hsub, vsub
  871. horizontal and vertical chroma subsample values. For example for the
  872. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  873. @item max_glyph_w
  874. maximum glyph width, that is the maximum width for all the glyphs
  875. contained in the rendered text
  876. @item max_glyph_h
  877. maximum glyph height, that is the maximum height for all the glyphs
  878. contained in the rendered text, it is equivalent to @var{ascent} -
  879. @var{descent}.
  880. @item max_glyph_a, ascent
  881. the maximum distance from the baseline to the highest/upper grid
  882. coordinate used to place a glyph outline point, for all the rendered
  883. glyphs.
  884. It is a positive value, due to the grid's orientation with the Y axis
  885. upwards.
  886. @item max_glyph_d, descent
  887. the maximum distance from the baseline to the lowest grid coordinate
  888. used to place a glyph outline point, for all the rendered glyphs.
  889. This is a negative value, due to the grid's orientation, with the Y axis
  890. upwards.
  891. @item n
  892. the number of input frame, starting from 0
  893. @item t
  894. timestamp expressed in seconds, NAN if the input timestamp is unknown
  895. @item timecode
  896. initial timecode representation in "hh:mm:ss[:;.]ff" format. It can be used
  897. with or without text parameter. @var{rate} option must be specified
  898. @item r, rate
  899. frame rate (timecode only)
  900. @end table
  901. Some examples follow.
  902. @itemize
  903. @item
  904. Draw "Test Text" with font FreeSerif, using the default values for the
  905. optional parameters.
  906. @example
  907. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  908. @end example
  909. @item
  910. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  911. and y=50 (counting from the top-left corner of the screen), text is
  912. yellow with a red box around it. Both the text and the box have an
  913. opacity of 20%.
  914. @example
  915. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  916. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  917. @end example
  918. Note that the double quotes are not necessary if spaces are not used
  919. within the parameter list.
  920. @item
  921. Show the text at the center of the video frame:
  922. @example
  923. drawtext=fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  924. @end example
  925. @item
  926. Show a text line sliding from right to left in the last row of the video
  927. frame. The file @file{LONG_LINE} is assumed to contain a single line
  928. with no newlines.
  929. @example
  930. drawtext=fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t
  931. @end example
  932. @item
  933. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  934. @example
  935. drawtext=fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  936. @end example
  937. @item
  938. Draw a single green letter "g", at the center of the input video.
  939. The glyph baseline is placed at half screen height.
  940. @example
  941. drawtext=fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent
  942. @end example
  943. @end itemize
  944. For more information about libfreetype, check:
  945. @url{http://www.freetype.org/}.
  946. @section fade
  947. Apply fade-in/out effect to input video.
  948. It accepts the parameters:
  949. @var{type}:@var{start_frame}:@var{nb_frames}[:@var{options}]
  950. @var{type} specifies if the effect type, can be either "in" for
  951. fade-in, or "out" for a fade-out effect.
  952. @var{start_frame} specifies the number of the start frame for starting
  953. to apply the fade effect.
  954. @var{nb_frames} specifies the number of frames for which the fade
  955. effect has to last. At the end of the fade-in effect the output video
  956. will have the same intensity as the input video, at the end of the
  957. fade-out transition the output video will be completely black.
  958. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  959. separated by ":". The description of the accepted options follows.
  960. @table @option
  961. @item type, t
  962. See @var{type}.
  963. @item start_frame, s
  964. See @var{start_frame}.
  965. @item nb_frames, n
  966. See @var{nb_frames}.
  967. @item alpha
  968. If set to 1, fade only alpha channel, if one exists on the input.
  969. Default value is 0.
  970. @end table
  971. A few usage examples follow, usable too as test scenarios.
  972. @example
  973. # fade in first 30 frames of video
  974. fade=in:0:30
  975. # fade out last 45 frames of a 200-frame video
  976. fade=out:155:45
  977. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  978. fade=in:0:25, fade=out:975:25
  979. # make first 5 frames black, then fade in from frame 5-24
  980. fade=in:5:20
  981. # fade in alpha over first 25 frames of video
  982. fade=in:0:25:alpha=1
  983. @end example
  984. @section fieldorder
  985. Transform the field order of the input video.
  986. It accepts one parameter which specifies the required field order that
  987. the input interlaced video will be transformed to. The parameter can
  988. assume one of the following values:
  989. @table @option
  990. @item 0 or bff
  991. output bottom field first
  992. @item 1 or tff
  993. output top field first
  994. @end table
  995. Default value is "tff".
  996. Transformation is achieved by shifting the picture content up or down
  997. by one line, and filling the remaining line with appropriate picture content.
  998. This method is consistent with most broadcast field order converters.
  999. If the input video is not flagged as being interlaced, or it is already
  1000. flagged as being of the required output field order then this filter does
  1001. not alter the incoming video.
  1002. This filter is very useful when converting to or from PAL DV material,
  1003. which is bottom field first.
  1004. For example:
  1005. @example
  1006. ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  1007. @end example
  1008. @section fifo
  1009. Buffer input images and send them when they are requested.
  1010. This filter is mainly useful when auto-inserted by the libavfilter
  1011. framework.
  1012. The filter does not take parameters.
  1013. @section format
  1014. Convert the input video to one of the specified pixel formats.
  1015. Libavfilter will try to pick one that is supported for the input to
  1016. the next filter.
  1017. The filter accepts a list of pixel format names, separated by ":",
  1018. for example "yuv420p:monow:rgb24".
  1019. Some examples follow:
  1020. @example
  1021. # convert the input video to the format "yuv420p"
  1022. format=yuv420p
  1023. # convert the input video to any of the formats in the list
  1024. format=yuv420p:yuv444p:yuv410p
  1025. @end example
  1026. @anchor{frei0r}
  1027. @section frei0r
  1028. Apply a frei0r effect to the input video.
  1029. To enable compilation of this filter you need to install the frei0r
  1030. header and configure FFmpeg with --enable-frei0r.
  1031. The filter supports the syntax:
  1032. @example
  1033. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  1034. @end example
  1035. @var{filter_name} is the name to the frei0r effect to load. If the
  1036. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  1037. is searched in each one of the directories specified by the colon
  1038. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  1039. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  1040. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  1041. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  1042. for the frei0r effect.
  1043. A frei0r effect parameter can be a boolean (whose values are specified
  1044. with "y" and "n"), a double, a color (specified by the syntax
  1045. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  1046. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  1047. description), a position (specified by the syntax @var{X}/@var{Y},
  1048. @var{X} and @var{Y} being float numbers) and a string.
  1049. The number and kind of parameters depend on the loaded effect. If an
  1050. effect parameter is not specified the default value is set.
  1051. Some examples follow:
  1052. @example
  1053. # apply the distort0r effect, set the first two double parameters
  1054. frei0r=distort0r:0.5:0.01
  1055. # apply the colordistance effect, takes a color as first parameter
  1056. frei0r=colordistance:0.2/0.3/0.4
  1057. frei0r=colordistance:violet
  1058. frei0r=colordistance:0x112233
  1059. # apply the perspective effect, specify the top left and top right
  1060. # image positions
  1061. frei0r=perspective:0.2/0.2:0.8/0.2
  1062. @end example
  1063. For more information see:
  1064. @url{http://piksel.org/frei0r}
  1065. @section gradfun
  1066. Fix the banding artifacts that are sometimes introduced into nearly flat
  1067. regions by truncation to 8bit color depth.
  1068. Interpolate the gradients that should go where the bands are, and
  1069. dither them.
  1070. This filter is designed for playback only. Do not use it prior to
  1071. lossy compression, because compression tends to lose the dither and
  1072. bring back the bands.
  1073. The filter takes two optional parameters, separated by ':':
  1074. @var{strength}:@var{radius}
  1075. @var{strength} is the maximum amount by which the filter will change
  1076. any one pixel. Also the threshold for detecting nearly flat
  1077. regions. Acceptable values range from .51 to 255, default value is
  1078. 1.2, out-of-range values will be clipped to the valid range.
  1079. @var{radius} is the neighborhood to fit the gradient to. A larger
  1080. radius makes for smoother gradients, but also prevents the filter from
  1081. modifying the pixels near detailed regions. Acceptable values are
  1082. 8-32, default value is 16, out-of-range values will be clipped to the
  1083. valid range.
  1084. @example
  1085. # default parameters
  1086. gradfun=1.2:16
  1087. # omitting radius
  1088. gradfun=1.2
  1089. @end example
  1090. @section hflip
  1091. Flip the input video horizontally.
  1092. For example to horizontally flip the input video with @command{ffmpeg}:
  1093. @example
  1094. ffmpeg -i in.avi -vf "hflip" out.avi
  1095. @end example
  1096. @section hqdn3d
  1097. High precision/quality 3d denoise filter. This filter aims to reduce
  1098. image noise producing smooth images and making still images really
  1099. still. It should enhance compressibility.
  1100. It accepts the following optional parameters:
  1101. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  1102. @table @option
  1103. @item luma_spatial
  1104. a non-negative float number which specifies spatial luma strength,
  1105. defaults to 4.0
  1106. @item chroma_spatial
  1107. a non-negative float number which specifies spatial chroma strength,
  1108. defaults to 3.0*@var{luma_spatial}/4.0
  1109. @item luma_tmp
  1110. a float number which specifies luma temporal strength, defaults to
  1111. 6.0*@var{luma_spatial}/4.0
  1112. @item chroma_tmp
  1113. a float number which specifies chroma temporal strength, defaults to
  1114. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  1115. @end table
  1116. @section lut, lutrgb, lutyuv
  1117. Compute a look-up table for binding each pixel component input value
  1118. to an output value, and apply it to input video.
  1119. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1120. to an RGB input video.
  1121. These filters accept in input a ":"-separated list of options, which
  1122. specify the expressions used for computing the lookup table for the
  1123. corresponding pixel component values.
  1124. The @var{lut} filter requires either YUV or RGB pixel formats in
  1125. input, and accepts the options:
  1126. @table @option
  1127. @item c0
  1128. first pixel component
  1129. @item c1
  1130. second pixel component
  1131. @item c2
  1132. third pixel component
  1133. @item c3
  1134. fourth pixel component, corresponds to the alpha component
  1135. @end table
  1136. The exact component associated to each option depends on the format in
  1137. input.
  1138. The @var{lutrgb} filter requires RGB pixel formats in input, and
  1139. accepts the options:
  1140. @table @option
  1141. @item r
  1142. red component
  1143. @item g
  1144. green component
  1145. @item b
  1146. blue component
  1147. @item a
  1148. alpha component
  1149. @end table
  1150. The @var{lutyuv} filter requires YUV pixel formats in input, and
  1151. accepts the options:
  1152. @table @option
  1153. @item y
  1154. Y/luminance component
  1155. @item u
  1156. U/Cb component
  1157. @item v
  1158. V/Cr component
  1159. @item a
  1160. alpha component
  1161. @end table
  1162. The expressions can contain the following constants and functions:
  1163. @table @option
  1164. @item w, h
  1165. the input width and height
  1166. @item val
  1167. input value for the pixel component
  1168. @item clipval
  1169. the input value clipped in the @var{minval}-@var{maxval} range
  1170. @item maxval
  1171. maximum value for the pixel component
  1172. @item minval
  1173. minimum value for the pixel component
  1174. @item negval
  1175. the negated value for the pixel component value clipped in the
  1176. @var{minval}-@var{maxval} range , it corresponds to the expression
  1177. "maxval-clipval+minval"
  1178. @item clip(val)
  1179. the computed value in @var{val} clipped in the
  1180. @var{minval}-@var{maxval} range
  1181. @item gammaval(gamma)
  1182. the computed gamma correction value of the pixel component value
  1183. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1184. expression
  1185. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1186. @end table
  1187. All expressions default to "val".
  1188. Some examples follow:
  1189. @example
  1190. # negate input video
  1191. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1192. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1193. # the above is the same as
  1194. lutrgb="r=negval:g=negval:b=negval"
  1195. lutyuv="y=negval:u=negval:v=negval"
  1196. # negate luminance
  1197. lutyuv=y=negval
  1198. # remove chroma components, turns the video into a graytone image
  1199. lutyuv="u=128:v=128"
  1200. # apply a luma burning effect
  1201. lutyuv="y=2*val"
  1202. # remove green and blue components
  1203. lutrgb="g=0:b=0"
  1204. # set a constant alpha channel value on input
  1205. format=rgba,lutrgb=a="maxval-minval/2"
  1206. # correct luminance gamma by a 0.5 factor
  1207. lutyuv=y=gammaval(0.5)
  1208. @end example
  1209. @section mp
  1210. Apply an MPlayer filter to the input video.
  1211. This filter provides a wrapper around most of the filters of
  1212. MPlayer/MEncoder.
  1213. This wrapper is considered experimental. Some of the wrapped filters
  1214. may not work properly and we may drop support for them, as they will
  1215. be implemented natively into FFmpeg. Thus you should avoid
  1216. depending on them when writing portable scripts.
  1217. The filters accepts the parameters:
  1218. @var{filter_name}[:=]@var{filter_params}
  1219. @var{filter_name} is the name of a supported MPlayer filter,
  1220. @var{filter_params} is a string containing the parameters accepted by
  1221. the named filter.
  1222. The list of the currently supported filters follows:
  1223. @table @var
  1224. @item 2xsai
  1225. @item decimate
  1226. @item denoise3d
  1227. @item detc
  1228. @item dint
  1229. @item divtc
  1230. @item down3dright
  1231. @item dsize
  1232. @item eq2
  1233. @item eq
  1234. @item field
  1235. @item fil
  1236. @item fixpts
  1237. @item framestep
  1238. @item fspp
  1239. @item geq
  1240. @item harddup
  1241. @item hqdn3d
  1242. @item hue
  1243. @item il
  1244. @item ilpack
  1245. @item ivtc
  1246. @item kerndeint
  1247. @item mcdeint
  1248. @item mirror
  1249. @item noise
  1250. @item ow
  1251. @item palette
  1252. @item perspective
  1253. @item phase
  1254. @item pp7
  1255. @item pullup
  1256. @item qp
  1257. @item rectangle
  1258. @item remove-logo
  1259. @item rotate
  1260. @item sab
  1261. @item screenshot
  1262. @item smartblur
  1263. @item softpulldown
  1264. @item softskip
  1265. @item spp
  1266. @item swapuv
  1267. @item telecine
  1268. @item tile
  1269. @item tinterlace
  1270. @item unsharp
  1271. @item uspp
  1272. @item yuvcsp
  1273. @item yvu9
  1274. @end table
  1275. The parameter syntax and behavior for the listed filters are the same
  1276. of the corresponding MPlayer filters. For detailed instructions check
  1277. the "VIDEO FILTERS" section in the MPlayer manual.
  1278. Some examples follow:
  1279. @example
  1280. # remove a logo by interpolating the surrounding pixels
  1281. mp=delogo=200:200:80:20:1
  1282. # adjust gamma, brightness, contrast
  1283. mp=eq2=1.0:2:0.5
  1284. # tweak hue and saturation
  1285. mp=hue=100:-10
  1286. @end example
  1287. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  1288. @section negate
  1289. Negate input video.
  1290. This filter accepts an integer in input, if non-zero it negates the
  1291. alpha component (if available). The default value in input is 0.
  1292. @section noformat
  1293. Force libavfilter not to use any of the specified pixel formats for the
  1294. input to the next filter.
  1295. The filter accepts a list of pixel format names, separated by ":",
  1296. for example "yuv420p:monow:rgb24".
  1297. Some examples follow:
  1298. @example
  1299. # force libavfilter to use a format different from "yuv420p" for the
  1300. # input to the vflip filter
  1301. noformat=yuv420p,vflip
  1302. # convert the input video to any of the formats not contained in the list
  1303. noformat=yuv420p:yuv444p:yuv410p
  1304. @end example
  1305. @section null
  1306. Pass the video source unchanged to the output.
  1307. @section ocv
  1308. Apply video transform using libopencv.
  1309. To enable this filter install libopencv library and headers and
  1310. configure FFmpeg with --enable-libopencv.
  1311. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1312. @var{filter_name} is the name of the libopencv filter to apply.
  1313. @var{filter_params} specifies the parameters to pass to the libopencv
  1314. filter. If not specified the default values are assumed.
  1315. Refer to the official libopencv documentation for more precise
  1316. information:
  1317. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1318. Follows the list of supported libopencv filters.
  1319. @anchor{dilate}
  1320. @subsection dilate
  1321. Dilate an image by using a specific structuring element.
  1322. This filter corresponds to the libopencv function @code{cvDilate}.
  1323. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  1324. @var{struct_el} represents a structuring element, and has the syntax:
  1325. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1326. @var{cols} and @var{rows} represent the number of columns and rows of
  1327. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1328. point, and @var{shape} the shape for the structuring element, and
  1329. can be one of the values "rect", "cross", "ellipse", "custom".
  1330. If the value for @var{shape} is "custom", it must be followed by a
  1331. string of the form "=@var{filename}". The file with name
  1332. @var{filename} is assumed to represent a binary image, with each
  1333. printable character corresponding to a bright pixel. When a custom
  1334. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1335. or columns and rows of the read file are assumed instead.
  1336. The default value for @var{struct_el} is "3x3+0x0/rect".
  1337. @var{nb_iterations} specifies the number of times the transform is
  1338. applied to the image, and defaults to 1.
  1339. Follow some example:
  1340. @example
  1341. # use the default values
  1342. ocv=dilate
  1343. # dilate using a structuring element with a 5x5 cross, iterate two times
  1344. ocv=dilate=5x5+2x2/cross:2
  1345. # read the shape from the file diamond.shape, iterate two times
  1346. # the file diamond.shape may contain a pattern of characters like this:
  1347. # *
  1348. # ***
  1349. # *****
  1350. # ***
  1351. # *
  1352. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1353. ocv=0x0+2x2/custom=diamond.shape:2
  1354. @end example
  1355. @subsection erode
  1356. Erode an image by using a specific structuring element.
  1357. This filter corresponds to the libopencv function @code{cvErode}.
  1358. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1359. with the same syntax and semantics as the @ref{dilate} filter.
  1360. @subsection smooth
  1361. Smooth the input video.
  1362. The filter takes the following parameters:
  1363. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  1364. @var{type} is the type of smooth filter to apply, and can be one of
  1365. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1366. "bilateral". The default value is "gaussian".
  1367. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1368. parameters whose meanings depend on smooth type. @var{param1} and
  1369. @var{param2} accept integer positive values or 0, @var{param3} and
  1370. @var{param4} accept float values.
  1371. The default value for @var{param1} is 3, the default value for the
  1372. other parameters is 0.
  1373. These parameters correspond to the parameters assigned to the
  1374. libopencv function @code{cvSmooth}.
  1375. @anchor{overlay}
  1376. @section overlay
  1377. Overlay one video on top of another.
  1378. It takes two inputs and one output, the first input is the "main"
  1379. video on which the second input is overlayed.
  1380. It accepts the parameters: @var{x}:@var{y}[:@var{options}].
  1381. @var{x} is the x coordinate of the overlayed video on the main video,
  1382. @var{y} is the y coordinate. @var{x} and @var{y} are expressions containing
  1383. the following parameters:
  1384. @table @option
  1385. @item main_w, main_h
  1386. main input width and height
  1387. @item W, H
  1388. same as @var{main_w} and @var{main_h}
  1389. @item overlay_w, overlay_h
  1390. overlay input width and height
  1391. @item w, h
  1392. same as @var{overlay_w} and @var{overlay_h}
  1393. @end table
  1394. @var{options} is an optional list of @var{key}=@var{value} pairs,
  1395. separated by ":".
  1396. The description of the accepted options follows.
  1397. @table @option
  1398. @item rgb
  1399. If set to 1, force the filter to accept inputs in the RGB
  1400. color space. Default value is 0.
  1401. @end table
  1402. Be aware that frames are taken from each input video in timestamp
  1403. order, hence, if their initial timestamps differ, it is a a good idea
  1404. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1405. have them begin in the same zero timestamp, as it does the example for
  1406. the @var{movie} filter.
  1407. Follow some examples:
  1408. @example
  1409. # draw the overlay at 10 pixels from the bottom right
  1410. # corner of the main video.
  1411. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  1412. # insert a transparent PNG logo in the bottom left corner of the input
  1413. movie=logo.png [logo];
  1414. [in][logo] overlay=10:main_h-overlay_h-10 [out]
  1415. # insert 2 different transparent PNG logos (second logo on bottom
  1416. # right corner):
  1417. movie=logo1.png [logo1];
  1418. movie=logo2.png [logo2];
  1419. [in][logo1] overlay=10:H-h-10 [in+logo1];
  1420. [in+logo1][logo2] overlay=W-w-10:H-h-10 [out]
  1421. # add a transparent color layer on top of the main video,
  1422. # WxH specifies the size of the main input to the overlay filter
  1423. color=red@.3:WxH [over]; [in][over] overlay [out]
  1424. @end example
  1425. You can chain together more overlays but the efficiency of such
  1426. approach is yet to be tested.
  1427. @section pad
  1428. Add paddings to the input image, and places the original input at the
  1429. given coordinates @var{x}, @var{y}.
  1430. It accepts the following parameters:
  1431. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  1432. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1433. expressions containing the following constants:
  1434. @table @option
  1435. @item in_w, in_h
  1436. the input video width and height
  1437. @item iw, ih
  1438. same as @var{in_w} and @var{in_h}
  1439. @item out_w, out_h
  1440. the output width and height, that is the size of the padded area as
  1441. specified by the @var{width} and @var{height} expressions
  1442. @item ow, oh
  1443. same as @var{out_w} and @var{out_h}
  1444. @item x, y
  1445. x and y offsets as specified by the @var{x} and @var{y}
  1446. expressions, or NAN if not yet specified
  1447. @item a
  1448. same as @var{iw} / @var{ih}
  1449. @item sar
  1450. input sample aspect ratio
  1451. @item dar
  1452. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1453. @item hsub, vsub
  1454. horizontal and vertical chroma subsample values. For example for the
  1455. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1456. @end table
  1457. Follows the description of the accepted parameters.
  1458. @table @option
  1459. @item width, height
  1460. Specify the size of the output image with the paddings added. If the
  1461. value for @var{width} or @var{height} is 0, the corresponding input size
  1462. is used for the output.
  1463. The @var{width} expression can reference the value set by the
  1464. @var{height} expression, and vice versa.
  1465. The default value of @var{width} and @var{height} is 0.
  1466. @item x, y
  1467. Specify the offsets where to place the input image in the padded area
  1468. with respect to the top/left border of the output image.
  1469. The @var{x} expression can reference the value set by the @var{y}
  1470. expression, and vice versa.
  1471. The default value of @var{x} and @var{y} is 0.
  1472. @item color
  1473. Specify the color of the padded area, it can be the name of a color
  1474. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1475. The default value of @var{color} is "black".
  1476. @end table
  1477. Some examples follow:
  1478. @example
  1479. # Add paddings with color "violet" to the input video. Output video
  1480. # size is 640x480, the top-left corner of the input video is placed at
  1481. # column 0, row 40.
  1482. pad=640:480:0:40:violet
  1483. # pad the input to get an output with dimensions increased bt 3/2,
  1484. # and put the input video at the center of the padded area
  1485. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1486. # pad the input to get a squared output with size equal to the maximum
  1487. # value between the input width and height, and put the input video at
  1488. # the center of the padded area
  1489. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1490. # pad the input to get a final w/h ratio of 16:9
  1491. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1492. # for anamorphic video, in order to set the output display aspect ratio,
  1493. # it is necessary to use sar in the expression, according to the relation:
  1494. # (ih * X / ih) * sar = output_dar
  1495. # X = output_dar / sar
  1496. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  1497. # double output size and put the input video in the bottom-right
  1498. # corner of the output padded area
  1499. pad="2*iw:2*ih:ow-iw:oh-ih"
  1500. @end example
  1501. @section pixdesctest
  1502. Pixel format descriptor test filter, mainly useful for internal
  1503. testing. The output video should be equal to the input video.
  1504. For example:
  1505. @example
  1506. format=monow, pixdesctest
  1507. @end example
  1508. can be used to test the monowhite pixel format descriptor definition.
  1509. @section scale
  1510. Scale the input video to @var{width}:@var{height}[:@var{interl}=@{1|-1@}] and/or convert the image format.
  1511. The parameters @var{width} and @var{height} are expressions containing
  1512. the following constants:
  1513. @table @option
  1514. @item in_w, in_h
  1515. the input width and height
  1516. @item iw, ih
  1517. same as @var{in_w} and @var{in_h}
  1518. @item out_w, out_h
  1519. the output (cropped) width and height
  1520. @item ow, oh
  1521. same as @var{out_w} and @var{out_h}
  1522. @item a
  1523. same as @var{iw} / @var{ih}
  1524. @item sar
  1525. input sample aspect ratio
  1526. @item dar
  1527. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1528. @item sar
  1529. input sample aspect ratio
  1530. @item hsub, vsub
  1531. horizontal and vertical chroma subsample values. For example for the
  1532. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1533. @end table
  1534. If the input image format is different from the format requested by
  1535. the next filter, the scale filter will convert the input to the
  1536. requested format.
  1537. If the value for @var{width} or @var{height} is 0, the respective input
  1538. size is used for the output.
  1539. If the value for @var{width} or @var{height} is -1, the scale filter will
  1540. use, for the respective output size, a value that maintains the aspect
  1541. ratio of the input image.
  1542. The default value of @var{width} and @var{height} is 0.
  1543. Valid values for the optional parameter @var{interl} are:
  1544. @table @option
  1545. @item 1
  1546. force interlaced aware scaling
  1547. @item -1
  1548. select interlaced aware scaling depending on whether the source frames
  1549. are flagged as interlaced or not
  1550. @end table
  1551. Some examples follow:
  1552. @example
  1553. # scale the input video to a size of 200x100.
  1554. scale=200:100
  1555. # scale the input to 2x
  1556. scale=2*iw:2*ih
  1557. # the above is the same as
  1558. scale=2*in_w:2*in_h
  1559. # scale the input to half size
  1560. scale=iw/2:ih/2
  1561. # increase the width, and set the height to the same size
  1562. scale=3/2*iw:ow
  1563. # seek for Greek harmony
  1564. scale=iw:1/PHI*iw
  1565. scale=ih*PHI:ih
  1566. # increase the height, and set the width to 3/2 of the height
  1567. scale=3/2*oh:3/5*ih
  1568. # increase the size, but make the size a multiple of the chroma
  1569. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1570. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1571. scale='min(500\, iw*3/2):-1'
  1572. @end example
  1573. @section select
  1574. Select frames to pass in output.
  1575. It accepts in input an expression, which is evaluated for each input
  1576. frame. If the expression is evaluated to a non-zero value, the frame
  1577. is selected and passed to the output, otherwise it is discarded.
  1578. The expression can contain the following constants:
  1579. @table @option
  1580. @item n
  1581. the sequential number of the filtered frame, starting from 0
  1582. @item selected_n
  1583. the sequential number of the selected frame, starting from 0
  1584. @item prev_selected_n
  1585. the sequential number of the last selected frame, NAN if undefined
  1586. @item TB
  1587. timebase of the input timestamps
  1588. @item pts
  1589. the PTS (Presentation TimeStamp) of the filtered video frame,
  1590. expressed in @var{TB} units, NAN if undefined
  1591. @item t
  1592. the PTS (Presentation TimeStamp) of the filtered video frame,
  1593. expressed in seconds, NAN if undefined
  1594. @item prev_pts
  1595. the PTS of the previously filtered video frame, NAN if undefined
  1596. @item prev_selected_pts
  1597. the PTS of the last previously filtered video frame, NAN if undefined
  1598. @item prev_selected_t
  1599. the PTS of the last previously selected video frame, NAN if undefined
  1600. @item start_pts
  1601. the PTS of the first video frame in the video, NAN if undefined
  1602. @item start_t
  1603. the time of the first video frame in the video, NAN if undefined
  1604. @item pict_type
  1605. the type of the filtered frame, can assume one of the following
  1606. values:
  1607. @table @option
  1608. @item I
  1609. @item P
  1610. @item B
  1611. @item S
  1612. @item SI
  1613. @item SP
  1614. @item BI
  1615. @end table
  1616. @item interlace_type
  1617. the frame interlace type, can assume one of the following values:
  1618. @table @option
  1619. @item PROGRESSIVE
  1620. the frame is progressive (not interlaced)
  1621. @item TOPFIRST
  1622. the frame is top-field-first
  1623. @item BOTTOMFIRST
  1624. the frame is bottom-field-first
  1625. @end table
  1626. @item key
  1627. 1 if the filtered frame is a key-frame, 0 otherwise
  1628. @item pos
  1629. the position in the file of the filtered frame, -1 if the information
  1630. is not available (e.g. for synthetic video)
  1631. @end table
  1632. The default value of the select expression is "1".
  1633. Some examples follow:
  1634. @example
  1635. # select all frames in input
  1636. select
  1637. # the above is the same as:
  1638. select=1
  1639. # skip all frames:
  1640. select=0
  1641. # select only I-frames
  1642. select='eq(pict_type\,I)'
  1643. # select one frame every 100
  1644. select='not(mod(n\,100))'
  1645. # select only frames contained in the 10-20 time interval
  1646. select='gte(t\,10)*lte(t\,20)'
  1647. # select only I frames contained in the 10-20 time interval
  1648. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1649. # select frames with a minimum distance of 10 seconds
  1650. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1651. @end example
  1652. @anchor{setdar}
  1653. @section setdar
  1654. Set the Display Aspect Ratio for the filter output video.
  1655. This is done by changing the specified Sample (aka Pixel) Aspect
  1656. Ratio, according to the following equation:
  1657. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1658. Keep in mind that this filter does not modify the pixel dimensions of
  1659. the video frame. Also the display aspect ratio set by this filter may
  1660. be changed by later filters in the filterchain, e.g. in case of
  1661. scaling or if another "setdar" or a "setsar" filter is applied.
  1662. The filter accepts a parameter string which represents the wanted
  1663. display aspect ratio.
  1664. The parameter can be a floating point number string, or an expression
  1665. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1666. numerator and denominator of the aspect ratio.
  1667. If the parameter is not specified, it is assumed the value "0:1".
  1668. For example to change the display aspect ratio to 16:9, specify:
  1669. @example
  1670. setdar=16:9
  1671. # the above is equivalent to
  1672. setdar=1.77777
  1673. @end example
  1674. See also the @ref{setsar} filter documentation.
  1675. @section setpts
  1676. Change the PTS (presentation timestamp) of the input video frames.
  1677. Accept in input an expression evaluated through the eval API, which
  1678. can contain the following constants:
  1679. @table @option
  1680. @item PTS
  1681. the presentation timestamp in input
  1682. @item N
  1683. the count of the input frame, starting from 0.
  1684. @item STARTPTS
  1685. the PTS of the first video frame
  1686. @item INTERLACED
  1687. tell if the current frame is interlaced
  1688. @item POS
  1689. original position in the file of the frame, or undefined if undefined
  1690. for the current frame
  1691. @item PREV_INPTS
  1692. previous input PTS
  1693. @item PREV_OUTPTS
  1694. previous output PTS
  1695. @end table
  1696. Some examples follow:
  1697. @example
  1698. # start counting PTS from zero
  1699. setpts=PTS-STARTPTS
  1700. # fast motion
  1701. setpts=0.5*PTS
  1702. # slow motion
  1703. setpts=2.0*PTS
  1704. # fixed rate 25 fps
  1705. setpts=N/(25*TB)
  1706. # fixed rate 25 fps with some jitter
  1707. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1708. @end example
  1709. @anchor{setsar}
  1710. @section setsar
  1711. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1712. Note that as a consequence of the application of this filter, the
  1713. output display aspect ratio will change according to the following
  1714. equation:
  1715. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1716. Keep in mind that the sample aspect ratio set by this filter may be
  1717. changed by later filters in the filterchain, e.g. if another "setsar"
  1718. or a "setdar" filter is applied.
  1719. The filter accepts a parameter string which represents the wanted
  1720. sample aspect ratio.
  1721. The parameter can be a floating point number string, or an expression
  1722. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1723. numerator and denominator of the aspect ratio.
  1724. If the parameter is not specified, it is assumed the value "0:1".
  1725. For example to change the sample aspect ratio to 10:11, specify:
  1726. @example
  1727. setsar=10:11
  1728. @end example
  1729. @section settb
  1730. Set the timebase to use for the output frames timestamps.
  1731. It is mainly useful for testing timebase configuration.
  1732. It accepts in input an arithmetic expression representing a rational.
  1733. The expression can contain the constants "AVTB" (the
  1734. default timebase), and "intb" (the input timebase).
  1735. The default value for the input is "intb".
  1736. Follow some examples.
  1737. @example
  1738. # set the timebase to 1/25
  1739. settb=1/25
  1740. # set the timebase to 1/10
  1741. settb=0.1
  1742. #set the timebase to 1001/1000
  1743. settb=1+0.001
  1744. #set the timebase to 2*intb
  1745. settb=2*intb
  1746. #set the default timebase value
  1747. settb=AVTB
  1748. @end example
  1749. @section showinfo
  1750. Show a line containing various information for each input video frame.
  1751. The input video is not modified.
  1752. The shown line contains a sequence of key/value pairs of the form
  1753. @var{key}:@var{value}.
  1754. A description of each shown parameter follows:
  1755. @table @option
  1756. @item n
  1757. sequential number of the input frame, starting from 0
  1758. @item pts
  1759. Presentation TimeStamp of the input frame, expressed as a number of
  1760. time base units. The time base unit depends on the filter input pad.
  1761. @item pts_time
  1762. Presentation TimeStamp of the input frame, expressed as a number of
  1763. seconds
  1764. @item pos
  1765. position of the frame in the input stream, -1 if this information in
  1766. unavailable and/or meaningless (for example in case of synthetic video)
  1767. @item fmt
  1768. pixel format name
  1769. @item sar
  1770. sample aspect ratio of the input frame, expressed in the form
  1771. @var{num}/@var{den}
  1772. @item s
  1773. size of the input frame, expressed in the form
  1774. @var{width}x@var{height}
  1775. @item i
  1776. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1777. for bottom field first)
  1778. @item iskey
  1779. 1 if the frame is a key frame, 0 otherwise
  1780. @item type
  1781. picture type of the input frame ("I" for an I-frame, "P" for a
  1782. P-frame, "B" for a B-frame, "?" for unknown type).
  1783. Check also the documentation of the @code{AVPictureType} enum and of
  1784. the @code{av_get_picture_type_char} function defined in
  1785. @file{libavutil/avutil.h}.
  1786. @item checksum
  1787. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  1788. @item plane_checksum
  1789. Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  1790. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1791. @end table
  1792. @section slicify
  1793. Pass the images of input video on to next video filter as multiple
  1794. slices.
  1795. @example
  1796. ffmpeg -i in.avi -vf "slicify=32" out.avi
  1797. @end example
  1798. The filter accepts the slice height as parameter. If the parameter is
  1799. not specified it will use the default value of 16.
  1800. Adding this in the beginning of filter chains should make filtering
  1801. faster due to better use of the memory cache.
  1802. @section split
  1803. Pass on the input video to two outputs. Both outputs are identical to
  1804. the input video.
  1805. For example:
  1806. @example
  1807. [in] split [splitout1][splitout2];
  1808. [splitout1] crop=100:100:0:0 [cropout];
  1809. [splitout2] pad=200:200:100:100 [padout];
  1810. @end example
  1811. will create two separate outputs from the same input, one cropped and
  1812. one padded.
  1813. @section thumbnail
  1814. Select the most representative frame in a given sequence of consecutive frames.
  1815. It accepts as argument the frames batch size to analyze (default @var{N}=100);
  1816. in a set of @var{N} frames, the filter will pick one of them, and then handle
  1817. the next batch of @var{N} frames until the end.
  1818. Since the filter keeps track of the whole frames sequence, a bigger @var{N}
  1819. value will result in a higher memory usage, so a high value is not recommended.
  1820. The following example extract one picture each 50 frames:
  1821. @example
  1822. thumbnail=50
  1823. @end example
  1824. Complete example of a thumbnail creation with @command{ffmpeg}:
  1825. @example
  1826. ffmpeg -i in.avi -vf thumbnail,scale=300:200 -frames:v 1 out.png
  1827. @end example
  1828. @section tinterlace
  1829. Perform various types of temporal field interlacing.
  1830. Frames are counted starting from 1, so the first input frame is
  1831. considered odd.
  1832. This filter accepts a single parameter specifying the mode. Available
  1833. modes are:
  1834. @table @samp
  1835. @item 0
  1836. Move odd frames into the upper field, even into the lower field,
  1837. generating a double height frame at half framerate.
  1838. @item 1
  1839. Only output even frames, odd frames are dropped, generating a frame with
  1840. unchanged height at half framerate.
  1841. @item 2
  1842. Only output odd frames, even frames are dropped, generating a frame with
  1843. unchanged height at half framerate.
  1844. @item 3
  1845. Expand each frame to full height, but pad alternate lines with black,
  1846. generating a frame with double height at the same input framerate.
  1847. @item 4
  1848. Interleave the upper field from odd frames with the lower field from
  1849. even frames, generating a frame with unchanged height at half framerate.
  1850. @end table
  1851. Default mode is 0.
  1852. @section transpose
  1853. Transpose rows with columns in the input video and optionally flip it.
  1854. It accepts a parameter representing an integer, which can assume the
  1855. values:
  1856. @table @samp
  1857. @item 0
  1858. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1859. @example
  1860. L.R L.l
  1861. . . -> . .
  1862. l.r R.r
  1863. @end example
  1864. @item 1
  1865. Rotate by 90 degrees clockwise, that is:
  1866. @example
  1867. L.R l.L
  1868. . . -> . .
  1869. l.r r.R
  1870. @end example
  1871. @item 2
  1872. Rotate by 90 degrees counterclockwise, that is:
  1873. @example
  1874. L.R R.r
  1875. . . -> . .
  1876. l.r L.l
  1877. @end example
  1878. @item 3
  1879. Rotate by 90 degrees clockwise and vertically flip, that is:
  1880. @example
  1881. L.R r.R
  1882. . . -> . .
  1883. l.r l.L
  1884. @end example
  1885. @end table
  1886. @section unsharp
  1887. Sharpen or blur the input video.
  1888. It accepts the following parameters:
  1889. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  1890. Negative values for the amount will blur the input video, while positive
  1891. values will sharpen. All parameters are optional and default to the
  1892. equivalent of the string '5:5:1.0:5:5:0.0'.
  1893. @table @option
  1894. @item luma_msize_x
  1895. Set the luma matrix horizontal size. It can be an integer between 3
  1896. and 13, default value is 5.
  1897. @item luma_msize_y
  1898. Set the luma matrix vertical size. It can be an integer between 3
  1899. and 13, default value is 5.
  1900. @item luma_amount
  1901. Set the luma effect strength. It can be a float number between -2.0
  1902. and 5.0, default value is 1.0.
  1903. @item chroma_msize_x
  1904. Set the chroma matrix horizontal size. It can be an integer between 3
  1905. and 13, default value is 5.
  1906. @item chroma_msize_y
  1907. Set the chroma matrix vertical size. It can be an integer between 3
  1908. and 13, default value is 5.
  1909. @item chroma_amount
  1910. Set the chroma effect strength. It can be a float number between -2.0
  1911. and 5.0, default value is 0.0.
  1912. @end table
  1913. @example
  1914. # Strong luma sharpen effect parameters
  1915. unsharp=7:7:2.5
  1916. # Strong blur of both luma and chroma parameters
  1917. unsharp=7:7:-2:7:7:-2
  1918. # Use the default values with @command{ffmpeg}
  1919. ffmpeg -i in.avi -vf "unsharp" out.mp4
  1920. @end example
  1921. @section vflip
  1922. Flip the input video vertically.
  1923. @example
  1924. ffmpeg -i in.avi -vf "vflip" out.avi
  1925. @end example
  1926. @section yadif
  1927. Deinterlace the input video ("yadif" means "yet another deinterlacing
  1928. filter").
  1929. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  1930. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  1931. following values:
  1932. @table @option
  1933. @item 0
  1934. output 1 frame for each frame
  1935. @item 1
  1936. output 1 frame for each field
  1937. @item 2
  1938. like 0 but skips spatial interlacing check
  1939. @item 3
  1940. like 1 but skips spatial interlacing check
  1941. @end table
  1942. Default value is 0.
  1943. @var{parity} specifies the picture field parity assumed for the input
  1944. interlaced video, accepts one of the following values:
  1945. @table @option
  1946. @item 0
  1947. assume top field first
  1948. @item 1
  1949. assume bottom field first
  1950. @item -1
  1951. enable automatic detection
  1952. @end table
  1953. Default value is -1.
  1954. If interlacing is unknown or decoder does not export this information,
  1955. top field first will be assumed.
  1956. @var{auto} specifies if deinterlacer should trust the interlaced flag
  1957. and only deinterlace frames marked as interlaced
  1958. @table @option
  1959. @item 0
  1960. deinterlace all frames
  1961. @item 1
  1962. only deinterlace frames marked as interlaced
  1963. @end table
  1964. Default value is 0.
  1965. @c man end VIDEO FILTERS
  1966. @chapter Video Sources
  1967. @c man begin VIDEO SOURCES
  1968. Below is a description of the currently available video sources.
  1969. @section buffer
  1970. Buffer video frames, and make them available to the filter chain.
  1971. This source is mainly intended for a programmatic use, in particular
  1972. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  1973. It accepts the following parameters:
  1974. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}:@var{sample_aspect_ratio_num}:@var{sample_aspect_ratio.den}:@var{scale_params}
  1975. All the parameters but @var{scale_params} need to be explicitly
  1976. defined.
  1977. Follows the list of the accepted parameters.
  1978. @table @option
  1979. @item width, height
  1980. Specify the width and height of the buffered video frames.
  1981. @item pix_fmt_string
  1982. A string representing the pixel format of the buffered video frames.
  1983. It may be a number corresponding to a pixel format, or a pixel format
  1984. name.
  1985. @item timebase_num, timebase_den
  1986. Specify numerator and denomitor of the timebase assumed by the
  1987. timestamps of the buffered frames.
  1988. @item sample_aspect_ratio.num, sample_aspect_ratio.den
  1989. Specify numerator and denominator of the sample aspect ratio assumed
  1990. by the video frames.
  1991. @item scale_params
  1992. Specify the optional parameters to be used for the scale filter which
  1993. is automatically inserted when an input change is detected in the
  1994. input size or format.
  1995. @end table
  1996. For example:
  1997. @example
  1998. buffer=320:240:yuv410p:1:24:1:1
  1999. @end example
  2000. will instruct the source to accept video frames with size 320x240 and
  2001. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  2002. square pixels (1:1 sample aspect ratio).
  2003. Since the pixel format with name "yuv410p" corresponds to the number 6
  2004. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  2005. this example corresponds to:
  2006. @example
  2007. buffer=320:240:6:1:24:1:1
  2008. @end example
  2009. @section cellauto
  2010. Create a pattern generated by an elementary cellular automaton.
  2011. The initial state of the cellular automaton can be defined through the
  2012. @option{filename}, and @option{pattern} options. If such options are
  2013. not specified an initial state is created randomly.
  2014. At each new frame a new row in the video is filled with the result of
  2015. the cellular automaton next generation. The behavior when the whole
  2016. frame is filled is defined by the @option{scroll} option.
  2017. This source accepts a list of options in the form of
  2018. @var{key}=@var{value} pairs separated by ":". A description of the
  2019. accepted options follows.
  2020. @table @option
  2021. @item filename, f
  2022. Read the initial cellular automaton state, i.e. the starting row, from
  2023. the specified file.
  2024. In the file, each non-whitespace character is considered an alive
  2025. cell, a newline will terminate the row, and further characters in the
  2026. file will be ignored.
  2027. @item pattern, p
  2028. Read the initial cellular automaton state, i.e. the starting row, from
  2029. the specified string.
  2030. Each non-whitespace character in the string is considered an alive
  2031. cell, a newline will terminate the row, and further characters in the
  2032. string will be ignored.
  2033. @item rate, r
  2034. Set the video rate, that is the number of frames generated per second.
  2035. Default is 25.
  2036. @item random_fill_ratio, ratio
  2037. Set the random fill ratio for the initial cellular automaton row. It
  2038. is a floating point number value ranging from 0 to 1, defaults to
  2039. 1/PHI.
  2040. This option is ignored when a file or a pattern is specified.
  2041. @item random_seed, seed
  2042. Set the seed for filling randomly the initial row, must be an integer
  2043. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2044. set to -1, the filter will try to use a good random seed on a best
  2045. effort basis.
  2046. @item rule
  2047. Set the cellular automaton rule, it is a number ranging from 0 to 255.
  2048. Default value is 110.
  2049. @item size, s
  2050. Set the size of the output video.
  2051. If @option{filename} or @option{pattern} is specified, the size is set
  2052. by default to the width of the specified initial state row, and the
  2053. height is set to @var{width} * PHI.
  2054. If @option{size} is set, it must contain the width of the specified
  2055. pattern string, and the specified pattern will be centered in the
  2056. larger row.
  2057. If a filename or a pattern string is not specified, the size value
  2058. defaults to "320x518" (used for a randomly generated initial state).
  2059. @item scroll
  2060. If set to 1, scroll the output upward when all the rows in the output
  2061. have been already filled. If set to 0, the new generated row will be
  2062. written over the top row just after the bottom row is filled.
  2063. Defaults to 1.
  2064. @item start_full, full
  2065. If set to 1, completely fill the output with generated rows before
  2066. outputting the first frame.
  2067. This is the default behavior, for disabling set the value to 0.
  2068. @item stitch
  2069. If set to 1, stitch the left and right row edges together.
  2070. This is the default behavior, for disabling set the value to 0.
  2071. @end table
  2072. @subsection Examples
  2073. @itemize
  2074. @item
  2075. Read the initial state from @file{pattern}, and specify an output of
  2076. size 200x400.
  2077. @example
  2078. cellauto=f=pattern:s=200x400
  2079. @end example
  2080. @item
  2081. Generate a random initial row with a width of 200 cells, with a fill
  2082. ratio of 2/3:
  2083. @example
  2084. cellauto=ratio=2/3:s=200x200
  2085. @end example
  2086. @item
  2087. Create a pattern generated by rule 18 starting by a single alive cell
  2088. centered on an initial row with width 100:
  2089. @example
  2090. cellauto=p=@@:s=100x400:full=0:rule=18
  2091. @end example
  2092. @item
  2093. Specify a more elaborated initial pattern:
  2094. @example
  2095. cellauto=p='@@@@ @@ @@@@':s=100x400:full=0:rule=18
  2096. @end example
  2097. @end itemize
  2098. @section color
  2099. Provide an uniformly colored input.
  2100. It accepts the following parameters:
  2101. @var{color}:@var{frame_size}:@var{frame_rate}
  2102. Follows the description of the accepted parameters.
  2103. @table @option
  2104. @item color
  2105. Specify the color of the source. It can be the name of a color (case
  2106. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  2107. alpha specifier. The default value is "black".
  2108. @item frame_size
  2109. Specify the size of the sourced video, it may be a string of the form
  2110. @var{width}x@var{height}, or the name of a size abbreviation. The
  2111. default value is "320x240".
  2112. @item frame_rate
  2113. Specify the frame rate of the sourced video, as the number of frames
  2114. generated per second. It has to be a string in the format
  2115. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2116. number or a valid video frame rate abbreviation. The default value is
  2117. "25".
  2118. @end table
  2119. For example the following graph description will generate a red source
  2120. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  2121. frames per second, which will be overlayed over the source connected
  2122. to the pad with identifier "in".
  2123. @example
  2124. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  2125. @end example
  2126. @section movie
  2127. Read a video stream from a movie container.
  2128. It accepts the syntax: @var{movie_name}[:@var{options}] where
  2129. @var{movie_name} is the name of the resource to read (not necessarily
  2130. a file but also a device or a stream accessed through some protocol),
  2131. and @var{options} is an optional sequence of @var{key}=@var{value}
  2132. pairs, separated by ":".
  2133. The description of the accepted options follows.
  2134. @table @option
  2135. @item format_name, f
  2136. Specifies the format assumed for the movie to read, and can be either
  2137. the name of a container or an input device. If not specified the
  2138. format is guessed from @var{movie_name} or by probing.
  2139. @item seek_point, sp
  2140. Specifies the seek point in seconds, the frames will be output
  2141. starting from this seek point, the parameter is evaluated with
  2142. @code{av_strtod} so the numerical value may be suffixed by an IS
  2143. postfix. Default value is "0".
  2144. @item stream_index, si
  2145. Specifies the index of the video stream to read. If the value is -1,
  2146. the best suited video stream will be automatically selected. Default
  2147. value is "-1".
  2148. @end table
  2149. This filter allows to overlay a second video on top of main input of
  2150. a filtergraph as shown in this graph:
  2151. @example
  2152. input -----------> deltapts0 --> overlay --> output
  2153. ^
  2154. |
  2155. movie --> scale--> deltapts1 -------+
  2156. @end example
  2157. Some examples follow:
  2158. @example
  2159. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  2160. # on top of the input labelled as "in".
  2161. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2162. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2163. # read from a video4linux2 device, and overlay it on top of the input
  2164. # labelled as "in"
  2165. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2166. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2167. @end example
  2168. @section mptestsrc
  2169. Generate various test patterns, as generated by the MPlayer test filter.
  2170. The size of the generated video is fixed, and is 256x256.
  2171. This source is useful in particular for testing encoding features.
  2172. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  2173. separated by ":". The description of the accepted options follows.
  2174. @table @option
  2175. @item rate, r
  2176. Specify the frame rate of the sourced video, as the number of frames
  2177. generated per second. It has to be a string in the format
  2178. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2179. number or a valid video frame rate abbreviation. The default value is
  2180. "25".
  2181. @item duration, d
  2182. Set the video duration of the sourced video. The accepted syntax is:
  2183. @example
  2184. [-]HH[:MM[:SS[.m...]]]
  2185. [-]S+[.m...]
  2186. @end example
  2187. See also the function @code{av_parse_time()}.
  2188. If not specified, or the expressed duration is negative, the video is
  2189. supposed to be generated forever.
  2190. @item test, t
  2191. Set the number or the name of the test to perform. Supported tests are:
  2192. @table @option
  2193. @item dc_luma
  2194. @item dc_chroma
  2195. @item freq_luma
  2196. @item freq_chroma
  2197. @item amp_luma
  2198. @item amp_chroma
  2199. @item cbp
  2200. @item mv
  2201. @item ring1
  2202. @item ring2
  2203. @item all
  2204. @end table
  2205. Default value is "all", which will cycle through the list of all tests.
  2206. @end table
  2207. For example the following:
  2208. @example
  2209. testsrc=t=dc_luma
  2210. @end example
  2211. will generate a "dc_luma" test pattern.
  2212. @section frei0r_src
  2213. Provide a frei0r source.
  2214. To enable compilation of this filter you need to install the frei0r
  2215. header and configure FFmpeg with --enable-frei0r.
  2216. The source supports the syntax:
  2217. @example
  2218. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  2219. @end example
  2220. @var{size} is the size of the video to generate, may be a string of the
  2221. form @var{width}x@var{height} or a frame size abbreviation.
  2222. @var{rate} is the rate of the video to generate, may be a string of
  2223. the form @var{num}/@var{den} or a frame rate abbreviation.
  2224. @var{src_name} is the name to the frei0r source to load. For more
  2225. information regarding frei0r and how to set the parameters read the
  2226. section @ref{frei0r} in the description of the video filters.
  2227. Some examples follow:
  2228. @example
  2229. # generate a frei0r partik0l source with size 200x200 and frame rate 10
  2230. # which is overlayed on the overlay filter main input
  2231. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  2232. @end example
  2233. @section life
  2234. Generate a life pattern.
  2235. This source is based on a generalization of John Conway's life game.
  2236. The sourced input represents a life grid, each pixel represents a cell
  2237. which can be in one of two possible states, alive or dead. Every cell
  2238. interacts with its eight neighbours, which are the cells that are
  2239. horizontally, vertically, or diagonally adjacent.
  2240. At each interaction the grid evolves according to the adopted rule,
  2241. which specifies the number of neighbor alive cells which will make a
  2242. cell stay alive or born. The @option{rule} option allows to specify
  2243. the rule to adopt.
  2244. This source accepts a list of options in the form of
  2245. @var{key}=@var{value} pairs separated by ":". A description of the
  2246. accepted options follows.
  2247. @table @option
  2248. @item filename, f
  2249. Set the file from which to read the initial grid state. In the file,
  2250. each non-whitespace character is considered an alive cell, and newline
  2251. is used to delimit the end of each row.
  2252. If this option is not specified, the initial grid is generated
  2253. randomly.
  2254. @item rate, r
  2255. Set the video rate, that is the number of frames generated per second.
  2256. Default is 25.
  2257. @item random_fill_ratio, ratio
  2258. Set the random fill ratio for the initial random grid. It is a
  2259. floating point number value ranging from 0 to 1, defaults to 1/PHI.
  2260. It is ignored when a file is specified.
  2261. @item random_seed, seed
  2262. Set the seed for filling the initial random grid, must be an integer
  2263. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2264. set to -1, the filter will try to use a good random seed on a best
  2265. effort basis.
  2266. @item rule
  2267. Set the life rule.
  2268. A rule can be specified with a code of the kind "S@var{NS}/B@var{NB}",
  2269. where @var{NS} and @var{NB} are sequences of numbers in the range 0-8,
  2270. @var{NS} specifies the number of alive neighbor cells which make a
  2271. live cell stay alive, and @var{NB} the number of alive neighbor cells
  2272. which make a dead cell to become alive (i.e. to "born").
  2273. "s" and "b" can be used in place of "S" and "B", respectively.
  2274. Alternatively a rule can be specified by an 18-bits integer. The 9
  2275. high order bits are used to encode the next cell state if it is alive
  2276. for each number of neighbor alive cells, the low order bits specify
  2277. the rule for "borning" new cells. Higher order bits encode for an
  2278. higher number of neighbor cells.
  2279. For example the number 6153 = @code{(12<<9)+9} specifies a stay alive
  2280. rule of 12 and a born rule of 9, which corresponds to "S23/B03".
  2281. Default value is "S23/B3", which is the original Conway's game of life
  2282. rule, and will keep a cell alive if it has 2 or 3 neighbor alive
  2283. cells, and will born a new cell if there are three alive cells around
  2284. a dead cell.
  2285. @item size, s
  2286. Set the size of the output video.
  2287. If @option{filename} is specified, the size is set by default to the
  2288. same size of the input file. If @option{size} is set, it must contain
  2289. the size specified in the input file, and the initial grid defined in
  2290. that file is centered in the larger resulting area.
  2291. If a filename is not specified, the size value defaults to "320x240"
  2292. (used for a randomly generated initial grid).
  2293. @item stitch
  2294. If set to 1, stitch the left and right grid edges together, and the
  2295. top and bottom edges also. Defaults to 1.
  2296. @item mold
  2297. Set cell mold speed. If set, a dead cell will go from @option{death_color} to
  2298. @option{mold_color} with a step of @option{mold}. @option{mold} can have a
  2299. value from 0 to 255.
  2300. @item life_color
  2301. Set the color of living (or new born) cells.
  2302. @item death_color
  2303. Set the color of dead cells. If @option{mold} is set, this is the first color
  2304. used to represent a dead cell.
  2305. @item mold_color
  2306. Set mold color, for definitely dead and moldy cells.
  2307. @end table
  2308. @subsection Examples
  2309. @itemize
  2310. @item
  2311. Read a grid from @file{pattern}, and center it on a grid of size
  2312. 300x300 pixels:
  2313. @example
  2314. life=f=pattern:s=300x300
  2315. @end example
  2316. @item
  2317. Generate a random grid of size 200x200, with a fill ratio of 2/3:
  2318. @example
  2319. life=ratio=2/3:s=200x200
  2320. @end example
  2321. @item
  2322. Specify a custom rule for evolving a randomly generated grid:
  2323. @example
  2324. life=rule=S14/B34
  2325. @end example
  2326. @item
  2327. Full example with slow death effect (mold) using @command{ffplay}:
  2328. @example
  2329. ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16
  2330. @end example
  2331. @end itemize
  2332. @section nullsrc, rgbtestsrc, testsrc
  2333. The @code{nullsrc} source returns unprocessed video frames. It is
  2334. mainly useful to be employed in analysis / debugging tools, or as the
  2335. source for filters which ignore the input data.
  2336. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  2337. detecting RGB vs BGR issues. You should see a red, green and blue
  2338. stripe from top to bottom.
  2339. The @code{testsrc} source generates a test video pattern, showing a
  2340. color pattern, a scrolling gradient and a timestamp. This is mainly
  2341. intended for testing purposes.
  2342. These sources accept an optional sequence of @var{key}=@var{value} pairs,
  2343. separated by ":". The description of the accepted options follows.
  2344. @table @option
  2345. @item size, s
  2346. Specify the size of the sourced video, it may be a string of the form
  2347. @var{width}x@var{height}, or the name of a size abbreviation. The
  2348. default value is "320x240".
  2349. @item rate, r
  2350. Specify the frame rate of the sourced video, as the number of frames
  2351. generated per second. It has to be a string in the format
  2352. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2353. number or a valid video frame rate abbreviation. The default value is
  2354. "25".
  2355. @item sar
  2356. Set the sample aspect ratio of the sourced video.
  2357. @item duration
  2358. Set the video duration of the sourced video. The accepted syntax is:
  2359. @example
  2360. [-]HH[:MM[:SS[.m...]]]
  2361. [-]S+[.m...]
  2362. @end example
  2363. See also the function @code{av_parse_time()}.
  2364. If not specified, or the expressed duration is negative, the video is
  2365. supposed to be generated forever.
  2366. @end table
  2367. For example the following:
  2368. @example
  2369. testsrc=duration=5.3:size=qcif:rate=10
  2370. @end example
  2371. will generate a video with a duration of 5.3 seconds, with size
  2372. 176x144 and a frame rate of 10 frames per second.
  2373. If the input content is to be ignored, @code{nullsrc} can be used. The
  2374. following command generates noise in the luminance plane by employing
  2375. the @code{mp=geq} filter:
  2376. @example
  2377. nullsrc=s=256x256, mp=geq=random(1)*255:128:128
  2378. @end example
  2379. @c man end VIDEO SOURCES
  2380. @chapter Video Sinks
  2381. @c man begin VIDEO SINKS
  2382. Below is a description of the currently available video sinks.
  2383. @section buffersink
  2384. Buffer video frames, and make them available to the end of the filter
  2385. graph.
  2386. This sink is mainly intended for a programmatic use, in particular
  2387. through the interface defined in @file{libavfilter/buffersink.h}.
  2388. It does not require a string parameter in input, but you need to
  2389. specify a pointer to a list of supported pixel formats terminated by
  2390. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  2391. when initializing this sink.
  2392. @section nullsink
  2393. Null video sink, do absolutely nothing with the input video. It is
  2394. mainly useful as a template and to be employed in analysis / debugging
  2395. tools.
  2396. @c man end VIDEO SINKS