| 
							- # Copyright (c) 2019 Guo Yejun
 - #
 - # This file is part of FFmpeg.
 - #
 - # FFmpeg is free software; you can redistribute it and/or
 - # modify it under the terms of the GNU Lesser General Public
 - # License as published by the Free Software Foundation; either
 - # version 2.1 of the License, or (at your option) any later version.
 - #
 - # FFmpeg is distributed in the hope that it will be useful,
 - # but WITHOUT ANY WARRANTY; without even the implied warranty of
 - # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 - # Lesser General Public License for more details.
 - #
 - # You should have received a copy of the GNU Lesser General Public
 - # License along with FFmpeg; if not, write to the Free Software
 - # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 - # ==============================================================================
 - 
 - import tensorflow as tf
 - import numpy as np
 - import sys, struct
 - import convert_header as header
 - 
 - __all__ = ['convert_from_tensorflow']
 - 
 - class Operand(object):
 -     IOTYPE_INPUT = 1
 -     IOTYPE_OUTPUT = 2
 -     IOTYPE_INTERMEDIATE = IOTYPE_INPUT | IOTYPE_OUTPUT
 -     DTYPE_FLOAT = 1
 -     DTYPE_UINT8 = 4
 -     index = 0
 -     def __init__(self, name, dtype, dims):
 -         self.name = name
 -         self.dtype = dtype
 -         self.dims = dims
 -         self.iotype = 0
 -         self.used_count = 0
 -         self.index = Operand.index
 -         Operand.index = Operand.index + 1
 -         self.iotype2str = {Operand.IOTYPE_INPUT: 'in', Operand.IOTYPE_OUTPUT: 'out', Operand.IOTYPE_INTERMEDIATE: 'inout'}
 -         self.dtype2str = {Operand.DTYPE_FLOAT: 'DT_FLOAT', Operand.DTYPE_UINT8: 'DT_UINT8'}
 - 
 -     def add_iotype(self, iotype):
 -         self.iotype = self.iotype | iotype
 -         if iotype == Operand.IOTYPE_INPUT:
 -             self.used_count = self.used_count + 1
 - 
 -     def __str__(self):
 -         return "{}: (name: {}, iotype: {}, dtype: {}, dims: ({},{},{},{}) used_count: {})".format(self.index,
 -                             self.name, self.iotype2str[self.iotype], self.dtype2str[self.dtype],
 -                             self.dims[0], self.dims[1], self.dims[2], self.dims[3], self.used_count)
 - 
 -     def __lt__(self, other):
 -         return self.index < other.index
 - 
 - class TFConverter:
 -     def __init__(self, graph_def, nodes, outfile, dump4tb):
 -         self.graph_def = graph_def
 -         self.nodes = nodes
 -         self.outfile = outfile
 -         self.dump4tb = dump4tb
 -         self.layer_number = 0
 -         self.output_names = []
 -         self.name_node_dict = {}
 -         self.edges = {}
 -         self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, 'None':3, 'LeakyRelu':4}
 -         self.conv_paddings = {'VALID':0, 'SAME':1}
 -         self.converted_nodes = set()
 -         self.conv2d_scope_names = set()
 -         self.conv2d_scopename_inputname_dict = {}
 -         self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4}
 -         self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
 -         self.name_operand_dict = {}
 - 
 - 
 -     def add_operand(self, name, type):
 -         node = self.name_node_dict[name]
 -         if name not in self.name_operand_dict:
 -             dtype = node.attr['dtype'].type
 -             if dtype == 0:
 -                 dtype = node.attr['T'].type
 -             dims = [-1,-1,-1,-1]
 -             if 'shape' in node.attr:
 -                 dims[0] = node.attr['shape'].shape.dim[0].size
 -                 dims[1] = node.attr['shape'].shape.dim[1].size
 -                 dims[2] = node.attr['shape'].shape.dim[2].size
 -                 dims[3] = node.attr['shape'].shape.dim[3].size
 -             operand = Operand(name, dtype, dims)
 -             self.name_operand_dict[name] = operand;
 -         self.name_operand_dict[name].add_iotype(type)
 -         return self.name_operand_dict[name].index
 - 
 - 
 -     def dump_for_tensorboard(self):
 -         graph = tf.get_default_graph()
 -         tf.import_graph_def(self.graph_def, name="")
 -         tf.summary.FileWriter('/tmp/graph', graph)
 -         print('graph saved, run "tensorboard --logdir=/tmp/graph" to see it')
 - 
 - 
 -     def get_conv2d_params(self, conv2d_scope_name):
 -         knode = self.name_node_dict[conv2d_scope_name + '/kernel']
 -         bnode = self.name_node_dict[conv2d_scope_name + '/bias']
 - 
 -         if conv2d_scope_name + '/dilation_rate' in self.name_node_dict:
 -             dnode = self.name_node_dict[conv2d_scope_name + '/dilation_rate']
 -         else:
 -             dnode = None
 - 
 -         # the BiasAdd name is possible be changed into the output name,
 -         # if activation is None, and BiasAdd.next is the last op which is Identity
 -         if conv2d_scope_name + '/BiasAdd' in self.edges:
 -             anode = self.edges[conv2d_scope_name + '/BiasAdd'][0]
 -         else:
 -             anode = None
 -         return knode, bnode, dnode, anode
 - 
 - 
 -     def dump_conv2d_to_file(self, node, f):
 -         assert(node.op == 'Conv2D')
 -         self.layer_number = self.layer_number + 1
 -         self.converted_nodes.add(node.name)
 - 
 -         scope_name = TFConverter.get_scope_name(node.name)
 -         #knode for kernel, bnode for bias, dnode for dilation, anode for activation
 -         knode, bnode, dnode, anode = self.get_conv2d_params(scope_name)
 - 
 -         if dnode is not None:
 -             dilation = struct.unpack('i', dnode.attr['value'].tensor.tensor_content[0:4])[0]
 -         else:
 -             dilation = 1
 - 
 -         if anode is not None:
 -             activation = anode.op
 -         else:
 -             activation = 'None'
 - 
 -         padding = node.attr['padding'].s.decode("utf-8")
 -         # conv2d with dilation > 1 generates tens of nodes, not easy to parse them, so use this tricky method.
 -         if dilation > 1 and scope_name + '/stack' in self.name_node_dict:
 -             if self.name_node_dict[scope_name + '/stack'].op == "Const":
 -                 padding = 'SAME'
 -         padding = self.conv_paddings[padding]
 - 
 -         ktensor = knode.attr['value'].tensor
 -         filter_height = ktensor.tensor_shape.dim[0].size
 -         filter_width = ktensor.tensor_shape.dim[1].size
 -         in_channels = ktensor.tensor_shape.dim[2].size
 -         out_channels = ktensor.tensor_shape.dim[3].size
 -         kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
 -         kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels)
 -         kernel = np.transpose(kernel, [3, 0, 1, 2])
 - 
 -         np.array([self.op2code[node.op], dilation, padding, self.conv_activations[activation], in_channels, out_channels, filter_height], dtype=np.uint32).tofile(f)
 -         kernel.tofile(f)
 - 
 -         btensor = bnode.attr['value'].tensor
 -         if btensor.tensor_shape.dim[0].size == 1:
 -             bias = struct.pack("f", btensor.float_val[0])
 -         else:
 -             bias = btensor.tensor_content
 -         f.write(bias)
 - 
 -         input_name = self.conv2d_scopename_inputname_dict[scope_name]
 -         input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
 - 
 -         if anode is not None:
 -             output_operand_index = self.add_operand(anode.name, Operand.IOTYPE_OUTPUT)
 -         else:
 -             output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT)
 -         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
 - 
 - 
 -     def dump_depth2space_to_file(self, node, f):
 -         assert(node.op == 'DepthToSpace')
 -         self.layer_number = self.layer_number + 1
 -         block_size = node.attr['block_size'].i
 -         np.array([self.op2code[node.op], block_size], dtype=np.uint32).tofile(f)
 -         self.converted_nodes.add(node.name)
 -         input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
 -         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
 -         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
 - 
 - 
 -     def dump_mirrorpad_to_file(self, node, f):
 -         assert(node.op == 'MirrorPad')
 -         self.layer_number = self.layer_number + 1
 -         mode = node.attr['mode'].s
 -         mode = self.mirrorpad_mode[mode.decode("utf-8")]
 -         np.array([self.op2code[node.op], mode], dtype=np.uint32).tofile(f)
 -         pnode = self.name_node_dict[node.input[1]]
 -         self.converted_nodes.add(pnode.name)
 -         paddings = pnode.attr['value'].tensor.tensor_content
 -         f.write(paddings)
 -         self.converted_nodes.add(node.name)
 -         input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
 -         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
 -         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
 - 
 - 
 -     def dump_maximum_to_file(self, node, f):
 -         assert(node.op == 'Maximum')
 -         self.layer_number = self.layer_number + 1
 -         ynode = self.name_node_dict[node.input[1]]
 -         y = ynode.attr['value'].tensor.float_val[0]
 -         np.array([self.op2code[node.op]], dtype=np.uint32).tofile(f)
 -         np.array([y], dtype=np.float32).tofile(f)
 -         self.converted_nodes.add(node.name)
 -         input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
 -         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
 -         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
 - 
 - 
 -     def dump_layers_to_file(self, f):
 -         for node in self.nodes:
 -             if node.name in self.converted_nodes:
 -                 continue
 - 
 -             # conv2d with dilation generates very complex nodes, so handle it in special
 -             scope_name = TFConverter.get_scope_name(node.name)
 -             if scope_name in self.conv2d_scope_names:
 -                 if node.op == 'Conv2D':
 -                     self.dump_conv2d_to_file(node, f)
 -                 continue
 - 
 -             if node.op == 'DepthToSpace':
 -                 self.dump_depth2space_to_file(node, f)
 -             elif node.op == 'MirrorPad':
 -                 self.dump_mirrorpad_to_file(node, f)
 -             elif node.op == 'Maximum':
 -                 self.dump_maximum_to_file(node, f)
 - 
 - 
 -     def dump_operands_to_file(self, f):
 -             operands = sorted(self.name_operand_dict.values())
 -             for operand in operands:
 -                 #print('{}'.format(operand))
 -                 np.array([operand.index, len(operand.name)], dtype=np.uint32).tofile(f)
 -                 f.write(operand.name.encode('utf-8'))
 -                 np.array([operand.iotype, operand.dtype], dtype=np.uint32).tofile(f)
 -                 np.array([operand.dims[0], operand.dims[1], operand.dims[2], operand.dims[3]], dtype=np.uint32).tofile(f)
 - 
 - 
 -     def dump_to_file(self):
 -         with open(self.outfile, 'wb') as f:
 -             f.write(header.str.encode('utf-8'))
 -             np.array([header.major, header.minor], dtype=np.uint32).tofile(f)
 -             self.dump_layers_to_file(f)
 -             self.dump_operands_to_file(f)
 -             np.array([self.layer_number, len(self.name_operand_dict)], dtype=np.uint32).tofile(f)
 - 
 - 
 -     def generate_name_node_dict(self):
 -         for node in self.nodes:
 -             self.name_node_dict[node.name] = node
 - 
 - 
 -     def generate_output_names(self):
 -         used_names = []
 -         for node in self.nodes:
 -             for input in node.input:
 -                 used_names.append(input)
 - 
 -         for node in self.nodes:
 -             if node.name not in used_names:
 -                 self.output_names.append(node.name)
 - 
 - 
 -     def remove_identity(self):
 -         id_nodes = []
 -         id_dict = {}
 -         for node in self.nodes:
 -             if node.op == 'Identity':
 -                 name = node.name
 -                 input = node.input[0]
 -                 id_nodes.append(node)
 -                 # do not change the output name
 -                 if name in self.output_names:
 -                     self.name_node_dict[input].name = name
 -                     self.name_node_dict[name] = self.name_node_dict[input]
 -                     del self.name_node_dict[input]
 -                 else:
 -                     id_dict[name] = input
 - 
 -         for idnode in id_nodes:
 -             self.nodes.remove(idnode)
 - 
 -         for node in self.nodes:
 -             for i in range(len(node.input)):
 -                 input = node.input[i]
 -                 if input in id_dict:
 -                     node.input[i] = id_dict[input]
 - 
 - 
 -     def generate_edges(self):
 -         for node in self.nodes:
 -             for input in node.input:
 -                 if input in self.edges:
 -                     self.edges[input].append(node)
 -                 else:
 -                     self.edges[input] = [node]
 - 
 - 
 -     @staticmethod
 -     def get_scope_name(name):
 -         index = name.rfind('/')
 -         if index == -1:
 -             return ""
 -         return name[0:index]
 - 
 - 
 -     def generate_conv2d_scope_info(self):
 -         # conv2d is a sub block in graph, get the scope name
 -         for node in self.nodes:
 -             if node.op == 'Conv2D':
 -                 scope = TFConverter.get_scope_name(node.name)
 -                 self.conv2d_scope_names.add(scope)
 - 
 -         # get the input name to the conv2d sub block
 -         for node in self.nodes:
 -             scope = TFConverter.get_scope_name(node.name)
 -             if scope in self.conv2d_scope_names:
 -                 if node.op == 'Conv2D' or node.op == 'Shape':
 -                     for inp in node.input:
 -                         if TFConverter.get_scope_name(inp) != scope:
 -                             self.conv2d_scopename_inputname_dict[scope] = inp
 - 
 - 
 -     def run(self):
 -         self.generate_name_node_dict()
 -         self.generate_output_names()
 -         self.remove_identity()
 -         self.generate_edges()
 -         self.generate_conv2d_scope_info()
 - 
 -         if self.dump4tb:
 -             self.dump_for_tensorboard()
 - 
 -         self.dump_to_file()
 - 
 - 
 - def convert_from_tensorflow(infile, outfile, dump4tb):
 -     with open(infile, 'rb') as f:
 -         # read the file in .proto format
 -         graph_def = tf.GraphDef()
 -         graph_def.ParseFromString(f.read())
 -         nodes = graph_def.node
 - 
 -     converter = TFConverter(graph_def, nodes, outfile, dump4tb)
 -     converter.run()
 
 
  |