You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3148 lines
85KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", and a filter with no
  12. output pads is called a "sink".
  13. @anchor{Filtergraph syntax}
  14. @section Filtergraph syntax
  15. A filtergraph has a textual representation, which is
  16. recognized by the @option{-filter}/@option{-vf} and @option{-filter_complex}
  17. options in @command{avconv} and @option{-vf} in @command{avplay}, and by the
  18. @code{avfilter_graph_parse()}/@code{avfilter_graph_parse2()} functions defined in
  19. @file{libavfilter/avfilter.h}.
  20. A filterchain consists of a sequence of connected filters, each one
  21. connected to the previous one in the sequence. A filterchain is
  22. represented by a list of ","-separated filter descriptions.
  23. A filtergraph consists of a sequence of filterchains. A sequence of
  24. filterchains is represented by a list of ";"-separated filterchain
  25. descriptions.
  26. A filter is represented by a string of the form:
  27. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  28. @var{filter_name} is the name of the filter class of which the
  29. described filter is an instance of, and has to be the name of one of
  30. the filter classes registered in the program.
  31. The name of the filter class is optionally followed by a string
  32. "=@var{arguments}".
  33. @var{arguments} is a string which contains the parameters used to
  34. initialize the filter instance. It may have one of two forms:
  35. @itemize
  36. @item
  37. A ':'-separated list of @var{key=value} pairs.
  38. @item
  39. A ':'-separated list of @var{value}. In this case, the keys are assumed to be
  40. the option names in the order they are declared. E.g. the @code{fade} filter
  41. declares three options in this order -- @option{type}, @option{start_frame} and
  42. @option{nb_frames}. Then the parameter list @var{in:0:30} means that the value
  43. @var{in} is assigned to the option @option{type}, @var{0} to
  44. @option{start_frame} and @var{30} to @option{nb_frames}.
  45. @end itemize
  46. If the option value itself is a list of items (e.g. the @code{format} filter
  47. takes a list of pixel formats), the items in the list are usually separated by
  48. '|'.
  49. The list of arguments can be quoted using the character "'" as initial
  50. and ending mark, and the character '\' for escaping the characters
  51. within the quoted text; otherwise the argument string is considered
  52. terminated when the next special character (belonging to the set
  53. "[]=;,") is encountered.
  54. The name and arguments of the filter are optionally preceded and
  55. followed by a list of link labels.
  56. A link label allows to name a link and associate it to a filter output
  57. or input pad. The preceding labels @var{in_link_1}
  58. ... @var{in_link_N}, are associated to the filter input pads,
  59. the following labels @var{out_link_1} ... @var{out_link_M}, are
  60. associated to the output pads.
  61. When two link labels with the same name are found in the
  62. filtergraph, a link between the corresponding input and output pad is
  63. created.
  64. If an output pad is not labelled, it is linked by default to the first
  65. unlabelled input pad of the next filter in the filterchain.
  66. For example in the filterchain
  67. @example
  68. nullsrc, split[L1], [L2]overlay, nullsink
  69. @end example
  70. the split filter instance has two output pads, and the overlay filter
  71. instance two input pads. The first output pad of split is labelled
  72. "L1", the first input pad of overlay is labelled "L2", and the second
  73. output pad of split is linked to the second input pad of overlay,
  74. which are both unlabelled.
  75. In a complete filterchain all the unlabelled filter input and output
  76. pads must be connected. A filtergraph is considered valid if all the
  77. filter input and output pads of all the filterchains are connected.
  78. Libavfilter will automatically insert @ref{scale} filters where format
  79. conversion is required. It is possible to specify swscale flags
  80. for those automatically inserted scalers by prepending
  81. @code{sws_flags=@var{flags};}
  82. to the filtergraph description.
  83. Here is a BNF description of the filtergraph syntax:
  84. @example
  85. @var{NAME} ::= sequence of alphanumeric characters and '_'
  86. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  87. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  88. @var{FILTER_ARGUMENTS} ::= sequence of chars (possibly quoted)
  89. @var{FILTER} ::= [@var{LINKLABELS}] @var{NAME} ["=" @var{FILTER_ARGUMENTS}] [@var{LINKLABELS}]
  90. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  91. @var{FILTERGRAPH} ::= [sws_flags=@var{flags};] @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  92. @end example
  93. @c man end FILTERGRAPH DESCRIPTION
  94. @chapter Audio Filters
  95. @c man begin AUDIO FILTERS
  96. When you configure your Libav build, you can disable any of the
  97. existing filters using --disable-filters.
  98. The configure output will show the audio filters included in your
  99. build.
  100. Below is a description of the currently available audio filters.
  101. @section aformat
  102. Convert the input audio to one of the specified formats. The framework will
  103. negotiate the most appropriate format to minimize conversions.
  104. It accepts the following parameters:
  105. @table @option
  106. @item sample_fmts
  107. A '|'-separated list of requested sample formats.
  108. @item sample_rates
  109. A '|'-separated list of requested sample rates.
  110. @item channel_layouts
  111. A '|'-separated list of requested channel layouts.
  112. @end table
  113. If a parameter is omitted, all values are allowed.
  114. Force the output to either unsigned 8-bit or signed 16-bit stereo
  115. @example
  116. aformat=sample_fmts=u8|s16:channel_layouts=stereo
  117. @end example
  118. @section amix
  119. Mixes multiple audio inputs into a single output.
  120. For example
  121. @example
  122. avconv -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT
  123. @end example
  124. will mix 3 input audio streams to a single output with the same duration as the
  125. first input and a dropout transition time of 3 seconds.
  126. It accepts the following parameters:
  127. @table @option
  128. @item inputs
  129. The number of inputs. If unspecified, it defaults to 2.
  130. @item duration
  131. How to determine the end-of-stream.
  132. @table @option
  133. @item longest
  134. The duration of the longest input. (default)
  135. @item shortest
  136. The duration of the shortest input.
  137. @item first
  138. The duration of the first input.
  139. @end table
  140. @item dropout_transition
  141. The transition time, in seconds, for volume renormalization when an input
  142. stream ends. The default value is 2 seconds.
  143. @end table
  144. @section anull
  145. Pass the audio source unchanged to the output.
  146. @section asetpts
  147. Change the PTS (presentation timestamp) of the input audio frames.
  148. It accepts the following parameters:
  149. @table @option
  150. @item expr
  151. The expression which is evaluated for each frame to construct its timestamp.
  152. @end table
  153. The expression is evaluated through the eval API and can contain the following
  154. constants:
  155. @table @option
  156. @item FRAME_RATE
  157. frame rate, only defined for constant frame-rate video
  158. @item PTS
  159. the presentation timestamp in input
  160. @item E, PI, PHI
  161. These are approximated values for the mathematical constants e
  162. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  163. @item N
  164. The number of audio samples passed through the filter so far, starting at 0.
  165. @item S
  166. The number of audio samples in the current frame.
  167. @item SR
  168. The audio sample rate.
  169. @item STARTPTS
  170. The PTS of the first frame.
  171. @item PREV_INPTS
  172. The previous input PTS.
  173. @item PREV_OUTPTS
  174. The previous output PTS.
  175. @item RTCTIME
  176. The wallclock (RTC) time in microseconds.
  177. @item RTCSTART
  178. The wallclock (RTC) time at the start of the movie in microseconds.
  179. @end table
  180. Some examples:
  181. @example
  182. # Start counting PTS from zero
  183. asetpts=expr=PTS-STARTPTS
  184. # Generate timestamps by counting samples
  185. asetpts=expr=N/SR/TB
  186. # Generate timestamps from a "live source" and rebase onto the current timebase
  187. asetpts='(RTCTIME - RTCSTART) / (TB * 1000000)"
  188. @end example
  189. @section asettb
  190. Set the timebase to use for the output frames timestamps.
  191. It is mainly useful for testing timebase configuration.
  192. This filter accepts the following parameters:
  193. @table @option
  194. @item expr
  195. The expression which is evaluated into the output timebase.
  196. @end table
  197. The expression can contain the constants @var{PI}, @var{E}, @var{PHI}, @var{AVTB} (the
  198. default timebase), @var{intb} (the input timebase), and @var{sr} (the sample rate,
  199. audio only).
  200. The default value for the input is @var{intb}.
  201. Some examples:
  202. @example
  203. # Set the timebase to 1/25:
  204. settb=1/25
  205. # Set the timebase to 1/10:
  206. settb=0.1
  207. # Set the timebase to 1001/1000:
  208. settb=1+0.001
  209. # Set the timebase to 2*intb:
  210. settb=2*intb
  211. # Set the default timebase value:
  212. settb=AVTB
  213. # Set the timebase to twice the sample rate:
  214. asettb=sr*2
  215. @end example
  216. @section ashowinfo
  217. Show a line containing various information for each input audio frame.
  218. The input audio is not modified.
  219. The shown line contains a sequence of key/value pairs of the form
  220. @var{key}:@var{value}.
  221. It accepts the following parameters:
  222. @table @option
  223. @item n
  224. The (sequential) number of the input frame, starting from 0.
  225. @item pts
  226. The presentation timestamp of the input frame, in time base units; the time base
  227. depends on the filter input pad, and is usually 1/@var{sample_rate}.
  228. @item pts_time
  229. The presentation timestamp of the input frame in seconds.
  230. @item fmt
  231. The sample format.
  232. @item chlayout
  233. The channel layout.
  234. @item rate
  235. The sample rate for the audio frame.
  236. @item nb_samples
  237. The number of samples (per channel) in the frame.
  238. @item checksum
  239. The Adler-32 checksum (printed in hexadecimal) of the audio data. For planar
  240. audio, the data is treated as if all the planes were concatenated.
  241. @item plane_checksums
  242. A list of Adler-32 checksums for each data plane.
  243. @end table
  244. @section asplit
  245. Split input audio into several identical outputs.
  246. It accepts a single parameter, which specifies the number of outputs. If
  247. unspecified, it defaults to 2.
  248. For example,
  249. @example
  250. avconv -i INPUT -filter_complex asplit=5 OUTPUT
  251. @end example
  252. will create 5 copies of the input audio.
  253. @section asyncts
  254. Synchronize audio data with timestamps by squeezing/stretching it and/or
  255. dropping samples/adding silence when needed.
  256. It accepts the following parameters:
  257. @table @option
  258. @item compensate
  259. Enable stretching/squeezing the data to make it match the timestamps. Disabled
  260. by default. When disabled, time gaps are covered with silence.
  261. @item min_delta
  262. The minimum difference between timestamps and audio data (in seconds) to trigger
  263. adding/dropping samples. The default value is 0.1. If you get an imperfect
  264. sync with this filter, try setting this parameter to 0.
  265. @item max_comp
  266. The maximum compensation in samples per second. Only relevant with compensate=1.
  267. The default value is 500.
  268. @item first_pts
  269. Assume that the first PTS should be this value. The time base is 1 / sample
  270. rate. This allows for padding/trimming at the start of the stream. By default,
  271. no assumption is made about the first frame's expected PTS, so no padding or
  272. trimming is done. For example, this could be set to 0 to pad the beginning with
  273. silence if an audio stream starts after the video stream or to trim any samples
  274. with a negative PTS due to encoder delay.
  275. @end table
  276. @section atrim
  277. Trim the input so that the output contains one continuous subpart of the input.
  278. It accepts the following parameters:
  279. @table @option
  280. @item start
  281. Timestamp (in seconds) of the start of the section to keep. I.e. the audio
  282. sample with the timestamp @var{start} will be the first sample in the output.
  283. @item end
  284. Timestamp (in seconds) of the first audio sample that will be dropped. I.e. the
  285. audio sample immediately preceding the one with the timestamp @var{end} will be
  286. the last sample in the output.
  287. @item start_pts
  288. Same as @var{start}, except this option sets the start timestamp in samples
  289. instead of seconds.
  290. @item end_pts
  291. Same as @var{end}, except this option sets the end timestamp in samples instead
  292. of seconds.
  293. @item duration
  294. The maximum duration of the output in seconds.
  295. @item start_sample
  296. The number of the first sample that should be output.
  297. @item end_sample
  298. The number of the first sample that should be dropped.
  299. @end table
  300. Note that the first two sets of the start/end options and the @option{duration}
  301. option look at the frame timestamp, while the _sample options simply count the
  302. samples that pass through the filter. So start/end_pts and start/end_sample will
  303. give different results when the timestamps are wrong, inexact or do not start at
  304. zero. Also note that this filter does not modify the timestamps. If you wish
  305. to have the output timestamps start at zero, insert the asetpts filter after the
  306. atrim filter.
  307. If multiple start or end options are set, this filter tries to be greedy and
  308. keep all samples that match at least one of the specified constraints. To keep
  309. only the part that matches all the constraints at once, chain multiple atrim
  310. filters.
  311. The defaults are such that all the input is kept. So it is possible to set e.g.
  312. just the end values to keep everything before the specified time.
  313. Examples:
  314. @itemize
  315. @item
  316. Drop everything except the second minute of input:
  317. @example
  318. avconv -i INPUT -af atrim=60:120
  319. @end example
  320. @item
  321. Keep only the first 1000 samples:
  322. @example
  323. avconv -i INPUT -af atrim=end_sample=1000
  324. @end example
  325. @end itemize
  326. @section bs2b
  327. Bauer stereo to binaural transformation, which improves headphone listening of
  328. stereo audio records.
  329. It accepts the following parameters:
  330. @table @option
  331. @item profile
  332. Pre-defined crossfeed level.
  333. @table @option
  334. @item default
  335. Default level (fcut=700, feed=50).
  336. @item cmoy
  337. Chu Moy circuit (fcut=700, feed=60).
  338. @item jmeier
  339. Jan Meier circuit (fcut=650, feed=95).
  340. @end table
  341. @item fcut
  342. Cut frequency (in Hz).
  343. @item feed
  344. Feed level (in Hz).
  345. @end table
  346. @section channelsplit
  347. Split each channel from an input audio stream into a separate output stream.
  348. It accepts the following parameters:
  349. @table @option
  350. @item channel_layout
  351. The channel layout of the input stream. The default is "stereo".
  352. @end table
  353. For example, assuming a stereo input MP3 file,
  354. @example
  355. avconv -i in.mp3 -filter_complex channelsplit out.mkv
  356. @end example
  357. will create an output Matroska file with two audio streams, one containing only
  358. the left channel and the other the right channel.
  359. Split a 5.1 WAV file into per-channel files:
  360. @example
  361. avconv -i in.wav -filter_complex
  362. 'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
  363. -map '[FL]' front_left.wav -map '[FR]' front_right.wav
  364. -map '[FC]' front_center.wav -map '[LFE]' low_frequency_effects.wav
  365. -map '[SL]' side_left.wav -map '[SR]' side_right.wav
  366. @end example
  367. @section channelmap
  368. Remap input channels to new locations.
  369. It accepts the following parameters:
  370. @table @option
  371. @item channel_layout
  372. The channel layout of the output stream.
  373. @item map
  374. Map channels from input to output. The argument is a '|'-separated list of
  375. mappings, each in the @code{@var{in_channel}-@var{out_channel}} or
  376. @var{in_channel} form. @var{in_channel} can be either the name of the input
  377. channel (e.g. FL for front left) or its index in the input channel layout.
  378. @var{out_channel} is the name of the output channel or its index in the output
  379. channel layout. If @var{out_channel} is not given then it is implicitly an
  380. index, starting with zero and increasing by one for each mapping.
  381. @end table
  382. If no mapping is present, the filter will implicitly map input channels to
  383. output channels, preserving indices.
  384. For example, assuming a 5.1+downmix input MOV file,
  385. @example
  386. avconv -i in.mov -filter 'channelmap=map=DL-FL|DR-FR' out.wav
  387. @end example
  388. will create an output WAV file tagged as stereo from the downmix channels of
  389. the input.
  390. To fix a 5.1 WAV improperly encoded in AAC's native channel order
  391. @example
  392. avconv -i in.wav -filter 'channelmap=1|2|0|5|3|4:5.1' out.wav
  393. @end example
  394. @section compand
  395. Compress or expand the audio's dynamic range.
  396. It accepts the following parameters:
  397. @table @option
  398. @item attacks
  399. @item decays
  400. A list of times in seconds for each channel over which the instantaneous level
  401. of the input signal is averaged to determine its volume. @var{attacks} refers to
  402. increase of volume and @var{decays} refers to decrease of volume. For most
  403. situations, the attack time (response to the audio getting louder) should be
  404. shorter than the decay time, because the human ear is more sensitive to sudden
  405. loud audio than sudden soft audio. A typical value for attack is 0.3 seconds and
  406. a typical value for decay is 0.8 seconds.
  407. @item points
  408. A list of points for the transfer function, specified in dB relative to the
  409. maximum possible signal amplitude. Each key points list must be defined using
  410. the following syntax: @code{x0/y0|x1/y1|x2/y2|....}
  411. The input values must be in strictly increasing order but the transfer function
  412. does not have to be monotonically rising. The point @code{0/0} is assumed but
  413. may be overridden (by @code{0/out-dBn}). Typical values for the transfer
  414. function are @code{-70/-70|-60/-20}.
  415. @item soft-knee
  416. Set the curve radius in dB for all joints. It defaults to 0.01.
  417. @item gain
  418. Set the additional gain in dB to be applied at all points on the transfer
  419. function. This allows for easy adjustment of the overall gain.
  420. It defaults to 0.
  421. @item volume
  422. Set an initial volume, in dB, to be assumed for each channel when filtering
  423. starts. This permits the user to supply a nominal level initially, so that, for
  424. example, a very large gain is not applied to initial signal levels before the
  425. companding has begun to operate. A typical value for audio which is initially
  426. quiet is -90 dB. It defaults to 0.
  427. @item delay
  428. Set a delay, in seconds. The input audio is analyzed immediately, but audio is
  429. delayed before being fed to the volume adjuster. Specifying a delay
  430. approximately equal to the attack/decay times allows the filter to effectively
  431. operate in predictive rather than reactive mode. It defaults to 0.
  432. @end table
  433. @subsection Examples
  434. @itemize
  435. @item
  436. Make music with both quiet and loud passages suitable for listening to in a
  437. noisy environment:
  438. @example
  439. compand=.3|.3:1|1:-90/-60|-60/-40|-40/-30|-20/-20:6:0:-90:0.2
  440. @end example
  441. @item
  442. A noise gate for when the noise is at a lower level than the signal:
  443. @example
  444. compand=.1|.1:.2|.2:-900/-900|-50.1/-900|-50/-50:.01:0:-90:.1
  445. @end example
  446. @item
  447. Here is another noise gate, this time for when the noise is at a higher level
  448. than the signal (making it, in some ways, similar to squelch):
  449. @example
  450. compand=.1|.1:.1|.1:-45.1/-45.1|-45/-900|0/-900:.01:45:-90:.1
  451. @end example
  452. @end itemize
  453. @section join
  454. Join multiple input streams into one multi-channel stream.
  455. It accepts the following parameters:
  456. @table @option
  457. @item inputs
  458. The number of input streams. It defaults to 2.
  459. @item channel_layout
  460. The desired output channel layout. It defaults to stereo.
  461. @item map
  462. Map channels from inputs to output. The argument is a '|'-separated list of
  463. mappings, each in the @code{@var{input_idx}.@var{in_channel}-@var{out_channel}}
  464. form. @var{input_idx} is the 0-based index of the input stream. @var{in_channel}
  465. can be either the name of the input channel (e.g. FL for front left) or its
  466. index in the specified input stream. @var{out_channel} is the name of the output
  467. channel.
  468. @end table
  469. The filter will attempt to guess the mappings when they are not specified
  470. explicitly. It does so by first trying to find an unused matching input channel
  471. and if that fails it picks the first unused input channel.
  472. Join 3 inputs (with properly set channel layouts):
  473. @example
  474. avconv -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT
  475. @end example
  476. Build a 5.1 output from 6 single-channel streams:
  477. @example
  478. avconv -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
  479. 'join=inputs=6:channel_layout=5.1:map=0.0-FL|1.0-FR|2.0-FC|3.0-SL|4.0-SR|5.0-LFE'
  480. out
  481. @end example
  482. @section resample
  483. Convert the audio sample format, sample rate and channel layout. It is
  484. not meant to be used directly; it is inserted automatically by libavfilter
  485. whenever conversion is needed. Use the @var{aformat} filter to force a specific
  486. conversion.
  487. @section volume
  488. Adjust the input audio volume.
  489. It accepts the following parameters:
  490. @table @option
  491. @item volume
  492. This expresses how the audio volume will be increased or decreased.
  493. Output values are clipped to the maximum value.
  494. The output audio volume is given by the relation:
  495. @example
  496. @var{output_volume} = @var{volume} * @var{input_volume}
  497. @end example
  498. The default value for @var{volume} is 1.0.
  499. @item precision
  500. This parameter represents the mathematical precision.
  501. It determines which input sample formats will be allowed, which affects the
  502. precision of the volume scaling.
  503. @table @option
  504. @item fixed
  505. 8-bit fixed-point; this limits input sample format to U8, S16, and S32.
  506. @item float
  507. 32-bit floating-point; this limits input sample format to FLT. (default)
  508. @item double
  509. 64-bit floating-point; this limits input sample format to DBL.
  510. @end table
  511. @item replaygain
  512. Choose the behaviour on encountering ReplayGain side data in input frames.
  513. @table @option
  514. @item drop
  515. Remove ReplayGain side data, ignoring its contents (the default).
  516. @item ignore
  517. Ignore ReplayGain side data, but leave it in the frame.
  518. @item track
  519. Prefer the track gain, if present.
  520. @item album
  521. Prefer the album gain, if present.
  522. @end table
  523. @item replaygain_preamp
  524. Pre-amplification gain in dB to apply to the selected replaygain gain.
  525. Default value for @var{replaygain_preamp} is 0.0.
  526. @item replaygain_noclip
  527. Prevent clipping by limiting the gain applied.
  528. Default value for @var{replaygain_noclip} is 1.
  529. @end table
  530. @subsection Examples
  531. @itemize
  532. @item
  533. Halve the input audio volume:
  534. @example
  535. volume=volume=0.5
  536. volume=volume=1/2
  537. volume=volume=-6.0206dB
  538. @end example
  539. @item
  540. Increase input audio power by 6 decibels using fixed-point precision:
  541. @example
  542. volume=volume=6dB:precision=fixed
  543. @end example
  544. @end itemize
  545. @c man end AUDIO FILTERS
  546. @chapter Audio Sources
  547. @c man begin AUDIO SOURCES
  548. Below is a description of the currently available audio sources.
  549. @section anullsrc
  550. The null audio source; it never returns audio frames. It is mainly useful as a
  551. template and for use in analysis / debugging tools.
  552. It accepts, as an optional parameter, a string of the form
  553. @var{sample_rate}:@var{channel_layout}.
  554. @var{sample_rate} specifies the sample rate, and defaults to 44100.
  555. @var{channel_layout} specifies the channel layout, and can be either an
  556. integer or a string representing a channel layout. The default value
  557. of @var{channel_layout} is 3, which corresponds to CH_LAYOUT_STEREO.
  558. Check the channel_layout_map definition in
  559. @file{libavutil/channel_layout.c} for the mapping between strings and
  560. channel layout values.
  561. Some examples:
  562. @example
  563. # Set the sample rate to 48000 Hz and the channel layout to CH_LAYOUT_MONO
  564. anullsrc=48000:4
  565. # The same as above
  566. anullsrc=48000:mono
  567. @end example
  568. @section abuffer
  569. Buffer audio frames, and make them available to the filter chain.
  570. This source is not intended to be part of user-supplied graph descriptions; it
  571. is for insertion by calling programs, through the interface defined in
  572. @file{libavfilter/buffersrc.h}.
  573. It accepts the following parameters:
  574. @table @option
  575. @item time_base
  576. The timebase which will be used for timestamps of submitted frames. It must be
  577. either a floating-point number or in @var{numerator}/@var{denominator} form.
  578. @item sample_rate
  579. The audio sample rate.
  580. @item sample_fmt
  581. The name of the sample format, as returned by @code{av_get_sample_fmt_name()}.
  582. @item channel_layout
  583. The channel layout of the audio data, in the form that can be accepted by
  584. @code{av_get_channel_layout()}.
  585. @end table
  586. All the parameters need to be explicitly defined.
  587. @c man end AUDIO SOURCES
  588. @chapter Audio Sinks
  589. @c man begin AUDIO SINKS
  590. Below is a description of the currently available audio sinks.
  591. @section anullsink
  592. Null audio sink; do absolutely nothing with the input audio. It is
  593. mainly useful as a template and for use in analysis / debugging
  594. tools.
  595. @section abuffersink
  596. This sink is intended for programmatic use. Frames that arrive on this sink can
  597. be retrieved by the calling program, using the interface defined in
  598. @file{libavfilter/buffersink.h}.
  599. It does not accept any parameters.
  600. @c man end AUDIO SINKS
  601. @chapter Video Filters
  602. @c man begin VIDEO FILTERS
  603. When you configure your Libav build, you can disable any of the
  604. existing filters using --disable-filters.
  605. The configure output will show the video filters included in your
  606. build.
  607. Below is a description of the currently available video filters.
  608. @section blackframe
  609. Detect frames that are (almost) completely black. Can be useful to
  610. detect chapter transitions or commercials. Output lines consist of
  611. the frame number of the detected frame, the percentage of blackness,
  612. the position in the file if known or -1 and the timestamp in seconds.
  613. In order to display the output lines, you need to set the loglevel at
  614. least to the AV_LOG_INFO value.
  615. It accepts the following parameters:
  616. @table @option
  617. @item amount
  618. The percentage of the pixels that have to be below the threshold; it defaults to
  619. 98.
  620. @item threshold
  621. The threshold below which a pixel value is considered black; it defaults to 32.
  622. @end table
  623. @section boxblur
  624. Apply a boxblur algorithm to the input video.
  625. It accepts the following parameters:
  626. @table @option
  627. @item luma_radius
  628. @item luma_power
  629. @item chroma_radius
  630. @item chroma_power
  631. @item alpha_radius
  632. @item alpha_power
  633. @end table
  634. The chroma and alpha parameters are optional. If not specified, they default
  635. to the corresponding values set for @var{luma_radius} and
  636. @var{luma_power}.
  637. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  638. the radius in pixels of the box used for blurring the corresponding
  639. input plane. They are expressions, and can contain the following
  640. constants:
  641. @table @option
  642. @item w, h
  643. The input width and height in pixels.
  644. @item cw, ch
  645. The input chroma image width and height in pixels.
  646. @item hsub, vsub
  647. The horizontal and vertical chroma subsample values. For example, for the
  648. pixel format "yuv422p", @var{hsub} is 2 and @var{vsub} is 1.
  649. @end table
  650. The radius must be a non-negative number, and must not be greater than
  651. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  652. and of @code{min(cw,ch)/2} for the chroma planes.
  653. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  654. how many times the boxblur filter is applied to the corresponding
  655. plane.
  656. Some examples:
  657. @itemize
  658. @item
  659. Apply a boxblur filter with the luma, chroma, and alpha radii
  660. set to 2:
  661. @example
  662. boxblur=luma_radius=2:luma_power=1
  663. @end example
  664. @item
  665. Set the luma radius to 2, and alpha and chroma radius to 0:
  666. @example
  667. boxblur=2:1:0:0:0:0
  668. @end example
  669. @item
  670. Set the luma and chroma radii to a fraction of the video dimension:
  671. @example
  672. boxblur=luma_radius=min(h\,w)/10:luma_power=1:chroma_radius=min(cw\,ch)/10:chroma_power=1
  673. @end example
  674. @end itemize
  675. @section copy
  676. Copy the input source unchanged to the output. This is mainly useful for
  677. testing purposes.
  678. @section crop
  679. Crop the input video to given dimensions.
  680. It accepts the following parameters:
  681. @table @option
  682. @item out_w
  683. The width of the output video.
  684. @item out_h
  685. The height of the output video.
  686. @item x
  687. The horizontal position, in the input video, of the left edge of the output
  688. video.
  689. @item y
  690. The vertical position, in the input video, of the top edge of the output video.
  691. @end table
  692. The parameters are expressions containing the following constants:
  693. @table @option
  694. @item E, PI, PHI
  695. These are approximated values for the mathematical constants e
  696. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  697. @item x, y
  698. The computed values for @var{x} and @var{y}. They are evaluated for
  699. each new frame.
  700. @item in_w, in_h
  701. The input width and height.
  702. @item iw, ih
  703. These are the same as @var{in_w} and @var{in_h}.
  704. @item out_w, out_h
  705. The output (cropped) width and height.
  706. @item ow, oh
  707. These are the same as @var{out_w} and @var{out_h}.
  708. @item n
  709. The number of the input frame, starting from 0.
  710. @item t
  711. The timestamp expressed in seconds. It's NAN if the input timestamp is unknown.
  712. @end table
  713. The @var{out_w} and @var{out_h} parameters specify the expressions for
  714. the width and height of the output (cropped) video. They are only
  715. evaluated during the configuration of the filter.
  716. The default value of @var{out_w} is "in_w", and the default value of
  717. @var{out_h} is "in_h".
  718. The expression for @var{out_w} may depend on the value of @var{out_h},
  719. and the expression for @var{out_h} may depend on @var{out_w}, but they
  720. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  721. evaluated after @var{out_w} and @var{out_h}.
  722. The @var{x} and @var{y} parameters specify the expressions for the
  723. position of the top-left corner of the output (non-cropped) area. They
  724. are evaluated for each frame. If the evaluated value is not valid, it
  725. is approximated to the nearest valid value.
  726. The default value of @var{x} is "(in_w-out_w)/2", and the default
  727. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  728. the center of the input image.
  729. The expression for @var{x} may depend on @var{y}, and the expression
  730. for @var{y} may depend on @var{x}.
  731. Some examples:
  732. @example
  733. # Crop the central input area with size 100x100
  734. crop=out_w=100:out_h=100
  735. # Crop the central input area with size 2/3 of the input video
  736. "crop=out_w=2/3*in_w:out_h=2/3*in_h"
  737. # Crop the input video central square
  738. crop=out_w=in_h
  739. # Delimit the rectangle with the top-left corner placed at position
  740. # 100:100 and the right-bottom corner corresponding to the right-bottom
  741. # corner of the input image
  742. crop=out_w=in_w-100:out_h=in_h-100:x=100:y=100
  743. # Crop 10 pixels from the left and right borders, and 20 pixels from
  744. # the top and bottom borders
  745. "crop=out_w=in_w-2*10:out_h=in_h-2*20"
  746. # Keep only the bottom right quarter of the input image
  747. "crop=out_w=in_w/2:out_h=in_h/2:x=in_w/2:y=in_h/2"
  748. # Crop height for getting Greek harmony
  749. "crop=out_w=in_w:out_h=1/PHI*in_w"
  750. # Trembling effect
  751. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  752. # Erratic camera effect depending on timestamp
  753. "crop=out_w=in_w/2:out_h=in_h/2:x=(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):y=(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  754. # Set x depending on the value of y
  755. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  756. @end example
  757. @section cropdetect
  758. Auto-detect the crop size.
  759. It calculates the necessary cropping parameters and prints the
  760. recommended parameters via the logging system. The detected dimensions
  761. correspond to the non-black area of the input video.
  762. It accepts the following parameters:
  763. @table @option
  764. @item limit
  765. The threshold, an optional parameter between nothing (0) and
  766. everything (255). It defaults to 24.
  767. @item round
  768. The value which the width/height should be divisible by. It defaults to
  769. 16. The offset is automatically adjusted to center the video. Use 2 to
  770. get only even dimensions (needed for 4:2:2 video). 16 is best when
  771. encoding to most video codecs.
  772. @item reset
  773. A counter that determines how many frames cropdetect will reset
  774. the previously detected largest video area after. It will then start over
  775. and detect the current optimal crop area. It defaults to 0.
  776. This can be useful when channel logos distort the video area. 0
  777. indicates 'never reset', and returns the largest area encountered during
  778. playback.
  779. @end table
  780. @section delogo
  781. Suppress a TV station logo by a simple interpolation of the surrounding
  782. pixels. Just set a rectangle covering the logo and watch it disappear
  783. (and sometimes something even uglier appear - your mileage may vary).
  784. It accepts the following parameters:
  785. @table @option
  786. @item x, y
  787. Specify the top left corner coordinates of the logo. They must be
  788. specified.
  789. @item w, h
  790. Specify the width and height of the logo to clear. They must be
  791. specified.
  792. @item band, t
  793. Specify the thickness of the fuzzy edge of the rectangle (added to
  794. @var{w} and @var{h}). The default value is 4.
  795. @item show
  796. When set to 1, a green rectangle is drawn on the screen to simplify
  797. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  798. @var{band} is set to 4. The default value is 0.
  799. @end table
  800. An example:
  801. @itemize
  802. @item
  803. Set a rectangle covering the area with top left corner coordinates 0,0
  804. and size 100x77, and a band of size 10:
  805. @example
  806. delogo=x=0:y=0:w=100:h=77:band=10
  807. @end example
  808. @end itemize
  809. @section drawbox
  810. Draw a colored box on the input image.
  811. It accepts the following parameters:
  812. @table @option
  813. @item x, y
  814. Specify the top left corner coordinates of the box. It defaults to 0.
  815. @item width, height
  816. Specify the width and height of the box; if 0 they are interpreted as
  817. the input width and height. It defaults to 0.
  818. @item color
  819. Specify the color of the box to write. It can be the name of a color
  820. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  821. @end table
  822. Some examples:
  823. @example
  824. # Draw a black box around the edge of the input image
  825. drawbox
  826. # Draw a box with color red and an opacity of 50%
  827. drawbox=x=10:y=20:width=200:height=60:color=red@@0.5"
  828. @end example
  829. @section drawtext
  830. Draw a text string or text from a specified file on top of a video, using the
  831. libfreetype library.
  832. To enable compilation of this filter, you need to configure Libav with
  833. @code{--enable-libfreetype}.
  834. To enable default font fallback and the @var{font} option you need to
  835. configure Libav with @code{--enable-libfontconfig}.
  836. The filter also recognizes strftime() sequences in the provided text
  837. and expands them accordingly. Check the documentation of strftime().
  838. It accepts the following parameters:
  839. @table @option
  840. @item font
  841. The font family to be used for drawing text. By default Sans.
  842. @item fontfile
  843. The font file to be used for drawing text. The path must be included.
  844. This parameter is mandatory if the fontconfig support is disabled.
  845. @item text
  846. The text string to be drawn. The text must be a sequence of UTF-8
  847. encoded characters.
  848. This parameter is mandatory if no file is specified with the parameter
  849. @var{textfile}.
  850. @item textfile
  851. A text file containing text to be drawn. The text must be a sequence
  852. of UTF-8 encoded characters.
  853. This parameter is mandatory if no text string is specified with the
  854. parameter @var{text}.
  855. If both text and textfile are specified, an error is thrown.
  856. @item x, y
  857. The offsets where text will be drawn within the video frame.
  858. It is relative to the top/left border of the output image.
  859. They accept expressions similar to the @ref{overlay} filter:
  860. @table @option
  861. @item x, y
  862. The computed values for @var{x} and @var{y}. They are evaluated for
  863. each new frame.
  864. @item main_w, main_h
  865. The main input width and height.
  866. @item W, H
  867. These are the same as @var{main_w} and @var{main_h}.
  868. @item text_w, text_h
  869. The rendered text's width and height.
  870. @item w, h
  871. These are the same as @var{text_w} and @var{text_h}.
  872. @item n
  873. The number of frames processed, starting from 0.
  874. @item t
  875. The timestamp, expressed in seconds. It's NAN if the input timestamp is unknown.
  876. @end table
  877. The default value of @var{x} and @var{y} is 0.
  878. @item draw
  879. Draw the text only if the expression evaluates as non-zero.
  880. The expression accepts the same variables @var{x, y} do.
  881. The default value is 1.
  882. @item alpha
  883. Draw the text applying alpha blending. The value can
  884. be either a number between 0.0 and 1.0
  885. The expression accepts the same variables @var{x, y} do.
  886. The default value is 1.
  887. @item fontsize
  888. The font size to be used for drawing text.
  889. The default value of @var{fontsize} is 16.
  890. @item fontcolor
  891. The color to be used for drawing fonts.
  892. It is either a string (e.g. "red"), or in 0xRRGGBB[AA] format
  893. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  894. The default value of @var{fontcolor} is "black".
  895. @item boxcolor
  896. The color to be used for drawing box around text.
  897. It is either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  898. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  899. The default value of @var{boxcolor} is "white".
  900. @item box
  901. Used to draw a box around text using the background color.
  902. The value must be either 1 (enable) or 0 (disable).
  903. The default value of @var{box} is 0.
  904. @item shadowx, shadowy
  905. The x and y offsets for the text shadow position with respect to the
  906. position of the text. They can be either positive or negative
  907. values. The default value for both is "0".
  908. @item shadowcolor
  909. The color to be used for drawing a shadow behind the drawn text. It
  910. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  911. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  912. The default value of @var{shadowcolor} is "black".
  913. @item ft_load_flags
  914. The flags to be used for loading the fonts.
  915. The flags map the corresponding flags supported by libfreetype, and are
  916. a combination of the following values:
  917. @table @var
  918. @item default
  919. @item no_scale
  920. @item no_hinting
  921. @item render
  922. @item no_bitmap
  923. @item vertical_layout
  924. @item force_autohint
  925. @item crop_bitmap
  926. @item pedantic
  927. @item ignore_global_advance_width
  928. @item no_recurse
  929. @item ignore_transform
  930. @item monochrome
  931. @item linear_design
  932. @item no_autohint
  933. @item end table
  934. @end table
  935. Default value is "render".
  936. For more information consult the documentation for the FT_LOAD_*
  937. libfreetype flags.
  938. @item tabsize
  939. The size in number of spaces to use for rendering the tab.
  940. Default value is 4.
  941. @item fix_bounds
  942. If true, check and fix text coords to avoid clipping.
  943. @end table
  944. For example the command:
  945. @example
  946. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  947. @end example
  948. will draw "Test Text" with font FreeSerif, using the default values
  949. for the optional parameters.
  950. The command:
  951. @example
  952. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  953. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  954. @end example
  955. will draw 'Test Text' with font FreeSerif of size 24 at position x=100
  956. and y=50 (counting from the top-left corner of the screen), text is
  957. yellow with a red box around it. Both the text and the box have an
  958. opacity of 20%.
  959. Note that the double quotes are not necessary if spaces are not used
  960. within the parameter list.
  961. For more information about libfreetype, check:
  962. @url{http://www.freetype.org/}.
  963. @section fade
  964. Apply a fade-in/out effect to the input video.
  965. It accepts the following parameters:
  966. @table @option
  967. @item type
  968. The effect type can be either "in" for a fade-in, or "out" for a fade-out
  969. effect.
  970. @item start_frame
  971. The number of the frame to start applying the fade effect at.
  972. @item nb_frames
  973. The number of frames that the fade effect lasts. At the end of the
  974. fade-in effect, the output video will have the same intensity as the input video.
  975. At the end of the fade-out transition, the output video will be completely black.
  976. @end table
  977. Some examples:
  978. @example
  979. # Fade in the first 30 frames of video
  980. fade=type=in:nb_frames=30
  981. # Fade out the last 45 frames of a 200-frame video
  982. fade=type=out:start_frame=155:nb_frames=45
  983. # Fade in the first 25 frames and fade out the last 25 frames of a 1000-frame video
  984. fade=type=in:start_frame=0:nb_frames=25, fade=type=out:start_frame=975:nb_frames=25
  985. # Make the first 5 frames black, then fade in from frame 5-24
  986. fade=type=in:start_frame=5:nb_frames=20
  987. @end example
  988. @section fieldorder
  989. Transform the field order of the input video.
  990. It accepts the following parameters:
  991. @table @option
  992. @item order
  993. The output field order. Valid values are @var{tff} for top field first or @var{bff}
  994. for bottom field first.
  995. @end table
  996. The default value is "tff".
  997. The transformation is done by shifting the picture content up or down
  998. by one line, and filling the remaining line with appropriate picture content.
  999. This method is consistent with most broadcast field order converters.
  1000. If the input video is not flagged as being interlaced, or it is already
  1001. flagged as being of the required output field order, then this filter does
  1002. not alter the incoming video.
  1003. It is very useful when converting to or from PAL DV material,
  1004. which is bottom field first.
  1005. For example:
  1006. @example
  1007. ./avconv -i in.vob -vf "fieldorder=order=bff" out.dv
  1008. @end example
  1009. @section fifo
  1010. Buffer input images and send them when they are requested.
  1011. It is mainly useful when auto-inserted by the libavfilter
  1012. framework.
  1013. It does not take parameters.
  1014. @section format
  1015. Convert the input video to one of the specified pixel formats.
  1016. Libavfilter will try to pick one that is suitable as input to
  1017. the next filter.
  1018. It accepts the following parameters:
  1019. @table @option
  1020. @item pix_fmts
  1021. A '|'-separated list of pixel format names, such as
  1022. "pix_fmts=yuv420p|monow|rgb24".
  1023. @end table
  1024. Some examples:
  1025. @example
  1026. # Convert the input video to the "yuv420p" format
  1027. format=pix_fmts=yuv420p
  1028. # Convert the input video to any of the formats in the list
  1029. format=pix_fmts=yuv420p|yuv444p|yuv410p
  1030. @end example
  1031. @anchor{fps}
  1032. @section fps
  1033. Convert the video to specified constant framerate by duplicating or dropping
  1034. frames as necessary.
  1035. It accepts the following parameters:
  1036. @table @option
  1037. @item fps
  1038. The desired output framerate.
  1039. @item start_time
  1040. Assume the first PTS should be the given value, in seconds. This allows for
  1041. padding/trimming at the start of stream. By default, no assumption is made
  1042. about the first frame's expected PTS, so no padding or trimming is done.
  1043. For example, this could be set to 0 to pad the beginning with duplicates of
  1044. the first frame if a video stream starts after the audio stream or to trim any
  1045. frames with a negative PTS.
  1046. @end table
  1047. @section framepack
  1048. Pack two different video streams into a stereoscopic video, setting proper
  1049. metadata on supported codecs. The two views should have the same size and
  1050. framerate and processing will stop when the shorter video ends. Please note
  1051. that you may conveniently adjust view properties with the @ref{scale} and
  1052. @ref{fps} filters.
  1053. It accepts the following parameters:
  1054. @table @option
  1055. @item format
  1056. The desired packing format. Supported values are:
  1057. @table @option
  1058. @item sbs
  1059. The views are next to each other (default).
  1060. @item tab
  1061. The views are on top of each other.
  1062. @item lines
  1063. The views are packed by line.
  1064. @item columns
  1065. The views are packed by column.
  1066. @item frameseq
  1067. The views are temporally interleaved.
  1068. @end table
  1069. @end table
  1070. Some examples:
  1071. @example
  1072. # Convert left and right views into a frame-sequential video
  1073. avconv -i LEFT -i RIGHT -filter_complex framepack=frameseq OUTPUT
  1074. # Convert views into a side-by-side video with the same output resolution as the input
  1075. avconv -i LEFT -i RIGHT -filter_complex [0:v]scale=w=iw/2[left],[1:v]scale=w=iw/2[right],[left][right]framepack=sbs OUTPUT
  1076. @end example
  1077. @anchor{frei0r}
  1078. @section frei0r
  1079. Apply a frei0r effect to the input video.
  1080. To enable the compilation of this filter, you need to install the frei0r
  1081. header and configure Libav with --enable-frei0r.
  1082. It accepts the following parameters:
  1083. @table @option
  1084. @item filter_name
  1085. The name of the frei0r effect to load. If the environment variable
  1086. @env{FREI0R_PATH} is defined, the frei0r effect is searched for in each of the
  1087. directories specified by the colon-separated list in @env{FREIOR_PATH}.
  1088. Otherwise, the standard frei0r paths are searched, in this order:
  1089. @file{HOME/.frei0r-1/lib/}, @file{/usr/local/lib/frei0r-1/},
  1090. @file{/usr/lib/frei0r-1/}.
  1091. @item filter_params
  1092. A '|'-separated list of parameters to pass to the frei0r effect.
  1093. @end table
  1094. A frei0r effect parameter can be a boolean (its value is either
  1095. "y" or "n"), a double, a color (specified as
  1096. @var{R}/@var{G}/@var{B}, where @var{R}, @var{G}, and @var{B} are floating point
  1097. numbers between 0.0 and 1.0, inclusive) or by an @code{av_parse_color()} color
  1098. description), a position (specified as @var{X}/@var{Y}, where
  1099. @var{X} and @var{Y} are floating point numbers) and/or a string.
  1100. The number and types of parameters depend on the loaded effect. If an
  1101. effect parameter is not specified, the default value is set.
  1102. Some examples:
  1103. @example
  1104. # Apply the distort0r effect, setting the first two double parameters
  1105. frei0r=filter_name=distort0r:filter_params=0.5|0.01
  1106. # Apply the colordistance effect, taking a color as the first parameter
  1107. frei0r=colordistance:0.2/0.3/0.4
  1108. frei0r=colordistance:violet
  1109. frei0r=colordistance:0x112233
  1110. # Apply the perspective effect, specifying the top left and top right
  1111. # image positions
  1112. frei0r=perspective:0.2/0.2|0.8/0.2
  1113. @end example
  1114. For more information, see
  1115. @url{http://piksel.org/frei0r}
  1116. @section gradfun
  1117. Fix the banding artifacts that are sometimes introduced into nearly flat
  1118. regions by truncation to 8-bit colordepth.
  1119. Interpolate the gradients that should go where the bands are, and
  1120. dither them.
  1121. It is designed for playback only. Do not use it prior to
  1122. lossy compression, because compression tends to lose the dither and
  1123. bring back the bands.
  1124. It accepts the following parameters:
  1125. @table @option
  1126. @item strength
  1127. The maximum amount by which the filter will change any one pixel. This is also
  1128. the threshold for detecting nearly flat regions. Acceptable values range from
  1129. .51 to 64; the default value is 1.2. Out-of-range values will be clipped to the
  1130. valid range.
  1131. @item radius
  1132. The neighborhood to fit the gradient to. A larger radius makes for smoother
  1133. gradients, but also prevents the filter from modifying the pixels near detailed
  1134. regions. Acceptable values are 8-32; the default value is 16. Out-of-range
  1135. values will be clipped to the valid range.
  1136. @end table
  1137. @example
  1138. # Default parameters
  1139. gradfun=strength=1.2:radius=16
  1140. # Omitting the radius
  1141. gradfun=1.2
  1142. @end example
  1143. @section hflip
  1144. Flip the input video horizontally.
  1145. For example, to horizontally flip the input video with @command{avconv}:
  1146. @example
  1147. avconv -i in.avi -vf "hflip" out.avi
  1148. @end example
  1149. @section hqdn3d
  1150. This is a high precision/quality 3d denoise filter. It aims to reduce
  1151. image noise, producing smooth images and making still images really
  1152. still. It should enhance compressibility.
  1153. It accepts the following optional parameters:
  1154. @table @option
  1155. @item luma_spatial
  1156. A non-negative floating point number which specifies spatial luma strength.
  1157. It defaults to 4.0.
  1158. @item chroma_spatial
  1159. A non-negative floating point number which specifies spatial chroma strength.
  1160. It defaults to 3.0*@var{luma_spatial}/4.0.
  1161. @item luma_tmp
  1162. A floating point number which specifies luma temporal strength. It defaults to
  1163. 6.0*@var{luma_spatial}/4.0.
  1164. @item chroma_tmp
  1165. A floating point number which specifies chroma temporal strength. It defaults to
  1166. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}.
  1167. @end table
  1168. @section hwupload_cuda
  1169. Upload system memory frames to a CUDA device.
  1170. It accepts the following optional parameters:
  1171. @table @option
  1172. @item device
  1173. The number of the CUDA device to use
  1174. @end table
  1175. @section interlace
  1176. Simple interlacing filter from progressive contents. This interleaves upper (or
  1177. lower) lines from odd frames with lower (or upper) lines from even frames,
  1178. halving the frame rate and preserving image height.
  1179. @example
  1180. Original Original New Frame
  1181. Frame 'j' Frame 'j+1' (tff)
  1182. ========== =========== ==================
  1183. Line 0 --------------------> Frame 'j' Line 0
  1184. Line 1 Line 1 ----> Frame 'j+1' Line 1
  1185. Line 2 ---------------------> Frame 'j' Line 2
  1186. Line 3 Line 3 ----> Frame 'j+1' Line 3
  1187. ... ... ...
  1188. New Frame + 1 will be generated by Frame 'j+2' and Frame 'j+3' and so on
  1189. @end example
  1190. It accepts the following optional parameters:
  1191. @table @option
  1192. @item scan
  1193. This determines whether the interlaced frame is taken from the even
  1194. (tff - default) or odd (bff) lines of the progressive frame.
  1195. @item lowpass
  1196. Enable (default) or disable the vertical lowpass filter to avoid twitter
  1197. interlacing and reduce moire patterns.
  1198. @end table
  1199. @section lut, lutrgb, lutyuv
  1200. Compute a look-up table for binding each pixel component input value
  1201. to an output value, and apply it to the input video.
  1202. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1203. to an RGB input video.
  1204. These filters accept the following parameters:
  1205. @table @option
  1206. @item @var{c0} (first pixel component)
  1207. @item @var{c1} (second pixel component)
  1208. @item @var{c2} (third pixel component)
  1209. @item @var{c3} (fourth pixel component, corresponds to the alpha component)
  1210. @item @var{r} (red component)
  1211. @item @var{g} (green component)
  1212. @item @var{b} (blue component)
  1213. @item @var{a} (alpha component)
  1214. @item @var{y} (Y/luminance component)
  1215. @item @var{u} (U/Cb component)
  1216. @item @var{v} (V/Cr component)
  1217. @end table
  1218. Each of them specifies the expression to use for computing the lookup table for
  1219. the corresponding pixel component values.
  1220. The exact component associated to each of the @var{c*} options depends on the
  1221. format in input.
  1222. The @var{lut} filter requires either YUV or RGB pixel formats in input,
  1223. @var{lutrgb} requires RGB pixel formats in input, and @var{lutyuv} requires YUV.
  1224. The expressions can contain the following constants and functions:
  1225. @table @option
  1226. @item E, PI, PHI
  1227. These are approximated values for the mathematical constants e
  1228. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  1229. @item w, h
  1230. The input width and height.
  1231. @item val
  1232. The input value for the pixel component.
  1233. @item clipval
  1234. The input value, clipped to the @var{minval}-@var{maxval} range.
  1235. @item maxval
  1236. The maximum value for the pixel component.
  1237. @item minval
  1238. The minimum value for the pixel component.
  1239. @item negval
  1240. The negated value for the pixel component value, clipped to the
  1241. @var{minval}-@var{maxval} range; it corresponds to the expression
  1242. "maxval-clipval+minval".
  1243. @item clip(val)
  1244. The computed value in @var{val}, clipped to the
  1245. @var{minval}-@var{maxval} range.
  1246. @item gammaval(gamma)
  1247. The computed gamma correction value of the pixel component value,
  1248. clipped to the @var{minval}-@var{maxval} range. It corresponds to the
  1249. expression
  1250. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1251. @end table
  1252. All expressions default to "val".
  1253. Some examples:
  1254. @example
  1255. # Negate input video
  1256. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1257. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1258. # The above is the same as
  1259. lutrgb="r=negval:g=negval:b=negval"
  1260. lutyuv="y=negval:u=negval:v=negval"
  1261. # Negate luminance
  1262. lutyuv=negval
  1263. # Remove chroma components, turning the video into a graytone image
  1264. lutyuv="u=128:v=128"
  1265. # Apply a luma burning effect
  1266. lutyuv="y=2*val"
  1267. # Remove green and blue components
  1268. lutrgb="g=0:b=0"
  1269. # Set a constant alpha channel value on input
  1270. format=rgba,lutrgb=a="maxval-minval/2"
  1271. # Correct luminance gamma by a factor of 0.5
  1272. lutyuv=y=gammaval(0.5)
  1273. @end example
  1274. @section negate
  1275. Negate input video.
  1276. It accepts an integer in input; if non-zero it negates the
  1277. alpha component (if available). The default value in input is 0.
  1278. @section noformat
  1279. Force libavfilter not to use any of the specified pixel formats for the
  1280. input to the next filter.
  1281. It accepts the following parameters:
  1282. @table @option
  1283. @item pix_fmts
  1284. A '|'-separated list of pixel format names, such as
  1285. apix_fmts=yuv420p|monow|rgb24".
  1286. @end table
  1287. Some examples:
  1288. @example
  1289. # Force libavfilter to use a format different from "yuv420p" for the
  1290. # input to the vflip filter
  1291. noformat=pix_fmts=yuv420p,vflip
  1292. # Convert the input video to any of the formats not contained in the list
  1293. noformat=yuv420p|yuv444p|yuv410p
  1294. @end example
  1295. @section null
  1296. Pass the video source unchanged to the output.
  1297. @section ocv
  1298. Apply a video transform using libopencv.
  1299. To enable this filter, install the libopencv library and headers and
  1300. configure Libav with --enable-libopencv.
  1301. It accepts the following parameters:
  1302. @table @option
  1303. @item filter_name
  1304. The name of the libopencv filter to apply.
  1305. @item filter_params
  1306. The parameters to pass to the libopencv filter. If not specified, the default
  1307. values are assumed.
  1308. @end table
  1309. Refer to the official libopencv documentation for more precise
  1310. information:
  1311. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1312. Several libopencv filters are supported; see the following subsections.
  1313. @anchor{dilate}
  1314. @subsection dilate
  1315. Dilate an image by using a specific structuring element.
  1316. It corresponds to the libopencv function @code{cvDilate}.
  1317. It accepts the parameters: @var{struct_el}|@var{nb_iterations}.
  1318. @var{struct_el} represents a structuring element, and has the syntax:
  1319. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1320. @var{cols} and @var{rows} represent the number of columns and rows of
  1321. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1322. point, and @var{shape} the shape for the structuring element. @var{shape}
  1323. must be "rect", "cross", "ellipse", or "custom".
  1324. If the value for @var{shape} is "custom", it must be followed by a
  1325. string of the form "=@var{filename}". The file with name
  1326. @var{filename} is assumed to represent a binary image, with each
  1327. printable character corresponding to a bright pixel. When a custom
  1328. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1329. or columns and rows of the read file are assumed instead.
  1330. The default value for @var{struct_el} is "3x3+0x0/rect".
  1331. @var{nb_iterations} specifies the number of times the transform is
  1332. applied to the image, and defaults to 1.
  1333. Some examples:
  1334. @example
  1335. # Use the default values
  1336. ocv=dilate
  1337. # Dilate using a structuring element with a 5x5 cross, iterating two times
  1338. ocv=filter_name=dilate:filter_params=5x5+2x2/cross|2
  1339. # Read the shape from the file diamond.shape, iterating two times.
  1340. # The file diamond.shape may contain a pattern of characters like this
  1341. # *
  1342. # ***
  1343. # *****
  1344. # ***
  1345. # *
  1346. # The specified columns and rows are ignored
  1347. # but the anchor point coordinates are not
  1348. ocv=dilate:0x0+2x2/custom=diamond.shape|2
  1349. @end example
  1350. @subsection erode
  1351. Erode an image by using a specific structuring element.
  1352. It corresponds to the libopencv function @code{cvErode}.
  1353. It accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1354. with the same syntax and semantics as the @ref{dilate} filter.
  1355. @subsection smooth
  1356. Smooth the input video.
  1357. The filter takes the following parameters:
  1358. @var{type}|@var{param1}|@var{param2}|@var{param3}|@var{param4}.
  1359. @var{type} is the type of smooth filter to apply, and must be one of
  1360. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1361. or "bilateral". The default value is "gaussian".
  1362. The meaning of @var{param1}, @var{param2}, @var{param3}, and @var{param4}
  1363. depend on the smooth type. @var{param1} and
  1364. @var{param2} accept integer positive values or 0. @var{param3} and
  1365. @var{param4} accept floating point values.
  1366. The default value for @var{param1} is 3. The default value for the
  1367. other parameters is 0.
  1368. These parameters correspond to the parameters assigned to the
  1369. libopencv function @code{cvSmooth}.
  1370. @anchor{overlay}
  1371. @section overlay
  1372. Overlay one video on top of another.
  1373. It takes two inputs and has one output. The first input is the "main"
  1374. video on which the second input is overlaid.
  1375. It accepts the following parameters:
  1376. @table @option
  1377. @item x
  1378. The horizontal position of the left edge of the overlaid video on the main video.
  1379. @item y
  1380. The vertical position of the top edge of the overlaid video on the main video.
  1381. @end table
  1382. The parameters are expressions containing the following parameters:
  1383. @table @option
  1384. @item main_w, main_h
  1385. The main input width and height.
  1386. @item W, H
  1387. These are the same as @var{main_w} and @var{main_h}.
  1388. @item overlay_w, overlay_h
  1389. The overlay input width and height.
  1390. @item w, h
  1391. These are the same as @var{overlay_w} and @var{overlay_h}.
  1392. @item eof_action
  1393. The action to take when EOF is encountered on the secondary input; it accepts
  1394. one of the following values:
  1395. @table @option
  1396. @item repeat
  1397. Repeat the last frame (the default).
  1398. @item endall
  1399. End both streams.
  1400. @item pass
  1401. Pass the main input through.
  1402. @end table
  1403. @end table
  1404. Be aware that frames are taken from each input video in timestamp
  1405. order, hence, if their initial timestamps differ, it is a a good idea
  1406. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1407. have them begin in the same zero timestamp, as the example for
  1408. the @var{movie} filter does.
  1409. Some examples:
  1410. @example
  1411. # Draw the overlay at 10 pixels from the bottom right
  1412. # corner of the main video
  1413. overlay=x=main_w-overlay_w-10:y=main_h-overlay_h-10
  1414. # Insert a transparent PNG logo in the bottom left corner of the input
  1415. avconv -i input -i logo -filter_complex 'overlay=x=10:y=main_h-overlay_h-10' output
  1416. # Insert 2 different transparent PNG logos (second logo on bottom
  1417. # right corner)
  1418. avconv -i input -i logo1 -i logo2 -filter_complex
  1419. 'overlay=x=10:y=H-h-10,overlay=x=W-w-10:y=H-h-10' output
  1420. # Add a transparent color layer on top of the main video;
  1421. # WxH specifies the size of the main input to the overlay filter
  1422. color=red@.3:WxH [over]; [in][over] overlay [out]
  1423. # Mask 10-20 seconds of a video by applying the delogo filter to a section
  1424. avconv -i test.avi -codec:v:0 wmv2 -ar 11025 -b:v 9000k
  1425. -vf '[in]split[split_main][split_delogo];[split_delogo]trim=start=360:end=371,delogo=0:0:640:480[delogoed];[split_main][delogoed]overlay=eof_action=pass[out]'
  1426. masked.avi
  1427. @end example
  1428. You can chain together more overlays but the efficiency of such
  1429. approach is yet to be tested.
  1430. @section pad
  1431. Add paddings to the input image, and place the original input at the
  1432. provided @var{x}, @var{y} coordinates.
  1433. It accepts the following parameters:
  1434. @table @option
  1435. @item width, height
  1436. Specify the size of the output image with the paddings added. If the
  1437. value for @var{width} or @var{height} is 0, the corresponding input size
  1438. is used for the output.
  1439. The @var{width} expression can reference the value set by the
  1440. @var{height} expression, and vice versa.
  1441. The default value of @var{width} and @var{height} is 0.
  1442. @item x, y
  1443. Specify the offsets to place the input image at within the padded area,
  1444. with respect to the top/left border of the output image.
  1445. The @var{x} expression can reference the value set by the @var{y}
  1446. expression, and vice versa.
  1447. The default value of @var{x} and @var{y} is 0.
  1448. @item color
  1449. Specify the color of the padded area. It can be the name of a color
  1450. (case insensitive match) or an 0xRRGGBB[AA] sequence.
  1451. The default value of @var{color} is "black".
  1452. @end table
  1453. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1454. expressions containing the following constants:
  1455. @table @option
  1456. @item E, PI, PHI
  1457. These are approximated values for the mathematical constants e
  1458. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  1459. @item in_w, in_h
  1460. The input video width and height.
  1461. @item iw, ih
  1462. These are the same as @var{in_w} and @var{in_h}.
  1463. @item out_w, out_h
  1464. The output width and height (the size of the padded area), as
  1465. specified by the @var{width} and @var{height} expressions.
  1466. @item ow, oh
  1467. These are the same as @var{out_w} and @var{out_h}.
  1468. @item x, y
  1469. The x and y offsets as specified by the @var{x} and @var{y}
  1470. expressions, or NAN if not yet specified.
  1471. @item a
  1472. The input display aspect ratio, same as @var{iw} / @var{ih}.
  1473. @item hsub, vsub
  1474. The horizontal and vertical chroma subsample values. For example for the
  1475. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1476. @end table
  1477. Some examples:
  1478. @example
  1479. # Add paddings with the color "violet" to the input video. The output video
  1480. # size is 640x480, and the top-left corner of the input video is placed at
  1481. # column 0, row 40
  1482. pad=width=640:height=480:x=0:y=40:color=violet
  1483. # Pad the input to get an output with dimensions increased by 3/2,
  1484. # and put the input video at the center of the padded area
  1485. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1486. # Pad the input to get a squared output with size equal to the maximum
  1487. # value between the input width and height, and put the input video at
  1488. # the center of the padded area
  1489. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1490. # Pad the input to get a final w/h ratio of 16:9
  1491. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1492. # Double the output size and put the input video in the bottom-right
  1493. # corner of the output padded area
  1494. pad="2*iw:2*ih:ow-iw:oh-ih"
  1495. @end example
  1496. @section pixdesctest
  1497. Pixel format descriptor test filter, mainly useful for internal
  1498. testing. The output video should be equal to the input video.
  1499. For example:
  1500. @example
  1501. format=monow, pixdesctest
  1502. @end example
  1503. can be used to test the monowhite pixel format descriptor definition.
  1504. @anchor{scale}
  1505. @section scale
  1506. Scale the input video and/or convert the image format.
  1507. It accepts the following parameters:
  1508. @table @option
  1509. @item w
  1510. The output video width.
  1511. @item h
  1512. The output video height.
  1513. @end table
  1514. The parameters @var{w} and @var{h} are expressions containing
  1515. the following constants:
  1516. @table @option
  1517. @item E, PI, PHI
  1518. These are approximated values for the mathematical constants e
  1519. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  1520. @item in_w, in_h
  1521. The input width and height.
  1522. @item iw, ih
  1523. These are the same as @var{in_w} and @var{in_h}.
  1524. @item out_w, out_h
  1525. The output (cropped) width and height.
  1526. @item ow, oh
  1527. These are the same as @var{out_w} and @var{out_h}.
  1528. @item a
  1529. This is the same as @var{iw} / @var{ih}.
  1530. @item sar
  1531. input sample aspect ratio
  1532. @item dar
  1533. The input display aspect ratio; it is the same as
  1534. (@var{iw} / @var{ih}) * @var{sar}.
  1535. @item hsub, vsub
  1536. The horizontal and vertical chroma subsample values. For example, for the
  1537. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1538. @end table
  1539. If the input image format is different from the format requested by
  1540. the next filter, the scale filter will convert the input to the
  1541. requested format.
  1542. If the value for @var{w} or @var{h} is 0, the respective input
  1543. size is used for the output.
  1544. If the value for @var{w} or @var{h} is -1, the scale filter will use, for the
  1545. respective output size, a value that maintains the aspect ratio of the input
  1546. image.
  1547. The default value of @var{w} and @var{h} is 0.
  1548. Some examples:
  1549. @example
  1550. # Scale the input video to a size of 200x100
  1551. scale=w=200:h=100
  1552. # Scale the input to 2x
  1553. scale=w=2*iw:h=2*ih
  1554. # The above is the same as
  1555. scale=2*in_w:2*in_h
  1556. # Scale the input to half the original size
  1557. scale=w=iw/2:h=ih/2
  1558. # Increase the width, and set the height to the same size
  1559. scale=3/2*iw:ow
  1560. # Seek Greek harmony
  1561. scale=iw:1/PHI*iw
  1562. scale=ih*PHI:ih
  1563. # Increase the height, and set the width to 3/2 of the height
  1564. scale=w=3/2*oh:h=3/5*ih
  1565. # Increase the size, making the size a multiple of the chroma
  1566. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1567. # Increase the width to a maximum of 500 pixels,
  1568. # keeping the same aspect ratio as the input
  1569. scale=w='min(500\, iw*3/2):h=-1'
  1570. @end example
  1571. @section scale_npp
  1572. Use the NVIDIA Performance Primitives (libnpp) to perform scaling and/or pixel
  1573. format conversion on CUDA video frames. Setting the output width and height
  1574. works in the same way as for the @var{scale} filter.
  1575. The following additional options are accepted:
  1576. @table @option
  1577. @item format
  1578. The pixel format of the output CUDA frames. If set to the string "same" (the
  1579. default), the input format will be kept. Note that automatic format negotiation
  1580. and conversion is not yet supported for hardware frames
  1581. @item interp_algo
  1582. The interpolation algorithm used for resizing. One of the following:
  1583. @table @option
  1584. @item nn
  1585. Nearest neighbour.
  1586. @item linear
  1587. @item cubic
  1588. @item cubic2p_bspline
  1589. 2-parameter cubic (B=1, C=0)
  1590. @item cubic2p_catmullrom
  1591. 2-parameter cubic (B=0, C=1/2)
  1592. @item cubic2p_b05c03
  1593. 2-parameter cubic (B=1/2, C=3/10)
  1594. @item super
  1595. Supersampling
  1596. @item lanczos
  1597. @end table
  1598. @end table
  1599. @section select
  1600. Select frames to pass in output.
  1601. It accepts the following parameters:
  1602. @table @option
  1603. @item expr
  1604. An expression, which is evaluated for each input frame. If the expression is
  1605. evaluated to a non-zero value, the frame is selected and passed to the output,
  1606. otherwise it is discarded.
  1607. @end table
  1608. The expression can contain the following constants:
  1609. @table @option
  1610. @item E, PI, PHI
  1611. These are approximated values for the mathematical constants e
  1612. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  1613. @item n
  1614. The (sequential) number of the filtered frame, starting from 0.
  1615. @item selected_n
  1616. The (sequential) number of the selected frame, starting from 0.
  1617. @item prev_selected_n
  1618. The sequential number of the last selected frame. It's NAN if undefined.
  1619. @item TB
  1620. The timebase of the input timestamps.
  1621. @item pts
  1622. The PTS (Presentation TimeStamp) of the filtered video frame,
  1623. expressed in @var{TB} units. It's NAN if undefined.
  1624. @item t
  1625. The PTS of the filtered video frame,
  1626. expressed in seconds. It's NAN if undefined.
  1627. @item prev_pts
  1628. The PTS of the previously filtered video frame. It's NAN if undefined.
  1629. @item prev_selected_pts
  1630. The PTS of the last previously filtered video frame. It's NAN if undefined.
  1631. @item prev_selected_t
  1632. The PTS of the last previously selected video frame. It's NAN if undefined.
  1633. @item start_pts
  1634. The PTS of the first video frame in the video. It's NAN if undefined.
  1635. @item start_t
  1636. The time of the first video frame in the video. It's NAN if undefined.
  1637. @item pict_type
  1638. The type of the filtered frame. It can assume one of the following
  1639. values:
  1640. @table @option
  1641. @item I
  1642. @item P
  1643. @item B
  1644. @item S
  1645. @item SI
  1646. @item SP
  1647. @item BI
  1648. @end table
  1649. @item interlace_type
  1650. The frame interlace type. It can assume one of the following values:
  1651. @table @option
  1652. @item PROGRESSIVE
  1653. The frame is progressive (not interlaced).
  1654. @item TOPFIRST
  1655. The frame is top-field-first.
  1656. @item BOTTOMFIRST
  1657. The frame is bottom-field-first.
  1658. @end table
  1659. @item key
  1660. This is 1 if the filtered frame is a key-frame, 0 otherwise.
  1661. @end table
  1662. The default value of the select expression is "1".
  1663. Some examples:
  1664. @example
  1665. # Select all the frames in input
  1666. select
  1667. # The above is the same as
  1668. select=expr=1
  1669. # Skip all frames
  1670. select=expr=0
  1671. # Select only I-frames
  1672. select='expr=eq(pict_type\,I)'
  1673. # Select one frame per 100
  1674. select='not(mod(n\,100))'
  1675. # Select only frames contained in the 10-20 time interval
  1676. select='gte(t\,10)*lte(t\,20)'
  1677. # Select only I-frames contained in the 10-20 time interval
  1678. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1679. # Select frames with a minimum distance of 10 seconds
  1680. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1681. @end example
  1682. @anchor{setdar}
  1683. @section setdar
  1684. Set the Display Aspect Ratio for the filter output video.
  1685. This is done by changing the specified Sample (aka Pixel) Aspect
  1686. Ratio, according to the following equation:
  1687. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1688. Keep in mind that this filter does not modify the pixel dimensions of
  1689. the video frame. Also, the display aspect ratio set by this filter may
  1690. be changed by later filters in the filterchain, e.g. in case of
  1691. scaling or if another "setdar" or a "setsar" filter is applied.
  1692. It accepts the following parameters:
  1693. @table @option
  1694. @item dar
  1695. The output display aspect ratio.
  1696. @end table
  1697. The parameter @var{dar} is an expression containing
  1698. the following constants:
  1699. @table @option
  1700. @item E, PI, PHI
  1701. These are approximated values for the mathematical constants e
  1702. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  1703. @item w, h
  1704. The input width and height.
  1705. @item a
  1706. This is the same as @var{w} / @var{h}.
  1707. @item sar
  1708. The input sample aspect ratio.
  1709. @item dar
  1710. The input display aspect ratio. It is the same as
  1711. (@var{w} / @var{h}) * @var{sar}.
  1712. @item hsub, vsub
  1713. The horizontal and vertical chroma subsample values. For example, for the
  1714. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1715. @end table
  1716. To change the display aspect ratio to 16:9, specify:
  1717. @example
  1718. setdar=dar=16/9
  1719. # The above is equivalent to
  1720. setdar=dar=1.77777
  1721. @end example
  1722. Also see the the @ref{setsar} filter documentation.
  1723. @section setpts
  1724. Change the PTS (presentation timestamp) of the input video frames.
  1725. It accepts the following parameters:
  1726. @table @option
  1727. @item expr
  1728. The expression which is evaluated for each frame to construct its timestamp.
  1729. @end table
  1730. The expression is evaluated through the eval API and can contain the following
  1731. constants:
  1732. @table @option
  1733. @item PTS
  1734. The presentation timestamp in input.
  1735. @item E, PI, PHI
  1736. These are approximated values for the mathematical constants e
  1737. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  1738. @item N
  1739. The count of the input frame, starting from 0.
  1740. @item STARTPTS
  1741. The PTS of the first video frame.
  1742. @item INTERLACED
  1743. State whether the current frame is interlaced.
  1744. @item PREV_INPTS
  1745. The previous input PTS.
  1746. @item PREV_OUTPTS
  1747. The previous output PTS.
  1748. @item RTCTIME
  1749. The wallclock (RTC) time in microseconds.
  1750. @item RTCSTART
  1751. The wallclock (RTC) time at the start of the movie in microseconds.
  1752. @item TB
  1753. The timebase of the input timestamps.
  1754. @end table
  1755. Some examples:
  1756. @example
  1757. # Start counting the PTS from zero
  1758. setpts=expr=PTS-STARTPTS
  1759. # Fast motion
  1760. setpts=expr=0.5*PTS
  1761. # Slow motion
  1762. setpts=2.0*PTS
  1763. # Fixed rate 25 fps
  1764. setpts=N/(25*TB)
  1765. # Fixed rate 25 fps with some jitter
  1766. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1767. # Generate timestamps from a "live source" and rebase onto the current timebase
  1768. setpts='(RTCTIME - RTCSTART) / (TB * 1000000)"
  1769. @end example
  1770. @anchor{setsar}
  1771. @section setsar
  1772. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1773. Note that as a consequence of the application of this filter, the
  1774. output display aspect ratio will change according to the following
  1775. equation:
  1776. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1777. Keep in mind that the sample aspect ratio set by this filter may be
  1778. changed by later filters in the filterchain, e.g. if another "setsar"
  1779. or a "setdar" filter is applied.
  1780. It accepts the following parameters:
  1781. @table @option
  1782. @item sar
  1783. The output sample aspect ratio.
  1784. @end table
  1785. The parameter @var{sar} is an expression containing
  1786. the following constants:
  1787. @table @option
  1788. @item E, PI, PHI
  1789. These are approximated values for the mathematical constants e
  1790. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  1791. @item w, h
  1792. The input width and height.
  1793. @item a
  1794. These are the same as @var{w} / @var{h}.
  1795. @item sar
  1796. The input sample aspect ratio.
  1797. @item dar
  1798. The input display aspect ratio. It is the same as
  1799. (@var{w} / @var{h}) * @var{sar}.
  1800. @item hsub, vsub
  1801. Horizontal and vertical chroma subsample values. For example, for the
  1802. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1803. @end table
  1804. To change the sample aspect ratio to 10:11, specify:
  1805. @example
  1806. setsar=sar=10/11
  1807. @end example
  1808. @section settb
  1809. Set the timebase to use for the output frames timestamps.
  1810. It is mainly useful for testing timebase configuration.
  1811. It accepts the following parameters:
  1812. @table @option
  1813. @item expr
  1814. The expression which is evaluated into the output timebase.
  1815. @end table
  1816. The expression can contain the constants "PI", "E", "PHI", "AVTB" (the
  1817. default timebase), and "intb" (the input timebase).
  1818. The default value for the input is "intb".
  1819. Some examples:
  1820. @example
  1821. # Set the timebase to 1/25
  1822. settb=expr=1/25
  1823. # Set the timebase to 1/10
  1824. settb=expr=0.1
  1825. # Set the timebase to 1001/1000
  1826. settb=1+0.001
  1827. #Set the timebase to 2*intb
  1828. settb=2*intb
  1829. #Set the default timebase value
  1830. settb=AVTB
  1831. @end example
  1832. @section showinfo
  1833. Show a line containing various information for each input video frame.
  1834. The input video is not modified.
  1835. The shown line contains a sequence of key/value pairs of the form
  1836. @var{key}:@var{value}.
  1837. It accepts the following parameters:
  1838. @table @option
  1839. @item n
  1840. The (sequential) number of the input frame, starting from 0.
  1841. @item pts
  1842. The Presentation TimeStamp of the input frame, expressed as a number of
  1843. time base units. The time base unit depends on the filter input pad.
  1844. @item pts_time
  1845. The Presentation TimeStamp of the input frame, expressed as a number of
  1846. seconds.
  1847. @item pos
  1848. The position of the frame in the input stream, or -1 if this information is
  1849. unavailable and/or meaningless (for example in case of synthetic video).
  1850. @item fmt
  1851. The pixel format name.
  1852. @item sar
  1853. The sample aspect ratio of the input frame, expressed in the form
  1854. @var{num}/@var{den}.
  1855. @item s
  1856. The size of the input frame, expressed in the form
  1857. @var{width}x@var{height}.
  1858. @item i
  1859. The type of interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1860. for bottom field first).
  1861. @item iskey
  1862. This is 1 if the frame is a key frame, 0 otherwise.
  1863. @item type
  1864. The picture type of the input frame ("I" for an I-frame, "P" for a
  1865. P-frame, "B" for a B-frame, or "?" for an unknown type).
  1866. Also refer to the documentation of the @code{AVPictureType} enum and of
  1867. the @code{av_get_picture_type_char} function defined in
  1868. @file{libavutil/avutil.h}.
  1869. @item checksum
  1870. The Adler-32 checksum of all the planes of the input frame.
  1871. @item plane_checksum
  1872. The Adler-32 checksum of each plane of the input frame, expressed in the form
  1873. "[@var{c0} @var{c1} @var{c2} @var{c3}]".
  1874. @end table
  1875. @section shuffleplanes
  1876. Reorder and/or duplicate video planes.
  1877. It accepts the following parameters:
  1878. @table @option
  1879. @item map0
  1880. The index of the input plane to be used as the first output plane.
  1881. @item map1
  1882. The index of the input plane to be used as the second output plane.
  1883. @item map2
  1884. The index of the input plane to be used as the third output plane.
  1885. @item map3
  1886. The index of the input plane to be used as the fourth output plane.
  1887. @end table
  1888. The first plane has the index 0. The default is to keep the input unchanged.
  1889. Swap the second and third planes of the input:
  1890. @example
  1891. avconv -i INPUT -vf shuffleplanes=0:2:1:3 OUTPUT
  1892. @end example
  1893. @section split
  1894. Split input video into several identical outputs.
  1895. It accepts a single parameter, which specifies the number of outputs. If
  1896. unspecified, it defaults to 2.
  1897. Create 5 copies of the input video:
  1898. @example
  1899. avconv -i INPUT -filter_complex split=5 OUTPUT
  1900. @end example
  1901. @section transpose
  1902. Transpose rows with columns in the input video and optionally flip it.
  1903. It accepts the following parameters:
  1904. @table @option
  1905. @item dir
  1906. The direction of the transpose.
  1907. @end table
  1908. The direction can assume the following values:
  1909. @table @samp
  1910. @item cclock_flip
  1911. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1912. @example
  1913. L.R L.l
  1914. . . -> . .
  1915. l.r R.r
  1916. @end example
  1917. @item clock
  1918. Rotate by 90 degrees clockwise, that is:
  1919. @example
  1920. L.R l.L
  1921. . . -> . .
  1922. l.r r.R
  1923. @end example
  1924. @item cclock
  1925. Rotate by 90 degrees counterclockwise, that is:
  1926. @example
  1927. L.R R.r
  1928. . . -> . .
  1929. l.r L.l
  1930. @end example
  1931. @item clock_flip
  1932. Rotate by 90 degrees clockwise and vertically flip, that is:
  1933. @example
  1934. L.R r.R
  1935. . . -> . .
  1936. l.r l.L
  1937. @end example
  1938. @end table
  1939. @section trim
  1940. Trim the input so that the output contains one continuous subpart of the input.
  1941. It accepts the following parameters:
  1942. @table @option
  1943. @item start
  1944. The timestamp (in seconds) of the start of the kept section. The frame with the
  1945. timestamp @var{start} will be the first frame in the output.
  1946. @item end
  1947. The timestamp (in seconds) of the first frame that will be dropped. The frame
  1948. immediately preceding the one with the timestamp @var{end} will be the last
  1949. frame in the output.
  1950. @item start_pts
  1951. This is the same as @var{start}, except this option sets the start timestamp
  1952. in timebase units instead of seconds.
  1953. @item end_pts
  1954. This is the same as @var{end}, except this option sets the end timestamp
  1955. in timebase units instead of seconds.
  1956. @item duration
  1957. The maximum duration of the output in seconds.
  1958. @item start_frame
  1959. The number of the first frame that should be passed to the output.
  1960. @item end_frame
  1961. The number of the first frame that should be dropped.
  1962. @end table
  1963. Note that the first two sets of the start/end options and the @option{duration}
  1964. option look at the frame timestamp, while the _frame variants simply count the
  1965. frames that pass through the filter. Also note that this filter does not modify
  1966. the timestamps. If you wish for the output timestamps to start at zero, insert a
  1967. setpts filter after the trim filter.
  1968. If multiple start or end options are set, this filter tries to be greedy and
  1969. keep all the frames that match at least one of the specified constraints. To keep
  1970. only the part that matches all the constraints at once, chain multiple trim
  1971. filters.
  1972. The defaults are such that all the input is kept. So it is possible to set e.g.
  1973. just the end values to keep everything before the specified time.
  1974. Examples:
  1975. @itemize
  1976. @item
  1977. Drop everything except the second minute of input:
  1978. @example
  1979. avconv -i INPUT -vf trim=60:120
  1980. @end example
  1981. @item
  1982. Keep only the first second:
  1983. @example
  1984. avconv -i INPUT -vf trim=duration=1
  1985. @end example
  1986. @end itemize
  1987. @section unsharp
  1988. Sharpen or blur the input video.
  1989. It accepts the following parameters:
  1990. @table @option
  1991. @item luma_msize_x
  1992. Set the luma matrix horizontal size. It must be an integer between 3
  1993. and 13. The default value is 5.
  1994. @item luma_msize_y
  1995. Set the luma matrix vertical size. It must be an integer between 3
  1996. and 13. The default value is 5.
  1997. @item luma_amount
  1998. Set the luma effect strength. It must be a floating point number between -2.0
  1999. and 5.0. The default value is 1.0.
  2000. @item chroma_msize_x
  2001. Set the chroma matrix horizontal size. It must be an integer between 3
  2002. and 13. The default value is 5.
  2003. @item chroma_msize_y
  2004. Set the chroma matrix vertical size. It must be an integer between 3
  2005. and 13. The default value is 5.
  2006. @item chroma_amount
  2007. Set the chroma effect strength. It must be a floating point number between -2.0
  2008. and 5.0. The default value is 0.0.
  2009. @end table
  2010. Negative values for the amount will blur the input video, while positive
  2011. values will sharpen. All parameters are optional and default to the
  2012. equivalent of the string '5:5:1.0:5:5:0.0'.
  2013. @example
  2014. # Strong luma sharpen effect parameters
  2015. unsharp=luma_msize_x=7:luma_msize_y=7:luma_amount=2.5
  2016. # A strong blur of both luma and chroma parameters
  2017. unsharp=7:7:-2:7:7:-2
  2018. # Use the default values with @command{avconv}
  2019. ./avconv -i in.avi -vf "unsharp" out.mp4
  2020. @end example
  2021. @section vflip
  2022. Flip the input video vertically.
  2023. @example
  2024. ./avconv -i in.avi -vf "vflip" out.avi
  2025. @end example
  2026. @section yadif
  2027. Deinterlace the input video ("yadif" means "yet another deinterlacing
  2028. filter").
  2029. It accepts the following parameters:
  2030. @table @option
  2031. @item mode
  2032. The interlacing mode to adopt. It accepts one of the following values:
  2033. @table @option
  2034. @item 0
  2035. Output one frame for each frame.
  2036. @item 1
  2037. Output one frame for each field.
  2038. @item 2
  2039. Like 0, but it skips the spatial interlacing check.
  2040. @item 3
  2041. Like 1, but it skips the spatial interlacing check.
  2042. @end table
  2043. The default value is 0.
  2044. @item parity
  2045. The picture field parity assumed for the input interlaced video. It accepts one
  2046. of the following values:
  2047. @table @option
  2048. @item 0
  2049. Assume the top field is first.
  2050. @item 1
  2051. Assume the bottom field is first.
  2052. @item -1
  2053. Enable automatic detection of field parity.
  2054. @end table
  2055. The default value is -1.
  2056. If the interlacing is unknown or the decoder does not export this information,
  2057. top field first will be assumed.
  2058. @item auto
  2059. Whether the deinterlacer should trust the interlaced flag and only deinterlace
  2060. frames marked as interlaced.
  2061. @table @option
  2062. @item 0
  2063. Deinterlace all frames.
  2064. @item 1
  2065. Only deinterlace frames marked as interlaced.
  2066. @end table
  2067. The default value is 0.
  2068. @end table
  2069. @c man end VIDEO FILTERS
  2070. @chapter Video Sources
  2071. @c man begin VIDEO SOURCES
  2072. Below is a description of the currently available video sources.
  2073. @section buffer
  2074. Buffer video frames, and make them available to the filter chain.
  2075. This source is mainly intended for a programmatic use, in particular
  2076. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  2077. It accepts the following parameters:
  2078. @table @option
  2079. @item width
  2080. The input video width.
  2081. @item height
  2082. The input video height.
  2083. @item pix_fmt
  2084. The name of the input video pixel format.
  2085. @item time_base
  2086. The time base used for input timestamps.
  2087. @item sar
  2088. The sample (pixel) aspect ratio of the input video.
  2089. @item hw_frames_ctx
  2090. When using a hardware pixel format, this should be a reference to an
  2091. AVHWFramesContext describing input frames.
  2092. @end table
  2093. For example:
  2094. @example
  2095. buffer=width=320:height=240:pix_fmt=yuv410p:time_base=1/24:sar=1
  2096. @end example
  2097. will instruct the source to accept video frames with size 320x240 and
  2098. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  2099. square pixels (1:1 sample aspect ratio).
  2100. @section color
  2101. Provide an uniformly colored input.
  2102. It accepts the following parameters:
  2103. @table @option
  2104. @item color
  2105. Specify the color of the source. It can be the name of a color (case
  2106. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  2107. alpha specifier. The default value is "black".
  2108. @item size
  2109. Specify the size of the sourced video, it may be a string of the form
  2110. @var{width}x@var{height}, or the name of a size abbreviation. The
  2111. default value is "320x240".
  2112. @item framerate
  2113. Specify the frame rate of the sourced video, as the number of frames
  2114. generated per second. It has to be a string in the format
  2115. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a floating point
  2116. number or a valid video frame rate abbreviation. The default value is
  2117. "25".
  2118. @end table
  2119. The following graph description will generate a red source
  2120. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  2121. frames per second, which will be overlaid over the source connected
  2122. to the pad with identifier "in":
  2123. @example
  2124. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  2125. @end example
  2126. @section movie
  2127. Read a video stream from a movie container.
  2128. Note that this source is a hack that bypasses the standard input path. It can be
  2129. useful in applications that do not support arbitrary filter graphs, but its use
  2130. is discouraged in those that do. It should never be used with
  2131. @command{avconv}; the @option{-filter_complex} option fully replaces it.
  2132. It accepts the following parameters:
  2133. @table @option
  2134. @item filename
  2135. The name of the resource to read (not necessarily a file; it can also be a
  2136. device or a stream accessed through some protocol).
  2137. @item format_name, f
  2138. Specifies the format assumed for the movie to read, and can be either
  2139. the name of a container or an input device. If not specified, the
  2140. format is guessed from @var{movie_name} or by probing.
  2141. @item seek_point, sp
  2142. Specifies the seek point in seconds. The frames will be output
  2143. starting from this seek point. The parameter is evaluated with
  2144. @code{av_strtod}, so the numerical value may be suffixed by an IS
  2145. postfix. The default value is "0".
  2146. @item stream_index, si
  2147. Specifies the index of the video stream to read. If the value is -1,
  2148. the most suitable video stream will be automatically selected. The default
  2149. value is "-1".
  2150. @end table
  2151. It allows overlaying a second video on top of the main input of
  2152. a filtergraph, as shown in this graph:
  2153. @example
  2154. input -----------> deltapts0 --> overlay --> output
  2155. ^
  2156. |
  2157. movie --> scale--> deltapts1 -------+
  2158. @end example
  2159. Some examples:
  2160. @example
  2161. # Skip 3.2 seconds from the start of the AVI file in.avi, and overlay it
  2162. # on top of the input labelled "in"
  2163. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2164. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2165. # Read from a video4linux2 device, and overlay it on top of the input
  2166. # labelled "in"
  2167. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2168. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2169. @end example
  2170. @section nullsrc
  2171. Null video source: never return images. It is mainly useful as a
  2172. template and to be employed in analysis / debugging tools.
  2173. It accepts a string of the form
  2174. @var{width}:@var{height}:@var{timebase} as an optional parameter.
  2175. @var{width} and @var{height} specify the size of the configured
  2176. source. The default values of @var{width} and @var{height} are
  2177. respectively 352 and 288 (corresponding to the CIF size format).
  2178. @var{timebase} specifies an arithmetic expression representing a
  2179. timebase. The expression can contain the constants "PI", "E", "PHI", and
  2180. "AVTB" (the default timebase), and defaults to the value "AVTB".
  2181. @section frei0r_src
  2182. Provide a frei0r source.
  2183. To enable compilation of this filter you need to install the frei0r
  2184. header and configure Libav with --enable-frei0r.
  2185. This source accepts the following parameters:
  2186. @table @option
  2187. @item size
  2188. The size of the video to generate. It may be a string of the form
  2189. @var{width}x@var{height} or a frame size abbreviation.
  2190. @item framerate
  2191. The framerate of the generated video. It may be a string of the form
  2192. @var{num}/@var{den} or a frame rate abbreviation.
  2193. @item filter_name
  2194. The name to the frei0r source to load. For more information regarding frei0r and
  2195. how to set the parameters, read the @ref{frei0r} section in the video filters
  2196. documentation.
  2197. @item filter_params
  2198. A '|'-separated list of parameters to pass to the frei0r source.
  2199. @end table
  2200. An example:
  2201. @example
  2202. # Generate a frei0r partik0l source with size 200x200 and framerate 10
  2203. # which is overlaid on the overlay filter's main input
  2204. frei0r_src=size=200x200:framerate=10:filter_name=partik0l:filter_params=1234 [overlay]; [in][overlay] overlay
  2205. @end example
  2206. @section rgbtestsrc, testsrc
  2207. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  2208. detecting RGB vs BGR issues. You should see a red, green and blue
  2209. stripe from top to bottom.
  2210. The @code{testsrc} source generates a test video pattern, showing a
  2211. color pattern, a scrolling gradient and a timestamp. This is mainly
  2212. intended for testing purposes.
  2213. The sources accept the following parameters:
  2214. @table @option
  2215. @item size, s
  2216. Specify the size of the sourced video, it may be a string of the form
  2217. @var{width}x@var{height}, or the name of a size abbreviation. The
  2218. default value is "320x240".
  2219. @item rate, r
  2220. Specify the frame rate of the sourced video, as the number of frames
  2221. generated per second. It has to be a string in the format
  2222. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a floating point
  2223. number or a valid video frame rate abbreviation. The default value is
  2224. "25".
  2225. @item sar
  2226. Set the sample aspect ratio of the sourced video.
  2227. @item duration
  2228. Set the video duration of the sourced video. The accepted syntax is:
  2229. @example
  2230. [-]HH[:MM[:SS[.m...]]]
  2231. [-]S+[.m...]
  2232. @end example
  2233. Also see the the @code{av_parse_time()} function.
  2234. If not specified, or the expressed duration is negative, the video is
  2235. supposed to be generated forever.
  2236. @end table
  2237. For example the following:
  2238. @example
  2239. testsrc=duration=5.3:size=qcif:rate=10
  2240. @end example
  2241. will generate a video with a duration of 5.3 seconds, with size
  2242. 176x144 and a framerate of 10 frames per second.
  2243. @c man end VIDEO SOURCES
  2244. @chapter Video Sinks
  2245. @c man begin VIDEO SINKS
  2246. Below is a description of the currently available video sinks.
  2247. @section buffersink
  2248. Buffer video frames, and make them available to the end of the filter
  2249. graph.
  2250. This sink is intended for programmatic use through the interface defined in
  2251. @file{libavfilter/buffersink.h}.
  2252. @section nullsink
  2253. Null video sink: do absolutely nothing with the input video. It is
  2254. mainly useful as a template and for use in analysis / debugging
  2255. tools.
  2256. @c man end VIDEO SINKS