You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

823 lines
31KB

  1. /*
  2. * Copyright (c) 2012 Clément Bœsch
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along
  17. * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
  18. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  19. */
  20. /**
  21. * @file
  22. * EBU R.128 implementation
  23. * @see http://tech.ebu.ch/loudness
  24. * @see https://www.youtube.com/watch?v=iuEtQqC-Sqo "EBU R128 Introduction - Florian Camerer"
  25. * @todo True Peak
  26. * @todo implement start/stop/reset through filter command injection
  27. * @todo support other frequencies to avoid resampling
  28. */
  29. #include <math.h>
  30. #include "libavutil/avassert.h"
  31. #include "libavutil/avstring.h"
  32. #include "libavutil/channel_layout.h"
  33. #include "libavutil/dict.h"
  34. #include "libavutil/xga_font_data.h"
  35. #include "libavutil/opt.h"
  36. #include "libavutil/timestamp.h"
  37. #include "audio.h"
  38. #include "avfilter.h"
  39. #include "formats.h"
  40. #include "internal.h"
  41. #define MAX_CHANNELS 63
  42. /* pre-filter coefficients */
  43. #define PRE_B0 1.53512485958697
  44. #define PRE_B1 -2.69169618940638
  45. #define PRE_B2 1.19839281085285
  46. #define PRE_A1 -1.69065929318241
  47. #define PRE_A2 0.73248077421585
  48. /* RLB-filter coefficients */
  49. #define RLB_B0 1.0
  50. #define RLB_B1 -2.0
  51. #define RLB_B2 1.0
  52. #define RLB_A1 -1.99004745483398
  53. #define RLB_A2 0.99007225036621
  54. #define ABS_THRES -70 ///< silence gate: we discard anything below this absolute (LUFS) threshold
  55. #define ABS_UP_THRES 10 ///< upper loud limit to consider (ABS_THRES being the minimum)
  56. #define HIST_GRAIN 100 ///< defines histogram precision
  57. #define HIST_SIZE ((ABS_UP_THRES - ABS_THRES) * HIST_GRAIN + 1)
  58. /**
  59. * An histogram is an array of HIST_SIZE hist_entry storing all the energies
  60. * recorded (with an accuracy of 1/HIST_GRAIN) of the loudnesses from ABS_THRES
  61. * (at 0) to ABS_UP_THRES (at HIST_SIZE-1).
  62. * This fixed-size system avoids the need of a list of energies growing
  63. * infinitely over the time and is thus more scalable.
  64. */
  65. struct hist_entry {
  66. int count; ///< how many times the corresponding value occurred
  67. double energy; ///< E = 10^((L + 0.691) / 10)
  68. double loudness; ///< L = -0.691 + 10 * log10(E)
  69. };
  70. struct integrator {
  71. double *cache[MAX_CHANNELS]; ///< window of filtered samples (N ms)
  72. int cache_pos; ///< focus on the last added bin in the cache array
  73. double sum[MAX_CHANNELS]; ///< sum of the last N ms filtered samples (cache content)
  74. int filled; ///< 1 if the cache is completely filled, 0 otherwise
  75. double rel_threshold; ///< relative threshold
  76. double sum_kept_powers; ///< sum of the powers (weighted sums) above absolute threshold
  77. int nb_kept_powers; ///< number of sum above absolute threshold
  78. struct hist_entry *histogram; ///< histogram of the powers, used to compute LRA and I
  79. };
  80. struct rect { int x, y, w, h; };
  81. typedef struct {
  82. const AVClass *class; ///< AVClass context for log and options purpose
  83. /* video */
  84. int do_video; ///< 1 if video output enabled, 0 otherwise
  85. int w, h; ///< size of the video output
  86. struct rect text; ///< rectangle for the LU legend on the left
  87. struct rect graph; ///< rectangle for the main graph in the center
  88. struct rect gauge; ///< rectangle for the gauge on the right
  89. AVFrame *outpicref; ///< output picture reference, updated regularly
  90. int meter; ///< select a EBU mode between +9 and +18
  91. int scale_range; ///< the range of LU values according to the meter
  92. int y_zero_lu; ///< the y value (pixel position) for 0 LU
  93. int *y_line_ref; ///< y reference values for drawing the LU lines in the graph and the gauge
  94. /* audio */
  95. int nb_channels; ///< number of channels in the input
  96. double *ch_weighting; ///< channel weighting mapping
  97. int sample_count; ///< sample count used for refresh frequency, reset at refresh
  98. /* Filter caches.
  99. * The mult by 3 in the following is for X[i], X[i-1] and X[i-2] */
  100. double x[MAX_CHANNELS * 3]; ///< 3 input samples cache for each channel
  101. double y[MAX_CHANNELS * 3]; ///< 3 pre-filter samples cache for each channel
  102. double z[MAX_CHANNELS * 3]; ///< 3 RLB-filter samples cache for each channel
  103. #define I400_BINS (48000 * 4 / 10)
  104. #define I3000_BINS (48000 * 3)
  105. struct integrator i400; ///< 400ms integrator, used for Momentary loudness (M), and Integrated loudness (I)
  106. struct integrator i3000; ///< 3s integrator, used for Short term loudness (S), and Loudness Range (LRA)
  107. /* I and LRA specific */
  108. double integrated_loudness; ///< integrated loudness in LUFS (I)
  109. double loudness_range; ///< loudness range in LU (LRA)
  110. double lra_low, lra_high; ///< low and high LRA values
  111. /* misc */
  112. int loglevel; ///< log level for frame logging
  113. int metadata; ///< whether or not to inject loudness results in frames
  114. int request_fulfilled; ///< 1 if some audio just got pushed, 0 otherwise. FIXME: remove me
  115. } EBUR128Context;
  116. #define OFFSET(x) offsetof(EBUR128Context, x)
  117. #define A AV_OPT_FLAG_AUDIO_PARAM
  118. #define V AV_OPT_FLAG_VIDEO_PARAM
  119. #define F AV_OPT_FLAG_FILTERING_PARAM
  120. static const AVOption ebur128_options[] = {
  121. { "video", "set video output", OFFSET(do_video), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, V|F },
  122. { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x480"}, 0, 0, V|F },
  123. { "meter", "set scale meter (+9 to +18)", OFFSET(meter), AV_OPT_TYPE_INT, {.i64 = 9}, 9, 18, V|F },
  124. { "framelog", "force frame logging level", OFFSET(loglevel), AV_OPT_TYPE_INT, {.i64 = -1}, INT_MIN, INT_MAX, A|V|F, "level" },
  125. { "info", "information logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_INFO}, INT_MIN, INT_MAX, A|V|F, "level" },
  126. { "verbose", "verbose logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_VERBOSE}, INT_MIN, INT_MAX, A|V|F, "level" },
  127. { "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, A|V|F },
  128. { NULL },
  129. };
  130. AVFILTER_DEFINE_CLASS(ebur128);
  131. static const uint8_t graph_colors[] = {
  132. 0xdd, 0x66, 0x66, // value above 0LU non reached
  133. 0x66, 0x66, 0xdd, // value below 0LU non reached
  134. 0x96, 0x33, 0x33, // value above 0LU reached
  135. 0x33, 0x33, 0x96, // value below 0LU reached
  136. 0xdd, 0x96, 0x96, // value above 0LU line non reached
  137. 0x96, 0x96, 0xdd, // value below 0LU line non reached
  138. 0xdd, 0x33, 0x33, // value above 0LU line reached
  139. 0x33, 0x33, 0xdd, // value below 0LU line reached
  140. };
  141. static const uint8_t *get_graph_color(const EBUR128Context *ebur128, int v, int y)
  142. {
  143. const int below0 = y > ebur128->y_zero_lu;
  144. const int reached = y >= v;
  145. const int line = ebur128->y_line_ref[y] || y == ebur128->y_zero_lu;
  146. const int colorid = 4*line + 2*reached + below0;
  147. return graph_colors + 3*colorid;
  148. }
  149. static inline int lu_to_y(const EBUR128Context *ebur128, double v)
  150. {
  151. v += 2 * ebur128->meter; // make it in range [0;...]
  152. v = av_clipf(v, 0, ebur128->scale_range); // make sure it's in the graph scale
  153. v = ebur128->scale_range - v; // invert value (y=0 is on top)
  154. return v * ebur128->graph.h / ebur128->scale_range; // rescale from scale range to px height
  155. }
  156. #define FONT8 0
  157. #define FONT16 1
  158. static const uint8_t font_colors[] = {
  159. 0xdd, 0xdd, 0x00,
  160. 0x00, 0x96, 0x96,
  161. };
  162. static void drawtext(AVFrame *pic, int x, int y, int ftid, const uint8_t *color, const char *fmt, ...)
  163. {
  164. int i;
  165. char buf[128] = {0};
  166. const uint8_t *font;
  167. int font_height;
  168. va_list vl;
  169. if (ftid == FONT16) font = avpriv_vga16_font, font_height = 16;
  170. else if (ftid == FONT8) font = avpriv_cga_font, font_height = 8;
  171. else return;
  172. va_start(vl, fmt);
  173. vsnprintf(buf, sizeof(buf), fmt, vl);
  174. va_end(vl);
  175. for (i = 0; buf[i]; i++) {
  176. int char_y, mask;
  177. uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8)*3;
  178. for (char_y = 0; char_y < font_height; char_y++) {
  179. for (mask = 0x80; mask; mask >>= 1) {
  180. if (font[buf[i] * font_height + char_y] & mask)
  181. memcpy(p, color, 3);
  182. else
  183. memcpy(p, "\x00\x00\x00", 3);
  184. p += 3;
  185. }
  186. p += pic->linesize[0] - 8*3;
  187. }
  188. }
  189. }
  190. static void drawline(AVFrame *pic, int x, int y, int len, int step)
  191. {
  192. int i;
  193. uint8_t *p = pic->data[0] + y*pic->linesize[0] + x*3;
  194. for (i = 0; i < len; i++) {
  195. memcpy(p, "\x00\xff\x00", 3);
  196. p += step;
  197. }
  198. }
  199. static int config_video_output(AVFilterLink *outlink)
  200. {
  201. int i, x, y;
  202. uint8_t *p;
  203. AVFilterContext *ctx = outlink->src;
  204. EBUR128Context *ebur128 = ctx->priv;
  205. AVFrame *outpicref;
  206. /* check if there is enough space to represent everything decently */
  207. if (ebur128->w < 640 || ebur128->h < 480) {
  208. av_log(ctx, AV_LOG_ERROR, "Video size %dx%d is too small, "
  209. "minimum size is 640x480\n", ebur128->w, ebur128->h);
  210. return AVERROR(EINVAL);
  211. }
  212. outlink->w = ebur128->w;
  213. outlink->h = ebur128->h;
  214. #define PAD 8
  215. /* configure text area position and size */
  216. ebur128->text.x = PAD;
  217. ebur128->text.y = 40;
  218. ebur128->text.w = 3 * 8; // 3 characters
  219. ebur128->text.h = ebur128->h - PAD - ebur128->text.y;
  220. /* configure gauge position and size */
  221. ebur128->gauge.w = 20;
  222. ebur128->gauge.h = ebur128->text.h;
  223. ebur128->gauge.x = ebur128->w - PAD - ebur128->gauge.w;
  224. ebur128->gauge.y = ebur128->text.y;
  225. /* configure graph position and size */
  226. ebur128->graph.x = ebur128->text.x + ebur128->text.w + PAD;
  227. ebur128->graph.y = ebur128->gauge.y;
  228. ebur128->graph.w = ebur128->gauge.x - ebur128->graph.x - PAD;
  229. ebur128->graph.h = ebur128->gauge.h;
  230. /* graph and gauge share the LU-to-pixel code */
  231. av_assert0(ebur128->graph.h == ebur128->gauge.h);
  232. /* prepare the initial picref buffer */
  233. av_frame_free(&ebur128->outpicref);
  234. ebur128->outpicref = outpicref =
  235. ff_get_video_buffer(outlink, outlink->w, outlink->h);
  236. if (!outpicref)
  237. return AVERROR(ENOMEM);
  238. outlink->sample_aspect_ratio = (AVRational){1,1};
  239. /* init y references values (to draw LU lines) */
  240. ebur128->y_line_ref = av_calloc(ebur128->graph.h + 1, sizeof(*ebur128->y_line_ref));
  241. if (!ebur128->y_line_ref)
  242. return AVERROR(ENOMEM);
  243. /* black background */
  244. memset(outpicref->data[0], 0, ebur128->h * outpicref->linesize[0]);
  245. /* draw LU legends */
  246. drawtext(outpicref, PAD, PAD+16, FONT8, font_colors+3, " LU");
  247. for (i = ebur128->meter; i >= -ebur128->meter * 2; i--) {
  248. y = lu_to_y(ebur128, i);
  249. x = PAD + (i < 10 && i > -10) * 8;
  250. ebur128->y_line_ref[y] = i;
  251. y -= 4; // -4 to center vertically
  252. drawtext(outpicref, x, y + ebur128->graph.y, FONT8, font_colors+3,
  253. "%c%d", i < 0 ? '-' : i > 0 ? '+' : ' ', FFABS(i));
  254. }
  255. /* draw graph */
  256. ebur128->y_zero_lu = lu_to_y(ebur128, 0);
  257. p = outpicref->data[0] + ebur128->graph.y * outpicref->linesize[0]
  258. + ebur128->graph.x * 3;
  259. for (y = 0; y < ebur128->graph.h; y++) {
  260. const uint8_t *c = get_graph_color(ebur128, INT_MAX, y);
  261. for (x = 0; x < ebur128->graph.w; x++)
  262. memcpy(p + x*3, c, 3);
  263. p += outpicref->linesize[0];
  264. }
  265. /* draw fancy rectangles around the graph and the gauge */
  266. #define DRAW_RECT(r) do { \
  267. drawline(outpicref, r.x, r.y - 1, r.w, 3); \
  268. drawline(outpicref, r.x, r.y + r.h, r.w, 3); \
  269. drawline(outpicref, r.x - 1, r.y, r.h, outpicref->linesize[0]); \
  270. drawline(outpicref, r.x + r.w, r.y, r.h, outpicref->linesize[0]); \
  271. } while (0)
  272. DRAW_RECT(ebur128->graph);
  273. DRAW_RECT(ebur128->gauge);
  274. return 0;
  275. }
  276. static int config_audio_input(AVFilterLink *inlink)
  277. {
  278. AVFilterContext *ctx = inlink->dst;
  279. EBUR128Context *ebur128 = ctx->priv;
  280. /* force 100ms framing in case of metadata injection: the frames must have
  281. * a granularity of the window overlap to be accurately exploited */
  282. if (ebur128->metadata)
  283. inlink->min_samples =
  284. inlink->max_samples =
  285. inlink->partial_buf_size = inlink->sample_rate / 10;
  286. return 0;
  287. }
  288. static int config_audio_output(AVFilterLink *outlink)
  289. {
  290. int i;
  291. int idx_bitposn = 0;
  292. AVFilterContext *ctx = outlink->src;
  293. EBUR128Context *ebur128 = ctx->priv;
  294. const int nb_channels = av_get_channel_layout_nb_channels(outlink->channel_layout);
  295. #define BACK_MASK (AV_CH_BACK_LEFT |AV_CH_BACK_CENTER |AV_CH_BACK_RIGHT| \
  296. AV_CH_TOP_BACK_LEFT|AV_CH_TOP_BACK_CENTER|AV_CH_TOP_BACK_RIGHT| \
  297. AV_CH_SIDE_LEFT |AV_CH_SIDE_RIGHT| \
  298. AV_CH_SURROUND_DIRECT_LEFT |AV_CH_SURROUND_DIRECT_RIGHT)
  299. ebur128->nb_channels = nb_channels;
  300. ebur128->ch_weighting = av_calloc(nb_channels, sizeof(*ebur128->ch_weighting));
  301. if (!ebur128->ch_weighting)
  302. return AVERROR(ENOMEM);
  303. for (i = 0; i < nb_channels; i++) {
  304. /* find the next bit that is set starting from the right */
  305. while ((outlink->channel_layout & 1ULL<<idx_bitposn) == 0 && idx_bitposn < 63)
  306. idx_bitposn++;
  307. /* channel weighting */
  308. if ((1ULL<<idx_bitposn & AV_CH_LOW_FREQUENCY) ||
  309. (1ULL<<idx_bitposn & AV_CH_LOW_FREQUENCY_2)) {
  310. ebur128->ch_weighting[i] = 0;
  311. } else if (1ULL<<idx_bitposn & BACK_MASK) {
  312. ebur128->ch_weighting[i] = 1.41;
  313. } else {
  314. ebur128->ch_weighting[i] = 1.0;
  315. }
  316. idx_bitposn++;
  317. if (!ebur128->ch_weighting[i])
  318. continue;
  319. /* bins buffer for the two integration window (400ms and 3s) */
  320. ebur128->i400.cache[i] = av_calloc(I400_BINS, sizeof(*ebur128->i400.cache[0]));
  321. ebur128->i3000.cache[i] = av_calloc(I3000_BINS, sizeof(*ebur128->i3000.cache[0]));
  322. if (!ebur128->i400.cache[i] || !ebur128->i3000.cache[i])
  323. return AVERROR(ENOMEM);
  324. }
  325. return 0;
  326. }
  327. #define ENERGY(loudness) (pow(10, ((loudness) + 0.691) / 10.))
  328. #define LOUDNESS(energy) (-0.691 + 10 * log10(energy))
  329. static struct hist_entry *get_histogram(void)
  330. {
  331. int i;
  332. struct hist_entry *h = av_calloc(HIST_SIZE, sizeof(*h));
  333. if (!h)
  334. return NULL;
  335. for (i = 0; i < HIST_SIZE; i++) {
  336. h[i].loudness = i / (double)HIST_GRAIN + ABS_THRES;
  337. h[i].energy = ENERGY(h[i].loudness);
  338. }
  339. return h;
  340. }
  341. /* This is currently necessary for the min/max samples to work properly.
  342. * FIXME: remove me when possible */
  343. static int audio_request_frame(AVFilterLink *outlink)
  344. {
  345. int ret;
  346. AVFilterContext *ctx = outlink->src;
  347. EBUR128Context *ebur128 = ctx->priv;
  348. ebur128->request_fulfilled = 0;
  349. do {
  350. ret = ff_request_frame(ctx->inputs[0]);
  351. } while (!ebur128->request_fulfilled && ret >= 0);
  352. return ret;
  353. }
  354. static av_cold int init(AVFilterContext *ctx, const char *args)
  355. {
  356. int ret;
  357. EBUR128Context *ebur128 = ctx->priv;
  358. AVFilterPad pad;
  359. ebur128->class = &ebur128_class;
  360. av_opt_set_defaults(ebur128);
  361. if ((ret = av_set_options_string(ebur128, args, "=", ":")) < 0)
  362. return ret;
  363. if (ebur128->loglevel != AV_LOG_INFO &&
  364. ebur128->loglevel != AV_LOG_VERBOSE) {
  365. if (ebur128->do_video || ebur128->metadata)
  366. ebur128->loglevel = AV_LOG_VERBOSE;
  367. else
  368. ebur128->loglevel = AV_LOG_INFO;
  369. }
  370. // if meter is +9 scale, scale range is from -18 LU to +9 LU (or 3*9)
  371. // if meter is +18 scale, scale range is from -36 LU to +18 LU (or 3*18)
  372. ebur128->scale_range = 3 * ebur128->meter;
  373. ebur128->i400.histogram = get_histogram();
  374. ebur128->i3000.histogram = get_histogram();
  375. if (!ebur128->i400.histogram || !ebur128->i3000.histogram)
  376. return AVERROR(ENOMEM);
  377. ebur128->integrated_loudness = ABS_THRES;
  378. ebur128->loudness_range = 0;
  379. /* insert output pads */
  380. if (ebur128->do_video) {
  381. pad = (AVFilterPad){
  382. .name = av_strdup("out0"),
  383. .type = AVMEDIA_TYPE_VIDEO,
  384. .config_props = config_video_output,
  385. };
  386. if (!pad.name)
  387. return AVERROR(ENOMEM);
  388. ff_insert_outpad(ctx, 0, &pad);
  389. }
  390. pad = (AVFilterPad){
  391. .name = av_asprintf("out%d", ebur128->do_video),
  392. .type = AVMEDIA_TYPE_AUDIO,
  393. .config_props = config_audio_output,
  394. };
  395. if (ebur128->metadata)
  396. pad.request_frame = audio_request_frame;
  397. if (!pad.name)
  398. return AVERROR(ENOMEM);
  399. ff_insert_outpad(ctx, ebur128->do_video, &pad);
  400. /* summary */
  401. av_log(ctx, AV_LOG_VERBOSE, "EBU +%d scale\n", ebur128->meter);
  402. return 0;
  403. }
  404. #define HIST_POS(power) (int)(((power) - ABS_THRES) * HIST_GRAIN)
  405. /* loudness and power should be set such as loudness = -0.691 +
  406. * 10*log10(power), we just avoid doing that calculus two times */
  407. static int gate_update(struct integrator *integ, double power,
  408. double loudness, int gate_thres)
  409. {
  410. int ipower;
  411. double relative_threshold;
  412. int gate_hist_pos;
  413. /* update powers histograms by incrementing current power count */
  414. ipower = av_clip(HIST_POS(loudness), 0, HIST_SIZE - 1);
  415. integ->histogram[ipower].count++;
  416. /* compute relative threshold and get its position in the histogram */
  417. integ->sum_kept_powers += power;
  418. integ->nb_kept_powers++;
  419. relative_threshold = integ->sum_kept_powers / integ->nb_kept_powers;
  420. if (!relative_threshold)
  421. relative_threshold = 1e-12;
  422. integ->rel_threshold = LOUDNESS(relative_threshold) + gate_thres;
  423. gate_hist_pos = av_clip(HIST_POS(integ->rel_threshold), 0, HIST_SIZE - 1);
  424. return gate_hist_pos;
  425. }
  426. static int filter_frame(AVFilterLink *inlink, AVFrame *insamples)
  427. {
  428. int i, ch, idx_insample;
  429. AVFilterContext *ctx = inlink->dst;
  430. EBUR128Context *ebur128 = ctx->priv;
  431. const int nb_channels = ebur128->nb_channels;
  432. const int nb_samples = insamples->nb_samples;
  433. const double *samples = (double *)insamples->data[0];
  434. AVFrame *pic = ebur128->outpicref;
  435. for (idx_insample = 0; idx_insample < nb_samples; idx_insample++) {
  436. const int bin_id_400 = ebur128->i400.cache_pos;
  437. const int bin_id_3000 = ebur128->i3000.cache_pos;
  438. #define MOVE_TO_NEXT_CACHED_ENTRY(time) do { \
  439. ebur128->i##time.cache_pos++; \
  440. if (ebur128->i##time.cache_pos == I##time##_BINS) { \
  441. ebur128->i##time.filled = 1; \
  442. ebur128->i##time.cache_pos = 0; \
  443. } \
  444. } while (0)
  445. MOVE_TO_NEXT_CACHED_ENTRY(400);
  446. MOVE_TO_NEXT_CACHED_ENTRY(3000);
  447. for (ch = 0; ch < nb_channels; ch++) {
  448. double bin;
  449. ebur128->x[ch * 3] = *samples++; // set X[i]
  450. if (!ebur128->ch_weighting[ch])
  451. continue;
  452. /* Y[i] = X[i]*b0 + X[i-1]*b1 + X[i-2]*b2 - Y[i-1]*a1 - Y[i-2]*a2 */
  453. #define FILTER(Y, X, name) do { \
  454. double *dst = ebur128->Y + ch*3; \
  455. double *src = ebur128->X + ch*3; \
  456. dst[2] = dst[1]; \
  457. dst[1] = dst[0]; \
  458. dst[0] = src[0]*name##_B0 + src[1]*name##_B1 + src[2]*name##_B2 \
  459. - dst[1]*name##_A1 - dst[2]*name##_A2; \
  460. } while (0)
  461. // TODO: merge both filters in one?
  462. FILTER(y, x, PRE); // apply pre-filter
  463. ebur128->x[ch * 3 + 2] = ebur128->x[ch * 3 + 1];
  464. ebur128->x[ch * 3 + 1] = ebur128->x[ch * 3 ];
  465. FILTER(z, y, RLB); // apply RLB-filter
  466. bin = ebur128->z[ch * 3] * ebur128->z[ch * 3];
  467. /* add the new value, and limit the sum to the cache size (400ms or 3s)
  468. * by removing the oldest one */
  469. ebur128->i400.sum [ch] = ebur128->i400.sum [ch] + bin - ebur128->i400.cache [ch][bin_id_400];
  470. ebur128->i3000.sum[ch] = ebur128->i3000.sum[ch] + bin - ebur128->i3000.cache[ch][bin_id_3000];
  471. /* override old cache entry with the new value */
  472. ebur128->i400.cache [ch][bin_id_400 ] = bin;
  473. ebur128->i3000.cache[ch][bin_id_3000] = bin;
  474. }
  475. /* For integrated loudness, gating blocks are 400ms long with 75%
  476. * overlap (see BS.1770-2 p5), so a re-computation is needed each 100ms
  477. * (4800 samples at 48kHz). */
  478. if (++ebur128->sample_count == 4800) {
  479. double loudness_400, loudness_3000;
  480. double power_400 = 1e-12, power_3000 = 1e-12;
  481. AVFilterLink *outlink = ctx->outputs[0];
  482. const int64_t pts = insamples->pts +
  483. av_rescale_q(idx_insample, (AVRational){ 1, inlink->sample_rate },
  484. outlink->time_base);
  485. ebur128->sample_count = 0;
  486. #define COMPUTE_LOUDNESS(m, time) do { \
  487. if (ebur128->i##time.filled) { \
  488. /* weighting sum of the last <time> ms */ \
  489. for (ch = 0; ch < nb_channels; ch++) \
  490. power_##time += ebur128->ch_weighting[ch] * ebur128->i##time.sum[ch]; \
  491. power_##time /= I##time##_BINS; \
  492. } \
  493. loudness_##time = LOUDNESS(power_##time); \
  494. } while (0)
  495. COMPUTE_LOUDNESS(M, 400);
  496. COMPUTE_LOUDNESS(S, 3000);
  497. /* Integrated loudness */
  498. #define I_GATE_THRES -10 // initially defined to -8 LU in the first EBU standard
  499. if (loudness_400 >= ABS_THRES) {
  500. double integrated_sum = 0;
  501. int nb_integrated = 0;
  502. int gate_hist_pos = gate_update(&ebur128->i400, power_400,
  503. loudness_400, I_GATE_THRES);
  504. /* compute integrated loudness by summing the histogram values
  505. * above the relative threshold */
  506. for (i = gate_hist_pos; i < HIST_SIZE; i++) {
  507. const int nb_v = ebur128->i400.histogram[i].count;
  508. nb_integrated += nb_v;
  509. integrated_sum += nb_v * ebur128->i400.histogram[i].energy;
  510. }
  511. if (nb_integrated)
  512. ebur128->integrated_loudness = LOUDNESS(integrated_sum / nb_integrated);
  513. }
  514. /* LRA */
  515. #define LRA_GATE_THRES -20
  516. #define LRA_LOWER_PRC 10
  517. #define LRA_HIGHER_PRC 95
  518. /* XXX: example code in EBU 3342 is ">=" but formula in BS.1770
  519. * specs is ">" */
  520. if (loudness_3000 >= ABS_THRES) {
  521. int nb_powers = 0;
  522. int gate_hist_pos = gate_update(&ebur128->i3000, power_3000,
  523. loudness_3000, LRA_GATE_THRES);
  524. for (i = gate_hist_pos; i < HIST_SIZE; i++)
  525. nb_powers += ebur128->i3000.histogram[i].count;
  526. if (nb_powers) {
  527. int n, nb_pow;
  528. /* get lower loudness to consider */
  529. n = 0;
  530. nb_pow = LRA_LOWER_PRC * nb_powers / 100. + 0.5;
  531. for (i = gate_hist_pos; i < HIST_SIZE; i++) {
  532. n += ebur128->i3000.histogram[i].count;
  533. if (n >= nb_pow) {
  534. ebur128->lra_low = ebur128->i3000.histogram[i].loudness;
  535. break;
  536. }
  537. }
  538. /* get higher loudness to consider */
  539. n = nb_powers;
  540. nb_pow = LRA_HIGHER_PRC * nb_powers / 100. + 0.5;
  541. for (i = HIST_SIZE - 1; i >= 0; i--) {
  542. n -= ebur128->i3000.histogram[i].count;
  543. if (n < nb_pow) {
  544. ebur128->lra_high = ebur128->i3000.histogram[i].loudness;
  545. break;
  546. }
  547. }
  548. // XXX: show low & high on the graph?
  549. ebur128->loudness_range = ebur128->lra_high - ebur128->lra_low;
  550. }
  551. }
  552. #define LOG_FMT "M:%6.1f S:%6.1f I:%6.1f LUFS LRA:%6.1f LU"
  553. /* push one video frame */
  554. if (ebur128->do_video) {
  555. int x, y, ret;
  556. uint8_t *p;
  557. const int y_loudness_lu_graph = lu_to_y(ebur128, loudness_3000 + 23);
  558. const int y_loudness_lu_gauge = lu_to_y(ebur128, loudness_400 + 23);
  559. /* draw the graph using the short-term loudness */
  560. p = pic->data[0] + ebur128->graph.y*pic->linesize[0] + ebur128->graph.x*3;
  561. for (y = 0; y < ebur128->graph.h; y++) {
  562. const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_graph, y);
  563. memmove(p, p + 3, (ebur128->graph.w - 1) * 3);
  564. memcpy(p + (ebur128->graph.w - 1) * 3, c, 3);
  565. p += pic->linesize[0];
  566. }
  567. /* draw the gauge using the momentary loudness */
  568. p = pic->data[0] + ebur128->gauge.y*pic->linesize[0] + ebur128->gauge.x*3;
  569. for (y = 0; y < ebur128->gauge.h; y++) {
  570. const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_gauge, y);
  571. for (x = 0; x < ebur128->gauge.w; x++)
  572. memcpy(p + x*3, c, 3);
  573. p += pic->linesize[0];
  574. }
  575. /* draw textual info */
  576. drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors,
  577. LOG_FMT " ", // padding to erase trailing characters
  578. loudness_400, loudness_3000,
  579. ebur128->integrated_loudness, ebur128->loudness_range);
  580. /* set pts and push frame */
  581. pic->pts = pts;
  582. ret = ff_filter_frame(outlink, av_frame_clone(pic));
  583. if (ret < 0)
  584. return ret;
  585. }
  586. if (ebur128->metadata) { /* happens only once per filter_frame call */
  587. char metabuf[128];
  588. #define SET_META(name, var) do { \
  589. snprintf(metabuf, sizeof(metabuf), "%.3f", var); \
  590. av_dict_set(&insamples->metadata, "lavfi.r128." name, metabuf, 0); \
  591. } while (0)
  592. SET_META("M", loudness_400);
  593. SET_META("S", loudness_3000);
  594. SET_META("I", ebur128->integrated_loudness);
  595. SET_META("LRA", ebur128->loudness_range);
  596. SET_META("LRA.low", ebur128->lra_low);
  597. SET_META("LRA.high", ebur128->lra_high);
  598. }
  599. av_log(ctx, ebur128->loglevel, "t: %-10s " LOG_FMT "\n",
  600. av_ts2timestr(pts, &outlink->time_base),
  601. loudness_400, loudness_3000,
  602. ebur128->integrated_loudness, ebur128->loudness_range);
  603. }
  604. }
  605. ebur128->request_fulfilled = 1;
  606. return ff_filter_frame(ctx->outputs[ebur128->do_video], insamples);
  607. }
  608. static int query_formats(AVFilterContext *ctx)
  609. {
  610. EBUR128Context *ebur128 = ctx->priv;
  611. AVFilterFormats *formats;
  612. AVFilterChannelLayouts *layouts;
  613. AVFilterLink *inlink = ctx->inputs[0];
  614. AVFilterLink *outlink = ctx->outputs[0];
  615. static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_NONE };
  616. static const int input_srate[] = {48000, -1}; // ITU-R BS.1770 provides coeff only for 48kHz
  617. static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGB24, AV_PIX_FMT_NONE };
  618. /* set optional output video format */
  619. if (ebur128->do_video) {
  620. formats = ff_make_format_list(pix_fmts);
  621. if (!formats)
  622. return AVERROR(ENOMEM);
  623. ff_formats_ref(formats, &outlink->in_formats);
  624. outlink = ctx->outputs[1];
  625. }
  626. /* set input and output audio formats
  627. * Note: ff_set_common_* functions are not used because they affect all the
  628. * links, and thus break the video format negociation */
  629. formats = ff_make_format_list(sample_fmts);
  630. if (!formats)
  631. return AVERROR(ENOMEM);
  632. ff_formats_ref(formats, &inlink->out_formats);
  633. ff_formats_ref(formats, &outlink->in_formats);
  634. layouts = ff_all_channel_layouts();
  635. if (!layouts)
  636. return AVERROR(ENOMEM);
  637. ff_channel_layouts_ref(layouts, &inlink->out_channel_layouts);
  638. ff_channel_layouts_ref(layouts, &outlink->in_channel_layouts);
  639. formats = ff_make_format_list(input_srate);
  640. if (!formats)
  641. return AVERROR(ENOMEM);
  642. ff_formats_ref(formats, &inlink->out_samplerates);
  643. ff_formats_ref(formats, &outlink->in_samplerates);
  644. return 0;
  645. }
  646. static av_cold void uninit(AVFilterContext *ctx)
  647. {
  648. int i;
  649. EBUR128Context *ebur128 = ctx->priv;
  650. av_log(ctx, AV_LOG_INFO, "Summary:\n\n"
  651. " Integrated loudness:\n"
  652. " I: %5.1f LUFS\n"
  653. " Threshold: %5.1f LUFS\n\n"
  654. " Loudness range:\n"
  655. " LRA: %5.1f LU\n"
  656. " Threshold: %5.1f LUFS\n"
  657. " LRA low: %5.1f LUFS\n"
  658. " LRA high: %5.1f LUFS\n",
  659. ebur128->integrated_loudness, ebur128->i400.rel_threshold,
  660. ebur128->loudness_range, ebur128->i3000.rel_threshold,
  661. ebur128->lra_low, ebur128->lra_high);
  662. av_freep(&ebur128->y_line_ref);
  663. av_freep(&ebur128->ch_weighting);
  664. av_freep(&ebur128->i400.histogram);
  665. av_freep(&ebur128->i3000.histogram);
  666. for (i = 0; i < ebur128->nb_channels; i++) {
  667. av_freep(&ebur128->i400.cache[i]);
  668. av_freep(&ebur128->i3000.cache[i]);
  669. }
  670. for (i = 0; i < ctx->nb_outputs; i++)
  671. av_freep(&ctx->output_pads[i].name);
  672. av_frame_free(&ebur128->outpicref);
  673. av_opt_free(ebur128);
  674. }
  675. static const AVFilterPad ebur128_inputs[] = {
  676. {
  677. .name = "default",
  678. .type = AVMEDIA_TYPE_AUDIO,
  679. .get_audio_buffer = ff_null_get_audio_buffer,
  680. .filter_frame = filter_frame,
  681. .config_props = config_audio_input,
  682. },
  683. { NULL }
  684. };
  685. AVFilter avfilter_af_ebur128 = {
  686. .name = "ebur128",
  687. .description = NULL_IF_CONFIG_SMALL("EBU R128 scanner."),
  688. .priv_size = sizeof(EBUR128Context),
  689. .init = init,
  690. .uninit = uninit,
  691. .query_formats = query_formats,
  692. .inputs = ebur128_inputs,
  693. .outputs = NULL,
  694. .priv_class = &ebur128_class,
  695. };