You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4197 lines
144KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. /**
  24. * @file vc1.c
  25. * VC-1 and WMV3 decoder
  26. *
  27. */
  28. #include "dsputil.h"
  29. #include "avcodec.h"
  30. #include "mpegvideo.h"
  31. #include "vc1.h"
  32. #include "vc1data.h"
  33. #include "vc1acdata.h"
  34. #include "msmpeg4data.h"
  35. #undef NDEBUG
  36. #include <assert.h>
  37. #define MB_INTRA_VLC_BITS 9
  38. #define DC_VLC_BITS 9
  39. #define AC_VLC_BITS 9
  40. static const uint16_t table_mb_intra[64][2];
  41. /**
  42. * Get unary code of limited length
  43. * @fixme FIXME Slow and ugly
  44. * @param gb GetBitContext
  45. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  46. * @param[in] len Maximum length
  47. * @return Unary length/index
  48. */
  49. static int get_prefix(GetBitContext *gb, int stop, int len)
  50. {
  51. #if 1
  52. int i;
  53. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  54. return i;
  55. /* int i = 0, tmp = !stop;
  56. while (i != len && tmp != stop)
  57. {
  58. tmp = get_bits(gb, 1);
  59. i++;
  60. }
  61. if (i == len && tmp != stop) return len+1;
  62. return i;*/
  63. #else
  64. unsigned int buf;
  65. int log;
  66. OPEN_READER(re, gb);
  67. UPDATE_CACHE(re, gb);
  68. buf=GET_CACHE(re, gb); //Still not sure
  69. if (stop) buf = ~buf;
  70. log= av_log2(-buf); //FIXME: -?
  71. if (log < limit){
  72. LAST_SKIP_BITS(re, gb, log+1);
  73. CLOSE_READER(re, gb);
  74. return log;
  75. }
  76. LAST_SKIP_BITS(re, gb, limit);
  77. CLOSE_READER(re, gb);
  78. return limit;
  79. #endif
  80. }
  81. static inline int decode210(GetBitContext *gb){
  82. int n;
  83. n = get_bits1(gb);
  84. if (n == 1)
  85. return 0;
  86. else
  87. return 2 - get_bits1(gb);
  88. }
  89. /**
  90. * Init VC-1 specific tables and VC1Context members
  91. * @param v The VC1Context to initialize
  92. * @return Status
  93. */
  94. static int vc1_init_common(VC1Context *v)
  95. {
  96. static int done = 0;
  97. int i = 0;
  98. v->hrd_rate = v->hrd_buffer = NULL;
  99. /* VLC tables */
  100. if(!done)
  101. {
  102. done = 1;
  103. init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  104. ff_vc1_bfraction_bits, 1, 1,
  105. ff_vc1_bfraction_codes, 1, 1, 1);
  106. init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  107. ff_vc1_norm2_bits, 1, 1,
  108. ff_vc1_norm2_codes, 1, 1, 1);
  109. init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  110. ff_vc1_norm6_bits, 1, 1,
  111. ff_vc1_norm6_codes, 2, 2, 1);
  112. init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  113. ff_vc1_imode_bits, 1, 1,
  114. ff_vc1_imode_codes, 1, 1, 1);
  115. for (i=0; i<3; i++)
  116. {
  117. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  118. ff_vc1_ttmb_bits[i], 1, 1,
  119. ff_vc1_ttmb_codes[i], 2, 2, 1);
  120. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  121. ff_vc1_ttblk_bits[i], 1, 1,
  122. ff_vc1_ttblk_codes[i], 1, 1, 1);
  123. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  124. ff_vc1_subblkpat_bits[i], 1, 1,
  125. ff_vc1_subblkpat_codes[i], 1, 1, 1);
  126. }
  127. for(i=0; i<4; i++)
  128. {
  129. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  130. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  131. ff_vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  132. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  133. ff_vc1_cbpcy_p_bits[i], 1, 1,
  134. ff_vc1_cbpcy_p_codes[i], 2, 2, 1);
  135. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  136. ff_vc1_mv_diff_bits[i], 1, 1,
  137. ff_vc1_mv_diff_codes[i], 2, 2, 1);
  138. }
  139. for(i=0; i<8; i++)
  140. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  141. &vc1_ac_tables[i][0][1], 8, 4,
  142. &vc1_ac_tables[i][0][0], 8, 4, 1);
  143. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  144. &ff_msmp4_mb_i_table[0][1], 4, 2,
  145. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  146. }
  147. /* Other defaults */
  148. v->pq = -1;
  149. v->mvrange = 0; /* 7.1.1.18, p80 */
  150. return 0;
  151. }
  152. /***********************************************************************/
  153. /**
  154. * @defgroup bitplane VC9 Bitplane decoding
  155. * @see 8.7, p56
  156. * @{
  157. */
  158. /** @addtogroup bitplane
  159. * Imode types
  160. * @{
  161. */
  162. enum Imode {
  163. IMODE_RAW,
  164. IMODE_NORM2,
  165. IMODE_DIFF2,
  166. IMODE_NORM6,
  167. IMODE_DIFF6,
  168. IMODE_ROWSKIP,
  169. IMODE_COLSKIP
  170. };
  171. /** @} */ //imode defines
  172. /** Decode rows by checking if they are skipped
  173. * @param plane Buffer to store decoded bits
  174. * @param[in] width Width of this buffer
  175. * @param[in] height Height of this buffer
  176. * @param[in] stride of this buffer
  177. */
  178. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  179. int x, y;
  180. for (y=0; y<height; y++){
  181. if (!get_bits(gb, 1)) //rowskip
  182. memset(plane, 0, width);
  183. else
  184. for (x=0; x<width; x++)
  185. plane[x] = get_bits(gb, 1);
  186. plane += stride;
  187. }
  188. }
  189. /** Decode columns by checking if they are skipped
  190. * @param plane Buffer to store decoded bits
  191. * @param[in] width Width of this buffer
  192. * @param[in] height Height of this buffer
  193. * @param[in] stride of this buffer
  194. * @fixme FIXME: Optimize
  195. */
  196. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  197. int x, y;
  198. for (x=0; x<width; x++){
  199. if (!get_bits(gb, 1)) //colskip
  200. for (y=0; y<height; y++)
  201. plane[y*stride] = 0;
  202. else
  203. for (y=0; y<height; y++)
  204. plane[y*stride] = get_bits(gb, 1);
  205. plane ++;
  206. }
  207. }
  208. /** Decode a bitplane's bits
  209. * @param bp Bitplane where to store the decode bits
  210. * @param v VC-1 context for bit reading and logging
  211. * @return Status
  212. * @fixme FIXME: Optimize
  213. */
  214. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  215. {
  216. GetBitContext *gb = &v->s.gb;
  217. int imode, x, y, code, offset;
  218. uint8_t invert, *planep = data;
  219. int width, height, stride;
  220. width = v->s.mb_width;
  221. height = v->s.mb_height;
  222. stride = v->s.mb_stride;
  223. invert = get_bits(gb, 1);
  224. imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  225. *raw_flag = 0;
  226. switch (imode)
  227. {
  228. case IMODE_RAW:
  229. //Data is actually read in the MB layer (same for all tests == "raw")
  230. *raw_flag = 1; //invert ignored
  231. return invert;
  232. case IMODE_DIFF2:
  233. case IMODE_NORM2:
  234. if ((height * width) & 1)
  235. {
  236. *planep++ = get_bits(gb, 1);
  237. offset = 1;
  238. }
  239. else offset = 0;
  240. // decode bitplane as one long line
  241. for (y = offset; y < height * width; y += 2) {
  242. code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  243. *planep++ = code & 1;
  244. offset++;
  245. if(offset == width) {
  246. offset = 0;
  247. planep += stride - width;
  248. }
  249. *planep++ = code >> 1;
  250. offset++;
  251. if(offset == width) {
  252. offset = 0;
  253. planep += stride - width;
  254. }
  255. }
  256. break;
  257. case IMODE_DIFF6:
  258. case IMODE_NORM6:
  259. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  260. for(y = 0; y < height; y+= 3) {
  261. for(x = width & 1; x < width; x += 2) {
  262. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  263. if(code < 0){
  264. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  265. return -1;
  266. }
  267. planep[x + 0] = (code >> 0) & 1;
  268. planep[x + 1] = (code >> 1) & 1;
  269. planep[x + 0 + stride] = (code >> 2) & 1;
  270. planep[x + 1 + stride] = (code >> 3) & 1;
  271. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  272. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  273. }
  274. planep += stride * 3;
  275. }
  276. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  277. } else { // 3x2
  278. planep += (height & 1) * stride;
  279. for(y = height & 1; y < height; y += 2) {
  280. for(x = width % 3; x < width; x += 3) {
  281. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  282. if(code < 0){
  283. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  284. return -1;
  285. }
  286. planep[x + 0] = (code >> 0) & 1;
  287. planep[x + 1] = (code >> 1) & 1;
  288. planep[x + 2] = (code >> 2) & 1;
  289. planep[x + 0 + stride] = (code >> 3) & 1;
  290. planep[x + 1 + stride] = (code >> 4) & 1;
  291. planep[x + 2 + stride] = (code >> 5) & 1;
  292. }
  293. planep += stride * 2;
  294. }
  295. x = width % 3;
  296. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  297. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  298. }
  299. break;
  300. case IMODE_ROWSKIP:
  301. decode_rowskip(data, width, height, stride, &v->s.gb);
  302. break;
  303. case IMODE_COLSKIP:
  304. decode_colskip(data, width, height, stride, &v->s.gb);
  305. break;
  306. default: break;
  307. }
  308. /* Applying diff operator */
  309. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  310. {
  311. planep = data;
  312. planep[0] ^= invert;
  313. for (x=1; x<width; x++)
  314. planep[x] ^= planep[x-1];
  315. for (y=1; y<height; y++)
  316. {
  317. planep += stride;
  318. planep[0] ^= planep[-stride];
  319. for (x=1; x<width; x++)
  320. {
  321. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  322. else planep[x] ^= planep[x-1];
  323. }
  324. }
  325. }
  326. else if (invert)
  327. {
  328. planep = data;
  329. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  330. }
  331. return (imode<<1) + invert;
  332. }
  333. /** @} */ //Bitplane group
  334. /***********************************************************************/
  335. /** VOP Dquant decoding
  336. * @param v VC-1 Context
  337. */
  338. static int vop_dquant_decoding(VC1Context *v)
  339. {
  340. GetBitContext *gb = &v->s.gb;
  341. int pqdiff;
  342. //variable size
  343. if (v->dquant == 2)
  344. {
  345. pqdiff = get_bits(gb, 3);
  346. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  347. else v->altpq = v->pq + pqdiff + 1;
  348. }
  349. else
  350. {
  351. v->dquantfrm = get_bits(gb, 1);
  352. if ( v->dquantfrm )
  353. {
  354. v->dqprofile = get_bits(gb, 2);
  355. switch (v->dqprofile)
  356. {
  357. case DQPROFILE_SINGLE_EDGE:
  358. case DQPROFILE_DOUBLE_EDGES:
  359. v->dqsbedge = get_bits(gb, 2);
  360. break;
  361. case DQPROFILE_ALL_MBS:
  362. v->dqbilevel = get_bits(gb, 1);
  363. default: break; //Forbidden ?
  364. }
  365. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  366. {
  367. pqdiff = get_bits(gb, 3);
  368. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  369. else v->altpq = v->pq + pqdiff + 1;
  370. }
  371. }
  372. }
  373. return 0;
  374. }
  375. /** Put block onto picture
  376. */
  377. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  378. {
  379. uint8_t *Y;
  380. int ys, us, vs;
  381. DSPContext *dsp = &v->s.dsp;
  382. if(v->rangeredfrm) {
  383. int i, j, k;
  384. for(k = 0; k < 6; k++)
  385. for(j = 0; j < 8; j++)
  386. for(i = 0; i < 8; i++)
  387. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  388. }
  389. ys = v->s.current_picture.linesize[0];
  390. us = v->s.current_picture.linesize[1];
  391. vs = v->s.current_picture.linesize[2];
  392. Y = v->s.dest[0];
  393. dsp->put_pixels_clamped(block[0], Y, ys);
  394. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  395. Y += ys * 8;
  396. dsp->put_pixels_clamped(block[2], Y, ys);
  397. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  398. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  399. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  400. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  401. }
  402. }
  403. /** Do motion compensation over 1 macroblock
  404. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  405. */
  406. static void vc1_mc_1mv(VC1Context *v, int dir)
  407. {
  408. MpegEncContext *s = &v->s;
  409. DSPContext *dsp = &v->s.dsp;
  410. uint8_t *srcY, *srcU, *srcV;
  411. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  412. if(!v->s.last_picture.data[0])return;
  413. mx = s->mv[dir][0][0];
  414. my = s->mv[dir][0][1];
  415. // store motion vectors for further use in B frames
  416. if(s->pict_type == P_TYPE) {
  417. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  418. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  419. }
  420. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  421. uvmy = (my + ((my & 3) == 3)) >> 1;
  422. if(v->fastuvmc) {
  423. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  424. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  425. }
  426. if(!dir) {
  427. srcY = s->last_picture.data[0];
  428. srcU = s->last_picture.data[1];
  429. srcV = s->last_picture.data[2];
  430. } else {
  431. srcY = s->next_picture.data[0];
  432. srcU = s->next_picture.data[1];
  433. srcV = s->next_picture.data[2];
  434. }
  435. src_x = s->mb_x * 16 + (mx >> 2);
  436. src_y = s->mb_y * 16 + (my >> 2);
  437. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  438. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  439. if(v->profile != PROFILE_ADVANCED){
  440. src_x = av_clip( src_x, -16, s->mb_width * 16);
  441. src_y = av_clip( src_y, -16, s->mb_height * 16);
  442. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  443. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  444. }else{
  445. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  446. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  447. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  448. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  449. }
  450. srcY += src_y * s->linesize + src_x;
  451. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  452. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  453. /* for grayscale we should not try to read from unknown area */
  454. if(s->flags & CODEC_FLAG_GRAY) {
  455. srcU = s->edge_emu_buffer + 18 * s->linesize;
  456. srcV = s->edge_emu_buffer + 18 * s->linesize;
  457. }
  458. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  459. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  460. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  461. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  462. srcY -= s->mspel * (1 + s->linesize);
  463. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  464. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  465. srcY = s->edge_emu_buffer;
  466. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  467. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  468. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  469. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  470. srcU = uvbuf;
  471. srcV = uvbuf + 16;
  472. /* if we deal with range reduction we need to scale source blocks */
  473. if(v->rangeredfrm) {
  474. int i, j;
  475. uint8_t *src, *src2;
  476. src = srcY;
  477. for(j = 0; j < 17 + s->mspel*2; j++) {
  478. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  479. src += s->linesize;
  480. }
  481. src = srcU; src2 = srcV;
  482. for(j = 0; j < 9; j++) {
  483. for(i = 0; i < 9; i++) {
  484. src[i] = ((src[i] - 128) >> 1) + 128;
  485. src2[i] = ((src2[i] - 128) >> 1) + 128;
  486. }
  487. src += s->uvlinesize;
  488. src2 += s->uvlinesize;
  489. }
  490. }
  491. /* if we deal with intensity compensation we need to scale source blocks */
  492. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  493. int i, j;
  494. uint8_t *src, *src2;
  495. src = srcY;
  496. for(j = 0; j < 17 + s->mspel*2; j++) {
  497. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  498. src += s->linesize;
  499. }
  500. src = srcU; src2 = srcV;
  501. for(j = 0; j < 9; j++) {
  502. for(i = 0; i < 9; i++) {
  503. src[i] = v->lutuv[src[i]];
  504. src2[i] = v->lutuv[src2[i]];
  505. }
  506. src += s->uvlinesize;
  507. src2 += s->uvlinesize;
  508. }
  509. }
  510. srcY += s->mspel * (1 + s->linesize);
  511. }
  512. if(s->mspel) {
  513. dxy = ((my & 3) << 2) | (mx & 3);
  514. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  515. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  516. srcY += s->linesize * 8;
  517. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  518. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  519. } else { // hpel mc - always used for luma
  520. dxy = (my & 2) | ((mx & 2) >> 1);
  521. if(!v->rnd)
  522. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  523. else
  524. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  525. }
  526. if(s->flags & CODEC_FLAG_GRAY) return;
  527. /* Chroma MC always uses qpel bilinear */
  528. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  529. uvmx = (uvmx&3)<<1;
  530. uvmy = (uvmy&3)<<1;
  531. if(!v->rnd){
  532. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  533. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  534. }else{
  535. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  536. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  537. }
  538. }
  539. /** Do motion compensation for 4-MV macroblock - luminance block
  540. */
  541. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  542. {
  543. MpegEncContext *s = &v->s;
  544. DSPContext *dsp = &v->s.dsp;
  545. uint8_t *srcY;
  546. int dxy, mx, my, src_x, src_y;
  547. int off;
  548. if(!v->s.last_picture.data[0])return;
  549. mx = s->mv[0][n][0];
  550. my = s->mv[0][n][1];
  551. srcY = s->last_picture.data[0];
  552. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  553. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  554. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  555. if(v->profile != PROFILE_ADVANCED){
  556. src_x = av_clip( src_x, -16, s->mb_width * 16);
  557. src_y = av_clip( src_y, -16, s->mb_height * 16);
  558. }else{
  559. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  560. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  561. }
  562. srcY += src_y * s->linesize + src_x;
  563. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  564. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  565. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  566. srcY -= s->mspel * (1 + s->linesize);
  567. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  568. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  569. srcY = s->edge_emu_buffer;
  570. /* if we deal with range reduction we need to scale source blocks */
  571. if(v->rangeredfrm) {
  572. int i, j;
  573. uint8_t *src;
  574. src = srcY;
  575. for(j = 0; j < 9 + s->mspel*2; j++) {
  576. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  577. src += s->linesize;
  578. }
  579. }
  580. /* if we deal with intensity compensation we need to scale source blocks */
  581. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  582. int i, j;
  583. uint8_t *src;
  584. src = srcY;
  585. for(j = 0; j < 9 + s->mspel*2; j++) {
  586. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  587. src += s->linesize;
  588. }
  589. }
  590. srcY += s->mspel * (1 + s->linesize);
  591. }
  592. if(s->mspel) {
  593. dxy = ((my & 3) << 2) | (mx & 3);
  594. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  595. } else { // hpel mc - always used for luma
  596. dxy = (my & 2) | ((mx & 2) >> 1);
  597. if(!v->rnd)
  598. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  599. else
  600. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  601. }
  602. }
  603. static inline int median4(int a, int b, int c, int d)
  604. {
  605. if(a < b) {
  606. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  607. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  608. } else {
  609. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  610. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  611. }
  612. }
  613. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  614. */
  615. static void vc1_mc_4mv_chroma(VC1Context *v)
  616. {
  617. MpegEncContext *s = &v->s;
  618. DSPContext *dsp = &v->s.dsp;
  619. uint8_t *srcU, *srcV;
  620. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  621. int i, idx, tx = 0, ty = 0;
  622. int mvx[4], mvy[4], intra[4];
  623. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  624. if(!v->s.last_picture.data[0])return;
  625. if(s->flags & CODEC_FLAG_GRAY) return;
  626. for(i = 0; i < 4; i++) {
  627. mvx[i] = s->mv[0][i][0];
  628. mvy[i] = s->mv[0][i][1];
  629. intra[i] = v->mb_type[0][s->block_index[i]];
  630. }
  631. /* calculate chroma MV vector from four luma MVs */
  632. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  633. if(!idx) { // all blocks are inter
  634. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  635. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  636. } else if(count[idx] == 1) { // 3 inter blocks
  637. switch(idx) {
  638. case 0x1:
  639. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  640. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  641. break;
  642. case 0x2:
  643. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  644. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  645. break;
  646. case 0x4:
  647. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  648. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  649. break;
  650. case 0x8:
  651. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  652. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  653. break;
  654. }
  655. } else if(count[idx] == 2) {
  656. int t1 = 0, t2 = 0;
  657. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  658. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  659. tx = (mvx[t1] + mvx[t2]) / 2;
  660. ty = (mvy[t1] + mvy[t2]) / 2;
  661. } else {
  662. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  663. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  664. return; //no need to do MC for inter blocks
  665. }
  666. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  667. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  668. uvmx = (tx + ((tx&3) == 3)) >> 1;
  669. uvmy = (ty + ((ty&3) == 3)) >> 1;
  670. if(v->fastuvmc) {
  671. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  672. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  673. }
  674. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  675. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  676. if(v->profile != PROFILE_ADVANCED){
  677. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  678. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  679. }else{
  680. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  681. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  682. }
  683. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  684. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  685. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  686. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  687. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  688. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  689. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  690. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  691. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  692. srcU = s->edge_emu_buffer;
  693. srcV = s->edge_emu_buffer + 16;
  694. /* if we deal with range reduction we need to scale source blocks */
  695. if(v->rangeredfrm) {
  696. int i, j;
  697. uint8_t *src, *src2;
  698. src = srcU; src2 = srcV;
  699. for(j = 0; j < 9; j++) {
  700. for(i = 0; i < 9; i++) {
  701. src[i] = ((src[i] - 128) >> 1) + 128;
  702. src2[i] = ((src2[i] - 128) >> 1) + 128;
  703. }
  704. src += s->uvlinesize;
  705. src2 += s->uvlinesize;
  706. }
  707. }
  708. /* if we deal with intensity compensation we need to scale source blocks */
  709. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  710. int i, j;
  711. uint8_t *src, *src2;
  712. src = srcU; src2 = srcV;
  713. for(j = 0; j < 9; j++) {
  714. for(i = 0; i < 9; i++) {
  715. src[i] = v->lutuv[src[i]];
  716. src2[i] = v->lutuv[src2[i]];
  717. }
  718. src += s->uvlinesize;
  719. src2 += s->uvlinesize;
  720. }
  721. }
  722. }
  723. /* Chroma MC always uses qpel bilinear */
  724. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  725. uvmx = (uvmx&3)<<1;
  726. uvmy = (uvmy&3)<<1;
  727. if(!v->rnd){
  728. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  729. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  730. }else{
  731. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  732. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  733. }
  734. }
  735. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  736. /**
  737. * Decode Simple/Main Profiles sequence header
  738. * @see Figure 7-8, p16-17
  739. * @param avctx Codec context
  740. * @param gb GetBit context initialized from Codec context extra_data
  741. * @return Status
  742. */
  743. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  744. {
  745. VC1Context *v = avctx->priv_data;
  746. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  747. v->profile = get_bits(gb, 2);
  748. if (v->profile == PROFILE_COMPLEX)
  749. {
  750. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  751. }
  752. if (v->profile == PROFILE_ADVANCED)
  753. {
  754. return decode_sequence_header_adv(v, gb);
  755. }
  756. else
  757. {
  758. v->res_sm = get_bits(gb, 2); //reserved
  759. if (v->res_sm)
  760. {
  761. av_log(avctx, AV_LOG_ERROR,
  762. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  763. return -1;
  764. }
  765. }
  766. // (fps-2)/4 (->30)
  767. v->frmrtq_postproc = get_bits(gb, 3); //common
  768. // (bitrate-32kbps)/64kbps
  769. v->bitrtq_postproc = get_bits(gb, 5); //common
  770. v->s.loop_filter = get_bits(gb, 1); //common
  771. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  772. {
  773. av_log(avctx, AV_LOG_ERROR,
  774. "LOOPFILTER shell not be enabled in simple profile\n");
  775. }
  776. v->res_x8 = get_bits(gb, 1); //reserved
  777. if (v->res_x8)
  778. {
  779. av_log(avctx, AV_LOG_ERROR,
  780. "1 for reserved RES_X8 is forbidden\n");
  781. //return -1;
  782. }
  783. v->multires = get_bits(gb, 1);
  784. v->res_fasttx = get_bits(gb, 1);
  785. if (!v->res_fasttx)
  786. {
  787. av_log(avctx, AV_LOG_ERROR,
  788. "0 for reserved RES_FASTTX is forbidden\n");
  789. //return -1;
  790. }
  791. v->fastuvmc = get_bits(gb, 1); //common
  792. if (!v->profile && !v->fastuvmc)
  793. {
  794. av_log(avctx, AV_LOG_ERROR,
  795. "FASTUVMC unavailable in Simple Profile\n");
  796. return -1;
  797. }
  798. v->extended_mv = get_bits(gb, 1); //common
  799. if (!v->profile && v->extended_mv)
  800. {
  801. av_log(avctx, AV_LOG_ERROR,
  802. "Extended MVs unavailable in Simple Profile\n");
  803. return -1;
  804. }
  805. v->dquant = get_bits(gb, 2); //common
  806. v->vstransform = get_bits(gb, 1); //common
  807. v->res_transtab = get_bits(gb, 1);
  808. if (v->res_transtab)
  809. {
  810. av_log(avctx, AV_LOG_ERROR,
  811. "1 for reserved RES_TRANSTAB is forbidden\n");
  812. return -1;
  813. }
  814. v->overlap = get_bits(gb, 1); //common
  815. v->s.resync_marker = get_bits(gb, 1);
  816. v->rangered = get_bits(gb, 1);
  817. if (v->rangered && v->profile == PROFILE_SIMPLE)
  818. {
  819. av_log(avctx, AV_LOG_INFO,
  820. "RANGERED should be set to 0 in simple profile\n");
  821. }
  822. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  823. v->quantizer_mode = get_bits(gb, 2); //common
  824. v->finterpflag = get_bits(gb, 1); //common
  825. v->res_rtm_flag = get_bits(gb, 1); //reserved
  826. if (!v->res_rtm_flag)
  827. {
  828. // av_log(avctx, AV_LOG_ERROR,
  829. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  830. av_log(avctx, AV_LOG_ERROR,
  831. "Old WMV3 version detected, only I-frames will be decoded\n");
  832. //return -1;
  833. }
  834. //TODO: figure out what they mean (always 0x402F)
  835. if(!v->res_fasttx) skip_bits(gb, 16);
  836. av_log(avctx, AV_LOG_DEBUG,
  837. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  838. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  839. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  840. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  841. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  842. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  843. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  844. v->dquant, v->quantizer_mode, avctx->max_b_frames
  845. );
  846. return 0;
  847. }
  848. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  849. {
  850. v->res_rtm_flag = 1;
  851. v->level = get_bits(gb, 3);
  852. if(v->level >= 5)
  853. {
  854. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  855. }
  856. v->chromaformat = get_bits(gb, 2);
  857. if (v->chromaformat != 1)
  858. {
  859. av_log(v->s.avctx, AV_LOG_ERROR,
  860. "Only 4:2:0 chroma format supported\n");
  861. return -1;
  862. }
  863. // (fps-2)/4 (->30)
  864. v->frmrtq_postproc = get_bits(gb, 3); //common
  865. // (bitrate-32kbps)/64kbps
  866. v->bitrtq_postproc = get_bits(gb, 5); //common
  867. v->postprocflag = get_bits(gb, 1); //common
  868. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  869. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  870. v->s.avctx->width = v->s.avctx->coded_width;
  871. v->s.avctx->height = v->s.avctx->coded_height;
  872. v->broadcast = get_bits1(gb);
  873. v->interlace = get_bits1(gb);
  874. v->tfcntrflag = get_bits1(gb);
  875. v->finterpflag = get_bits1(gb);
  876. get_bits1(gb); // reserved
  877. v->s.h_edge_pos = v->s.avctx->coded_width;
  878. v->s.v_edge_pos = v->s.avctx->coded_height;
  879. av_log(v->s.avctx, AV_LOG_DEBUG,
  880. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  881. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  882. "TFCTRflag=%i, FINTERPflag=%i\n",
  883. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  884. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  885. v->tfcntrflag, v->finterpflag
  886. );
  887. v->psf = get_bits1(gb);
  888. if(v->psf) { //PsF, 6.1.13
  889. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  890. return -1;
  891. }
  892. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  893. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  894. int w, h, ar = 0;
  895. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  896. v->s.avctx->width = v->s.width = w = get_bits(gb, 14) + 1;
  897. v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1;
  898. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  899. if(get_bits1(gb))
  900. ar = get_bits(gb, 4);
  901. if(ar && ar < 14){
  902. v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
  903. }else if(ar == 15){
  904. w = get_bits(gb, 8);
  905. h = get_bits(gb, 8);
  906. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  907. }
  908. if(get_bits1(gb)){ //framerate stuff
  909. if(get_bits1(gb)) {
  910. v->s.avctx->time_base.num = 32;
  911. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  912. } else {
  913. int nr, dr;
  914. nr = get_bits(gb, 8);
  915. dr = get_bits(gb, 4);
  916. if(nr && nr < 8 && dr && dr < 3){
  917. v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
  918. v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
  919. }
  920. }
  921. }
  922. if(get_bits1(gb)){
  923. v->color_prim = get_bits(gb, 8);
  924. v->transfer_char = get_bits(gb, 8);
  925. v->matrix_coef = get_bits(gb, 8);
  926. }
  927. }
  928. v->hrd_param_flag = get_bits1(gb);
  929. if(v->hrd_param_flag) {
  930. int i;
  931. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  932. get_bits(gb, 4); //bitrate exponent
  933. get_bits(gb, 4); //buffer size exponent
  934. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  935. get_bits(gb, 16); //hrd_rate[n]
  936. get_bits(gb, 16); //hrd_buffer[n]
  937. }
  938. }
  939. return 0;
  940. }
  941. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  942. {
  943. VC1Context *v = avctx->priv_data;
  944. int i, blink, clentry, refdist;
  945. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  946. blink = get_bits1(gb); // broken link
  947. clentry = get_bits1(gb); // closed entry
  948. v->panscanflag = get_bits1(gb);
  949. refdist = get_bits1(gb); // refdist flag
  950. v->s.loop_filter = get_bits1(gb);
  951. v->fastuvmc = get_bits1(gb);
  952. v->extended_mv = get_bits1(gb);
  953. v->dquant = get_bits(gb, 2);
  954. v->vstransform = get_bits1(gb);
  955. v->overlap = get_bits1(gb);
  956. v->quantizer_mode = get_bits(gb, 2);
  957. if(v->hrd_param_flag){
  958. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  959. get_bits(gb, 8); //hrd_full[n]
  960. }
  961. }
  962. if(get_bits1(gb)){
  963. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  964. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  965. }
  966. if(v->extended_mv)
  967. v->extended_dmv = get_bits1(gb);
  968. if(get_bits1(gb)) {
  969. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  970. skip_bits(gb, 3); // Y range, ignored for now
  971. }
  972. if(get_bits1(gb)) {
  973. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  974. skip_bits(gb, 3); // UV range, ignored for now
  975. }
  976. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  977. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  978. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  979. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  980. blink, clentry, v->panscanflag, refdist, v->s.loop_filter,
  981. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  982. return 0;
  983. }
  984. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  985. {
  986. int pqindex, lowquant, status;
  987. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  988. skip_bits(gb, 2); //framecnt unused
  989. v->rangeredfrm = 0;
  990. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  991. v->s.pict_type = get_bits(gb, 1);
  992. if (v->s.avctx->max_b_frames) {
  993. if (!v->s.pict_type) {
  994. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  995. else v->s.pict_type = B_TYPE;
  996. } else v->s.pict_type = P_TYPE;
  997. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  998. v->bi_type = 0;
  999. if(v->s.pict_type == B_TYPE) {
  1000. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1001. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  1002. if(v->bfraction == 0) {
  1003. v->s.pict_type = BI_TYPE;
  1004. }
  1005. }
  1006. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1007. get_bits(gb, 7); // skip buffer fullness
  1008. /* calculate RND */
  1009. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1010. v->rnd = 1;
  1011. if(v->s.pict_type == P_TYPE)
  1012. v->rnd ^= 1;
  1013. /* Quantizer stuff */
  1014. pqindex = get_bits(gb, 5);
  1015. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1016. v->pq = ff_vc1_pquant_table[0][pqindex];
  1017. else
  1018. v->pq = ff_vc1_pquant_table[1][pqindex];
  1019. v->pquantizer = 1;
  1020. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1021. v->pquantizer = pqindex < 9;
  1022. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1023. v->pquantizer = 0;
  1024. v->pqindex = pqindex;
  1025. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1026. else v->halfpq = 0;
  1027. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1028. v->pquantizer = get_bits(gb, 1);
  1029. v->dquantfrm = 0;
  1030. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1031. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1032. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1033. v->range_x = 1 << (v->k_x - 1);
  1034. v->range_y = 1 << (v->k_y - 1);
  1035. if (v->profile == PROFILE_ADVANCED)
  1036. {
  1037. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1038. }
  1039. else
  1040. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  1041. if(v->res_x8 && (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)){
  1042. if(get_bits1(gb))return -1;
  1043. }
  1044. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1045. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1046. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1047. switch(v->s.pict_type) {
  1048. case P_TYPE:
  1049. if (v->pq < 5) v->tt_index = 0;
  1050. else if(v->pq < 13) v->tt_index = 1;
  1051. else v->tt_index = 2;
  1052. lowquant = (v->pq > 12) ? 0 : 1;
  1053. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1054. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1055. {
  1056. int scale, shift, i;
  1057. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1058. v->lumscale = get_bits(gb, 6);
  1059. v->lumshift = get_bits(gb, 6);
  1060. v->use_ic = 1;
  1061. /* fill lookup tables for intensity compensation */
  1062. if(!v->lumscale) {
  1063. scale = -64;
  1064. shift = (255 - v->lumshift * 2) << 6;
  1065. if(v->lumshift > 31)
  1066. shift += 128 << 6;
  1067. } else {
  1068. scale = v->lumscale + 32;
  1069. if(v->lumshift > 31)
  1070. shift = (v->lumshift - 64) << 6;
  1071. else
  1072. shift = v->lumshift << 6;
  1073. }
  1074. for(i = 0; i < 256; i++) {
  1075. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1076. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1077. }
  1078. }
  1079. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1080. v->s.quarter_sample = 0;
  1081. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1082. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1083. v->s.quarter_sample = 0;
  1084. else
  1085. v->s.quarter_sample = 1;
  1086. } else
  1087. v->s.quarter_sample = 1;
  1088. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1089. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1090. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1091. || v->mv_mode == MV_PMODE_MIXED_MV)
  1092. {
  1093. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1094. if (status < 0) return -1;
  1095. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1096. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1097. } else {
  1098. v->mv_type_is_raw = 0;
  1099. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1100. }
  1101. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1102. if (status < 0) return -1;
  1103. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1104. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1105. /* Hopefully this is correct for P frames */
  1106. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1107. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1108. if (v->dquant)
  1109. {
  1110. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1111. vop_dquant_decoding(v);
  1112. }
  1113. v->ttfrm = 0; //FIXME Is that so ?
  1114. if (v->vstransform)
  1115. {
  1116. v->ttmbf = get_bits(gb, 1);
  1117. if (v->ttmbf)
  1118. {
  1119. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1120. }
  1121. } else {
  1122. v->ttmbf = 1;
  1123. v->ttfrm = TT_8X8;
  1124. }
  1125. break;
  1126. case B_TYPE:
  1127. if (v->pq < 5) v->tt_index = 0;
  1128. else if(v->pq < 13) v->tt_index = 1;
  1129. else v->tt_index = 2;
  1130. lowquant = (v->pq > 12) ? 0 : 1;
  1131. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1132. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1133. v->s.mspel = v->s.quarter_sample;
  1134. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1135. if (status < 0) return -1;
  1136. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1137. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1138. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1139. if (status < 0) return -1;
  1140. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1141. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1142. v->s.mv_table_index = get_bits(gb, 2);
  1143. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1144. if (v->dquant)
  1145. {
  1146. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1147. vop_dquant_decoding(v);
  1148. }
  1149. v->ttfrm = 0;
  1150. if (v->vstransform)
  1151. {
  1152. v->ttmbf = get_bits(gb, 1);
  1153. if (v->ttmbf)
  1154. {
  1155. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1156. }
  1157. } else {
  1158. v->ttmbf = 1;
  1159. v->ttfrm = TT_8X8;
  1160. }
  1161. break;
  1162. }
  1163. /* AC Syntax */
  1164. v->c_ac_table_index = decode012(gb);
  1165. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1166. {
  1167. v->y_ac_table_index = decode012(gb);
  1168. }
  1169. /* DC Syntax */
  1170. v->s.dc_table_index = get_bits(gb, 1);
  1171. if(v->s.pict_type == BI_TYPE) {
  1172. v->s.pict_type = B_TYPE;
  1173. v->bi_type = 1;
  1174. }
  1175. return 0;
  1176. }
  1177. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1178. {
  1179. int pqindex, lowquant;
  1180. int status;
  1181. v->p_frame_skipped = 0;
  1182. if(v->interlace){
  1183. v->fcm = decode012(gb);
  1184. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1185. }
  1186. switch(get_prefix(gb, 0, 4)) {
  1187. case 0:
  1188. v->s.pict_type = P_TYPE;
  1189. break;
  1190. case 1:
  1191. v->s.pict_type = B_TYPE;
  1192. break;
  1193. case 2:
  1194. v->s.pict_type = I_TYPE;
  1195. break;
  1196. case 3:
  1197. v->s.pict_type = BI_TYPE;
  1198. break;
  1199. case 4:
  1200. v->s.pict_type = P_TYPE; // skipped pic
  1201. v->p_frame_skipped = 1;
  1202. return 0;
  1203. }
  1204. if(v->tfcntrflag)
  1205. get_bits(gb, 8);
  1206. if(v->broadcast) {
  1207. if(!v->interlace || v->psf) {
  1208. v->rptfrm = get_bits(gb, 2);
  1209. } else {
  1210. v->tff = get_bits1(gb);
  1211. v->rptfrm = get_bits1(gb);
  1212. }
  1213. }
  1214. if(v->panscanflag) {
  1215. //...
  1216. }
  1217. v->rnd = get_bits1(gb);
  1218. if(v->interlace)
  1219. v->uvsamp = get_bits1(gb);
  1220. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1221. if(v->s.pict_type == B_TYPE) {
  1222. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1223. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  1224. if(v->bfraction == 0) {
  1225. v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
  1226. }
  1227. }
  1228. pqindex = get_bits(gb, 5);
  1229. v->pqindex = pqindex;
  1230. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1231. v->pq = ff_vc1_pquant_table[0][pqindex];
  1232. else
  1233. v->pq = ff_vc1_pquant_table[1][pqindex];
  1234. v->pquantizer = 1;
  1235. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1236. v->pquantizer = pqindex < 9;
  1237. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1238. v->pquantizer = 0;
  1239. v->pqindex = pqindex;
  1240. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1241. else v->halfpq = 0;
  1242. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1243. v->pquantizer = get_bits(gb, 1);
  1244. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1245. switch(v->s.pict_type) {
  1246. case I_TYPE:
  1247. case BI_TYPE:
  1248. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1249. if (status < 0) return -1;
  1250. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1251. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1252. v->condover = CONDOVER_NONE;
  1253. if(v->overlap && v->pq <= 8) {
  1254. v->condover = decode012(gb);
  1255. if(v->condover == CONDOVER_SELECT) {
  1256. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1257. if (status < 0) return -1;
  1258. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1259. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1260. }
  1261. }
  1262. break;
  1263. case P_TYPE:
  1264. if(v->postprocflag)
  1265. v->postproc = get_bits1(gb);
  1266. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1267. else v->mvrange = 0;
  1268. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1269. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1270. v->range_x = 1 << (v->k_x - 1);
  1271. v->range_y = 1 << (v->k_y - 1);
  1272. if (v->pq < 5) v->tt_index = 0;
  1273. else if(v->pq < 13) v->tt_index = 1;
  1274. else v->tt_index = 2;
  1275. lowquant = (v->pq > 12) ? 0 : 1;
  1276. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1277. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1278. {
  1279. int scale, shift, i;
  1280. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1281. v->lumscale = get_bits(gb, 6);
  1282. v->lumshift = get_bits(gb, 6);
  1283. /* fill lookup tables for intensity compensation */
  1284. if(!v->lumscale) {
  1285. scale = -64;
  1286. shift = (255 - v->lumshift * 2) << 6;
  1287. if(v->lumshift > 31)
  1288. shift += 128 << 6;
  1289. } else {
  1290. scale = v->lumscale + 32;
  1291. if(v->lumshift > 31)
  1292. shift = (v->lumshift - 64) << 6;
  1293. else
  1294. shift = v->lumshift << 6;
  1295. }
  1296. for(i = 0; i < 256; i++) {
  1297. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1298. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1299. }
  1300. v->use_ic = 1;
  1301. }
  1302. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1303. v->s.quarter_sample = 0;
  1304. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1305. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1306. v->s.quarter_sample = 0;
  1307. else
  1308. v->s.quarter_sample = 1;
  1309. } else
  1310. v->s.quarter_sample = 1;
  1311. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1312. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1313. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1314. || v->mv_mode == MV_PMODE_MIXED_MV)
  1315. {
  1316. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1317. if (status < 0) return -1;
  1318. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1319. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1320. } else {
  1321. v->mv_type_is_raw = 0;
  1322. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1323. }
  1324. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1325. if (status < 0) return -1;
  1326. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1327. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1328. /* Hopefully this is correct for P frames */
  1329. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1330. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1331. if (v->dquant)
  1332. {
  1333. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1334. vop_dquant_decoding(v);
  1335. }
  1336. v->ttfrm = 0; //FIXME Is that so ?
  1337. if (v->vstransform)
  1338. {
  1339. v->ttmbf = get_bits(gb, 1);
  1340. if (v->ttmbf)
  1341. {
  1342. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1343. }
  1344. } else {
  1345. v->ttmbf = 1;
  1346. v->ttfrm = TT_8X8;
  1347. }
  1348. break;
  1349. case B_TYPE:
  1350. if(v->postprocflag)
  1351. v->postproc = get_bits1(gb);
  1352. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1353. else v->mvrange = 0;
  1354. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1355. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1356. v->range_x = 1 << (v->k_x - 1);
  1357. v->range_y = 1 << (v->k_y - 1);
  1358. if (v->pq < 5) v->tt_index = 0;
  1359. else if(v->pq < 13) v->tt_index = 1;
  1360. else v->tt_index = 2;
  1361. lowquant = (v->pq > 12) ? 0 : 1;
  1362. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1363. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1364. v->s.mspel = v->s.quarter_sample;
  1365. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1366. if (status < 0) return -1;
  1367. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1368. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1369. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1370. if (status < 0) return -1;
  1371. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1372. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1373. v->s.mv_table_index = get_bits(gb, 2);
  1374. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1375. if (v->dquant)
  1376. {
  1377. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1378. vop_dquant_decoding(v);
  1379. }
  1380. v->ttfrm = 0;
  1381. if (v->vstransform)
  1382. {
  1383. v->ttmbf = get_bits(gb, 1);
  1384. if (v->ttmbf)
  1385. {
  1386. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1387. }
  1388. } else {
  1389. v->ttmbf = 1;
  1390. v->ttfrm = TT_8X8;
  1391. }
  1392. break;
  1393. }
  1394. /* AC Syntax */
  1395. v->c_ac_table_index = decode012(gb);
  1396. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1397. {
  1398. v->y_ac_table_index = decode012(gb);
  1399. }
  1400. /* DC Syntax */
  1401. v->s.dc_table_index = get_bits(gb, 1);
  1402. if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) {
  1403. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1404. vop_dquant_decoding(v);
  1405. }
  1406. v->bi_type = 0;
  1407. if(v->s.pict_type == BI_TYPE) {
  1408. v->s.pict_type = B_TYPE;
  1409. v->bi_type = 1;
  1410. }
  1411. return 0;
  1412. }
  1413. /***********************************************************************/
  1414. /**
  1415. * @defgroup block VC-1 Block-level functions
  1416. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1417. * @{
  1418. */
  1419. /**
  1420. * @def GET_MQUANT
  1421. * @brief Get macroblock-level quantizer scale
  1422. */
  1423. #define GET_MQUANT() \
  1424. if (v->dquantfrm) \
  1425. { \
  1426. int edges = 0; \
  1427. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1428. { \
  1429. if (v->dqbilevel) \
  1430. { \
  1431. mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \
  1432. } \
  1433. else \
  1434. { \
  1435. mqdiff = get_bits(gb, 3); \
  1436. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1437. else mquant = get_bits(gb, 5); \
  1438. } \
  1439. } \
  1440. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1441. edges = 1 << v->dqsbedge; \
  1442. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1443. edges = (3 << v->dqsbedge) % 15; \
  1444. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1445. edges = 15; \
  1446. if((edges&1) && !s->mb_x) \
  1447. mquant = v->altpq; \
  1448. if((edges&2) && s->first_slice_line) \
  1449. mquant = v->altpq; \
  1450. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1451. mquant = v->altpq; \
  1452. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1453. mquant = v->altpq; \
  1454. }
  1455. /**
  1456. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1457. * @brief Get MV differentials
  1458. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1459. * @param _dmv_x Horizontal differential for decoded MV
  1460. * @param _dmv_y Vertical differential for decoded MV
  1461. */
  1462. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1463. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  1464. VC1_MV_DIFF_VLC_BITS, 2); \
  1465. if (index > 36) \
  1466. { \
  1467. mb_has_coeffs = 1; \
  1468. index -= 37; \
  1469. } \
  1470. else mb_has_coeffs = 0; \
  1471. s->mb_intra = 0; \
  1472. if (!index) { _dmv_x = _dmv_y = 0; } \
  1473. else if (index == 35) \
  1474. { \
  1475. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1476. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1477. } \
  1478. else if (index == 36) \
  1479. { \
  1480. _dmv_x = 0; \
  1481. _dmv_y = 0; \
  1482. s->mb_intra = 1; \
  1483. } \
  1484. else \
  1485. { \
  1486. index1 = index%6; \
  1487. if (!s->quarter_sample && index1 == 5) val = 1; \
  1488. else val = 0; \
  1489. if(size_table[index1] - val > 0) \
  1490. val = get_bits(gb, size_table[index1] - val); \
  1491. else val = 0; \
  1492. sign = 0 - (val&1); \
  1493. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1494. \
  1495. index1 = index/6; \
  1496. if (!s->quarter_sample && index1 == 5) val = 1; \
  1497. else val = 0; \
  1498. if(size_table[index1] - val > 0) \
  1499. val = get_bits(gb, size_table[index1] - val); \
  1500. else val = 0; \
  1501. sign = 0 - (val&1); \
  1502. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1503. }
  1504. /** Predict and set motion vector
  1505. */
  1506. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1507. {
  1508. int xy, wrap, off = 0;
  1509. int16_t *A, *B, *C;
  1510. int px, py;
  1511. int sum;
  1512. /* scale MV difference to be quad-pel */
  1513. dmv_x <<= 1 - s->quarter_sample;
  1514. dmv_y <<= 1 - s->quarter_sample;
  1515. wrap = s->b8_stride;
  1516. xy = s->block_index[n];
  1517. if(s->mb_intra){
  1518. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1519. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1520. s->current_picture.motion_val[1][xy][0] = 0;
  1521. s->current_picture.motion_val[1][xy][1] = 0;
  1522. if(mv1) { /* duplicate motion data for 1-MV block */
  1523. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1524. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1525. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1526. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1527. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1528. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1529. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1530. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1531. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1532. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1533. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1534. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1535. }
  1536. return;
  1537. }
  1538. C = s->current_picture.motion_val[0][xy - 1];
  1539. A = s->current_picture.motion_val[0][xy - wrap];
  1540. if(mv1)
  1541. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1542. else {
  1543. //in 4-MV mode different blocks have different B predictor position
  1544. switch(n){
  1545. case 0:
  1546. off = (s->mb_x > 0) ? -1 : 1;
  1547. break;
  1548. case 1:
  1549. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1550. break;
  1551. case 2:
  1552. off = 1;
  1553. break;
  1554. case 3:
  1555. off = -1;
  1556. }
  1557. }
  1558. B = s->current_picture.motion_val[0][xy - wrap + off];
  1559. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1560. if(s->mb_width == 1) {
  1561. px = A[0];
  1562. py = A[1];
  1563. } else {
  1564. px = mid_pred(A[0], B[0], C[0]);
  1565. py = mid_pred(A[1], B[1], C[1]);
  1566. }
  1567. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1568. px = C[0];
  1569. py = C[1];
  1570. } else {
  1571. px = py = 0;
  1572. }
  1573. /* Pullback MV as specified in 8.3.5.3.4 */
  1574. {
  1575. int qx, qy, X, Y;
  1576. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1577. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1578. X = (s->mb_width << 6) - 4;
  1579. Y = (s->mb_height << 6) - 4;
  1580. if(mv1) {
  1581. if(qx + px < -60) px = -60 - qx;
  1582. if(qy + py < -60) py = -60 - qy;
  1583. } else {
  1584. if(qx + px < -28) px = -28 - qx;
  1585. if(qy + py < -28) py = -28 - qy;
  1586. }
  1587. if(qx + px > X) px = X - qx;
  1588. if(qy + py > Y) py = Y - qy;
  1589. }
  1590. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1591. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1592. if(is_intra[xy - wrap])
  1593. sum = FFABS(px) + FFABS(py);
  1594. else
  1595. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1596. if(sum > 32) {
  1597. if(get_bits1(&s->gb)) {
  1598. px = A[0];
  1599. py = A[1];
  1600. } else {
  1601. px = C[0];
  1602. py = C[1];
  1603. }
  1604. } else {
  1605. if(is_intra[xy - 1])
  1606. sum = FFABS(px) + FFABS(py);
  1607. else
  1608. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1609. if(sum > 32) {
  1610. if(get_bits1(&s->gb)) {
  1611. px = A[0];
  1612. py = A[1];
  1613. } else {
  1614. px = C[0];
  1615. py = C[1];
  1616. }
  1617. }
  1618. }
  1619. }
  1620. /* store MV using signed modulus of MV range defined in 4.11 */
  1621. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1622. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1623. if(mv1) { /* duplicate motion data for 1-MV block */
  1624. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1625. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1626. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1627. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1628. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1629. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1630. }
  1631. }
  1632. /** Motion compensation for direct or interpolated blocks in B-frames
  1633. */
  1634. static void vc1_interp_mc(VC1Context *v)
  1635. {
  1636. MpegEncContext *s = &v->s;
  1637. DSPContext *dsp = &v->s.dsp;
  1638. uint8_t *srcY, *srcU, *srcV;
  1639. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1640. if(!v->s.next_picture.data[0])return;
  1641. mx = s->mv[1][0][0];
  1642. my = s->mv[1][0][1];
  1643. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1644. uvmy = (my + ((my & 3) == 3)) >> 1;
  1645. if(v->fastuvmc) {
  1646. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1647. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1648. }
  1649. srcY = s->next_picture.data[0];
  1650. srcU = s->next_picture.data[1];
  1651. srcV = s->next_picture.data[2];
  1652. src_x = s->mb_x * 16 + (mx >> 2);
  1653. src_y = s->mb_y * 16 + (my >> 2);
  1654. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1655. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1656. if(v->profile != PROFILE_ADVANCED){
  1657. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1658. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1659. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1660. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1661. }else{
  1662. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1663. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1664. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1665. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1666. }
  1667. srcY += src_y * s->linesize + src_x;
  1668. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1669. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1670. /* for grayscale we should not try to read from unknown area */
  1671. if(s->flags & CODEC_FLAG_GRAY) {
  1672. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1673. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1674. }
  1675. if(v->rangeredfrm
  1676. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1677. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1678. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1679. srcY -= s->mspel * (1 + s->linesize);
  1680. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1681. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1682. srcY = s->edge_emu_buffer;
  1683. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1684. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1685. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1686. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1687. srcU = uvbuf;
  1688. srcV = uvbuf + 16;
  1689. /* if we deal with range reduction we need to scale source blocks */
  1690. if(v->rangeredfrm) {
  1691. int i, j;
  1692. uint8_t *src, *src2;
  1693. src = srcY;
  1694. for(j = 0; j < 17 + s->mspel*2; j++) {
  1695. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1696. src += s->linesize;
  1697. }
  1698. src = srcU; src2 = srcV;
  1699. for(j = 0; j < 9; j++) {
  1700. for(i = 0; i < 9; i++) {
  1701. src[i] = ((src[i] - 128) >> 1) + 128;
  1702. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1703. }
  1704. src += s->uvlinesize;
  1705. src2 += s->uvlinesize;
  1706. }
  1707. }
  1708. srcY += s->mspel * (1 + s->linesize);
  1709. }
  1710. mx >>= 1;
  1711. my >>= 1;
  1712. dxy = ((my & 1) << 1) | (mx & 1);
  1713. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1714. if(s->flags & CODEC_FLAG_GRAY) return;
  1715. /* Chroma MC always uses qpel blilinear */
  1716. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1717. uvmx = (uvmx&3)<<1;
  1718. uvmy = (uvmy&3)<<1;
  1719. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1720. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1721. }
  1722. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1723. {
  1724. int n = bfrac;
  1725. #if B_FRACTION_DEN==256
  1726. if(inv)
  1727. n -= 256;
  1728. if(!qs)
  1729. return 2 * ((value * n + 255) >> 9);
  1730. return (value * n + 128) >> 8;
  1731. #else
  1732. if(inv)
  1733. n -= B_FRACTION_DEN;
  1734. if(!qs)
  1735. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1736. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1737. #endif
  1738. }
  1739. /** Reconstruct motion vector for B-frame and do motion compensation
  1740. */
  1741. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1742. {
  1743. if(v->use_ic) {
  1744. v->mv_mode2 = v->mv_mode;
  1745. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1746. }
  1747. if(direct) {
  1748. vc1_mc_1mv(v, 0);
  1749. vc1_interp_mc(v);
  1750. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1751. return;
  1752. }
  1753. if(mode == BMV_TYPE_INTERPOLATED) {
  1754. vc1_mc_1mv(v, 0);
  1755. vc1_interp_mc(v);
  1756. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1757. return;
  1758. }
  1759. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1760. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1761. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1762. }
  1763. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1764. {
  1765. MpegEncContext *s = &v->s;
  1766. int xy, wrap, off = 0;
  1767. int16_t *A, *B, *C;
  1768. int px, py;
  1769. int sum;
  1770. int r_x, r_y;
  1771. const uint8_t *is_intra = v->mb_type[0];
  1772. r_x = v->range_x;
  1773. r_y = v->range_y;
  1774. /* scale MV difference to be quad-pel */
  1775. dmv_x[0] <<= 1 - s->quarter_sample;
  1776. dmv_y[0] <<= 1 - s->quarter_sample;
  1777. dmv_x[1] <<= 1 - s->quarter_sample;
  1778. dmv_y[1] <<= 1 - s->quarter_sample;
  1779. wrap = s->b8_stride;
  1780. xy = s->block_index[0];
  1781. if(s->mb_intra) {
  1782. s->current_picture.motion_val[0][xy][0] =
  1783. s->current_picture.motion_val[0][xy][1] =
  1784. s->current_picture.motion_val[1][xy][0] =
  1785. s->current_picture.motion_val[1][xy][1] = 0;
  1786. return;
  1787. }
  1788. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1789. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1790. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1791. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1792. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1793. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1794. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1795. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1796. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1797. if(direct) {
  1798. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1799. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1800. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1801. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1802. return;
  1803. }
  1804. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1805. C = s->current_picture.motion_val[0][xy - 2];
  1806. A = s->current_picture.motion_val[0][xy - wrap*2];
  1807. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1808. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1809. if(!s->mb_x) C[0] = C[1] = 0;
  1810. if(!s->first_slice_line) { // predictor A is not out of bounds
  1811. if(s->mb_width == 1) {
  1812. px = A[0];
  1813. py = A[1];
  1814. } else {
  1815. px = mid_pred(A[0], B[0], C[0]);
  1816. py = mid_pred(A[1], B[1], C[1]);
  1817. }
  1818. } else if(s->mb_x) { // predictor C is not out of bounds
  1819. px = C[0];
  1820. py = C[1];
  1821. } else {
  1822. px = py = 0;
  1823. }
  1824. /* Pullback MV as specified in 8.3.5.3.4 */
  1825. {
  1826. int qx, qy, X, Y;
  1827. if(v->profile < PROFILE_ADVANCED) {
  1828. qx = (s->mb_x << 5);
  1829. qy = (s->mb_y << 5);
  1830. X = (s->mb_width << 5) - 4;
  1831. Y = (s->mb_height << 5) - 4;
  1832. if(qx + px < -28) px = -28 - qx;
  1833. if(qy + py < -28) py = -28 - qy;
  1834. if(qx + px > X) px = X - qx;
  1835. if(qy + py > Y) py = Y - qy;
  1836. } else {
  1837. qx = (s->mb_x << 6);
  1838. qy = (s->mb_y << 6);
  1839. X = (s->mb_width << 6) - 4;
  1840. Y = (s->mb_height << 6) - 4;
  1841. if(qx + px < -60) px = -60 - qx;
  1842. if(qy + py < -60) py = -60 - qy;
  1843. if(qx + px > X) px = X - qx;
  1844. if(qy + py > Y) py = Y - qy;
  1845. }
  1846. }
  1847. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1848. if(0 && !s->first_slice_line && s->mb_x) {
  1849. if(is_intra[xy - wrap])
  1850. sum = FFABS(px) + FFABS(py);
  1851. else
  1852. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1853. if(sum > 32) {
  1854. if(get_bits1(&s->gb)) {
  1855. px = A[0];
  1856. py = A[1];
  1857. } else {
  1858. px = C[0];
  1859. py = C[1];
  1860. }
  1861. } else {
  1862. if(is_intra[xy - 2])
  1863. sum = FFABS(px) + FFABS(py);
  1864. else
  1865. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1866. if(sum > 32) {
  1867. if(get_bits1(&s->gb)) {
  1868. px = A[0];
  1869. py = A[1];
  1870. } else {
  1871. px = C[0];
  1872. py = C[1];
  1873. }
  1874. }
  1875. }
  1876. }
  1877. /* store MV using signed modulus of MV range defined in 4.11 */
  1878. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1879. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1880. }
  1881. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1882. C = s->current_picture.motion_val[1][xy - 2];
  1883. A = s->current_picture.motion_val[1][xy - wrap*2];
  1884. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1885. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1886. if(!s->mb_x) C[0] = C[1] = 0;
  1887. if(!s->first_slice_line) { // predictor A is not out of bounds
  1888. if(s->mb_width == 1) {
  1889. px = A[0];
  1890. py = A[1];
  1891. } else {
  1892. px = mid_pred(A[0], B[0], C[0]);
  1893. py = mid_pred(A[1], B[1], C[1]);
  1894. }
  1895. } else if(s->mb_x) { // predictor C is not out of bounds
  1896. px = C[0];
  1897. py = C[1];
  1898. } else {
  1899. px = py = 0;
  1900. }
  1901. /* Pullback MV as specified in 8.3.5.3.4 */
  1902. {
  1903. int qx, qy, X, Y;
  1904. if(v->profile < PROFILE_ADVANCED) {
  1905. qx = (s->mb_x << 5);
  1906. qy = (s->mb_y << 5);
  1907. X = (s->mb_width << 5) - 4;
  1908. Y = (s->mb_height << 5) - 4;
  1909. if(qx + px < -28) px = -28 - qx;
  1910. if(qy + py < -28) py = -28 - qy;
  1911. if(qx + px > X) px = X - qx;
  1912. if(qy + py > Y) py = Y - qy;
  1913. } else {
  1914. qx = (s->mb_x << 6);
  1915. qy = (s->mb_y << 6);
  1916. X = (s->mb_width << 6) - 4;
  1917. Y = (s->mb_height << 6) - 4;
  1918. if(qx + px < -60) px = -60 - qx;
  1919. if(qy + py < -60) py = -60 - qy;
  1920. if(qx + px > X) px = X - qx;
  1921. if(qy + py > Y) py = Y - qy;
  1922. }
  1923. }
  1924. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1925. if(0 && !s->first_slice_line && s->mb_x) {
  1926. if(is_intra[xy - wrap])
  1927. sum = FFABS(px) + FFABS(py);
  1928. else
  1929. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1930. if(sum > 32) {
  1931. if(get_bits1(&s->gb)) {
  1932. px = A[0];
  1933. py = A[1];
  1934. } else {
  1935. px = C[0];
  1936. py = C[1];
  1937. }
  1938. } else {
  1939. if(is_intra[xy - 2])
  1940. sum = FFABS(px) + FFABS(py);
  1941. else
  1942. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1943. if(sum > 32) {
  1944. if(get_bits1(&s->gb)) {
  1945. px = A[0];
  1946. py = A[1];
  1947. } else {
  1948. px = C[0];
  1949. py = C[1];
  1950. }
  1951. }
  1952. }
  1953. }
  1954. /* store MV using signed modulus of MV range defined in 4.11 */
  1955. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1956. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1957. }
  1958. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1959. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1960. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1961. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1962. }
  1963. /** Get predicted DC value for I-frames only
  1964. * prediction dir: left=0, top=1
  1965. * @param s MpegEncContext
  1966. * @param[in] n block index in the current MB
  1967. * @param dc_val_ptr Pointer to DC predictor
  1968. * @param dir_ptr Prediction direction for use in AC prediction
  1969. */
  1970. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1971. int16_t **dc_val_ptr, int *dir_ptr)
  1972. {
  1973. int a, b, c, wrap, pred, scale;
  1974. int16_t *dc_val;
  1975. static const uint16_t dcpred[32] = {
  1976. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1977. 114, 102, 93, 85, 79, 73, 68, 64,
  1978. 60, 57, 54, 51, 49, 47, 45, 43,
  1979. 41, 39, 38, 37, 35, 34, 33
  1980. };
  1981. /* find prediction - wmv3_dc_scale always used here in fact */
  1982. if (n < 4) scale = s->y_dc_scale;
  1983. else scale = s->c_dc_scale;
  1984. wrap = s->block_wrap[n];
  1985. dc_val= s->dc_val[0] + s->block_index[n];
  1986. /* B A
  1987. * C X
  1988. */
  1989. c = dc_val[ - 1];
  1990. b = dc_val[ - 1 - wrap];
  1991. a = dc_val[ - wrap];
  1992. if (pq < 9 || !overlap)
  1993. {
  1994. /* Set outer values */
  1995. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1996. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1997. }
  1998. else
  1999. {
  2000. /* Set outer values */
  2001. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  2002. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  2003. }
  2004. if (abs(a - b) <= abs(b - c)) {
  2005. pred = c;
  2006. *dir_ptr = 1;//left
  2007. } else {
  2008. pred = a;
  2009. *dir_ptr = 0;//top
  2010. }
  2011. /* update predictor */
  2012. *dc_val_ptr = &dc_val[0];
  2013. return pred;
  2014. }
  2015. /** Get predicted DC value
  2016. * prediction dir: left=0, top=1
  2017. * @param s MpegEncContext
  2018. * @param[in] n block index in the current MB
  2019. * @param dc_val_ptr Pointer to DC predictor
  2020. * @param dir_ptr Prediction direction for use in AC prediction
  2021. */
  2022. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2023. int a_avail, int c_avail,
  2024. int16_t **dc_val_ptr, int *dir_ptr)
  2025. {
  2026. int a, b, c, wrap, pred, scale;
  2027. int16_t *dc_val;
  2028. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2029. int q1, q2 = 0;
  2030. /* find prediction - wmv3_dc_scale always used here in fact */
  2031. if (n < 4) scale = s->y_dc_scale;
  2032. else scale = s->c_dc_scale;
  2033. wrap = s->block_wrap[n];
  2034. dc_val= s->dc_val[0] + s->block_index[n];
  2035. /* B A
  2036. * C X
  2037. */
  2038. c = dc_val[ - 1];
  2039. b = dc_val[ - 1 - wrap];
  2040. a = dc_val[ - wrap];
  2041. /* scale predictors if needed */
  2042. q1 = s->current_picture.qscale_table[mb_pos];
  2043. if(c_avail && (n!= 1 && n!=3)) {
  2044. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2045. if(q2 && q2 != q1)
  2046. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2047. }
  2048. if(a_avail && (n!= 2 && n!=3)) {
  2049. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2050. if(q2 && q2 != q1)
  2051. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2052. }
  2053. if(a_avail && c_avail && (n!=3)) {
  2054. int off = mb_pos;
  2055. if(n != 1) off--;
  2056. if(n != 2) off -= s->mb_stride;
  2057. q2 = s->current_picture.qscale_table[off];
  2058. if(q2 && q2 != q1)
  2059. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2060. }
  2061. if(a_avail && c_avail) {
  2062. if(abs(a - b) <= abs(b - c)) {
  2063. pred = c;
  2064. *dir_ptr = 1;//left
  2065. } else {
  2066. pred = a;
  2067. *dir_ptr = 0;//top
  2068. }
  2069. } else if(a_avail) {
  2070. pred = a;
  2071. *dir_ptr = 0;//top
  2072. } else if(c_avail) {
  2073. pred = c;
  2074. *dir_ptr = 1;//left
  2075. } else {
  2076. pred = 0;
  2077. *dir_ptr = 1;//left
  2078. }
  2079. /* update predictor */
  2080. *dc_val_ptr = &dc_val[0];
  2081. return pred;
  2082. }
  2083. /**
  2084. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2085. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2086. * @{
  2087. */
  2088. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2089. {
  2090. int xy, wrap, pred, a, b, c;
  2091. xy = s->block_index[n];
  2092. wrap = s->b8_stride;
  2093. /* B C
  2094. * A X
  2095. */
  2096. a = s->coded_block[xy - 1 ];
  2097. b = s->coded_block[xy - 1 - wrap];
  2098. c = s->coded_block[xy - wrap];
  2099. if (b == c) {
  2100. pred = a;
  2101. } else {
  2102. pred = c;
  2103. }
  2104. /* store value */
  2105. *coded_block_ptr = &s->coded_block[xy];
  2106. return pred;
  2107. }
  2108. /**
  2109. * Decode one AC coefficient
  2110. * @param v The VC1 context
  2111. * @param last Last coefficient
  2112. * @param skip How much zero coefficients to skip
  2113. * @param value Decoded AC coefficient value
  2114. * @see 8.1.3.4
  2115. */
  2116. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2117. {
  2118. GetBitContext *gb = &v->s.gb;
  2119. int index, escape, run = 0, level = 0, lst = 0;
  2120. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2121. if (index != vc1_ac_sizes[codingset] - 1) {
  2122. run = vc1_index_decode_table[codingset][index][0];
  2123. level = vc1_index_decode_table[codingset][index][1];
  2124. lst = index >= vc1_last_decode_table[codingset];
  2125. if(get_bits(gb, 1))
  2126. level = -level;
  2127. } else {
  2128. escape = decode210(gb);
  2129. if (escape != 2) {
  2130. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2131. run = vc1_index_decode_table[codingset][index][0];
  2132. level = vc1_index_decode_table[codingset][index][1];
  2133. lst = index >= vc1_last_decode_table[codingset];
  2134. if(escape == 0) {
  2135. if(lst)
  2136. level += vc1_last_delta_level_table[codingset][run];
  2137. else
  2138. level += vc1_delta_level_table[codingset][run];
  2139. } else {
  2140. if(lst)
  2141. run += vc1_last_delta_run_table[codingset][level] + 1;
  2142. else
  2143. run += vc1_delta_run_table[codingset][level] + 1;
  2144. }
  2145. if(get_bits(gb, 1))
  2146. level = -level;
  2147. } else {
  2148. int sign;
  2149. lst = get_bits(gb, 1);
  2150. if(v->s.esc3_level_length == 0) {
  2151. if(v->pq < 8 || v->dquantfrm) { // table 59
  2152. v->s.esc3_level_length = get_bits(gb, 3);
  2153. if(!v->s.esc3_level_length)
  2154. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2155. } else { //table 60
  2156. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  2157. }
  2158. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2159. }
  2160. run = get_bits(gb, v->s.esc3_run_length);
  2161. sign = get_bits(gb, 1);
  2162. level = get_bits(gb, v->s.esc3_level_length);
  2163. if(sign)
  2164. level = -level;
  2165. }
  2166. }
  2167. *last = lst;
  2168. *skip = run;
  2169. *value = level;
  2170. }
  2171. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2172. * @param v VC1Context
  2173. * @param block block to decode
  2174. * @param coded are AC coeffs present or not
  2175. * @param codingset set of VLC to decode data
  2176. */
  2177. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2178. {
  2179. GetBitContext *gb = &v->s.gb;
  2180. MpegEncContext *s = &v->s;
  2181. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2182. int run_diff, i;
  2183. int16_t *dc_val;
  2184. int16_t *ac_val, *ac_val2;
  2185. int dcdiff;
  2186. /* Get DC differential */
  2187. if (n < 4) {
  2188. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2189. } else {
  2190. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2191. }
  2192. if (dcdiff < 0){
  2193. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2194. return -1;
  2195. }
  2196. if (dcdiff)
  2197. {
  2198. if (dcdiff == 119 /* ESC index value */)
  2199. {
  2200. /* TODO: Optimize */
  2201. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2202. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2203. else dcdiff = get_bits(gb, 8);
  2204. }
  2205. else
  2206. {
  2207. if (v->pq == 1)
  2208. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2209. else if (v->pq == 2)
  2210. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2211. }
  2212. if (get_bits(gb, 1))
  2213. dcdiff = -dcdiff;
  2214. }
  2215. /* Prediction */
  2216. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2217. *dc_val = dcdiff;
  2218. /* Store the quantized DC coeff, used for prediction */
  2219. if (n < 4) {
  2220. block[0] = dcdiff * s->y_dc_scale;
  2221. } else {
  2222. block[0] = dcdiff * s->c_dc_scale;
  2223. }
  2224. /* Skip ? */
  2225. run_diff = 0;
  2226. i = 0;
  2227. if (!coded) {
  2228. goto not_coded;
  2229. }
  2230. //AC Decoding
  2231. i = 1;
  2232. {
  2233. int last = 0, skip, value;
  2234. const int8_t *zz_table;
  2235. int scale;
  2236. int k;
  2237. scale = v->pq * 2 + v->halfpq;
  2238. if(v->s.ac_pred) {
  2239. if(!dc_pred_dir)
  2240. zz_table = ff_vc1_horizontal_zz;
  2241. else
  2242. zz_table = ff_vc1_vertical_zz;
  2243. } else
  2244. zz_table = ff_vc1_normal_zz;
  2245. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2246. ac_val2 = ac_val;
  2247. if(dc_pred_dir) //left
  2248. ac_val -= 16;
  2249. else //top
  2250. ac_val -= 16 * s->block_wrap[n];
  2251. while (!last) {
  2252. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2253. i += skip;
  2254. if(i > 63)
  2255. break;
  2256. block[zz_table[i++]] = value;
  2257. }
  2258. /* apply AC prediction if needed */
  2259. if(s->ac_pred) {
  2260. if(dc_pred_dir) { //left
  2261. for(k = 1; k < 8; k++)
  2262. block[k << 3] += ac_val[k];
  2263. } else { //top
  2264. for(k = 1; k < 8; k++)
  2265. block[k] += ac_val[k + 8];
  2266. }
  2267. }
  2268. /* save AC coeffs for further prediction */
  2269. for(k = 1; k < 8; k++) {
  2270. ac_val2[k] = block[k << 3];
  2271. ac_val2[k + 8] = block[k];
  2272. }
  2273. /* scale AC coeffs */
  2274. for(k = 1; k < 64; k++)
  2275. if(block[k]) {
  2276. block[k] *= scale;
  2277. if(!v->pquantizer)
  2278. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2279. }
  2280. if(s->ac_pred) i = 63;
  2281. }
  2282. not_coded:
  2283. if(!coded) {
  2284. int k, scale;
  2285. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2286. ac_val2 = ac_val;
  2287. scale = v->pq * 2 + v->halfpq;
  2288. memset(ac_val2, 0, 16 * 2);
  2289. if(dc_pred_dir) {//left
  2290. ac_val -= 16;
  2291. if(s->ac_pred)
  2292. memcpy(ac_val2, ac_val, 8 * 2);
  2293. } else {//top
  2294. ac_val -= 16 * s->block_wrap[n];
  2295. if(s->ac_pred)
  2296. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2297. }
  2298. /* apply AC prediction if needed */
  2299. if(s->ac_pred) {
  2300. if(dc_pred_dir) { //left
  2301. for(k = 1; k < 8; k++) {
  2302. block[k << 3] = ac_val[k] * scale;
  2303. if(!v->pquantizer && block[k << 3])
  2304. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2305. }
  2306. } else { //top
  2307. for(k = 1; k < 8; k++) {
  2308. block[k] = ac_val[k + 8] * scale;
  2309. if(!v->pquantizer && block[k])
  2310. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2311. }
  2312. }
  2313. i = 63;
  2314. }
  2315. }
  2316. s->block_last_index[n] = i;
  2317. return 0;
  2318. }
  2319. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2320. * @param v VC1Context
  2321. * @param block block to decode
  2322. * @param coded are AC coeffs present or not
  2323. * @param codingset set of VLC to decode data
  2324. */
  2325. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2326. {
  2327. GetBitContext *gb = &v->s.gb;
  2328. MpegEncContext *s = &v->s;
  2329. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2330. int run_diff, i;
  2331. int16_t *dc_val;
  2332. int16_t *ac_val, *ac_val2;
  2333. int dcdiff;
  2334. int a_avail = v->a_avail, c_avail = v->c_avail;
  2335. int use_pred = s->ac_pred;
  2336. int scale;
  2337. int q1, q2 = 0;
  2338. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2339. /* Get DC differential */
  2340. if (n < 4) {
  2341. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2342. } else {
  2343. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2344. }
  2345. if (dcdiff < 0){
  2346. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2347. return -1;
  2348. }
  2349. if (dcdiff)
  2350. {
  2351. if (dcdiff == 119 /* ESC index value */)
  2352. {
  2353. /* TODO: Optimize */
  2354. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2355. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2356. else dcdiff = get_bits(gb, 8);
  2357. }
  2358. else
  2359. {
  2360. if (mquant == 1)
  2361. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2362. else if (mquant == 2)
  2363. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2364. }
  2365. if (get_bits(gb, 1))
  2366. dcdiff = -dcdiff;
  2367. }
  2368. /* Prediction */
  2369. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2370. *dc_val = dcdiff;
  2371. /* Store the quantized DC coeff, used for prediction */
  2372. if (n < 4) {
  2373. block[0] = dcdiff * s->y_dc_scale;
  2374. } else {
  2375. block[0] = dcdiff * s->c_dc_scale;
  2376. }
  2377. /* Skip ? */
  2378. run_diff = 0;
  2379. i = 0;
  2380. //AC Decoding
  2381. i = 1;
  2382. /* check if AC is needed at all */
  2383. if(!a_avail && !c_avail) use_pred = 0;
  2384. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2385. ac_val2 = ac_val;
  2386. scale = mquant * 2 + v->halfpq;
  2387. if(dc_pred_dir) //left
  2388. ac_val -= 16;
  2389. else //top
  2390. ac_val -= 16 * s->block_wrap[n];
  2391. q1 = s->current_picture.qscale_table[mb_pos];
  2392. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2393. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2394. if(dc_pred_dir && n==1) q2 = q1;
  2395. if(!dc_pred_dir && n==2) q2 = q1;
  2396. if(n==3) q2 = q1;
  2397. if(coded) {
  2398. int last = 0, skip, value;
  2399. const int8_t *zz_table;
  2400. int k;
  2401. if(v->s.ac_pred) {
  2402. if(!dc_pred_dir)
  2403. zz_table = ff_vc1_horizontal_zz;
  2404. else
  2405. zz_table = ff_vc1_vertical_zz;
  2406. } else
  2407. zz_table = ff_vc1_normal_zz;
  2408. while (!last) {
  2409. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2410. i += skip;
  2411. if(i > 63)
  2412. break;
  2413. block[zz_table[i++]] = value;
  2414. }
  2415. /* apply AC prediction if needed */
  2416. if(use_pred) {
  2417. /* scale predictors if needed*/
  2418. if(q2 && q1!=q2) {
  2419. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2420. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2421. if(dc_pred_dir) { //left
  2422. for(k = 1; k < 8; k++)
  2423. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2424. } else { //top
  2425. for(k = 1; k < 8; k++)
  2426. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2427. }
  2428. } else {
  2429. if(dc_pred_dir) { //left
  2430. for(k = 1; k < 8; k++)
  2431. block[k << 3] += ac_val[k];
  2432. } else { //top
  2433. for(k = 1; k < 8; k++)
  2434. block[k] += ac_val[k + 8];
  2435. }
  2436. }
  2437. }
  2438. /* save AC coeffs for further prediction */
  2439. for(k = 1; k < 8; k++) {
  2440. ac_val2[k] = block[k << 3];
  2441. ac_val2[k + 8] = block[k];
  2442. }
  2443. /* scale AC coeffs */
  2444. for(k = 1; k < 64; k++)
  2445. if(block[k]) {
  2446. block[k] *= scale;
  2447. if(!v->pquantizer)
  2448. block[k] += (block[k] < 0) ? -mquant : mquant;
  2449. }
  2450. if(use_pred) i = 63;
  2451. } else { // no AC coeffs
  2452. int k;
  2453. memset(ac_val2, 0, 16 * 2);
  2454. if(dc_pred_dir) {//left
  2455. if(use_pred) {
  2456. memcpy(ac_val2, ac_val, 8 * 2);
  2457. if(q2 && q1!=q2) {
  2458. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2459. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2460. for(k = 1; k < 8; k++)
  2461. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2462. }
  2463. }
  2464. } else {//top
  2465. if(use_pred) {
  2466. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2467. if(q2 && q1!=q2) {
  2468. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2469. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2470. for(k = 1; k < 8; k++)
  2471. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2472. }
  2473. }
  2474. }
  2475. /* apply AC prediction if needed */
  2476. if(use_pred) {
  2477. if(dc_pred_dir) { //left
  2478. for(k = 1; k < 8; k++) {
  2479. block[k << 3] = ac_val2[k] * scale;
  2480. if(!v->pquantizer && block[k << 3])
  2481. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2482. }
  2483. } else { //top
  2484. for(k = 1; k < 8; k++) {
  2485. block[k] = ac_val2[k + 8] * scale;
  2486. if(!v->pquantizer && block[k])
  2487. block[k] += (block[k] < 0) ? -mquant : mquant;
  2488. }
  2489. }
  2490. i = 63;
  2491. }
  2492. }
  2493. s->block_last_index[n] = i;
  2494. return 0;
  2495. }
  2496. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2497. * @param v VC1Context
  2498. * @param block block to decode
  2499. * @param coded are AC coeffs present or not
  2500. * @param mquant block quantizer
  2501. * @param codingset set of VLC to decode data
  2502. */
  2503. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2504. {
  2505. GetBitContext *gb = &v->s.gb;
  2506. MpegEncContext *s = &v->s;
  2507. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2508. int run_diff, i;
  2509. int16_t *dc_val;
  2510. int16_t *ac_val, *ac_val2;
  2511. int dcdiff;
  2512. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2513. int a_avail = v->a_avail, c_avail = v->c_avail;
  2514. int use_pred = s->ac_pred;
  2515. int scale;
  2516. int q1, q2 = 0;
  2517. /* XXX: Guard against dumb values of mquant */
  2518. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2519. /* Set DC scale - y and c use the same */
  2520. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2521. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2522. /* Get DC differential */
  2523. if (n < 4) {
  2524. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2525. } else {
  2526. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2527. }
  2528. if (dcdiff < 0){
  2529. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2530. return -1;
  2531. }
  2532. if (dcdiff)
  2533. {
  2534. if (dcdiff == 119 /* ESC index value */)
  2535. {
  2536. /* TODO: Optimize */
  2537. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2538. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2539. else dcdiff = get_bits(gb, 8);
  2540. }
  2541. else
  2542. {
  2543. if (mquant == 1)
  2544. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2545. else if (mquant == 2)
  2546. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2547. }
  2548. if (get_bits(gb, 1))
  2549. dcdiff = -dcdiff;
  2550. }
  2551. /* Prediction */
  2552. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2553. *dc_val = dcdiff;
  2554. /* Store the quantized DC coeff, used for prediction */
  2555. if (n < 4) {
  2556. block[0] = dcdiff * s->y_dc_scale;
  2557. } else {
  2558. block[0] = dcdiff * s->c_dc_scale;
  2559. }
  2560. /* Skip ? */
  2561. run_diff = 0;
  2562. i = 0;
  2563. //AC Decoding
  2564. i = 1;
  2565. /* check if AC is needed at all and adjust direction if needed */
  2566. if(!a_avail) dc_pred_dir = 1;
  2567. if(!c_avail) dc_pred_dir = 0;
  2568. if(!a_avail && !c_avail) use_pred = 0;
  2569. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2570. ac_val2 = ac_val;
  2571. scale = mquant * 2 + v->halfpq;
  2572. if(dc_pred_dir) //left
  2573. ac_val -= 16;
  2574. else //top
  2575. ac_val -= 16 * s->block_wrap[n];
  2576. q1 = s->current_picture.qscale_table[mb_pos];
  2577. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2578. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2579. if(dc_pred_dir && n==1) q2 = q1;
  2580. if(!dc_pred_dir && n==2) q2 = q1;
  2581. if(n==3) q2 = q1;
  2582. if(coded) {
  2583. int last = 0, skip, value;
  2584. const int8_t *zz_table;
  2585. int k;
  2586. zz_table = ff_vc1_simple_progressive_8x8_zz;
  2587. while (!last) {
  2588. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2589. i += skip;
  2590. if(i > 63)
  2591. break;
  2592. block[zz_table[i++]] = value;
  2593. }
  2594. /* apply AC prediction if needed */
  2595. if(use_pred) {
  2596. /* scale predictors if needed*/
  2597. if(q2 && q1!=q2) {
  2598. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2599. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2600. if(dc_pred_dir) { //left
  2601. for(k = 1; k < 8; k++)
  2602. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2603. } else { //top
  2604. for(k = 1; k < 8; k++)
  2605. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2606. }
  2607. } else {
  2608. if(dc_pred_dir) { //left
  2609. for(k = 1; k < 8; k++)
  2610. block[k << 3] += ac_val[k];
  2611. } else { //top
  2612. for(k = 1; k < 8; k++)
  2613. block[k] += ac_val[k + 8];
  2614. }
  2615. }
  2616. }
  2617. /* save AC coeffs for further prediction */
  2618. for(k = 1; k < 8; k++) {
  2619. ac_val2[k] = block[k << 3];
  2620. ac_val2[k + 8] = block[k];
  2621. }
  2622. /* scale AC coeffs */
  2623. for(k = 1; k < 64; k++)
  2624. if(block[k]) {
  2625. block[k] *= scale;
  2626. if(!v->pquantizer)
  2627. block[k] += (block[k] < 0) ? -mquant : mquant;
  2628. }
  2629. if(use_pred) i = 63;
  2630. } else { // no AC coeffs
  2631. int k;
  2632. memset(ac_val2, 0, 16 * 2);
  2633. if(dc_pred_dir) {//left
  2634. if(use_pred) {
  2635. memcpy(ac_val2, ac_val, 8 * 2);
  2636. if(q2 && q1!=q2) {
  2637. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2638. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2639. for(k = 1; k < 8; k++)
  2640. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2641. }
  2642. }
  2643. } else {//top
  2644. if(use_pred) {
  2645. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2646. if(q2 && q1!=q2) {
  2647. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2648. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2649. for(k = 1; k < 8; k++)
  2650. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2651. }
  2652. }
  2653. }
  2654. /* apply AC prediction if needed */
  2655. if(use_pred) {
  2656. if(dc_pred_dir) { //left
  2657. for(k = 1; k < 8; k++) {
  2658. block[k << 3] = ac_val2[k] * scale;
  2659. if(!v->pquantizer && block[k << 3])
  2660. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2661. }
  2662. } else { //top
  2663. for(k = 1; k < 8; k++) {
  2664. block[k] = ac_val2[k + 8] * scale;
  2665. if(!v->pquantizer && block[k])
  2666. block[k] += (block[k] < 0) ? -mquant : mquant;
  2667. }
  2668. }
  2669. i = 63;
  2670. }
  2671. }
  2672. s->block_last_index[n] = i;
  2673. return 0;
  2674. }
  2675. /** Decode P block
  2676. */
  2677. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2678. {
  2679. MpegEncContext *s = &v->s;
  2680. GetBitContext *gb = &s->gb;
  2681. int i, j;
  2682. int subblkpat = 0;
  2683. int scale, off, idx, last, skip, value;
  2684. int ttblk = ttmb & 7;
  2685. if(ttmb == -1) {
  2686. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2687. }
  2688. if(ttblk == TT_4X4) {
  2689. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2690. }
  2691. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2692. subblkpat = decode012(gb);
  2693. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2694. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2695. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2696. }
  2697. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2698. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2699. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2700. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2701. ttblk = TT_8X4;
  2702. }
  2703. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2704. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2705. ttblk = TT_4X8;
  2706. }
  2707. switch(ttblk) {
  2708. case TT_8X8:
  2709. i = 0;
  2710. last = 0;
  2711. while (!last) {
  2712. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2713. i += skip;
  2714. if(i > 63)
  2715. break;
  2716. idx = ff_vc1_simple_progressive_8x8_zz[i++];
  2717. block[idx] = value * scale;
  2718. if(!v->pquantizer)
  2719. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2720. }
  2721. s->dsp.vc1_inv_trans_8x8(block);
  2722. break;
  2723. case TT_4X4:
  2724. for(j = 0; j < 4; j++) {
  2725. last = subblkpat & (1 << (3 - j));
  2726. i = 0;
  2727. off = (j & 1) * 4 + (j & 2) * 16;
  2728. while (!last) {
  2729. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2730. i += skip;
  2731. if(i > 15)
  2732. break;
  2733. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  2734. block[idx + off] = value * scale;
  2735. if(!v->pquantizer)
  2736. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2737. }
  2738. if(!(subblkpat & (1 << (3 - j))))
  2739. s->dsp.vc1_inv_trans_4x4(block, j);
  2740. }
  2741. break;
  2742. case TT_8X4:
  2743. for(j = 0; j < 2; j++) {
  2744. last = subblkpat & (1 << (1 - j));
  2745. i = 0;
  2746. off = j * 32;
  2747. while (!last) {
  2748. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2749. i += skip;
  2750. if(i > 31)
  2751. break;
  2752. if(v->profile < PROFILE_ADVANCED)
  2753. idx = ff_vc1_simple_progressive_8x4_zz[i++];
  2754. else
  2755. idx = ff_vc1_adv_progressive_8x4_zz[i++];
  2756. block[idx + off] = value * scale;
  2757. if(!v->pquantizer)
  2758. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2759. }
  2760. if(!(subblkpat & (1 << (1 - j))))
  2761. s->dsp.vc1_inv_trans_8x4(block, j);
  2762. }
  2763. break;
  2764. case TT_4X8:
  2765. for(j = 0; j < 2; j++) {
  2766. last = subblkpat & (1 << (1 - j));
  2767. i = 0;
  2768. off = j * 4;
  2769. while (!last) {
  2770. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2771. i += skip;
  2772. if(i > 31)
  2773. break;
  2774. if(v->profile < PROFILE_ADVANCED)
  2775. idx = ff_vc1_simple_progressive_4x8_zz[i++];
  2776. else
  2777. idx = ff_vc1_adv_progressive_4x8_zz[i++];
  2778. block[idx + off] = value * scale;
  2779. if(!v->pquantizer)
  2780. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2781. }
  2782. if(!(subblkpat & (1 << (1 - j))))
  2783. s->dsp.vc1_inv_trans_4x8(block, j);
  2784. }
  2785. break;
  2786. }
  2787. return 0;
  2788. }
  2789. /** Decode one P-frame MB (in Simple/Main profile)
  2790. */
  2791. static int vc1_decode_p_mb(VC1Context *v)
  2792. {
  2793. MpegEncContext *s = &v->s;
  2794. GetBitContext *gb = &s->gb;
  2795. int i, j;
  2796. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2797. int cbp; /* cbp decoding stuff */
  2798. int mqdiff, mquant; /* MB quantization */
  2799. int ttmb = v->ttfrm; /* MB Transform type */
  2800. int status;
  2801. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2802. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2803. int mb_has_coeffs = 1; /* last_flag */
  2804. int dmv_x, dmv_y; /* Differential MV components */
  2805. int index, index1; /* LUT indices */
  2806. int val, sign; /* temp values */
  2807. int first_block = 1;
  2808. int dst_idx, off;
  2809. int skipped, fourmv;
  2810. mquant = v->pq; /* Loosy initialization */
  2811. if (v->mv_type_is_raw)
  2812. fourmv = get_bits1(gb);
  2813. else
  2814. fourmv = v->mv_type_mb_plane[mb_pos];
  2815. if (v->skip_is_raw)
  2816. skipped = get_bits1(gb);
  2817. else
  2818. skipped = v->s.mbskip_table[mb_pos];
  2819. s->dsp.clear_blocks(s->block[0]);
  2820. if (!fourmv) /* 1MV mode */
  2821. {
  2822. if (!skipped)
  2823. {
  2824. GET_MVDATA(dmv_x, dmv_y);
  2825. if (s->mb_intra) {
  2826. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2827. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2828. }
  2829. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2830. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2831. /* FIXME Set DC val for inter block ? */
  2832. if (s->mb_intra && !mb_has_coeffs)
  2833. {
  2834. GET_MQUANT();
  2835. s->ac_pred = get_bits(gb, 1);
  2836. cbp = 0;
  2837. }
  2838. else if (mb_has_coeffs)
  2839. {
  2840. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  2841. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2842. GET_MQUANT();
  2843. }
  2844. else
  2845. {
  2846. mquant = v->pq;
  2847. cbp = 0;
  2848. }
  2849. s->current_picture.qscale_table[mb_pos] = mquant;
  2850. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2851. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2852. VC1_TTMB_VLC_BITS, 2);
  2853. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2854. dst_idx = 0;
  2855. for (i=0; i<6; i++)
  2856. {
  2857. s->dc_val[0][s->block_index[i]] = 0;
  2858. dst_idx += i >> 2;
  2859. val = ((cbp >> (5 - i)) & 1);
  2860. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2861. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2862. if(s->mb_intra) {
  2863. /* check if prediction blocks A and C are available */
  2864. v->a_avail = v->c_avail = 0;
  2865. if(i == 2 || i == 3 || !s->first_slice_line)
  2866. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2867. if(i == 1 || i == 3 || s->mb_x)
  2868. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2869. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2870. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2871. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2872. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2873. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2874. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  2875. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2876. if(v->pq >= 9 && v->overlap) {
  2877. if(v->c_avail)
  2878. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2879. if(v->a_avail)
  2880. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2881. }
  2882. } else if(val) {
  2883. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2884. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2885. first_block = 0;
  2886. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2887. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2888. }
  2889. }
  2890. }
  2891. else //Skipped
  2892. {
  2893. s->mb_intra = 0;
  2894. for(i = 0; i < 6; i++) {
  2895. v->mb_type[0][s->block_index[i]] = 0;
  2896. s->dc_val[0][s->block_index[i]] = 0;
  2897. }
  2898. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2899. s->current_picture.qscale_table[mb_pos] = 0;
  2900. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2901. vc1_mc_1mv(v, 0);
  2902. return 0;
  2903. }
  2904. } //1MV mode
  2905. else //4MV mode
  2906. {
  2907. if (!skipped /* unskipped MB */)
  2908. {
  2909. int intra_count = 0, coded_inter = 0;
  2910. int is_intra[6], is_coded[6];
  2911. /* Get CBPCY */
  2912. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2913. for (i=0; i<6; i++)
  2914. {
  2915. val = ((cbp >> (5 - i)) & 1);
  2916. s->dc_val[0][s->block_index[i]] = 0;
  2917. s->mb_intra = 0;
  2918. if(i < 4) {
  2919. dmv_x = dmv_y = 0;
  2920. s->mb_intra = 0;
  2921. mb_has_coeffs = 0;
  2922. if(val) {
  2923. GET_MVDATA(dmv_x, dmv_y);
  2924. }
  2925. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2926. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2927. intra_count += s->mb_intra;
  2928. is_intra[i] = s->mb_intra;
  2929. is_coded[i] = mb_has_coeffs;
  2930. }
  2931. if(i&4){
  2932. is_intra[i] = (intra_count >= 3);
  2933. is_coded[i] = val;
  2934. }
  2935. if(i == 4) vc1_mc_4mv_chroma(v);
  2936. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2937. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2938. }
  2939. // if there are no coded blocks then don't do anything more
  2940. if(!intra_count && !coded_inter) return 0;
  2941. dst_idx = 0;
  2942. GET_MQUANT();
  2943. s->current_picture.qscale_table[mb_pos] = mquant;
  2944. /* test if block is intra and has pred */
  2945. {
  2946. int intrapred = 0;
  2947. for(i=0; i<6; i++)
  2948. if(is_intra[i]) {
  2949. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2950. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2951. intrapred = 1;
  2952. break;
  2953. }
  2954. }
  2955. if(intrapred)s->ac_pred = get_bits(gb, 1);
  2956. else s->ac_pred = 0;
  2957. }
  2958. if (!v->ttmbf && coded_inter)
  2959. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2960. for (i=0; i<6; i++)
  2961. {
  2962. dst_idx += i >> 2;
  2963. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2964. s->mb_intra = is_intra[i];
  2965. if (is_intra[i]) {
  2966. /* check if prediction blocks A and C are available */
  2967. v->a_avail = v->c_avail = 0;
  2968. if(i == 2 || i == 3 || !s->first_slice_line)
  2969. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2970. if(i == 1 || i == 3 || s->mb_x)
  2971. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2972. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2973. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2974. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2975. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2976. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2977. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  2978. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2979. if(v->pq >= 9 && v->overlap) {
  2980. if(v->c_avail)
  2981. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2982. if(v->a_avail)
  2983. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2984. }
  2985. } else if(is_coded[i]) {
  2986. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2987. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2988. first_block = 0;
  2989. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2990. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2991. }
  2992. }
  2993. return status;
  2994. }
  2995. else //Skipped MB
  2996. {
  2997. s->mb_intra = 0;
  2998. s->current_picture.qscale_table[mb_pos] = 0;
  2999. for (i=0; i<6; i++) {
  3000. v->mb_type[0][s->block_index[i]] = 0;
  3001. s->dc_val[0][s->block_index[i]] = 0;
  3002. }
  3003. for (i=0; i<4; i++)
  3004. {
  3005. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3006. vc1_mc_4mv_luma(v, i);
  3007. }
  3008. vc1_mc_4mv_chroma(v);
  3009. s->current_picture.qscale_table[mb_pos] = 0;
  3010. return 0;
  3011. }
  3012. }
  3013. /* Should never happen */
  3014. return -1;
  3015. }
  3016. /** Decode one B-frame MB (in Main profile)
  3017. */
  3018. static void vc1_decode_b_mb(VC1Context *v)
  3019. {
  3020. MpegEncContext *s = &v->s;
  3021. GetBitContext *gb = &s->gb;
  3022. int i, j;
  3023. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3024. int cbp = 0; /* cbp decoding stuff */
  3025. int mqdiff, mquant; /* MB quantization */
  3026. int ttmb = v->ttfrm; /* MB Transform type */
  3027. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3028. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3029. int mb_has_coeffs = 0; /* last_flag */
  3030. int index, index1; /* LUT indices */
  3031. int val, sign; /* temp values */
  3032. int first_block = 1;
  3033. int dst_idx, off;
  3034. int skipped, direct;
  3035. int dmv_x[2], dmv_y[2];
  3036. int bmvtype = BMV_TYPE_BACKWARD;
  3037. mquant = v->pq; /* Loosy initialization */
  3038. s->mb_intra = 0;
  3039. if (v->dmb_is_raw)
  3040. direct = get_bits1(gb);
  3041. else
  3042. direct = v->direct_mb_plane[mb_pos];
  3043. if (v->skip_is_raw)
  3044. skipped = get_bits1(gb);
  3045. else
  3046. skipped = v->s.mbskip_table[mb_pos];
  3047. s->dsp.clear_blocks(s->block[0]);
  3048. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3049. for(i = 0; i < 6; i++) {
  3050. v->mb_type[0][s->block_index[i]] = 0;
  3051. s->dc_val[0][s->block_index[i]] = 0;
  3052. }
  3053. s->current_picture.qscale_table[mb_pos] = 0;
  3054. if (!direct) {
  3055. if (!skipped) {
  3056. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3057. dmv_x[1] = dmv_x[0];
  3058. dmv_y[1] = dmv_y[0];
  3059. }
  3060. if(skipped || !s->mb_intra) {
  3061. bmvtype = decode012(gb);
  3062. switch(bmvtype) {
  3063. case 0:
  3064. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3065. break;
  3066. case 1:
  3067. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3068. break;
  3069. case 2:
  3070. bmvtype = BMV_TYPE_INTERPOLATED;
  3071. dmv_x[0] = dmv_y[0] = 0;
  3072. }
  3073. }
  3074. }
  3075. for(i = 0; i < 6; i++)
  3076. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3077. if (skipped) {
  3078. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3079. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3080. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3081. return;
  3082. }
  3083. if (direct) {
  3084. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3085. GET_MQUANT();
  3086. s->mb_intra = 0;
  3087. mb_has_coeffs = 0;
  3088. s->current_picture.qscale_table[mb_pos] = mquant;
  3089. if(!v->ttmbf)
  3090. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3091. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3092. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3093. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3094. } else {
  3095. if(!mb_has_coeffs && !s->mb_intra) {
  3096. /* no coded blocks - effectively skipped */
  3097. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3098. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3099. return;
  3100. }
  3101. if(s->mb_intra && !mb_has_coeffs) {
  3102. GET_MQUANT();
  3103. s->current_picture.qscale_table[mb_pos] = mquant;
  3104. s->ac_pred = get_bits1(gb);
  3105. cbp = 0;
  3106. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3107. } else {
  3108. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3109. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3110. if(!mb_has_coeffs) {
  3111. /* interpolated skipped block */
  3112. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3113. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3114. return;
  3115. }
  3116. }
  3117. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3118. if(!s->mb_intra) {
  3119. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3120. }
  3121. if(s->mb_intra)
  3122. s->ac_pred = get_bits1(gb);
  3123. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3124. GET_MQUANT();
  3125. s->current_picture.qscale_table[mb_pos] = mquant;
  3126. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3127. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3128. }
  3129. }
  3130. dst_idx = 0;
  3131. for (i=0; i<6; i++)
  3132. {
  3133. s->dc_val[0][s->block_index[i]] = 0;
  3134. dst_idx += i >> 2;
  3135. val = ((cbp >> (5 - i)) & 1);
  3136. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3137. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3138. if(s->mb_intra) {
  3139. /* check if prediction blocks A and C are available */
  3140. v->a_avail = v->c_avail = 0;
  3141. if(i == 2 || i == 3 || !s->first_slice_line)
  3142. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3143. if(i == 1 || i == 3 || s->mb_x)
  3144. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3145. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3146. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3147. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3148. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3149. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3150. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3151. } else if(val) {
  3152. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3153. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3154. first_block = 0;
  3155. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3156. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3157. }
  3158. }
  3159. }
  3160. /** Decode blocks of I-frame
  3161. */
  3162. static void vc1_decode_i_blocks(VC1Context *v)
  3163. {
  3164. int k, j;
  3165. MpegEncContext *s = &v->s;
  3166. int cbp, val;
  3167. uint8_t *coded_val;
  3168. int mb_pos;
  3169. /* select codingmode used for VLC tables selection */
  3170. switch(v->y_ac_table_index){
  3171. case 0:
  3172. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3173. break;
  3174. case 1:
  3175. v->codingset = CS_HIGH_MOT_INTRA;
  3176. break;
  3177. case 2:
  3178. v->codingset = CS_MID_RATE_INTRA;
  3179. break;
  3180. }
  3181. switch(v->c_ac_table_index){
  3182. case 0:
  3183. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3184. break;
  3185. case 1:
  3186. v->codingset2 = CS_HIGH_MOT_INTER;
  3187. break;
  3188. case 2:
  3189. v->codingset2 = CS_MID_RATE_INTER;
  3190. break;
  3191. }
  3192. /* Set DC scale - y and c use the same */
  3193. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3194. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3195. //do frame decode
  3196. s->mb_x = s->mb_y = 0;
  3197. s->mb_intra = 1;
  3198. s->first_slice_line = 1;
  3199. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3200. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3201. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3202. ff_init_block_index(s);
  3203. ff_update_block_index(s);
  3204. s->dsp.clear_blocks(s->block[0]);
  3205. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3206. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3207. s->current_picture.qscale_table[mb_pos] = v->pq;
  3208. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3209. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3210. // do actual MB decoding and displaying
  3211. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3212. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3213. for(k = 0; k < 6; k++) {
  3214. val = ((cbp >> (5 - k)) & 1);
  3215. if (k < 4) {
  3216. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3217. val = val ^ pred;
  3218. *coded_val = val;
  3219. }
  3220. cbp |= val << (5 - k);
  3221. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3222. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3223. if(!v->res_fasttx && !v->res_x8) for(j = 0; j < 64; j++) s->block[k][j] -= 16;
  3224. if(v->pq >= 9 && v->overlap) {
  3225. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3226. }
  3227. }
  3228. vc1_put_block(v, s->block);
  3229. if(v->pq >= 9 && v->overlap) {
  3230. if(s->mb_x) {
  3231. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3232. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3233. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3234. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3235. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3236. }
  3237. }
  3238. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3239. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3240. if(!s->first_slice_line) {
  3241. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3242. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3243. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3244. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3245. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3246. }
  3247. }
  3248. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3249. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3250. }
  3251. if(get_bits_count(&s->gb) > v->bits) {
  3252. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3253. return;
  3254. }
  3255. }
  3256. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3257. s->first_slice_line = 0;
  3258. }
  3259. }
  3260. /** Decode blocks of I-frame for advanced profile
  3261. */
  3262. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3263. {
  3264. int k, j;
  3265. MpegEncContext *s = &v->s;
  3266. int cbp, val;
  3267. uint8_t *coded_val;
  3268. int mb_pos;
  3269. int mquant = v->pq;
  3270. int mqdiff;
  3271. int overlap;
  3272. GetBitContext *gb = &s->gb;
  3273. /* select codingmode used for VLC tables selection */
  3274. switch(v->y_ac_table_index){
  3275. case 0:
  3276. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3277. break;
  3278. case 1:
  3279. v->codingset = CS_HIGH_MOT_INTRA;
  3280. break;
  3281. case 2:
  3282. v->codingset = CS_MID_RATE_INTRA;
  3283. break;
  3284. }
  3285. switch(v->c_ac_table_index){
  3286. case 0:
  3287. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3288. break;
  3289. case 1:
  3290. v->codingset2 = CS_HIGH_MOT_INTER;
  3291. break;
  3292. case 2:
  3293. v->codingset2 = CS_MID_RATE_INTER;
  3294. break;
  3295. }
  3296. //do frame decode
  3297. s->mb_x = s->mb_y = 0;
  3298. s->mb_intra = 1;
  3299. s->first_slice_line = 1;
  3300. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3301. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3302. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3303. ff_init_block_index(s);
  3304. ff_update_block_index(s);
  3305. s->dsp.clear_blocks(s->block[0]);
  3306. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3307. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3308. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3309. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3310. // do actual MB decoding and displaying
  3311. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3312. if(v->acpred_is_raw)
  3313. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3314. else
  3315. v->s.ac_pred = v->acpred_plane[mb_pos];
  3316. if(v->condover == CONDOVER_SELECT) {
  3317. if(v->overflg_is_raw)
  3318. overlap = get_bits(&v->s.gb, 1);
  3319. else
  3320. overlap = v->over_flags_plane[mb_pos];
  3321. } else
  3322. overlap = (v->condover == CONDOVER_ALL);
  3323. GET_MQUANT();
  3324. s->current_picture.qscale_table[mb_pos] = mquant;
  3325. /* Set DC scale - y and c use the same */
  3326. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3327. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3328. for(k = 0; k < 6; k++) {
  3329. val = ((cbp >> (5 - k)) & 1);
  3330. if (k < 4) {
  3331. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3332. val = val ^ pred;
  3333. *coded_val = val;
  3334. }
  3335. cbp |= val << (5 - k);
  3336. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3337. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3338. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3339. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3340. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3341. }
  3342. vc1_put_block(v, s->block);
  3343. if(overlap) {
  3344. if(s->mb_x) {
  3345. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3346. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3347. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3348. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3349. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3350. }
  3351. }
  3352. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3353. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3354. if(!s->first_slice_line) {
  3355. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3356. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3357. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3358. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3359. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3360. }
  3361. }
  3362. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3363. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3364. }
  3365. if(get_bits_count(&s->gb) > v->bits) {
  3366. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3367. return;
  3368. }
  3369. }
  3370. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3371. s->first_slice_line = 0;
  3372. }
  3373. }
  3374. static void vc1_decode_p_blocks(VC1Context *v)
  3375. {
  3376. MpegEncContext *s = &v->s;
  3377. /* select codingmode used for VLC tables selection */
  3378. switch(v->c_ac_table_index){
  3379. case 0:
  3380. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3381. break;
  3382. case 1:
  3383. v->codingset = CS_HIGH_MOT_INTRA;
  3384. break;
  3385. case 2:
  3386. v->codingset = CS_MID_RATE_INTRA;
  3387. break;
  3388. }
  3389. switch(v->c_ac_table_index){
  3390. case 0:
  3391. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3392. break;
  3393. case 1:
  3394. v->codingset2 = CS_HIGH_MOT_INTER;
  3395. break;
  3396. case 2:
  3397. v->codingset2 = CS_MID_RATE_INTER;
  3398. break;
  3399. }
  3400. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3401. s->first_slice_line = 1;
  3402. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3403. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3404. ff_init_block_index(s);
  3405. ff_update_block_index(s);
  3406. s->dsp.clear_blocks(s->block[0]);
  3407. vc1_decode_p_mb(v);
  3408. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3409. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3410. return;
  3411. }
  3412. }
  3413. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3414. s->first_slice_line = 0;
  3415. }
  3416. }
  3417. static void vc1_decode_b_blocks(VC1Context *v)
  3418. {
  3419. MpegEncContext *s = &v->s;
  3420. /* select codingmode used for VLC tables selection */
  3421. switch(v->c_ac_table_index){
  3422. case 0:
  3423. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3424. break;
  3425. case 1:
  3426. v->codingset = CS_HIGH_MOT_INTRA;
  3427. break;
  3428. case 2:
  3429. v->codingset = CS_MID_RATE_INTRA;
  3430. break;
  3431. }
  3432. switch(v->c_ac_table_index){
  3433. case 0:
  3434. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3435. break;
  3436. case 1:
  3437. v->codingset2 = CS_HIGH_MOT_INTER;
  3438. break;
  3439. case 2:
  3440. v->codingset2 = CS_MID_RATE_INTER;
  3441. break;
  3442. }
  3443. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3444. s->first_slice_line = 1;
  3445. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3446. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3447. ff_init_block_index(s);
  3448. ff_update_block_index(s);
  3449. s->dsp.clear_blocks(s->block[0]);
  3450. vc1_decode_b_mb(v);
  3451. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3452. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3453. return;
  3454. }
  3455. }
  3456. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3457. s->first_slice_line = 0;
  3458. }
  3459. }
  3460. static void vc1_decode_skip_blocks(VC1Context *v)
  3461. {
  3462. MpegEncContext *s = &v->s;
  3463. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3464. s->first_slice_line = 1;
  3465. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3466. s->mb_x = 0;
  3467. ff_init_block_index(s);
  3468. ff_update_block_index(s);
  3469. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3470. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3471. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3472. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3473. s->first_slice_line = 0;
  3474. }
  3475. s->pict_type = P_TYPE;
  3476. }
  3477. static void vc1_decode_blocks(VC1Context *v)
  3478. {
  3479. v->s.esc3_level_length = 0;
  3480. switch(v->s.pict_type) {
  3481. case I_TYPE:
  3482. if(v->profile == PROFILE_ADVANCED)
  3483. vc1_decode_i_blocks_adv(v);
  3484. else
  3485. vc1_decode_i_blocks(v);
  3486. break;
  3487. case P_TYPE:
  3488. if(v->p_frame_skipped)
  3489. vc1_decode_skip_blocks(v);
  3490. else
  3491. vc1_decode_p_blocks(v);
  3492. break;
  3493. case B_TYPE:
  3494. if(v->bi_type){
  3495. if(v->profile == PROFILE_ADVANCED)
  3496. vc1_decode_i_blocks_adv(v);
  3497. else
  3498. vc1_decode_i_blocks(v);
  3499. }else
  3500. vc1_decode_b_blocks(v);
  3501. break;
  3502. }
  3503. }
  3504. /** Find VC-1 marker in buffer
  3505. * @return position where next marker starts or end of buffer if no marker found
  3506. */
  3507. static av_always_inline uint8_t* find_next_marker(uint8_t *src, uint8_t *end)
  3508. {
  3509. uint32_t mrk = 0xFFFFFFFF;
  3510. if(end-src < 4) return end;
  3511. while(src < end){
  3512. mrk = (mrk << 8) | *src++;
  3513. if(IS_MARKER(mrk))
  3514. return src-4;
  3515. }
  3516. return end;
  3517. }
  3518. static av_always_inline int vc1_unescape_buffer(uint8_t *src, int size, uint8_t *dst)
  3519. {
  3520. int dsize = 0, i;
  3521. if(size < 4){
  3522. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3523. return size;
  3524. }
  3525. for(i = 0; i < size; i++, src++) {
  3526. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3527. dst[dsize++] = src[1];
  3528. src++;
  3529. i++;
  3530. } else
  3531. dst[dsize++] = *src;
  3532. }
  3533. return dsize;
  3534. }
  3535. /** Initialize a VC1/WMV3 decoder
  3536. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3537. * @todo TODO: Decypher remaining bits in extra_data
  3538. */
  3539. static int vc1_decode_init(AVCodecContext *avctx)
  3540. {
  3541. VC1Context *v = avctx->priv_data;
  3542. MpegEncContext *s = &v->s;
  3543. GetBitContext gb;
  3544. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3545. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3546. avctx->pix_fmt = PIX_FMT_YUV420P;
  3547. else
  3548. avctx->pix_fmt = PIX_FMT_GRAY8;
  3549. v->s.avctx = avctx;
  3550. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3551. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3552. if(ff_h263_decode_init(avctx) < 0)
  3553. return -1;
  3554. if (vc1_init_common(v) < 0) return -1;
  3555. avctx->coded_width = avctx->width;
  3556. avctx->coded_height = avctx->height;
  3557. if (avctx->codec_id == CODEC_ID_WMV3)
  3558. {
  3559. int count = 0;
  3560. // looks like WMV3 has a sequence header stored in the extradata
  3561. // advanced sequence header may be before the first frame
  3562. // the last byte of the extradata is a version number, 1 for the
  3563. // samples we can decode
  3564. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3565. if (decode_sequence_header(avctx, &gb) < 0)
  3566. return -1;
  3567. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3568. if (count>0)
  3569. {
  3570. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3571. count, get_bits(&gb, count));
  3572. }
  3573. else if (count < 0)
  3574. {
  3575. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3576. }
  3577. } else { // VC1/WVC1
  3578. uint8_t *start = avctx->extradata, *end = avctx->extradata + avctx->extradata_size;
  3579. uint8_t *next; int size, buf2_size;
  3580. uint8_t *buf2 = NULL;
  3581. int seq_inited = 0, ep_inited = 0;
  3582. if(avctx->extradata_size < 16) {
  3583. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3584. return -1;
  3585. }
  3586. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3587. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3588. next = start;
  3589. for(; next < end; start = next){
  3590. next = find_next_marker(start + 4, end);
  3591. size = next - start - 4;
  3592. if(size <= 0) continue;
  3593. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3594. init_get_bits(&gb, buf2, buf2_size * 8);
  3595. switch(AV_RB32(start)){
  3596. case VC1_CODE_SEQHDR:
  3597. if(decode_sequence_header(avctx, &gb) < 0){
  3598. av_free(buf2);
  3599. return -1;
  3600. }
  3601. seq_inited = 1;
  3602. break;
  3603. case VC1_CODE_ENTRYPOINT:
  3604. if(decode_entry_point(avctx, &gb) < 0){
  3605. av_free(buf2);
  3606. return -1;
  3607. }
  3608. ep_inited = 1;
  3609. break;
  3610. }
  3611. }
  3612. av_free(buf2);
  3613. if(!seq_inited || !ep_inited){
  3614. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3615. return -1;
  3616. }
  3617. }
  3618. avctx->has_b_frames= !!(avctx->max_b_frames);
  3619. s->low_delay = !avctx->has_b_frames;
  3620. s->mb_width = (avctx->coded_width+15)>>4;
  3621. s->mb_height = (avctx->coded_height+15)>>4;
  3622. /* Allocate mb bitplanes */
  3623. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3624. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3625. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3626. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3627. /* allocate block type info in that way so it could be used with s->block_index[] */
  3628. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3629. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3630. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3631. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3632. /* Init coded blocks info */
  3633. if (v->profile == PROFILE_ADVANCED)
  3634. {
  3635. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3636. // return -1;
  3637. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3638. // return -1;
  3639. }
  3640. return 0;
  3641. }
  3642. /** Decode a VC1/WMV3 frame
  3643. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3644. */
  3645. static int vc1_decode_frame(AVCodecContext *avctx,
  3646. void *data, int *data_size,
  3647. uint8_t *buf, int buf_size)
  3648. {
  3649. VC1Context *v = avctx->priv_data;
  3650. MpegEncContext *s = &v->s;
  3651. AVFrame *pict = data;
  3652. uint8_t *buf2 = NULL;
  3653. /* no supplementary picture */
  3654. if (buf_size == 0) {
  3655. /* special case for last picture */
  3656. if (s->low_delay==0 && s->next_picture_ptr) {
  3657. *pict= *(AVFrame*)s->next_picture_ptr;
  3658. s->next_picture_ptr= NULL;
  3659. *data_size = sizeof(AVFrame);
  3660. }
  3661. return 0;
  3662. }
  3663. /* We need to set current_picture_ptr before reading the header,
  3664. * otherwise we cannot store anything in there. */
  3665. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3666. int i= ff_find_unused_picture(s, 0);
  3667. s->current_picture_ptr= &s->picture[i];
  3668. }
  3669. //for advanced profile we may need to parse and unescape data
  3670. if (avctx->codec_id == CODEC_ID_VC1) {
  3671. int buf_size2 = 0;
  3672. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3673. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3674. uint8_t *start, *end, *next;
  3675. int size;
  3676. next = buf;
  3677. for(start = buf, end = buf + buf_size; next < end; start = next){
  3678. next = find_next_marker(start + 4, end);
  3679. size = next - start - 4;
  3680. if(size <= 0) continue;
  3681. switch(AV_RB32(start)){
  3682. case VC1_CODE_FRAME:
  3683. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3684. break;
  3685. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3686. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3687. init_get_bits(&s->gb, buf2, buf_size2*8);
  3688. decode_entry_point(avctx, &s->gb);
  3689. break;
  3690. case VC1_CODE_SLICE:
  3691. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3692. av_free(buf2);
  3693. return -1;
  3694. }
  3695. }
  3696. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3697. uint8_t *divider;
  3698. divider = find_next_marker(buf, buf + buf_size);
  3699. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3700. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3701. return -1;
  3702. }
  3703. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3704. // TODO
  3705. av_free(buf2);return -1;
  3706. }else{
  3707. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3708. }
  3709. init_get_bits(&s->gb, buf2, buf_size2*8);
  3710. } else
  3711. init_get_bits(&s->gb, buf, buf_size*8);
  3712. // do parse frame header
  3713. if(v->profile < PROFILE_ADVANCED) {
  3714. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3715. av_free(buf2);
  3716. return -1;
  3717. }
  3718. } else {
  3719. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3720. av_free(buf2);
  3721. return -1;
  3722. }
  3723. }
  3724. if(s->pict_type != I_TYPE && !v->res_rtm_flag){
  3725. av_free(buf2);
  3726. return -1;
  3727. }
  3728. // for hurry_up==5
  3729. s->current_picture.pict_type= s->pict_type;
  3730. s->current_picture.key_frame= s->pict_type == I_TYPE;
  3731. /* skip B-frames if we don't have reference frames */
  3732. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
  3733. av_free(buf2);
  3734. return -1;//buf_size;
  3735. }
  3736. /* skip b frames if we are in a hurry */
  3737. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  3738. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  3739. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  3740. || avctx->skip_frame >= AVDISCARD_ALL) {
  3741. av_free(buf2);
  3742. return buf_size;
  3743. }
  3744. /* skip everything if we are in a hurry>=5 */
  3745. if(avctx->hurry_up>=5) {
  3746. av_free(buf2);
  3747. return -1;//buf_size;
  3748. }
  3749. if(s->next_p_frame_damaged){
  3750. if(s->pict_type==B_TYPE)
  3751. return buf_size;
  3752. else
  3753. s->next_p_frame_damaged=0;
  3754. }
  3755. if(MPV_frame_start(s, avctx) < 0) {
  3756. av_free(buf2);
  3757. return -1;
  3758. }
  3759. ff_er_frame_start(s);
  3760. v->bits = buf_size * 8;
  3761. vc1_decode_blocks(v);
  3762. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3763. // if(get_bits_count(&s->gb) > buf_size * 8)
  3764. // return -1;
  3765. ff_er_frame_end(s);
  3766. MPV_frame_end(s);
  3767. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3768. assert(s->current_picture.pict_type == s->pict_type);
  3769. if (s->pict_type == B_TYPE || s->low_delay) {
  3770. *pict= *(AVFrame*)s->current_picture_ptr;
  3771. } else if (s->last_picture_ptr != NULL) {
  3772. *pict= *(AVFrame*)s->last_picture_ptr;
  3773. }
  3774. if(s->last_picture_ptr || s->low_delay){
  3775. *data_size = sizeof(AVFrame);
  3776. ff_print_debug_info(s, pict);
  3777. }
  3778. /* Return the Picture timestamp as the frame number */
  3779. /* we substract 1 because it is added on utils.c */
  3780. avctx->frame_number = s->picture_number - 1;
  3781. av_free(buf2);
  3782. return buf_size;
  3783. }
  3784. /** Close a VC1/WMV3 decoder
  3785. * @warning Initial try at using MpegEncContext stuff
  3786. */
  3787. static int vc1_decode_end(AVCodecContext *avctx)
  3788. {
  3789. VC1Context *v = avctx->priv_data;
  3790. av_freep(&v->hrd_rate);
  3791. av_freep(&v->hrd_buffer);
  3792. MPV_common_end(&v->s);
  3793. av_freep(&v->mv_type_mb_plane);
  3794. av_freep(&v->direct_mb_plane);
  3795. av_freep(&v->acpred_plane);
  3796. av_freep(&v->over_flags_plane);
  3797. av_freep(&v->mb_type_base);
  3798. return 0;
  3799. }
  3800. AVCodec vc1_decoder = {
  3801. "vc1",
  3802. CODEC_TYPE_VIDEO,
  3803. CODEC_ID_VC1,
  3804. sizeof(VC1Context),
  3805. vc1_decode_init,
  3806. NULL,
  3807. vc1_decode_end,
  3808. vc1_decode_frame,
  3809. CODEC_CAP_DELAY,
  3810. NULL
  3811. };
  3812. AVCodec wmv3_decoder = {
  3813. "wmv3",
  3814. CODEC_TYPE_VIDEO,
  3815. CODEC_ID_WMV3,
  3816. sizeof(VC1Context),
  3817. vc1_decode_init,
  3818. NULL,
  3819. vc1_decode_end,
  3820. vc1_decode_frame,
  3821. CODEC_CAP_DELAY,
  3822. NULL
  3823. };