You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2433 lines
86KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _DEFAULT_SOURCE
  22. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  23. #define _DARWIN_C_SOURCE // needed for MAP_ANON
  24. #include <inttypes.h>
  25. #include <math.h>
  26. #include <stdio.h>
  27. #include <string.h>
  28. #if HAVE_MMAP
  29. #include <sys/mman.h>
  30. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  31. #define MAP_ANONYMOUS MAP_ANON
  32. #endif
  33. #endif
  34. #if HAVE_VIRTUALALLOC
  35. #define WIN32_LEAN_AND_MEAN
  36. #include <windows.h>
  37. #endif
  38. #include "libavutil/attributes.h"
  39. #include "libavutil/avassert.h"
  40. #include "libavutil/avutil.h"
  41. #include "libavutil/bswap.h"
  42. #include "libavutil/cpu.h"
  43. #include "libavutil/imgutils.h"
  44. #include "libavutil/intreadwrite.h"
  45. #include "libavutil/libm.h"
  46. #include "libavutil/mathematics.h"
  47. #include "libavutil/opt.h"
  48. #include "libavutil/pixdesc.h"
  49. #include "libavutil/aarch64/cpu.h"
  50. #include "libavutil/ppc/cpu.h"
  51. #include "libavutil/x86/asm.h"
  52. #include "libavutil/x86/cpu.h"
  53. // We have to implement deprecated functions until they are removed, this is the
  54. // simplest way to prevent warnings
  55. #undef attribute_deprecated
  56. #define attribute_deprecated
  57. #include "rgb2rgb.h"
  58. #include "swscale.h"
  59. #include "swscale_internal.h"
  60. #if !FF_API_SWS_VECTOR
  61. static SwsVector *sws_getIdentityVec(void);
  62. static void sws_addVec(SwsVector *a, SwsVector *b);
  63. static void sws_shiftVec(SwsVector *a, int shift);
  64. static void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level);
  65. #endif
  66. static void handle_formats(SwsContext *c);
  67. unsigned swscale_version(void)
  68. {
  69. av_assert0(LIBSWSCALE_VERSION_MICRO >= 100);
  70. return LIBSWSCALE_VERSION_INT;
  71. }
  72. const char *swscale_configuration(void)
  73. {
  74. return FFMPEG_CONFIGURATION;
  75. }
  76. const char *swscale_license(void)
  77. {
  78. #define LICENSE_PREFIX "libswscale license: "
  79. return &LICENSE_PREFIX FFMPEG_LICENSE[sizeof(LICENSE_PREFIX) - 1];
  80. }
  81. typedef struct FormatEntry {
  82. uint8_t is_supported_in :1;
  83. uint8_t is_supported_out :1;
  84. uint8_t is_supported_endianness :1;
  85. } FormatEntry;
  86. static const FormatEntry format_entries[] = {
  87. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  88. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  89. [AV_PIX_FMT_RGB24] = { 1, 1 },
  90. [AV_PIX_FMT_BGR24] = { 1, 1 },
  91. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  92. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  93. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  94. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  95. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  96. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  97. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  98. [AV_PIX_FMT_PAL8] = { 1, 0 },
  99. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  100. [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
  101. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  102. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  103. [AV_PIX_FMT_YVYU422] = { 1, 1 },
  104. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  105. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  106. [AV_PIX_FMT_BGR8] = { 1, 1 },
  107. [AV_PIX_FMT_BGR4] = { 0, 1 },
  108. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  109. [AV_PIX_FMT_RGB8] = { 1, 1 },
  110. [AV_PIX_FMT_RGB4] = { 0, 1 },
  111. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  112. [AV_PIX_FMT_NV12] = { 1, 1 },
  113. [AV_PIX_FMT_NV21] = { 1, 1 },
  114. [AV_PIX_FMT_ARGB] = { 1, 1 },
  115. [AV_PIX_FMT_RGBA] = { 1, 1 },
  116. [AV_PIX_FMT_ABGR] = { 1, 1 },
  117. [AV_PIX_FMT_BGRA] = { 1, 1 },
  118. [AV_PIX_FMT_0RGB] = { 1, 1 },
  119. [AV_PIX_FMT_RGB0] = { 1, 1 },
  120. [AV_PIX_FMT_0BGR] = { 1, 1 },
  121. [AV_PIX_FMT_BGR0] = { 1, 1 },
  122. [AV_PIX_FMT_GRAY9BE] = { 1, 1 },
  123. [AV_PIX_FMT_GRAY9LE] = { 1, 1 },
  124. [AV_PIX_FMT_GRAY10BE] = { 1, 1 },
  125. [AV_PIX_FMT_GRAY10LE] = { 1, 1 },
  126. [AV_PIX_FMT_GRAY12BE] = { 1, 1 },
  127. [AV_PIX_FMT_GRAY12LE] = { 1, 1 },
  128. [AV_PIX_FMT_GRAY14BE] = { 1, 1 },
  129. [AV_PIX_FMT_GRAY14LE] = { 1, 1 },
  130. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  131. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  132. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  133. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  134. [AV_PIX_FMT_YUV440P10LE] = { 1, 1 },
  135. [AV_PIX_FMT_YUV440P10BE] = { 1, 1 },
  136. [AV_PIX_FMT_YUV440P12LE] = { 1, 1 },
  137. [AV_PIX_FMT_YUV440P12BE] = { 1, 1 },
  138. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  139. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  140. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  141. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  142. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  143. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  144. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  145. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  146. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  147. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  148. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  149. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  150. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  151. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  152. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  153. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  154. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  155. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  156. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  157. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  158. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  159. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  160. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  161. [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
  162. [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
  163. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  164. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  165. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  166. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  167. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  168. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  169. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  170. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  171. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  172. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  173. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  174. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  175. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  176. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  177. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  178. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  179. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  180. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  181. [AV_PIX_FMT_YA8] = { 1, 1 },
  182. [AV_PIX_FMT_YA16BE] = { 1, 1 },
  183. [AV_PIX_FMT_YA16LE] = { 1, 1 },
  184. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  185. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  186. [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
  187. [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
  188. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  189. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  190. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  191. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  192. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  193. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  194. [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
  195. [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
  196. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  197. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  198. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  199. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  200. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  201. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  202. [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
  203. [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
  204. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  205. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  206. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  207. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  208. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  209. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  210. [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
  211. [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
  212. [AV_PIX_FMT_GBRP] = { 1, 1 },
  213. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  214. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  215. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  216. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  217. [AV_PIX_FMT_GBRAP10LE] = { 1, 1 },
  218. [AV_PIX_FMT_GBRAP10BE] = { 1, 1 },
  219. [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
  220. [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
  221. [AV_PIX_FMT_GBRAP12LE] = { 1, 1 },
  222. [AV_PIX_FMT_GBRAP12BE] = { 1, 1 },
  223. [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
  224. [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
  225. [AV_PIX_FMT_GBRP16LE] = { 1, 1 },
  226. [AV_PIX_FMT_GBRP16BE] = { 1, 1 },
  227. [AV_PIX_FMT_GBRAP] = { 1, 1 },
  228. [AV_PIX_FMT_GBRAP16LE] = { 1, 1 },
  229. [AV_PIX_FMT_GBRAP16BE] = { 1, 1 },
  230. [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
  231. [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
  232. [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
  233. [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
  234. [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
  235. [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
  236. [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
  237. [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
  238. [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
  239. [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
  240. [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
  241. [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
  242. [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
  243. [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
  244. [AV_PIX_FMT_AYUV64LE] = { 1, 1},
  245. [AV_PIX_FMT_P010LE] = { 1, 1 },
  246. [AV_PIX_FMT_P010BE] = { 1, 1 },
  247. [AV_PIX_FMT_P016LE] = { 1, 1 },
  248. [AV_PIX_FMT_P016BE] = { 1, 1 },
  249. [AV_PIX_FMT_GRAYF32LE] = { 1, 1 },
  250. [AV_PIX_FMT_GRAYF32BE] = { 1, 1 },
  251. [AV_PIX_FMT_YUVA422P12BE] = { 1, 1 },
  252. [AV_PIX_FMT_YUVA422P12LE] = { 1, 1 },
  253. [AV_PIX_FMT_YUVA444P12BE] = { 1, 1 },
  254. [AV_PIX_FMT_YUVA444P12LE] = { 1, 1 },
  255. [AV_PIX_FMT_NV24] = { 1, 1 },
  256. [AV_PIX_FMT_NV42] = { 1, 1 },
  257. [AV_PIX_FMT_Y210LE] = { 1, 0 },
  258. };
  259. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  260. {
  261. return (unsigned)pix_fmt < FF_ARRAY_ELEMS(format_entries) ?
  262. format_entries[pix_fmt].is_supported_in : 0;
  263. }
  264. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  265. {
  266. return (unsigned)pix_fmt < FF_ARRAY_ELEMS(format_entries) ?
  267. format_entries[pix_fmt].is_supported_out : 0;
  268. }
  269. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  270. {
  271. return (unsigned)pix_fmt < FF_ARRAY_ELEMS(format_entries) ?
  272. format_entries[pix_fmt].is_supported_endianness : 0;
  273. }
  274. static double getSplineCoeff(double a, double b, double c, double d,
  275. double dist)
  276. {
  277. if (dist <= 1.0)
  278. return ((d * dist + c) * dist + b) * dist + a;
  279. else
  280. return getSplineCoeff(0.0,
  281. b + 2.0 * c + 3.0 * d,
  282. c + 3.0 * d,
  283. -b - 3.0 * c - 6.0 * d,
  284. dist - 1.0);
  285. }
  286. static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
  287. {
  288. if (pos == -1 || pos <= -513) {
  289. pos = (128 << chr_subsample) - 128;
  290. }
  291. pos += 128; // relative to ideal left edge
  292. return pos >> chr_subsample;
  293. }
  294. typedef struct {
  295. int flag; ///< flag associated to the algorithm
  296. const char *description; ///< human-readable description
  297. int size_factor; ///< size factor used when initing the filters
  298. } ScaleAlgorithm;
  299. static const ScaleAlgorithm scale_algorithms[] = {
  300. { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
  301. { SWS_BICUBIC, "bicubic", 4 },
  302. { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
  303. { SWS_BILINEAR, "bilinear", 2 },
  304. { SWS_FAST_BILINEAR, "fast bilinear", -1 },
  305. { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
  306. { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
  307. { SWS_POINT, "nearest neighbor / point", -1 },
  308. { SWS_SINC, "sinc", 20 /* infinite ;) */ },
  309. { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
  310. { SWS_X, "experimental", 8 },
  311. };
  312. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  313. int *outFilterSize, int xInc, int srcW,
  314. int dstW, int filterAlign, int one,
  315. int flags, int cpu_flags,
  316. SwsVector *srcFilter, SwsVector *dstFilter,
  317. double param[2], int srcPos, int dstPos)
  318. {
  319. int i;
  320. int filterSize;
  321. int filter2Size;
  322. int minFilterSize;
  323. int64_t *filter = NULL;
  324. int64_t *filter2 = NULL;
  325. const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
  326. int ret = -1;
  327. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  328. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  329. FF_ALLOC_ARRAY_OR_GOTO(NULL, *filterPos, (dstW + 3), sizeof(**filterPos), fail);
  330. if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
  331. int i;
  332. filterSize = 1;
  333. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter,
  334. dstW, sizeof(*filter) * filterSize, fail);
  335. for (i = 0; i < dstW; i++) {
  336. filter[i * filterSize] = fone;
  337. (*filterPos)[i] = i;
  338. }
  339. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  340. int i;
  341. int64_t xDstInSrc;
  342. filterSize = 1;
  343. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  344. dstW, sizeof(*filter) * filterSize, fail);
  345. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  346. for (i = 0; i < dstW; i++) {
  347. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  348. (*filterPos)[i] = xx;
  349. filter[i] = fone;
  350. xDstInSrc += xInc;
  351. }
  352. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  353. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  354. int i;
  355. int64_t xDstInSrc;
  356. filterSize = 2;
  357. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  358. dstW, sizeof(*filter) * filterSize, fail);
  359. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  360. for (i = 0; i < dstW; i++) {
  361. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  362. int j;
  363. (*filterPos)[i] = xx;
  364. // bilinear upscale / linear interpolate / area averaging
  365. for (j = 0; j < filterSize; j++) {
  366. int64_t coeff = fone - FFABS((int64_t)xx * (1 << 16) - xDstInSrc) * (fone >> 16);
  367. if (coeff < 0)
  368. coeff = 0;
  369. filter[i * filterSize + j] = coeff;
  370. xx++;
  371. }
  372. xDstInSrc += xInc;
  373. }
  374. } else {
  375. int64_t xDstInSrc;
  376. int sizeFactor = -1;
  377. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  378. if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
  379. sizeFactor = scale_algorithms[i].size_factor;
  380. break;
  381. }
  382. }
  383. if (flags & SWS_LANCZOS)
  384. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  385. av_assert0(sizeFactor > 0);
  386. if (xInc <= 1 << 16)
  387. filterSize = 1 + sizeFactor; // upscale
  388. else
  389. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  390. filterSize = FFMIN(filterSize, srcW - 2);
  391. filterSize = FFMAX(filterSize, 1);
  392. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  393. dstW, sizeof(*filter) * filterSize, fail);
  394. xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
  395. for (i = 0; i < dstW; i++) {
  396. int xx = (xDstInSrc - (filterSize - 2) * (1LL<<16)) / (1 << 17);
  397. int j;
  398. (*filterPos)[i] = xx;
  399. for (j = 0; j < filterSize; j++) {
  400. int64_t d = (FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
  401. double floatd;
  402. int64_t coeff;
  403. if (xInc > 1 << 16)
  404. d = d * dstW / srcW;
  405. floatd = d * (1.0 / (1 << 30));
  406. if (flags & SWS_BICUBIC) {
  407. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  408. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  409. if (d >= 1LL << 31) {
  410. coeff = 0.0;
  411. } else {
  412. int64_t dd = (d * d) >> 30;
  413. int64_t ddd = (dd * d) >> 30;
  414. if (d < 1LL << 30)
  415. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  416. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  417. (6 * (1 << 24) - 2 * B) * (1 << 30);
  418. else
  419. coeff = (-B - 6 * C) * ddd +
  420. (6 * B + 30 * C) * dd +
  421. (-12 * B - 48 * C) * d +
  422. (8 * B + 24 * C) * (1 << 30);
  423. }
  424. coeff /= (1LL<<54)/fone;
  425. } else if (flags & SWS_X) {
  426. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  427. double c;
  428. if (floatd < 1.0)
  429. c = cos(floatd * M_PI);
  430. else
  431. c = -1.0;
  432. if (c < 0.0)
  433. c = -pow(-c, A);
  434. else
  435. c = pow(c, A);
  436. coeff = (c * 0.5 + 0.5) * fone;
  437. } else if (flags & SWS_AREA) {
  438. int64_t d2 = d - (1 << 29);
  439. if (d2 * xInc < -(1LL << (29 + 16)))
  440. coeff = 1.0 * (1LL << (30 + 16));
  441. else if (d2 * xInc < (1LL << (29 + 16)))
  442. coeff = -d2 * xInc + (1LL << (29 + 16));
  443. else
  444. coeff = 0.0;
  445. coeff *= fone >> (30 + 16);
  446. } else if (flags & SWS_GAUSS) {
  447. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  448. coeff = exp2(-p * floatd * floatd) * fone;
  449. } else if (flags & SWS_SINC) {
  450. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  451. } else if (flags & SWS_LANCZOS) {
  452. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  453. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  454. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  455. if (floatd > p)
  456. coeff = 0;
  457. } else if (flags & SWS_BILINEAR) {
  458. coeff = (1 << 30) - d;
  459. if (coeff < 0)
  460. coeff = 0;
  461. coeff *= fone >> 30;
  462. } else if (flags & SWS_SPLINE) {
  463. double p = -2.196152422706632;
  464. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  465. } else {
  466. av_assert0(0);
  467. }
  468. filter[i * filterSize + j] = coeff;
  469. xx++;
  470. }
  471. xDstInSrc += 2 * xInc;
  472. }
  473. }
  474. /* apply src & dst Filter to filter -> filter2
  475. * av_free(filter);
  476. */
  477. av_assert0(filterSize > 0);
  478. filter2Size = filterSize;
  479. if (srcFilter)
  480. filter2Size += srcFilter->length - 1;
  481. if (dstFilter)
  482. filter2Size += dstFilter->length - 1;
  483. av_assert0(filter2Size > 0);
  484. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter2, dstW, filter2Size * sizeof(*filter2), fail);
  485. for (i = 0; i < dstW; i++) {
  486. int j, k;
  487. if (srcFilter) {
  488. for (k = 0; k < srcFilter->length; k++) {
  489. for (j = 0; j < filterSize; j++)
  490. filter2[i * filter2Size + k + j] +=
  491. srcFilter->coeff[k] * filter[i * filterSize + j];
  492. }
  493. } else {
  494. for (j = 0; j < filterSize; j++)
  495. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  496. }
  497. // FIXME dstFilter
  498. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  499. }
  500. av_freep(&filter);
  501. /* try to reduce the filter-size (step1 find size and shift left) */
  502. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  503. minFilterSize = 0;
  504. for (i = dstW - 1; i >= 0; i--) {
  505. int min = filter2Size;
  506. int j;
  507. int64_t cutOff = 0.0;
  508. /* get rid of near zero elements on the left by shifting left */
  509. for (j = 0; j < filter2Size; j++) {
  510. int k;
  511. cutOff += FFABS(filter2[i * filter2Size]);
  512. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  513. break;
  514. /* preserve monotonicity because the core can't handle the
  515. * filter otherwise */
  516. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  517. break;
  518. // move filter coefficients left
  519. for (k = 1; k < filter2Size; k++)
  520. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  521. filter2[i * filter2Size + k - 1] = 0;
  522. (*filterPos)[i]++;
  523. }
  524. cutOff = 0;
  525. /* count near zeros on the right */
  526. for (j = filter2Size - 1; j > 0; j--) {
  527. cutOff += FFABS(filter2[i * filter2Size + j]);
  528. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  529. break;
  530. min--;
  531. }
  532. if (min > minFilterSize)
  533. minFilterSize = min;
  534. }
  535. if (PPC_ALTIVEC(cpu_flags)) {
  536. // we can handle the special case 4, so we don't want to go the full 8
  537. if (minFilterSize < 5)
  538. filterAlign = 4;
  539. /* We really don't want to waste our time doing useless computation, so
  540. * fall back on the scalar C code for very small filters.
  541. * Vectorizing is worth it only if you have a decent-sized vector. */
  542. if (minFilterSize < 3)
  543. filterAlign = 1;
  544. }
  545. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  546. // special case for unscaled vertical filtering
  547. if (minFilterSize == 1 && filterAlign == 2)
  548. filterAlign = 1;
  549. }
  550. av_assert0(minFilterSize > 0);
  551. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  552. av_assert0(filterSize > 0);
  553. filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
  554. if (!filter)
  555. goto fail;
  556. if (filterSize >= MAX_FILTER_SIZE * 16 /
  557. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
  558. ret = RETCODE_USE_CASCADE;
  559. goto fail;
  560. }
  561. *outFilterSize = filterSize;
  562. if (flags & SWS_PRINT_INFO)
  563. av_log(NULL, AV_LOG_VERBOSE,
  564. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  565. filter2Size, filterSize);
  566. /* try to reduce the filter-size (step2 reduce it) */
  567. for (i = 0; i < dstW; i++) {
  568. int j;
  569. for (j = 0; j < filterSize; j++) {
  570. if (j >= filter2Size)
  571. filter[i * filterSize + j] = 0;
  572. else
  573. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  574. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  575. filter[i * filterSize + j] = 0;
  576. }
  577. }
  578. // FIXME try to align filterPos if possible
  579. // fix borders
  580. for (i = 0; i < dstW; i++) {
  581. int j;
  582. if ((*filterPos)[i] < 0) {
  583. // move filter coefficients left to compensate for filterPos
  584. for (j = 1; j < filterSize; j++) {
  585. int left = FFMAX(j + (*filterPos)[i], 0);
  586. filter[i * filterSize + left] += filter[i * filterSize + j];
  587. filter[i * filterSize + j] = 0;
  588. }
  589. (*filterPos)[i]= 0;
  590. }
  591. if ((*filterPos)[i] + filterSize > srcW) {
  592. int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
  593. int64_t acc = 0;
  594. for (j = filterSize - 1; j >= 0; j--) {
  595. if ((*filterPos)[i] + j >= srcW) {
  596. acc += filter[i * filterSize + j];
  597. filter[i * filterSize + j] = 0;
  598. }
  599. }
  600. for (j = filterSize - 1; j >= 0; j--) {
  601. if (j < shift) {
  602. filter[i * filterSize + j] = 0;
  603. } else {
  604. filter[i * filterSize + j] = filter[i * filterSize + j - shift];
  605. }
  606. }
  607. (*filterPos)[i]-= shift;
  608. filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
  609. }
  610. av_assert0((*filterPos)[i] >= 0);
  611. av_assert0((*filterPos)[i] < srcW);
  612. if ((*filterPos)[i] + filterSize > srcW) {
  613. for (j = 0; j < filterSize; j++) {
  614. av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
  615. }
  616. }
  617. }
  618. // Note the +1 is for the MMX scaler which reads over the end
  619. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  620. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, *outFilter,
  621. (dstW + 3), *outFilterSize * sizeof(int16_t), fail);
  622. /* normalize & store in outFilter */
  623. for (i = 0; i < dstW; i++) {
  624. int j;
  625. int64_t error = 0;
  626. int64_t sum = 0;
  627. for (j = 0; j < filterSize; j++) {
  628. sum += filter[i * filterSize + j];
  629. }
  630. sum = (sum + one / 2) / one;
  631. if (!sum) {
  632. av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
  633. sum = 1;
  634. }
  635. for (j = 0; j < *outFilterSize; j++) {
  636. int64_t v = filter[i * filterSize + j] + error;
  637. int intV = ROUNDED_DIV(v, sum);
  638. (*outFilter)[i * (*outFilterSize) + j] = intV;
  639. error = v - intV * sum;
  640. }
  641. }
  642. (*filterPos)[dstW + 0] =
  643. (*filterPos)[dstW + 1] =
  644. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  645. * read over the end */
  646. for (i = 0; i < *outFilterSize; i++) {
  647. int k = (dstW - 1) * (*outFilterSize) + i;
  648. (*outFilter)[k + 1 * (*outFilterSize)] =
  649. (*outFilter)[k + 2 * (*outFilterSize)] =
  650. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  651. }
  652. ret = 0;
  653. fail:
  654. if(ret < 0)
  655. av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
  656. av_free(filter);
  657. av_free(filter2);
  658. return ret;
  659. }
  660. static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
  661. {
  662. int64_t W, V, Z, Cy, Cu, Cv;
  663. int64_t vr = table[0];
  664. int64_t ub = table[1];
  665. int64_t ug = -table[2];
  666. int64_t vg = -table[3];
  667. int64_t ONE = 65536;
  668. int64_t cy = ONE;
  669. uint8_t *p = (uint8_t*)c->input_rgb2yuv_table;
  670. int i;
  671. static const int8_t map[] = {
  672. BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
  673. RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
  674. RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
  675. BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
  676. BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
  677. RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
  678. RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
  679. BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
  680. BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
  681. RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
  682. RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
  683. BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
  684. RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX,
  685. BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX,
  686. GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
  687. -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
  688. RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX,
  689. BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX,
  690. GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
  691. -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
  692. RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX,
  693. BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX,
  694. GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
  695. -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
  696. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
  697. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
  698. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
  699. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
  700. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
  701. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
  702. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
  703. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
  704. BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
  705. BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
  706. BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
  707. };
  708. dstRange = 0; //FIXME range = 1 is handled elsewhere
  709. if (!dstRange) {
  710. cy = cy * 255 / 219;
  711. } else {
  712. vr = vr * 224 / 255;
  713. ub = ub * 224 / 255;
  714. ug = ug * 224 / 255;
  715. vg = vg * 224 / 255;
  716. }
  717. W = ROUNDED_DIV(ONE*ONE*ug, ub);
  718. V = ROUNDED_DIV(ONE*ONE*vg, vr);
  719. Z = ONE*ONE-W-V;
  720. Cy = ROUNDED_DIV(cy*Z, ONE);
  721. Cu = ROUNDED_DIV(ub*Z, ONE);
  722. Cv = ROUNDED_DIV(vr*Z, ONE);
  723. c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
  724. c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
  725. c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
  726. c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
  727. c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
  728. c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
  729. c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
  730. c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
  731. c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
  732. if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
  733. c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  734. c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  735. c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  736. c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  737. c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  738. c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  739. c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  740. c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  741. c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  742. }
  743. for(i=0; i<FF_ARRAY_ELEMS(map); i++)
  744. AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
  745. }
  746. static void fill_xyztables(struct SwsContext *c)
  747. {
  748. int i;
  749. double xyzgamma = XYZ_GAMMA;
  750. double rgbgamma = 1.0 / RGB_GAMMA;
  751. double xyzgammainv = 1.0 / XYZ_GAMMA;
  752. double rgbgammainv = RGB_GAMMA;
  753. static const int16_t xyz2rgb_matrix[3][4] = {
  754. {13270, -6295, -2041},
  755. {-3969, 7682, 170},
  756. { 228, -835, 4329} };
  757. static const int16_t rgb2xyz_matrix[3][4] = {
  758. {1689, 1464, 739},
  759. { 871, 2929, 296},
  760. { 79, 488, 3891} };
  761. static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
  762. memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
  763. memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
  764. c->xyzgamma = xyzgamma_tab;
  765. c->rgbgamma = rgbgamma_tab;
  766. c->xyzgammainv = xyzgammainv_tab;
  767. c->rgbgammainv = rgbgammainv_tab;
  768. if (rgbgamma_tab[4095])
  769. return;
  770. /* set gamma vectors */
  771. for (i = 0; i < 4096; i++) {
  772. xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
  773. rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
  774. xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
  775. rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
  776. }
  777. }
  778. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  779. int srcRange, const int table[4], int dstRange,
  780. int brightness, int contrast, int saturation)
  781. {
  782. const AVPixFmtDescriptor *desc_dst;
  783. const AVPixFmtDescriptor *desc_src;
  784. int need_reinit = 0;
  785. handle_formats(c);
  786. desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  787. desc_src = av_pix_fmt_desc_get(c->srcFormat);
  788. if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
  789. dstRange = 0;
  790. if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
  791. srcRange = 0;
  792. if (c->srcRange != srcRange ||
  793. c->dstRange != dstRange ||
  794. c->brightness != brightness ||
  795. c->contrast != contrast ||
  796. c->saturation != saturation ||
  797. memcmp(c->srcColorspaceTable, inv_table, sizeof(int) * 4) ||
  798. memcmp(c->dstColorspaceTable, table, sizeof(int) * 4)
  799. )
  800. need_reinit = 1;
  801. memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  802. memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
  803. c->brightness = brightness;
  804. c->contrast = contrast;
  805. c->saturation = saturation;
  806. c->srcRange = srcRange;
  807. c->dstRange = dstRange;
  808. //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
  809. //and what we have in ticket 2939 looks better with this check
  810. if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
  811. ff_sws_init_range_convert(c);
  812. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  813. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  814. if (c->cascaded_context[c->cascaded_mainindex])
  815. return sws_setColorspaceDetails(c->cascaded_context[c->cascaded_mainindex],inv_table, srcRange,table, dstRange, brightness, contrast, saturation);
  816. if (!need_reinit)
  817. return 0;
  818. if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat))) {
  819. if (!c->cascaded_context[0] &&
  820. memcmp(c->dstColorspaceTable, c->srcColorspaceTable, sizeof(int) * 4) &&
  821. c->srcW && c->srcH && c->dstW && c->dstH) {
  822. enum AVPixelFormat tmp_format;
  823. int tmp_width, tmp_height;
  824. int srcW = c->srcW;
  825. int srcH = c->srcH;
  826. int dstW = c->dstW;
  827. int dstH = c->dstH;
  828. int ret;
  829. av_log(c, AV_LOG_VERBOSE, "YUV color matrix differs for YUV->YUV, using intermediate RGB to convert\n");
  830. if (isNBPS(c->dstFormat) || is16BPS(c->dstFormat)) {
  831. if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
  832. tmp_format = AV_PIX_FMT_BGRA64;
  833. } else {
  834. tmp_format = AV_PIX_FMT_BGR48;
  835. }
  836. } else {
  837. if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
  838. tmp_format = AV_PIX_FMT_BGRA;
  839. } else {
  840. tmp_format = AV_PIX_FMT_BGR24;
  841. }
  842. }
  843. if (srcW*srcH > dstW*dstH) {
  844. tmp_width = dstW;
  845. tmp_height = dstH;
  846. } else {
  847. tmp_width = srcW;
  848. tmp_height = srcH;
  849. }
  850. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  851. tmp_width, tmp_height, tmp_format, 64);
  852. if (ret < 0)
  853. return ret;
  854. c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, c->srcFormat,
  855. tmp_width, tmp_height, tmp_format,
  856. c->flags, c->param);
  857. if (!c->cascaded_context[0])
  858. return -1;
  859. c->cascaded_context[0]->alphablend = c->alphablend;
  860. ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
  861. if (ret < 0)
  862. return ret;
  863. //we set both src and dst depending on that the RGB side will be ignored
  864. sws_setColorspaceDetails(c->cascaded_context[0], inv_table,
  865. srcRange, table, dstRange,
  866. brightness, contrast, saturation);
  867. c->cascaded_context[1] = sws_getContext(tmp_width, tmp_height, tmp_format,
  868. dstW, dstH, c->dstFormat,
  869. c->flags, NULL, NULL, c->param);
  870. if (!c->cascaded_context[1])
  871. return -1;
  872. sws_setColorspaceDetails(c->cascaded_context[1], inv_table,
  873. srcRange, table, dstRange,
  874. 0, 1 << 16, 1 << 16);
  875. return 0;
  876. }
  877. return -1;
  878. }
  879. if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
  880. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  881. contrast, saturation);
  882. // FIXME factorize
  883. if (ARCH_PPC)
  884. ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
  885. contrast, saturation);
  886. }
  887. fill_rgb2yuv_table(c, table, dstRange);
  888. return 0;
  889. }
  890. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  891. int *srcRange, int **table, int *dstRange,
  892. int *brightness, int *contrast, int *saturation)
  893. {
  894. if (!c )
  895. return -1;
  896. *inv_table = c->srcColorspaceTable;
  897. *table = c->dstColorspaceTable;
  898. *srcRange = c->srcRange;
  899. *dstRange = c->dstRange;
  900. *brightness = c->brightness;
  901. *contrast = c->contrast;
  902. *saturation = c->saturation;
  903. return 0;
  904. }
  905. static int handle_jpeg(enum AVPixelFormat *format)
  906. {
  907. switch (*format) {
  908. case AV_PIX_FMT_YUVJ420P:
  909. *format = AV_PIX_FMT_YUV420P;
  910. return 1;
  911. case AV_PIX_FMT_YUVJ411P:
  912. *format = AV_PIX_FMT_YUV411P;
  913. return 1;
  914. case AV_PIX_FMT_YUVJ422P:
  915. *format = AV_PIX_FMT_YUV422P;
  916. return 1;
  917. case AV_PIX_FMT_YUVJ444P:
  918. *format = AV_PIX_FMT_YUV444P;
  919. return 1;
  920. case AV_PIX_FMT_YUVJ440P:
  921. *format = AV_PIX_FMT_YUV440P;
  922. return 1;
  923. case AV_PIX_FMT_GRAY8:
  924. case AV_PIX_FMT_YA8:
  925. case AV_PIX_FMT_GRAY9LE:
  926. case AV_PIX_FMT_GRAY9BE:
  927. case AV_PIX_FMT_GRAY10LE:
  928. case AV_PIX_FMT_GRAY10BE:
  929. case AV_PIX_FMT_GRAY12LE:
  930. case AV_PIX_FMT_GRAY12BE:
  931. case AV_PIX_FMT_GRAY14LE:
  932. case AV_PIX_FMT_GRAY14BE:
  933. case AV_PIX_FMT_GRAY16LE:
  934. case AV_PIX_FMT_GRAY16BE:
  935. case AV_PIX_FMT_YA16BE:
  936. case AV_PIX_FMT_YA16LE:
  937. return 1;
  938. default:
  939. return 0;
  940. }
  941. }
  942. static int handle_0alpha(enum AVPixelFormat *format)
  943. {
  944. switch (*format) {
  945. case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
  946. case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
  947. case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
  948. case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
  949. default: return 0;
  950. }
  951. }
  952. static int handle_xyz(enum AVPixelFormat *format)
  953. {
  954. switch (*format) {
  955. case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
  956. case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
  957. default: return 0;
  958. }
  959. }
  960. static void handle_formats(SwsContext *c)
  961. {
  962. c->src0Alpha |= handle_0alpha(&c->srcFormat);
  963. c->dst0Alpha |= handle_0alpha(&c->dstFormat);
  964. c->srcXYZ |= handle_xyz(&c->srcFormat);
  965. c->dstXYZ |= handle_xyz(&c->dstFormat);
  966. if (c->srcXYZ || c->dstXYZ)
  967. fill_xyztables(c);
  968. }
  969. SwsContext *sws_alloc_context(void)
  970. {
  971. SwsContext *c = av_mallocz(sizeof(SwsContext));
  972. av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
  973. if (c) {
  974. c->av_class = &ff_sws_context_class;
  975. av_opt_set_defaults(c);
  976. }
  977. return c;
  978. }
  979. static uint16_t * alloc_gamma_tbl(double e)
  980. {
  981. int i = 0;
  982. uint16_t * tbl;
  983. tbl = (uint16_t*)av_malloc(sizeof(uint16_t) * 1 << 16);
  984. if (!tbl)
  985. return NULL;
  986. for (i = 0; i < 65536; ++i) {
  987. tbl[i] = pow(i / 65535.0, e) * 65535.0;
  988. }
  989. return tbl;
  990. }
  991. static enum AVPixelFormat alphaless_fmt(enum AVPixelFormat fmt)
  992. {
  993. switch(fmt) {
  994. case AV_PIX_FMT_ARGB: return AV_PIX_FMT_RGB24;
  995. case AV_PIX_FMT_RGBA: return AV_PIX_FMT_RGB24;
  996. case AV_PIX_FMT_ABGR: return AV_PIX_FMT_BGR24;
  997. case AV_PIX_FMT_BGRA: return AV_PIX_FMT_BGR24;
  998. case AV_PIX_FMT_YA8: return AV_PIX_FMT_GRAY8;
  999. case AV_PIX_FMT_YUVA420P: return AV_PIX_FMT_YUV420P;
  1000. case AV_PIX_FMT_YUVA422P: return AV_PIX_FMT_YUV422P;
  1001. case AV_PIX_FMT_YUVA444P: return AV_PIX_FMT_YUV444P;
  1002. case AV_PIX_FMT_GBRAP: return AV_PIX_FMT_GBRP;
  1003. case AV_PIX_FMT_GBRAP10LE: return AV_PIX_FMT_GBRP10;
  1004. case AV_PIX_FMT_GBRAP10BE: return AV_PIX_FMT_GBRP10;
  1005. case AV_PIX_FMT_GBRAP12LE: return AV_PIX_FMT_GBRP12;
  1006. case AV_PIX_FMT_GBRAP12BE: return AV_PIX_FMT_GBRP12;
  1007. case AV_PIX_FMT_GBRAP16LE: return AV_PIX_FMT_GBRP16;
  1008. case AV_PIX_FMT_GBRAP16BE: return AV_PIX_FMT_GBRP16;
  1009. case AV_PIX_FMT_RGBA64LE: return AV_PIX_FMT_RGB48;
  1010. case AV_PIX_FMT_RGBA64BE: return AV_PIX_FMT_RGB48;
  1011. case AV_PIX_FMT_BGRA64LE: return AV_PIX_FMT_BGR48;
  1012. case AV_PIX_FMT_BGRA64BE: return AV_PIX_FMT_BGR48;
  1013. case AV_PIX_FMT_YA16BE: return AV_PIX_FMT_GRAY16;
  1014. case AV_PIX_FMT_YA16LE: return AV_PIX_FMT_GRAY16;
  1015. case AV_PIX_FMT_YUVA420P9BE: return AV_PIX_FMT_YUV420P9;
  1016. case AV_PIX_FMT_YUVA422P9BE: return AV_PIX_FMT_YUV422P9;
  1017. case AV_PIX_FMT_YUVA444P9BE: return AV_PIX_FMT_YUV444P9;
  1018. case AV_PIX_FMT_YUVA420P9LE: return AV_PIX_FMT_YUV420P9;
  1019. case AV_PIX_FMT_YUVA422P9LE: return AV_PIX_FMT_YUV422P9;
  1020. case AV_PIX_FMT_YUVA444P9LE: return AV_PIX_FMT_YUV444P9;
  1021. case AV_PIX_FMT_YUVA420P10BE: return AV_PIX_FMT_YUV420P10;
  1022. case AV_PIX_FMT_YUVA422P10BE: return AV_PIX_FMT_YUV422P10;
  1023. case AV_PIX_FMT_YUVA444P10BE: return AV_PIX_FMT_YUV444P10;
  1024. case AV_PIX_FMT_YUVA420P10LE: return AV_PIX_FMT_YUV420P10;
  1025. case AV_PIX_FMT_YUVA422P10LE: return AV_PIX_FMT_YUV422P10;
  1026. case AV_PIX_FMT_YUVA444P10LE: return AV_PIX_FMT_YUV444P10;
  1027. case AV_PIX_FMT_YUVA420P16BE: return AV_PIX_FMT_YUV420P16;
  1028. case AV_PIX_FMT_YUVA422P16BE: return AV_PIX_FMT_YUV422P16;
  1029. case AV_PIX_FMT_YUVA444P16BE: return AV_PIX_FMT_YUV444P16;
  1030. case AV_PIX_FMT_YUVA420P16LE: return AV_PIX_FMT_YUV420P16;
  1031. case AV_PIX_FMT_YUVA422P16LE: return AV_PIX_FMT_YUV422P16;
  1032. case AV_PIX_FMT_YUVA444P16LE: return AV_PIX_FMT_YUV444P16;
  1033. // case AV_PIX_FMT_AYUV64LE:
  1034. // case AV_PIX_FMT_AYUV64BE:
  1035. // case AV_PIX_FMT_PAL8:
  1036. default: return AV_PIX_FMT_NONE;
  1037. }
  1038. }
  1039. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  1040. SwsFilter *dstFilter)
  1041. {
  1042. int i;
  1043. int usesVFilter, usesHFilter;
  1044. int unscaled;
  1045. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  1046. int srcW = c->srcW;
  1047. int srcH = c->srcH;
  1048. int dstW = c->dstW;
  1049. int dstH = c->dstH;
  1050. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
  1051. int flags, cpu_flags;
  1052. enum AVPixelFormat srcFormat = c->srcFormat;
  1053. enum AVPixelFormat dstFormat = c->dstFormat;
  1054. const AVPixFmtDescriptor *desc_src;
  1055. const AVPixFmtDescriptor *desc_dst;
  1056. int ret = 0;
  1057. enum AVPixelFormat tmpFmt;
  1058. static const float float_mult = 1.0f / 255.0f;
  1059. cpu_flags = av_get_cpu_flags();
  1060. flags = c->flags;
  1061. emms_c();
  1062. if (!rgb15to16)
  1063. ff_sws_rgb2rgb_init();
  1064. unscaled = (srcW == dstW && srcH == dstH);
  1065. c->srcRange |= handle_jpeg(&c->srcFormat);
  1066. c->dstRange |= handle_jpeg(&c->dstFormat);
  1067. if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
  1068. av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
  1069. if (!c->contrast && !c->saturation && !c->dstFormatBpp)
  1070. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1071. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1072. c->dstRange, 0, 1 << 16, 1 << 16);
  1073. handle_formats(c);
  1074. srcFormat = c->srcFormat;
  1075. dstFormat = c->dstFormat;
  1076. desc_src = av_pix_fmt_desc_get(srcFormat);
  1077. desc_dst = av_pix_fmt_desc_get(dstFormat);
  1078. // If the source has no alpha then disable alpha blendaway
  1079. if (c->src0Alpha)
  1080. c->alphablend = SWS_ALPHA_BLEND_NONE;
  1081. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  1082. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  1083. if (!sws_isSupportedInput(srcFormat)) {
  1084. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  1085. av_get_pix_fmt_name(srcFormat));
  1086. return AVERROR(EINVAL);
  1087. }
  1088. if (!sws_isSupportedOutput(dstFormat)) {
  1089. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  1090. av_get_pix_fmt_name(dstFormat));
  1091. return AVERROR(EINVAL);
  1092. }
  1093. }
  1094. av_assert2(desc_src && desc_dst);
  1095. i = flags & (SWS_POINT |
  1096. SWS_AREA |
  1097. SWS_BILINEAR |
  1098. SWS_FAST_BILINEAR |
  1099. SWS_BICUBIC |
  1100. SWS_X |
  1101. SWS_GAUSS |
  1102. SWS_LANCZOS |
  1103. SWS_SINC |
  1104. SWS_SPLINE |
  1105. SWS_BICUBLIN);
  1106. /* provide a default scaler if not set by caller */
  1107. if (!i) {
  1108. if (dstW < srcW && dstH < srcH)
  1109. flags |= SWS_BICUBIC;
  1110. else if (dstW > srcW && dstH > srcH)
  1111. flags |= SWS_BICUBIC;
  1112. else
  1113. flags |= SWS_BICUBIC;
  1114. c->flags = flags;
  1115. } else if (i & (i - 1)) {
  1116. av_log(c, AV_LOG_ERROR,
  1117. "Exactly one scaler algorithm must be chosen, got %X\n", i);
  1118. return AVERROR(EINVAL);
  1119. }
  1120. /* sanity check */
  1121. if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
  1122. /* FIXME check if these are enough and try to lower them after
  1123. * fixing the relevant parts of the code */
  1124. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  1125. srcW, srcH, dstW, dstH);
  1126. return AVERROR(EINVAL);
  1127. }
  1128. if (flags & SWS_FAST_BILINEAR) {
  1129. if (srcW < 8 || dstW < 8) {
  1130. flags ^= SWS_FAST_BILINEAR | SWS_BILINEAR;
  1131. c->flags = flags;
  1132. }
  1133. }
  1134. if (!dstFilter)
  1135. dstFilter = &dummyFilter;
  1136. if (!srcFilter)
  1137. srcFilter = &dummyFilter;
  1138. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  1139. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  1140. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  1141. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  1142. c->vRounder = 4 * 0x0001000100010001ULL;
  1143. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  1144. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  1145. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  1146. (dstFilter->chrV && dstFilter->chrV->length > 1);
  1147. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  1148. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  1149. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  1150. (dstFilter->chrH && dstFilter->chrH->length > 1);
  1151. av_pix_fmt_get_chroma_sub_sample(srcFormat, &c->chrSrcHSubSample, &c->chrSrcVSubSample);
  1152. av_pix_fmt_get_chroma_sub_sample(dstFormat, &c->chrDstHSubSample, &c->chrDstVSubSample);
  1153. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
  1154. if (dstW&1) {
  1155. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
  1156. flags |= SWS_FULL_CHR_H_INT;
  1157. c->flags = flags;
  1158. }
  1159. if ( c->chrSrcHSubSample == 0
  1160. && c->chrSrcVSubSample == 0
  1161. && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
  1162. && !(c->flags & SWS_FAST_BILINEAR)
  1163. ) {
  1164. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
  1165. flags |= SWS_FULL_CHR_H_INT;
  1166. c->flags = flags;
  1167. }
  1168. }
  1169. if (c->dither == SWS_DITHER_AUTO) {
  1170. if (flags & SWS_ERROR_DIFFUSION)
  1171. c->dither = SWS_DITHER_ED;
  1172. }
  1173. if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
  1174. dstFormat == AV_PIX_FMT_RGB4_BYTE ||
  1175. dstFormat == AV_PIX_FMT_BGR8 ||
  1176. dstFormat == AV_PIX_FMT_RGB8) {
  1177. if (c->dither == SWS_DITHER_AUTO)
  1178. c->dither = (flags & SWS_FULL_CHR_H_INT) ? SWS_DITHER_ED : SWS_DITHER_BAYER;
  1179. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1180. if (c->dither == SWS_DITHER_ED || c->dither == SWS_DITHER_A_DITHER || c->dither == SWS_DITHER_X_DITHER) {
  1181. av_log(c, AV_LOG_DEBUG,
  1182. "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
  1183. av_get_pix_fmt_name(dstFormat));
  1184. flags |= SWS_FULL_CHR_H_INT;
  1185. c->flags = flags;
  1186. }
  1187. }
  1188. if (flags & SWS_FULL_CHR_H_INT) {
  1189. if (c->dither == SWS_DITHER_BAYER) {
  1190. av_log(c, AV_LOG_DEBUG,
  1191. "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
  1192. av_get_pix_fmt_name(dstFormat));
  1193. c->dither = SWS_DITHER_ED;
  1194. }
  1195. }
  1196. }
  1197. if (isPlanarRGB(dstFormat)) {
  1198. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1199. av_log(c, AV_LOG_DEBUG,
  1200. "%s output is not supported with half chroma resolution, switching to full\n",
  1201. av_get_pix_fmt_name(dstFormat));
  1202. flags |= SWS_FULL_CHR_H_INT;
  1203. c->flags = flags;
  1204. }
  1205. }
  1206. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  1207. * chroma interpolation */
  1208. if (flags & SWS_FULL_CHR_H_INT &&
  1209. isAnyRGB(dstFormat) &&
  1210. !isPlanarRGB(dstFormat) &&
  1211. dstFormat != AV_PIX_FMT_RGBA64LE &&
  1212. dstFormat != AV_PIX_FMT_RGBA64BE &&
  1213. dstFormat != AV_PIX_FMT_BGRA64LE &&
  1214. dstFormat != AV_PIX_FMT_BGRA64BE &&
  1215. dstFormat != AV_PIX_FMT_RGB48LE &&
  1216. dstFormat != AV_PIX_FMT_RGB48BE &&
  1217. dstFormat != AV_PIX_FMT_BGR48LE &&
  1218. dstFormat != AV_PIX_FMT_BGR48BE &&
  1219. dstFormat != AV_PIX_FMT_RGBA &&
  1220. dstFormat != AV_PIX_FMT_ARGB &&
  1221. dstFormat != AV_PIX_FMT_BGRA &&
  1222. dstFormat != AV_PIX_FMT_ABGR &&
  1223. dstFormat != AV_PIX_FMT_RGB24 &&
  1224. dstFormat != AV_PIX_FMT_BGR24 &&
  1225. dstFormat != AV_PIX_FMT_BGR4_BYTE &&
  1226. dstFormat != AV_PIX_FMT_RGB4_BYTE &&
  1227. dstFormat != AV_PIX_FMT_BGR8 &&
  1228. dstFormat != AV_PIX_FMT_RGB8
  1229. ) {
  1230. av_log(c, AV_LOG_WARNING,
  1231. "full chroma interpolation for destination format '%s' not yet implemented\n",
  1232. av_get_pix_fmt_name(dstFormat));
  1233. flags &= ~SWS_FULL_CHR_H_INT;
  1234. c->flags = flags;
  1235. }
  1236. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  1237. c->chrDstHSubSample = 1;
  1238. // drop some chroma lines if the user wants it
  1239. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  1240. SWS_SRC_V_CHR_DROP_SHIFT;
  1241. c->chrSrcVSubSample += c->vChrDrop;
  1242. /* drop every other pixel for chroma calculation unless user
  1243. * wants full chroma */
  1244. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  1245. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  1246. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  1247. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  1248. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  1249. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  1250. srcFormat != AV_PIX_FMT_GBRAP10BE && srcFormat != AV_PIX_FMT_GBRAP10LE &&
  1251. srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
  1252. srcFormat != AV_PIX_FMT_GBRAP12BE && srcFormat != AV_PIX_FMT_GBRAP12LE &&
  1253. srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
  1254. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  1255. srcFormat != AV_PIX_FMT_GBRAP16BE && srcFormat != AV_PIX_FMT_GBRAP16LE &&
  1256. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  1257. (flags & SWS_FAST_BILINEAR)))
  1258. c->chrSrcHSubSample = 1;
  1259. // Note the AV_CEIL_RSHIFT is so that we always round toward +inf.
  1260. c->chrSrcW = AV_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
  1261. c->chrSrcH = AV_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
  1262. c->chrDstW = AV_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
  1263. c->chrDstH = AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
  1264. FF_ALLOCZ_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
  1265. c->srcBpc = desc_src->comp[0].depth;
  1266. if (c->srcBpc < 8)
  1267. c->srcBpc = 8;
  1268. c->dstBpc = desc_dst->comp[0].depth;
  1269. if (c->dstBpc < 8)
  1270. c->dstBpc = 8;
  1271. if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
  1272. c->srcBpc = 16;
  1273. if (c->dstBpc == 16)
  1274. dst_stride <<= 1;
  1275. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
  1276. c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
  1277. c->chrDstW >= c->chrSrcW &&
  1278. (srcW & 15) == 0;
  1279. if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
  1280. && (flags & SWS_FAST_BILINEAR)) {
  1281. if (flags & SWS_PRINT_INFO)
  1282. av_log(c, AV_LOG_INFO,
  1283. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  1284. }
  1285. if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
  1286. c->canMMXEXTBeUsed = 0;
  1287. } else
  1288. c->canMMXEXTBeUsed = 0;
  1289. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  1290. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  1291. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  1292. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  1293. * correct scaling.
  1294. * n-2 is the last chrominance sample available.
  1295. * This is not perfect, but no one should notice the difference, the more
  1296. * correct variant would be like the vertical one, but that would require
  1297. * some special code for the first and last pixel */
  1298. if (flags & SWS_FAST_BILINEAR) {
  1299. if (c->canMMXEXTBeUsed) {
  1300. c->lumXInc += 20;
  1301. c->chrXInc += 20;
  1302. }
  1303. // we don't use the x86 asm scaler if MMX is available
  1304. else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
  1305. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  1306. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  1307. }
  1308. }
  1309. // hardcoded for now
  1310. c->gamma_value = 2.2;
  1311. tmpFmt = AV_PIX_FMT_RGBA64LE;
  1312. if (!unscaled && c->gamma_flag && (srcFormat != tmpFmt || dstFormat != tmpFmt)) {
  1313. SwsContext *c2;
  1314. c->cascaded_context[0] = NULL;
  1315. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1316. srcW, srcH, tmpFmt, 64);
  1317. if (ret < 0)
  1318. return ret;
  1319. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1320. srcW, srcH, tmpFmt,
  1321. flags, NULL, NULL, c->param);
  1322. if (!c->cascaded_context[0]) {
  1323. return -1;
  1324. }
  1325. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFmt,
  1326. dstW, dstH, tmpFmt,
  1327. flags, srcFilter, dstFilter, c->param);
  1328. if (!c->cascaded_context[1])
  1329. return -1;
  1330. c2 = c->cascaded_context[1];
  1331. c2->is_internal_gamma = 1;
  1332. c2->gamma = alloc_gamma_tbl( c->gamma_value);
  1333. c2->inv_gamma = alloc_gamma_tbl(1.f/c->gamma_value);
  1334. if (!c2->gamma || !c2->inv_gamma)
  1335. return AVERROR(ENOMEM);
  1336. // is_internal_flag is set after creating the context
  1337. // to properly create the gamma convert FilterDescriptor
  1338. // we have to re-initialize it
  1339. ff_free_filters(c2);
  1340. if (ff_init_filters(c2) < 0) {
  1341. sws_freeContext(c2);
  1342. c->cascaded_context[1] = NULL;
  1343. return -1;
  1344. }
  1345. c->cascaded_context[2] = NULL;
  1346. if (dstFormat != tmpFmt) {
  1347. ret = av_image_alloc(c->cascaded1_tmp, c->cascaded1_tmpStride,
  1348. dstW, dstH, tmpFmt, 64);
  1349. if (ret < 0)
  1350. return ret;
  1351. c->cascaded_context[2] = sws_getContext(dstW, dstH, tmpFmt,
  1352. dstW, dstH, dstFormat,
  1353. flags, NULL, NULL, c->param);
  1354. if (!c->cascaded_context[2])
  1355. return -1;
  1356. }
  1357. return 0;
  1358. }
  1359. if (isBayer(srcFormat)) {
  1360. if (!unscaled ||
  1361. (dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P)) {
  1362. enum AVPixelFormat tmpFormat = AV_PIX_FMT_RGB24;
  1363. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1364. srcW, srcH, tmpFormat, 64);
  1365. if (ret < 0)
  1366. return ret;
  1367. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1368. srcW, srcH, tmpFormat,
  1369. flags, srcFilter, NULL, c->param);
  1370. if (!c->cascaded_context[0])
  1371. return -1;
  1372. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
  1373. dstW, dstH, dstFormat,
  1374. flags, NULL, dstFilter, c->param);
  1375. if (!c->cascaded_context[1])
  1376. return -1;
  1377. return 0;
  1378. }
  1379. }
  1380. if (unscaled && c->srcBpc == 8 && dstFormat == AV_PIX_FMT_GRAYF32){
  1381. for (i = 0; i < 256; ++i){
  1382. c->uint2float_lut[i] = (float)i * float_mult;
  1383. }
  1384. }
  1385. // float will be converted to uint16_t
  1386. if ((srcFormat == AV_PIX_FMT_GRAYF32BE || srcFormat == AV_PIX_FMT_GRAYF32LE) &&
  1387. (!unscaled || unscaled && dstFormat != srcFormat && (srcFormat != AV_PIX_FMT_GRAYF32 ||
  1388. dstFormat != AV_PIX_FMT_GRAY8))){
  1389. c->srcBpc = 16;
  1390. }
  1391. if (CONFIG_SWSCALE_ALPHA && isALPHA(srcFormat) && !isALPHA(dstFormat)) {
  1392. enum AVPixelFormat tmpFormat = alphaless_fmt(srcFormat);
  1393. if (tmpFormat != AV_PIX_FMT_NONE && c->alphablend != SWS_ALPHA_BLEND_NONE)
  1394. if (!unscaled ||
  1395. dstFormat != tmpFormat ||
  1396. usesHFilter || usesVFilter ||
  1397. c->srcRange != c->dstRange
  1398. ) {
  1399. c->cascaded_mainindex = 1;
  1400. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1401. srcW, srcH, tmpFormat, 64);
  1402. if (ret < 0)
  1403. return ret;
  1404. c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, srcFormat,
  1405. srcW, srcH, tmpFormat,
  1406. flags, c->param);
  1407. if (!c->cascaded_context[0])
  1408. return -1;
  1409. c->cascaded_context[0]->alphablend = c->alphablend;
  1410. ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
  1411. if (ret < 0)
  1412. return ret;
  1413. c->cascaded_context[1] = sws_alloc_set_opts(srcW, srcH, tmpFormat,
  1414. dstW, dstH, dstFormat,
  1415. flags, c->param);
  1416. if (!c->cascaded_context[1])
  1417. return -1;
  1418. c->cascaded_context[1]->srcRange = c->srcRange;
  1419. c->cascaded_context[1]->dstRange = c->dstRange;
  1420. ret = sws_init_context(c->cascaded_context[1], srcFilter , dstFilter);
  1421. if (ret < 0)
  1422. return ret;
  1423. return 0;
  1424. }
  1425. }
  1426. #if HAVE_MMAP && HAVE_MPROTECT && defined(MAP_ANONYMOUS)
  1427. #define USE_MMAP 1
  1428. #else
  1429. #define USE_MMAP 0
  1430. #endif
  1431. /* precalculate horizontal scaler filter coefficients */
  1432. {
  1433. #if HAVE_MMXEXT_INLINE
  1434. // can't downscale !!!
  1435. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  1436. c->lumMmxextFilterCodeSize = ff_init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  1437. NULL, NULL, 8);
  1438. c->chrMmxextFilterCodeSize = ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  1439. NULL, NULL, NULL, 4);
  1440. #if USE_MMAP
  1441. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  1442. PROT_READ | PROT_WRITE,
  1443. MAP_PRIVATE | MAP_ANONYMOUS,
  1444. -1, 0);
  1445. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  1446. PROT_READ | PROT_WRITE,
  1447. MAP_PRIVATE | MAP_ANONYMOUS,
  1448. -1, 0);
  1449. #elif HAVE_VIRTUALALLOC
  1450. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  1451. c->lumMmxextFilterCodeSize,
  1452. MEM_COMMIT,
  1453. PAGE_EXECUTE_READWRITE);
  1454. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  1455. c->chrMmxextFilterCodeSize,
  1456. MEM_COMMIT,
  1457. PAGE_EXECUTE_READWRITE);
  1458. #else
  1459. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  1460. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1461. #endif
  1462. #ifdef MAP_ANONYMOUS
  1463. if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
  1464. #else
  1465. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1466. #endif
  1467. {
  1468. av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
  1469. return AVERROR(ENOMEM);
  1470. }
  1471. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1472. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1473. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1474. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1475. ff_init_hscaler_mmxext( dstW, c->lumXInc, c->lumMmxextFilterCode,
  1476. c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
  1477. ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1478. c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
  1479. #if USE_MMAP
  1480. if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
  1481. || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
  1482. av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
  1483. goto fail;
  1484. }
  1485. #endif
  1486. } else
  1487. #endif /* HAVE_MMXEXT_INLINE */
  1488. {
  1489. const int filterAlign = X86_MMX(cpu_flags) ? 4 :
  1490. PPC_ALTIVEC(cpu_flags) ? 8 :
  1491. have_neon(cpu_flags) ? 8 : 1;
  1492. if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1493. &c->hLumFilterSize, c->lumXInc,
  1494. srcW, dstW, filterAlign, 1 << 14,
  1495. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1496. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1497. c->param,
  1498. get_local_pos(c, 0, 0, 0),
  1499. get_local_pos(c, 0, 0, 0))) < 0)
  1500. goto fail;
  1501. if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1502. &c->hChrFilterSize, c->chrXInc,
  1503. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1504. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1505. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1506. c->param,
  1507. get_local_pos(c, c->chrSrcHSubSample, c->src_h_chr_pos, 0),
  1508. get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
  1509. goto fail;
  1510. }
  1511. } // initialize horizontal stuff
  1512. /* precalculate vertical scaler filter coefficients */
  1513. {
  1514. const int filterAlign = X86_MMX(cpu_flags) ? 2 :
  1515. PPC_ALTIVEC(cpu_flags) ? 8 :
  1516. have_neon(cpu_flags) ? 2 : 1;
  1517. if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1518. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1519. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1520. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1521. c->param,
  1522. get_local_pos(c, 0, 0, 1),
  1523. get_local_pos(c, 0, 0, 1))) < 0)
  1524. goto fail;
  1525. if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1526. c->chrYInc, c->chrSrcH, c->chrDstH,
  1527. filterAlign, (1 << 12),
  1528. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1529. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1530. c->param,
  1531. get_local_pos(c, c->chrSrcVSubSample, c->src_v_chr_pos, 1),
  1532. get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
  1533. goto fail;
  1534. #if HAVE_ALTIVEC
  1535. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1536. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1537. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1538. int j;
  1539. short *p = (short *)&c->vYCoeffsBank[i];
  1540. for (j = 0; j < 8; j++)
  1541. p[j] = c->vLumFilter[i];
  1542. }
  1543. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1544. int j;
  1545. short *p = (short *)&c->vCCoeffsBank[i];
  1546. for (j = 0; j < 8; j++)
  1547. p[j] = c->vChrFilter[i];
  1548. }
  1549. #endif
  1550. }
  1551. for (i = 0; i < 4; i++)
  1552. FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
  1553. c->needAlpha = (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) ? 1 : 0;
  1554. // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
  1555. c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
  1556. c->uv_offx2 = dst_stride + 16;
  1557. av_assert0(c->chrDstH <= dstH);
  1558. if (flags & SWS_PRINT_INFO) {
  1559. const char *scaler = NULL, *cpucaps;
  1560. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  1561. if (flags & scale_algorithms[i].flag) {
  1562. scaler = scale_algorithms[i].description;
  1563. break;
  1564. }
  1565. }
  1566. if (!scaler)
  1567. scaler = "ehh flags invalid?!";
  1568. av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
  1569. scaler,
  1570. av_get_pix_fmt_name(srcFormat),
  1571. #ifdef DITHER1XBPP
  1572. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1573. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1574. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1575. "dithered " : "",
  1576. #else
  1577. "",
  1578. #endif
  1579. av_get_pix_fmt_name(dstFormat));
  1580. if (INLINE_MMXEXT(cpu_flags))
  1581. cpucaps = "MMXEXT";
  1582. else if (INLINE_AMD3DNOW(cpu_flags))
  1583. cpucaps = "3DNOW";
  1584. else if (INLINE_MMX(cpu_flags))
  1585. cpucaps = "MMX";
  1586. else if (PPC_ALTIVEC(cpu_flags))
  1587. cpucaps = "AltiVec";
  1588. else
  1589. cpucaps = "C";
  1590. av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
  1591. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1592. av_log(c, AV_LOG_DEBUG,
  1593. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1594. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1595. av_log(c, AV_LOG_DEBUG,
  1596. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1597. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1598. c->chrXInc, c->chrYInc);
  1599. }
  1600. /* alpha blend special case, note this has been split via cascaded contexts if its scaled */
  1601. if (unscaled && !usesHFilter && !usesVFilter &&
  1602. c->alphablend != SWS_ALPHA_BLEND_NONE &&
  1603. isALPHA(srcFormat) &&
  1604. (c->srcRange == c->dstRange || isAnyRGB(dstFormat)) &&
  1605. alphaless_fmt(srcFormat) == dstFormat
  1606. ) {
  1607. c->swscale = ff_sws_alphablendaway;
  1608. if (flags & SWS_PRINT_INFO)
  1609. av_log(c, AV_LOG_INFO,
  1610. "using alpha blendaway %s -> %s special converter\n",
  1611. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1612. return 0;
  1613. }
  1614. /* unscaled special cases */
  1615. if (unscaled && !usesHFilter && !usesVFilter &&
  1616. (c->srcRange == c->dstRange || isAnyRGB(dstFormat) ||
  1617. isFloat(srcFormat) || isFloat(dstFormat))){
  1618. ff_get_unscaled_swscale(c);
  1619. if (c->swscale) {
  1620. if (flags & SWS_PRINT_INFO)
  1621. av_log(c, AV_LOG_INFO,
  1622. "using unscaled %s -> %s special converter\n",
  1623. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1624. return 0;
  1625. }
  1626. }
  1627. c->swscale = ff_getSwsFunc(c);
  1628. return ff_init_filters(c);
  1629. fail: // FIXME replace things by appropriate error codes
  1630. if (ret == RETCODE_USE_CASCADE) {
  1631. int tmpW = sqrt(srcW * (int64_t)dstW);
  1632. int tmpH = sqrt(srcH * (int64_t)dstH);
  1633. enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
  1634. if (isALPHA(srcFormat))
  1635. tmpFormat = AV_PIX_FMT_YUVA420P;
  1636. if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
  1637. return AVERROR(EINVAL);
  1638. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1639. tmpW, tmpH, tmpFormat, 64);
  1640. if (ret < 0)
  1641. return ret;
  1642. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1643. tmpW, tmpH, tmpFormat,
  1644. flags, srcFilter, NULL, c->param);
  1645. if (!c->cascaded_context[0])
  1646. return -1;
  1647. c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
  1648. dstW, dstH, dstFormat,
  1649. flags, NULL, dstFilter, c->param);
  1650. if (!c->cascaded_context[1])
  1651. return -1;
  1652. return 0;
  1653. }
  1654. return -1;
  1655. }
  1656. SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1657. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1658. int flags, const double *param)
  1659. {
  1660. SwsContext *c;
  1661. if (!(c = sws_alloc_context()))
  1662. return NULL;
  1663. c->flags = flags;
  1664. c->srcW = srcW;
  1665. c->srcH = srcH;
  1666. c->dstW = dstW;
  1667. c->dstH = dstH;
  1668. c->srcFormat = srcFormat;
  1669. c->dstFormat = dstFormat;
  1670. if (param) {
  1671. c->param[0] = param[0];
  1672. c->param[1] = param[1];
  1673. }
  1674. return c;
  1675. }
  1676. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1677. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1678. int flags, SwsFilter *srcFilter,
  1679. SwsFilter *dstFilter, const double *param)
  1680. {
  1681. SwsContext *c;
  1682. c = sws_alloc_set_opts(srcW, srcH, srcFormat,
  1683. dstW, dstH, dstFormat,
  1684. flags, param);
  1685. if (!c)
  1686. return NULL;
  1687. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1688. sws_freeContext(c);
  1689. return NULL;
  1690. }
  1691. return c;
  1692. }
  1693. static int isnan_vec(SwsVector *a)
  1694. {
  1695. int i;
  1696. for (i=0; i<a->length; i++)
  1697. if (isnan(a->coeff[i]))
  1698. return 1;
  1699. return 0;
  1700. }
  1701. static void makenan_vec(SwsVector *a)
  1702. {
  1703. int i;
  1704. for (i=0; i<a->length; i++)
  1705. a->coeff[i] = NAN;
  1706. }
  1707. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1708. float lumaSharpen, float chromaSharpen,
  1709. float chromaHShift, float chromaVShift,
  1710. int verbose)
  1711. {
  1712. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1713. if (!filter)
  1714. return NULL;
  1715. if (lumaGBlur != 0.0) {
  1716. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1717. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1718. } else {
  1719. filter->lumH = sws_getIdentityVec();
  1720. filter->lumV = sws_getIdentityVec();
  1721. }
  1722. if (chromaGBlur != 0.0) {
  1723. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1724. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1725. } else {
  1726. filter->chrH = sws_getIdentityVec();
  1727. filter->chrV = sws_getIdentityVec();
  1728. }
  1729. if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
  1730. goto fail;
  1731. if (chromaSharpen != 0.0) {
  1732. SwsVector *id = sws_getIdentityVec();
  1733. if (!id)
  1734. goto fail;
  1735. sws_scaleVec(filter->chrH, -chromaSharpen);
  1736. sws_scaleVec(filter->chrV, -chromaSharpen);
  1737. sws_addVec(filter->chrH, id);
  1738. sws_addVec(filter->chrV, id);
  1739. sws_freeVec(id);
  1740. }
  1741. if (lumaSharpen != 0.0) {
  1742. SwsVector *id = sws_getIdentityVec();
  1743. if (!id)
  1744. goto fail;
  1745. sws_scaleVec(filter->lumH, -lumaSharpen);
  1746. sws_scaleVec(filter->lumV, -lumaSharpen);
  1747. sws_addVec(filter->lumH, id);
  1748. sws_addVec(filter->lumV, id);
  1749. sws_freeVec(id);
  1750. }
  1751. if (chromaHShift != 0.0)
  1752. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1753. if (chromaVShift != 0.0)
  1754. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1755. sws_normalizeVec(filter->chrH, 1.0);
  1756. sws_normalizeVec(filter->chrV, 1.0);
  1757. sws_normalizeVec(filter->lumH, 1.0);
  1758. sws_normalizeVec(filter->lumV, 1.0);
  1759. if (isnan_vec(filter->chrH) ||
  1760. isnan_vec(filter->chrV) ||
  1761. isnan_vec(filter->lumH) ||
  1762. isnan_vec(filter->lumV))
  1763. goto fail;
  1764. if (verbose)
  1765. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1766. if (verbose)
  1767. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1768. return filter;
  1769. fail:
  1770. sws_freeVec(filter->lumH);
  1771. sws_freeVec(filter->lumV);
  1772. sws_freeVec(filter->chrH);
  1773. sws_freeVec(filter->chrV);
  1774. av_freep(&filter);
  1775. return NULL;
  1776. }
  1777. SwsVector *sws_allocVec(int length)
  1778. {
  1779. SwsVector *vec;
  1780. if(length <= 0 || length > INT_MAX/ sizeof(double))
  1781. return NULL;
  1782. vec = av_malloc(sizeof(SwsVector));
  1783. if (!vec)
  1784. return NULL;
  1785. vec->length = length;
  1786. vec->coeff = av_malloc(sizeof(double) * length);
  1787. if (!vec->coeff)
  1788. av_freep(&vec);
  1789. return vec;
  1790. }
  1791. SwsVector *sws_getGaussianVec(double variance, double quality)
  1792. {
  1793. const int length = (int)(variance * quality + 0.5) | 1;
  1794. int i;
  1795. double middle = (length - 1) * 0.5;
  1796. SwsVector *vec;
  1797. if(variance < 0 || quality < 0)
  1798. return NULL;
  1799. vec = sws_allocVec(length);
  1800. if (!vec)
  1801. return NULL;
  1802. for (i = 0; i < length; i++) {
  1803. double dist = i - middle;
  1804. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1805. sqrt(2 * variance * M_PI);
  1806. }
  1807. sws_normalizeVec(vec, 1.0);
  1808. return vec;
  1809. }
  1810. /**
  1811. * Allocate and return a vector with length coefficients, all
  1812. * with the same value c.
  1813. */
  1814. #if !FF_API_SWS_VECTOR
  1815. static
  1816. #endif
  1817. SwsVector *sws_getConstVec(double c, int length)
  1818. {
  1819. int i;
  1820. SwsVector *vec = sws_allocVec(length);
  1821. if (!vec)
  1822. return NULL;
  1823. for (i = 0; i < length; i++)
  1824. vec->coeff[i] = c;
  1825. return vec;
  1826. }
  1827. /**
  1828. * Allocate and return a vector with just one coefficient, with
  1829. * value 1.0.
  1830. */
  1831. #if !FF_API_SWS_VECTOR
  1832. static
  1833. #endif
  1834. SwsVector *sws_getIdentityVec(void)
  1835. {
  1836. return sws_getConstVec(1.0, 1);
  1837. }
  1838. static double sws_dcVec(SwsVector *a)
  1839. {
  1840. int i;
  1841. double sum = 0;
  1842. for (i = 0; i < a->length; i++)
  1843. sum += a->coeff[i];
  1844. return sum;
  1845. }
  1846. void sws_scaleVec(SwsVector *a, double scalar)
  1847. {
  1848. int i;
  1849. for (i = 0; i < a->length; i++)
  1850. a->coeff[i] *= scalar;
  1851. }
  1852. void sws_normalizeVec(SwsVector *a, double height)
  1853. {
  1854. sws_scaleVec(a, height / sws_dcVec(a));
  1855. }
  1856. #if FF_API_SWS_VECTOR
  1857. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1858. {
  1859. int length = a->length + b->length - 1;
  1860. int i, j;
  1861. SwsVector *vec = sws_getConstVec(0.0, length);
  1862. if (!vec)
  1863. return NULL;
  1864. for (i = 0; i < a->length; i++) {
  1865. for (j = 0; j < b->length; j++) {
  1866. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1867. }
  1868. }
  1869. return vec;
  1870. }
  1871. #endif
  1872. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1873. {
  1874. int length = FFMAX(a->length, b->length);
  1875. int i;
  1876. SwsVector *vec = sws_getConstVec(0.0, length);
  1877. if (!vec)
  1878. return NULL;
  1879. for (i = 0; i < a->length; i++)
  1880. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1881. for (i = 0; i < b->length; i++)
  1882. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1883. return vec;
  1884. }
  1885. #if FF_API_SWS_VECTOR
  1886. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1887. {
  1888. int length = FFMAX(a->length, b->length);
  1889. int i;
  1890. SwsVector *vec = sws_getConstVec(0.0, length);
  1891. if (!vec)
  1892. return NULL;
  1893. for (i = 0; i < a->length; i++)
  1894. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1895. for (i = 0; i < b->length; i++)
  1896. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1897. return vec;
  1898. }
  1899. #endif
  1900. /* shift left / or right if "shift" is negative */
  1901. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1902. {
  1903. int length = a->length + FFABS(shift) * 2;
  1904. int i;
  1905. SwsVector *vec = sws_getConstVec(0.0, length);
  1906. if (!vec)
  1907. return NULL;
  1908. for (i = 0; i < a->length; i++) {
  1909. vec->coeff[i + (length - 1) / 2 -
  1910. (a->length - 1) / 2 - shift] = a->coeff[i];
  1911. }
  1912. return vec;
  1913. }
  1914. #if !FF_API_SWS_VECTOR
  1915. static
  1916. #endif
  1917. void sws_shiftVec(SwsVector *a, int shift)
  1918. {
  1919. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1920. if (!shifted) {
  1921. makenan_vec(a);
  1922. return;
  1923. }
  1924. av_free(a->coeff);
  1925. a->coeff = shifted->coeff;
  1926. a->length = shifted->length;
  1927. av_free(shifted);
  1928. }
  1929. #if !FF_API_SWS_VECTOR
  1930. static
  1931. #endif
  1932. void sws_addVec(SwsVector *a, SwsVector *b)
  1933. {
  1934. SwsVector *sum = sws_sumVec(a, b);
  1935. if (!sum) {
  1936. makenan_vec(a);
  1937. return;
  1938. }
  1939. av_free(a->coeff);
  1940. a->coeff = sum->coeff;
  1941. a->length = sum->length;
  1942. av_free(sum);
  1943. }
  1944. #if FF_API_SWS_VECTOR
  1945. void sws_subVec(SwsVector *a, SwsVector *b)
  1946. {
  1947. SwsVector *diff = sws_diffVec(a, b);
  1948. if (!diff) {
  1949. makenan_vec(a);
  1950. return;
  1951. }
  1952. av_free(a->coeff);
  1953. a->coeff = diff->coeff;
  1954. a->length = diff->length;
  1955. av_free(diff);
  1956. }
  1957. void sws_convVec(SwsVector *a, SwsVector *b)
  1958. {
  1959. SwsVector *conv = sws_getConvVec(a, b);
  1960. if (!conv) {
  1961. makenan_vec(a);
  1962. return;
  1963. }
  1964. av_free(a->coeff);
  1965. a->coeff = conv->coeff;
  1966. a->length = conv->length;
  1967. av_free(conv);
  1968. }
  1969. SwsVector *sws_cloneVec(SwsVector *a)
  1970. {
  1971. SwsVector *vec = sws_allocVec(a->length);
  1972. if (!vec)
  1973. return NULL;
  1974. memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
  1975. return vec;
  1976. }
  1977. #endif
  1978. /**
  1979. * Print with av_log() a textual representation of the vector a
  1980. * if log_level <= av_log_level.
  1981. */
  1982. #if !FF_API_SWS_VECTOR
  1983. static
  1984. #endif
  1985. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1986. {
  1987. int i;
  1988. double max = 0;
  1989. double min = 0;
  1990. double range;
  1991. for (i = 0; i < a->length; i++)
  1992. if (a->coeff[i] > max)
  1993. max = a->coeff[i];
  1994. for (i = 0; i < a->length; i++)
  1995. if (a->coeff[i] < min)
  1996. min = a->coeff[i];
  1997. range = max - min;
  1998. for (i = 0; i < a->length; i++) {
  1999. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  2000. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  2001. for (; x > 0; x--)
  2002. av_log(log_ctx, log_level, " ");
  2003. av_log(log_ctx, log_level, "|\n");
  2004. }
  2005. }
  2006. void sws_freeVec(SwsVector *a)
  2007. {
  2008. if (!a)
  2009. return;
  2010. av_freep(&a->coeff);
  2011. a->length = 0;
  2012. av_free(a);
  2013. }
  2014. void sws_freeFilter(SwsFilter *filter)
  2015. {
  2016. if (!filter)
  2017. return;
  2018. sws_freeVec(filter->lumH);
  2019. sws_freeVec(filter->lumV);
  2020. sws_freeVec(filter->chrH);
  2021. sws_freeVec(filter->chrV);
  2022. av_free(filter);
  2023. }
  2024. void sws_freeContext(SwsContext *c)
  2025. {
  2026. int i;
  2027. if (!c)
  2028. return;
  2029. for (i = 0; i < 4; i++)
  2030. av_freep(&c->dither_error[i]);
  2031. av_freep(&c->vLumFilter);
  2032. av_freep(&c->vChrFilter);
  2033. av_freep(&c->hLumFilter);
  2034. av_freep(&c->hChrFilter);
  2035. #if HAVE_ALTIVEC
  2036. av_freep(&c->vYCoeffsBank);
  2037. av_freep(&c->vCCoeffsBank);
  2038. #endif
  2039. av_freep(&c->vLumFilterPos);
  2040. av_freep(&c->vChrFilterPos);
  2041. av_freep(&c->hLumFilterPos);
  2042. av_freep(&c->hChrFilterPos);
  2043. #if HAVE_MMX_INLINE
  2044. #if USE_MMAP
  2045. if (c->lumMmxextFilterCode)
  2046. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  2047. if (c->chrMmxextFilterCode)
  2048. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  2049. #elif HAVE_VIRTUALALLOC
  2050. if (c->lumMmxextFilterCode)
  2051. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  2052. if (c->chrMmxextFilterCode)
  2053. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  2054. #else
  2055. av_free(c->lumMmxextFilterCode);
  2056. av_free(c->chrMmxextFilterCode);
  2057. #endif
  2058. c->lumMmxextFilterCode = NULL;
  2059. c->chrMmxextFilterCode = NULL;
  2060. #endif /* HAVE_MMX_INLINE */
  2061. av_freep(&c->yuvTable);
  2062. av_freep(&c->formatConvBuffer);
  2063. sws_freeContext(c->cascaded_context[0]);
  2064. sws_freeContext(c->cascaded_context[1]);
  2065. sws_freeContext(c->cascaded_context[2]);
  2066. memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
  2067. av_freep(&c->cascaded_tmp[0]);
  2068. av_freep(&c->cascaded1_tmp[0]);
  2069. av_freep(&c->gamma);
  2070. av_freep(&c->inv_gamma);
  2071. ff_free_filters(c);
  2072. av_free(c);
  2073. }
  2074. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  2075. int srcH, enum AVPixelFormat srcFormat,
  2076. int dstW, int dstH,
  2077. enum AVPixelFormat dstFormat, int flags,
  2078. SwsFilter *srcFilter,
  2079. SwsFilter *dstFilter,
  2080. const double *param)
  2081. {
  2082. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  2083. SWS_PARAM_DEFAULT };
  2084. int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
  2085. src_v_chr_pos = -513, dst_v_chr_pos = -513;
  2086. if (!param)
  2087. param = default_param;
  2088. if (context &&
  2089. (context->srcW != srcW ||
  2090. context->srcH != srcH ||
  2091. context->srcFormat != srcFormat ||
  2092. context->dstW != dstW ||
  2093. context->dstH != dstH ||
  2094. context->dstFormat != dstFormat ||
  2095. context->flags != flags ||
  2096. context->param[0] != param[0] ||
  2097. context->param[1] != param[1])) {
  2098. av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
  2099. av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
  2100. av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
  2101. av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
  2102. sws_freeContext(context);
  2103. context = NULL;
  2104. }
  2105. if (!context) {
  2106. if (!(context = sws_alloc_context()))
  2107. return NULL;
  2108. context->srcW = srcW;
  2109. context->srcH = srcH;
  2110. context->srcFormat = srcFormat;
  2111. context->dstW = dstW;
  2112. context->dstH = dstH;
  2113. context->dstFormat = dstFormat;
  2114. context->flags = flags;
  2115. context->param[0] = param[0];
  2116. context->param[1] = param[1];
  2117. av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
  2118. av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
  2119. av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
  2120. av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
  2121. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  2122. sws_freeContext(context);
  2123. return NULL;
  2124. }
  2125. }
  2126. return context;
  2127. }