You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

829 lines
25KB

  1. /*
  2. * 4XM codec
  3. * Copyright (c) 2003 Michael Niedermayer
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file 4xm.c
  23. * 4XM codec.
  24. */
  25. #include "avcodec.h"
  26. #include "dsputil.h"
  27. #include "mpegvideo.h"
  28. //#undef NDEBUG
  29. //#include <assert.h>
  30. #define BLOCK_TYPE_VLC_BITS 5
  31. #define ACDC_VLC_BITS 9
  32. #define CFRAME_BUFFER_COUNT 100
  33. static const uint8_t block_type_tab[2][4][8][2]={
  34. {
  35. { //{8,4,2}x{8,4,2}
  36. { 0,1}, { 2,2}, { 6,3}, {14,4}, {30,5}, {31,5}, { 0,0}
  37. },{ //{8,4}x1
  38. { 0,1}, { 0,0}, { 2,2}, { 6,3}, {14,4}, {15,4}, { 0,0}
  39. },{ //1x{8,4}
  40. { 0,1}, { 2,2}, { 0,0}, { 6,3}, {14,4}, {15,4}, { 0,0}
  41. },{ //1x2, 2x1
  42. { 0,1}, { 0,0}, { 0,0}, { 2,2}, { 6,3}, {14,4}, {15,4}
  43. }
  44. },{
  45. { //{8,4,2}x{8,4,2}
  46. { 1,2}, { 4,3}, { 5,3}, {0,2}, {6,3}, {7,3}, {0,0}
  47. },{//{8,4}x1
  48. { 1,2}, { 0,0}, { 2,2}, {0,2}, {6,3}, {7,3}, {0,0}
  49. },{//1x{8,4}
  50. { 1,2}, { 2,2}, { 0,0}, {0,2}, {6,3}, {7,3}, {0,0}
  51. },{//1x2, 2x1
  52. { 1,2}, { 0,0}, { 0,0}, {0,2}, {2,2}, {6,3}, {7,3}
  53. }
  54. }
  55. };
  56. static const uint8_t size2index[4][4]={
  57. {-1, 3, 1, 1},
  58. { 3, 0, 0, 0},
  59. { 2, 0, 0, 0},
  60. { 2, 0, 0, 0},
  61. };
  62. static const int8_t mv[256][2]={
  63. { 0, 0},{ 0, -1},{ -1, 0},{ 1, 0},{ 0, 1},{ -1, -1},{ 1, -1},{ -1, 1},
  64. { 1, 1},{ 0, -2},{ -2, 0},{ 2, 0},{ 0, 2},{ -1, -2},{ 1, -2},{ -2, -1},
  65. { 2, -1},{ -2, 1},{ 2, 1},{ -1, 2},{ 1, 2},{ -2, -2},{ 2, -2},{ -2, 2},
  66. { 2, 2},{ 0, -3},{ -3, 0},{ 3, 0},{ 0, 3},{ -1, -3},{ 1, -3},{ -3, -1},
  67. { 3, -1},{ -3, 1},{ 3, 1},{ -1, 3},{ 1, 3},{ -2, -3},{ 2, -3},{ -3, -2},
  68. { 3, -2},{ -3, 2},{ 3, 2},{ -2, 3},{ 2, 3},{ 0, -4},{ -4, 0},{ 4, 0},
  69. { 0, 4},{ -1, -4},{ 1, -4},{ -4, -1},{ 4, -1},{ 4, 1},{ -1, 4},{ 1, 4},
  70. { -3, -3},{ -3, 3},{ 3, 3},{ -2, -4},{ -4, -2},{ 4, -2},{ -4, 2},{ -2, 4},
  71. { 2, 4},{ -3, -4},{ 3, -4},{ 4, -3},{ -5, 0},{ -4, 3},{ -3, 4},{ 3, 4},
  72. { -1, -5},{ -5, -1},{ -5, 1},{ -1, 5},{ -2, -5},{ 2, -5},{ 5, -2},{ 5, 2},
  73. { -4, -4},{ -4, 4},{ -3, -5},{ -5, -3},{ -5, 3},{ 3, 5},{ -6, 0},{ 0, 6},
  74. { -6, -1},{ -6, 1},{ 1, 6},{ 2, -6},{ -6, 2},{ 2, 6},{ -5, -4},{ 5, 4},
  75. { 4, 5},{ -6, -3},{ 6, 3},{ -7, 0},{ -1, -7},{ 5, -5},{ -7, 1},{ -1, 7},
  76. { 4, -6},{ 6, 4},{ -2, -7},{ -7, 2},{ -3, -7},{ 7, -3},{ 3, 7},{ 6, -5},
  77. { 0, -8},{ -1, -8},{ -7, -4},{ -8, 1},{ 4, 7},{ 2, -8},{ -2, 8},{ 6, 6},
  78. { -8, 3},{ 5, -7},{ -5, 7},{ 8, -4},{ 0, -9},{ -9, -1},{ 1, 9},{ 7, -6},
  79. { -7, 6},{ -5, -8},{ -5, 8},{ -9, 3},{ 9, -4},{ 7, -7},{ 8, -6},{ 6, 8},
  80. { 10, 1},{-10, 2},{ 9, -5},{ 10, -3},{ -8, -7},{-10, -4},{ 6, -9},{-11, 0},
  81. { 11, 1},{-11, -2},{ -2, 11},{ 7, -9},{ -7, 9},{ 10, 6},{ -4, 11},{ 8, -9},
  82. { 8, 9},{ 5, 11},{ 7,-10},{ 12, -3},{ 11, 6},{ -9, -9},{ 8, 10},{ 5, 12},
  83. {-11, 7},{ 13, 2},{ 6,-12},{ 10, 9},{-11, 8},{ -7, 12},{ 0, 14},{ 14, -2},
  84. { -9, 11},{ -6, 13},{-14, -4},{ -5,-14},{ 5, 14},{-15, -1},{-14, -6},{ 3,-15},
  85. { 11,-11},{ -7, 14},{ -5, 15},{ 8,-14},{ 15, 6},{ 3, 16},{ 7,-15},{-16, 5},
  86. { 0, 17},{-16, -6},{-10, 14},{-16, 7},{ 12, 13},{-16, 8},{-17, 6},{-18, 3},
  87. { -7, 17},{ 15, 11},{ 16, 10},{ 2,-19},{ 3,-19},{-11,-16},{-18, 8},{-19, -6},
  88. { 2,-20},{-17,-11},{-10,-18},{ 8, 19},{-21, -1},{-20, 7},{ -4, 21},{ 21, 5},
  89. { 15, 16},{ 2,-22},{-10,-20},{-22, 5},{ 20,-11},{ -7,-22},{-12, 20},{ 23, -5},
  90. { 13,-20},{ 24, -2},{-15, 19},{-11, 22},{ 16, 19},{ 23,-10},{-18,-18},{ -9,-24},
  91. { 24,-10},{ -3, 26},{-23, 13},{-18,-20},{ 17, 21},{ -4, 27},{ 27, 6},{ 1,-28},
  92. {-11, 26},{-17,-23},{ 7, 28},{ 11,-27},{ 29, 5},{-23,-19},{-28,-11},{-21, 22},
  93. {-30, 7},{-17, 26},{-27, 16},{ 13, 29},{ 19,-26},{ 10,-31},{-14,-30},{ 20,-27},
  94. {-29, 18},{-16,-31},{-28,-22},{ 21,-30},{-25, 28},{ 26,-29},{ 25,-32},{-32,-32}
  95. };
  96. // this is simply the scaled down elementwise product of the standard jpeg quantizer table and the AAN premul table
  97. static const uint8_t dequant_table[64]={
  98. 16, 15, 13, 19, 24, 31, 28, 17,
  99. 17, 23, 25, 31, 36, 63, 45, 21,
  100. 18, 24, 27, 37, 52, 59, 49, 20,
  101. 16, 28, 34, 40, 60, 80, 51, 20,
  102. 18, 31, 48, 66, 68, 86, 56, 21,
  103. 19, 38, 56, 59, 64, 64, 48, 20,
  104. 27, 48, 55, 55, 56, 51, 35, 15,
  105. 20, 35, 34, 32, 31, 22, 15, 8,
  106. };
  107. static VLC block_type_vlc[2][4];
  108. typedef struct CFrameBuffer{
  109. unsigned int allocated_size;
  110. unsigned int size;
  111. int id;
  112. uint8_t *data;
  113. }CFrameBuffer;
  114. typedef struct FourXContext{
  115. AVCodecContext *avctx;
  116. DSPContext dsp;
  117. AVFrame current_picture, last_picture;
  118. GetBitContext pre_gb; ///< ac/dc prefix
  119. GetBitContext gb;
  120. uint8_t *bytestream;
  121. uint16_t *wordstream;
  122. int mv[256];
  123. VLC pre_vlc;
  124. int last_dc;
  125. DECLARE_ALIGNED_8(DCTELEM, block[6][64]);
  126. uint8_t *bitstream_buffer;
  127. unsigned int bitstream_buffer_size;
  128. int version;
  129. CFrameBuffer cfrm[CFRAME_BUFFER_COUNT];
  130. } FourXContext;
  131. #define FIX_1_082392200 70936
  132. #define FIX_1_414213562 92682
  133. #define FIX_1_847759065 121095
  134. #define FIX_2_613125930 171254
  135. #define MULTIPLY(var,const) (((var)*(const)) >> 16)
  136. static void idct(DCTELEM block[64]){
  137. int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  138. int tmp10, tmp11, tmp12, tmp13;
  139. int z5, z10, z11, z12, z13;
  140. int i;
  141. int temp[64];
  142. for(i=0; i<8; i++){
  143. tmp10 = block[8*0 + i] + block[8*4 + i];
  144. tmp11 = block[8*0 + i] - block[8*4 + i];
  145. tmp13 = block[8*2 + i] + block[8*6 + i];
  146. tmp12 = MULTIPLY(block[8*2 + i] - block[8*6 + i], FIX_1_414213562) - tmp13;
  147. tmp0 = tmp10 + tmp13;
  148. tmp3 = tmp10 - tmp13;
  149. tmp1 = tmp11 + tmp12;
  150. tmp2 = tmp11 - tmp12;
  151. z13 = block[8*5 + i] + block[8*3 + i];
  152. z10 = block[8*5 + i] - block[8*3 + i];
  153. z11 = block[8*1 + i] + block[8*7 + i];
  154. z12 = block[8*1 + i] - block[8*7 + i];
  155. tmp7 = z11 + z13;
  156. tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562);
  157. z5 = MULTIPLY(z10 + z12, FIX_1_847759065);
  158. tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5;
  159. tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5;
  160. tmp6 = tmp12 - tmp7;
  161. tmp5 = tmp11 - tmp6;
  162. tmp4 = tmp10 + tmp5;
  163. temp[8*0 + i] = tmp0 + tmp7;
  164. temp[8*7 + i] = tmp0 - tmp7;
  165. temp[8*1 + i] = tmp1 + tmp6;
  166. temp[8*6 + i] = tmp1 - tmp6;
  167. temp[8*2 + i] = tmp2 + tmp5;
  168. temp[8*5 + i] = tmp2 - tmp5;
  169. temp[8*4 + i] = tmp3 + tmp4;
  170. temp[8*3 + i] = tmp3 - tmp4;
  171. }
  172. for(i=0; i<8*8; i+=8){
  173. tmp10 = temp[0 + i] + temp[4 + i];
  174. tmp11 = temp[0 + i] - temp[4 + i];
  175. tmp13 = temp[2 + i] + temp[6 + i];
  176. tmp12 = MULTIPLY(temp[2 + i] - temp[6 + i], FIX_1_414213562) - tmp13;
  177. tmp0 = tmp10 + tmp13;
  178. tmp3 = tmp10 - tmp13;
  179. tmp1 = tmp11 + tmp12;
  180. tmp2 = tmp11 - tmp12;
  181. z13 = temp[5 + i] + temp[3 + i];
  182. z10 = temp[5 + i] - temp[3 + i];
  183. z11 = temp[1 + i] + temp[7 + i];
  184. z12 = temp[1 + i] - temp[7 + i];
  185. tmp7 = z11 + z13;
  186. tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562);
  187. z5 = MULTIPLY(z10 + z12, FIX_1_847759065);
  188. tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5;
  189. tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5;
  190. tmp6 = tmp12 - tmp7;
  191. tmp5 = tmp11 - tmp6;
  192. tmp4 = tmp10 + tmp5;
  193. block[0 + i] = (tmp0 + tmp7)>>6;
  194. block[7 + i] = (tmp0 - tmp7)>>6;
  195. block[1 + i] = (tmp1 + tmp6)>>6;
  196. block[6 + i] = (tmp1 - tmp6)>>6;
  197. block[2 + i] = (tmp2 + tmp5)>>6;
  198. block[5 + i] = (tmp2 - tmp5)>>6;
  199. block[4 + i] = (tmp3 + tmp4)>>6;
  200. block[3 + i] = (tmp3 - tmp4)>>6;
  201. }
  202. }
  203. static void init_vlcs(FourXContext *f){
  204. int i;
  205. for(i=0; i<8; i++){
  206. init_vlc(&block_type_vlc[0][i], BLOCK_TYPE_VLC_BITS, 7,
  207. &block_type_tab[0][i][0][1], 2, 1,
  208. &block_type_tab[0][i][0][0], 2, 1, 1);
  209. }
  210. }
  211. static void init_mv(FourXContext *f){
  212. int i;
  213. for(i=0; i<256; i++){
  214. if(f->version)
  215. f->mv[i] = mv[i][0] + mv[i][1] *f->current_picture.linesize[0]/2;
  216. else
  217. f->mv[i] = (i&15) - 8 + ((i>>4)-8)*f->current_picture.linesize[0]/2;
  218. }
  219. }
  220. static inline void mcdc(uint16_t *dst, uint16_t *src, int log2w, int h, int stride, int scale, int dc){
  221. int i;
  222. dc*= 0x10001;
  223. switch(log2w){
  224. case 0:
  225. for(i=0; i<h; i++){
  226. dst[0] = scale*src[0] + dc;
  227. if(scale) src += stride;
  228. dst += stride;
  229. }
  230. break;
  231. case 1:
  232. for(i=0; i<h; i++){
  233. ((uint32_t*)dst)[0] = scale*((uint32_t*)src)[0] + dc;
  234. if(scale) src += stride;
  235. dst += stride;
  236. }
  237. break;
  238. case 2:
  239. for(i=0; i<h; i++){
  240. ((uint32_t*)dst)[0] = scale*((uint32_t*)src)[0] + dc;
  241. ((uint32_t*)dst)[1] = scale*((uint32_t*)src)[1] + dc;
  242. if(scale) src += stride;
  243. dst += stride;
  244. }
  245. break;
  246. case 3:
  247. for(i=0; i<h; i++){
  248. ((uint32_t*)dst)[0] = scale*((uint32_t*)src)[0] + dc;
  249. ((uint32_t*)dst)[1] = scale*((uint32_t*)src)[1] + dc;
  250. ((uint32_t*)dst)[2] = scale*((uint32_t*)src)[2] + dc;
  251. ((uint32_t*)dst)[3] = scale*((uint32_t*)src)[3] + dc;
  252. if(scale) src += stride;
  253. dst += stride;
  254. }
  255. break;
  256. default: assert(0);
  257. }
  258. }
  259. static void decode_p_block(FourXContext *f, uint16_t *dst, uint16_t *src, int log2w, int log2h, int stride){
  260. const int index= size2index[log2h][log2w];
  261. const int h= 1<<log2h;
  262. int code= get_vlc2(&f->gb, block_type_vlc[1-f->version][index].table, BLOCK_TYPE_VLC_BITS, 1);
  263. assert(code>=0 && code<=6);
  264. if(code == 0){
  265. src += f->mv[ *f->bytestream++ ];
  266. mcdc(dst, src, log2w, h, stride, 1, 0);
  267. }else if(code == 1){
  268. log2h--;
  269. decode_p_block(f, dst , src , log2w, log2h, stride);
  270. decode_p_block(f, dst + (stride<<log2h), src + (stride<<log2h), log2w, log2h, stride);
  271. }else if(code == 2){
  272. log2w--;
  273. decode_p_block(f, dst , src , log2w, log2h, stride);
  274. decode_p_block(f, dst + (1<<log2w), src + (1<<log2w), log2w, log2h, stride);
  275. }else if(code == 3 && f->version==0){
  276. mcdc(dst, src, log2w, h, stride, 1, 0);
  277. }else if(code == 4){
  278. src += f->mv[ *f->bytestream++ ];
  279. mcdc(dst, src, log2w, h, stride, 1, le2me_16(*f->wordstream++));
  280. }else if(code == 5){
  281. mcdc(dst, src, log2w, h, stride, 0, le2me_16(*f->wordstream++));
  282. }else if(code == 6){
  283. if(log2w){
  284. dst[0] = le2me_16(*f->wordstream++);
  285. dst[1] = le2me_16(*f->wordstream++);
  286. }else{
  287. dst[0 ] = le2me_16(*f->wordstream++);
  288. dst[stride] = le2me_16(*f->wordstream++);
  289. }
  290. }
  291. }
  292. static int get32(void *p){
  293. return le2me_32(*(uint32_t*)p);
  294. }
  295. static int decode_p_frame(FourXContext *f, uint8_t *buf, int length){
  296. int x, y;
  297. const int width= f->avctx->width;
  298. const int height= f->avctx->height;
  299. uint16_t *src= (uint16_t*)f->last_picture.data[0];
  300. uint16_t *dst= (uint16_t*)f->current_picture.data[0];
  301. const int stride= f->current_picture.linesize[0]>>1;
  302. unsigned int bitstream_size, bytestream_size, wordstream_size, extra;
  303. if(f->version){
  304. extra=20;
  305. bitstream_size= get32(buf+8);
  306. wordstream_size= get32(buf+12);
  307. bytestream_size= get32(buf+16);
  308. }else{
  309. extra=0;
  310. bitstream_size = AV_RL16(buf-4);
  311. wordstream_size= AV_RL16(buf-2);
  312. bytestream_size= FFMAX(length - bitstream_size - wordstream_size, 0);
  313. }
  314. if(bitstream_size+ bytestream_size+ wordstream_size + extra != length
  315. || bitstream_size > (1<<26)
  316. || bytestream_size > (1<<26)
  317. || wordstream_size > (1<<26)
  318. ){
  319. av_log(f->avctx, AV_LOG_ERROR, "lengths %d %d %d %d\n", bitstream_size, bytestream_size, wordstream_size,
  320. bitstream_size+ bytestream_size+ wordstream_size - length);
  321. return -1;
  322. }
  323. f->bitstream_buffer= av_fast_realloc(f->bitstream_buffer, &f->bitstream_buffer_size, bitstream_size + FF_INPUT_BUFFER_PADDING_SIZE);
  324. f->dsp.bswap_buf((uint32_t*)f->bitstream_buffer, (uint32_t*)(buf + extra), bitstream_size/4);
  325. init_get_bits(&f->gb, f->bitstream_buffer, 8*bitstream_size);
  326. f->wordstream= (uint16_t*)(buf + extra + bitstream_size);
  327. f->bytestream= buf + extra + bitstream_size + wordstream_size;
  328. init_mv(f);
  329. for(y=0; y<height; y+=8){
  330. for(x=0; x<width; x+=8){
  331. decode_p_block(f, dst + x, src + x, 3, 3, stride);
  332. }
  333. src += 8*stride;
  334. dst += 8*stride;
  335. }
  336. if( bitstream_size != (get_bits_count(&f->gb)+31)/32*4
  337. || (((char*)f->wordstream - (char*)buf + 2)&~2) != extra + bitstream_size + wordstream_size
  338. || (((char*)f->bytestream - (char*)buf + 3)&~3) != extra + bitstream_size + wordstream_size + bytestream_size)
  339. av_log(f->avctx, AV_LOG_ERROR, " %d %td %td bytes left\n",
  340. bitstream_size - (get_bits_count(&f->gb)+31)/32*4,
  341. -(((char*)f->bytestream - (char*)buf + 3)&~3) + (extra + bitstream_size + wordstream_size + bytestream_size),
  342. -(((char*)f->wordstream - (char*)buf + 2)&~2) + (extra + bitstream_size + wordstream_size)
  343. );
  344. return 0;
  345. }
  346. /**
  347. * decode block and dequantize.
  348. * Note this is allmost identical to mjpeg
  349. */
  350. static int decode_i_block(FourXContext *f, DCTELEM *block){
  351. int code, i, j, level, val;
  352. /* DC coef */
  353. val = get_vlc2(&f->pre_gb, f->pre_vlc.table, ACDC_VLC_BITS, 3);
  354. if (val>>4){
  355. av_log(f->avctx, AV_LOG_ERROR, "error dc run != 0\n");
  356. }
  357. if(val)
  358. val = get_xbits(&f->gb, val);
  359. val = val * dequant_table[0] + f->last_dc;
  360. f->last_dc =
  361. block[0] = val;
  362. /* AC coefs */
  363. i = 1;
  364. for(;;) {
  365. code = get_vlc2(&f->pre_gb, f->pre_vlc.table, ACDC_VLC_BITS, 3);
  366. /* EOB */
  367. if (code == 0)
  368. break;
  369. if (code == 0xf0) {
  370. i += 16;
  371. } else {
  372. level = get_xbits(&f->gb, code & 0xf);
  373. i += code >> 4;
  374. if (i >= 64) {
  375. av_log(f->avctx, AV_LOG_ERROR, "run %d oveflow\n", i);
  376. return 0;
  377. }
  378. j= ff_zigzag_direct[i];
  379. block[j] = level * dequant_table[j];
  380. i++;
  381. if (i >= 64)
  382. break;
  383. }
  384. }
  385. return 0;
  386. }
  387. static inline void idct_put(FourXContext *f, int x, int y){
  388. DCTELEM (*block)[64]= f->block;
  389. int stride= f->current_picture.linesize[0]>>1;
  390. int i;
  391. uint16_t *dst = ((uint16_t*)f->current_picture.data[0]) + y * stride + x;
  392. for(i=0; i<4; i++){
  393. block[i][0] += 0x80*8*8;
  394. idct(block[i]);
  395. }
  396. if(!(f->avctx->flags&CODEC_FLAG_GRAY)){
  397. for(i=4; i<6; i++) idct(block[i]);
  398. }
  399. /* Note transform is:
  400. y= ( 1b + 4g + 2r)/14
  401. cb=( 3b - 2g - 1r)/14
  402. cr=(-1b - 4g + 5r)/14
  403. */
  404. for(y=0; y<8; y++){
  405. for(x=0; x<8; x++){
  406. DCTELEM *temp= block[(x>>2) + 2*(y>>2)] + 2*(x&3) + 2*8*(y&3); //FIXME optimize
  407. int cb= block[4][x + 8*y];
  408. int cr= block[5][x + 8*y];
  409. int cg= (cb + cr)>>1;
  410. int y;
  411. cb+=cb;
  412. y = temp[0];
  413. dst[0 ]= ((y+cb)>>3) + (((y-cg)&0xFC)<<3) + (((y+cr)&0xF8)<<8);
  414. y = temp[1];
  415. dst[1 ]= ((y+cb)>>3) + (((y-cg)&0xFC)<<3) + (((y+cr)&0xF8)<<8);
  416. y = temp[8];
  417. dst[ stride]= ((y+cb)>>3) + (((y-cg)&0xFC)<<3) + (((y+cr)&0xF8)<<8);
  418. y = temp[9];
  419. dst[1+stride]= ((y+cb)>>3) + (((y-cg)&0xFC)<<3) + (((y+cr)&0xF8)<<8);
  420. dst += 2;
  421. }
  422. dst += 2*stride - 2*8;
  423. }
  424. }
  425. static int decode_i_mb(FourXContext *f){
  426. int i;
  427. f->dsp.clear_blocks(f->block[0]);
  428. for(i=0; i<6; i++){
  429. if(decode_i_block(f, f->block[i]) < 0)
  430. return -1;
  431. }
  432. return 0;
  433. }
  434. static uint8_t *read_huffman_tables(FourXContext *f, uint8_t * const buf){
  435. int frequency[512];
  436. uint8_t flag[512];
  437. int up[512];
  438. uint8_t len_tab[257];
  439. int bits_tab[257];
  440. int start, end;
  441. uint8_t *ptr= buf;
  442. int j;
  443. memset(frequency, 0, sizeof(frequency));
  444. memset(up, -1, sizeof(up));
  445. start= *ptr++;
  446. end= *ptr++;
  447. for(;;){
  448. int i;
  449. for(i=start; i<=end; i++){
  450. frequency[i]= *ptr++;
  451. }
  452. start= *ptr++;
  453. if(start==0) break;
  454. end= *ptr++;
  455. }
  456. frequency[256]=1;
  457. while((ptr - buf)&3) ptr++; // 4byte align
  458. for(j=257; j<512; j++){
  459. int min_freq[2]= {256*256, 256*256};
  460. int smallest[2]= {0, 0};
  461. int i;
  462. for(i=0; i<j; i++){
  463. if(frequency[i] == 0) continue;
  464. if(frequency[i] < min_freq[1]){
  465. if(frequency[i] < min_freq[0]){
  466. min_freq[1]= min_freq[0]; smallest[1]= smallest[0];
  467. min_freq[0]= frequency[i];smallest[0]= i;
  468. }else{
  469. min_freq[1]= frequency[i];smallest[1]= i;
  470. }
  471. }
  472. }
  473. if(min_freq[1] == 256*256) break;
  474. frequency[j]= min_freq[0] + min_freq[1];
  475. flag[ smallest[0] ]= 0;
  476. flag[ smallest[1] ]= 1;
  477. up[ smallest[0] ]=
  478. up[ smallest[1] ]= j;
  479. frequency[ smallest[0] ]= frequency[ smallest[1] ]= 0;
  480. }
  481. for(j=0; j<257; j++){
  482. int node;
  483. int len=0;
  484. int bits=0;
  485. for(node= j; up[node] != -1; node= up[node]){
  486. bits += flag[node]<<len;
  487. len++;
  488. if(len > 31) av_log(f->avctx, AV_LOG_ERROR, "vlc length overflow\n"); //can this happen at all ?
  489. }
  490. bits_tab[j]= bits;
  491. len_tab[j]= len;
  492. }
  493. init_vlc(&f->pre_vlc, ACDC_VLC_BITS, 257,
  494. len_tab , 1, 1,
  495. bits_tab, 4, 4, 0);
  496. return ptr;
  497. }
  498. static int mix(int c0, int c1){
  499. int blue = 2*(c0&0x001F) + (c1&0x001F);
  500. int green= (2*(c0&0x03E0) + (c1&0x03E0))>>5;
  501. int red = 2*(c0>>10) + (c1>>10);
  502. return red/3*1024 + green/3*32 + blue/3;
  503. }
  504. static int decode_i2_frame(FourXContext *f, uint8_t *buf, int length){
  505. int x, y, x2, y2;
  506. const int width= f->avctx->width;
  507. const int height= f->avctx->height;
  508. uint16_t *dst= (uint16_t*)f->current_picture.data[0];
  509. const int stride= f->current_picture.linesize[0]>>1;
  510. for(y=0; y<height; y+=16){
  511. for(x=0; x<width; x+=16){
  512. unsigned int color[4], bits;
  513. memset(color, 0, sizeof(color));
  514. //warning following is purely guessed ...
  515. color[0]= AV_RN16(buf); buf+=2; //FIXME use bytestream
  516. color[1]= AV_RN16(buf); buf+=2;
  517. if(color[0]&0x8000) av_log(NULL, AV_LOG_ERROR, "unk bit 1\n");
  518. if(color[1]&0x8000) av_log(NULL, AV_LOG_ERROR, "unk bit 2\n");
  519. color[2]= mix(color[0], color[1]);
  520. color[3]= mix(color[1], color[0]);
  521. bits= AV_RL32(buf); buf+= 4;
  522. for(y2=0; y2<16; y2++){
  523. for(x2=0; x2<16; x2++){
  524. int index= 2*(x2>>2) + 8*(y2>>2);
  525. dst[y2*stride+x2]= color[(bits>>index)&3];
  526. }
  527. }
  528. dst+=16;
  529. }
  530. dst += 16*stride - width;
  531. }
  532. return 0;
  533. }
  534. static int decode_i_frame(FourXContext *f, uint8_t *buf, int length){
  535. int x, y;
  536. const int width= f->avctx->width;
  537. const int height= f->avctx->height;
  538. uint16_t *dst= (uint16_t*)f->current_picture.data[0];
  539. const int stride= f->current_picture.linesize[0]>>1;
  540. const unsigned int bitstream_size= get32(buf);
  541. const int token_count av_unused = get32(buf + bitstream_size + 8);
  542. unsigned int prestream_size= 4*get32(buf + bitstream_size + 4);
  543. uint8_t *prestream= buf + bitstream_size + 12;
  544. if(prestream_size + bitstream_size + 12 != length
  545. || bitstream_size > (1<<26)
  546. || prestream_size > (1<<26)){
  547. av_log(f->avctx, AV_LOG_ERROR, "size mismatch %d %d %d\n", prestream_size, bitstream_size, length);
  548. return -1;
  549. }
  550. prestream= read_huffman_tables(f, prestream);
  551. init_get_bits(&f->gb, buf + 4, 8*bitstream_size);
  552. prestream_size= length + buf - prestream;
  553. f->bitstream_buffer= av_fast_realloc(f->bitstream_buffer, &f->bitstream_buffer_size, prestream_size + FF_INPUT_BUFFER_PADDING_SIZE);
  554. f->dsp.bswap_buf((uint32_t*)f->bitstream_buffer, (uint32_t*)prestream, prestream_size/4);
  555. init_get_bits(&f->pre_gb, f->bitstream_buffer, 8*prestream_size);
  556. f->last_dc= 0*128*8*8;
  557. for(y=0; y<height; y+=16){
  558. for(x=0; x<width; x+=16){
  559. if(decode_i_mb(f) < 0)
  560. return -1;
  561. idct_put(f, x, y);
  562. }
  563. dst += 16*stride;
  564. }
  565. if(get_vlc2(&f->pre_gb, f->pre_vlc.table, ACDC_VLC_BITS, 3) != 256)
  566. av_log(f->avctx, AV_LOG_ERROR, "end mismatch\n");
  567. return 0;
  568. }
  569. static int decode_frame(AVCodecContext *avctx,
  570. void *data, int *data_size,
  571. uint8_t *buf, int buf_size)
  572. {
  573. FourXContext * const f = avctx->priv_data;
  574. AVFrame *picture = data;
  575. AVFrame *p, temp;
  576. int i, frame_4cc, frame_size;
  577. frame_4cc= get32(buf);
  578. if(buf_size != get32(buf+4)+8 || buf_size < 20){
  579. av_log(f->avctx, AV_LOG_ERROR, "size mismatch %d %d\n", buf_size, get32(buf+4));
  580. }
  581. if(frame_4cc == ff_get_fourcc("cfrm")){
  582. int free_index=-1;
  583. const int data_size= buf_size - 20;
  584. const int id= get32(buf+12);
  585. const int whole_size= get32(buf+16);
  586. CFrameBuffer *cfrm;
  587. for(i=0; i<CFRAME_BUFFER_COUNT; i++){
  588. if(f->cfrm[i].id && f->cfrm[i].id < avctx->frame_number)
  589. av_log(f->avctx, AV_LOG_ERROR, "lost c frame %d\n", f->cfrm[i].id);
  590. }
  591. for(i=0; i<CFRAME_BUFFER_COUNT; i++){
  592. if(f->cfrm[i].id == id) break;
  593. if(f->cfrm[i].size == 0 ) free_index= i;
  594. }
  595. if(i>=CFRAME_BUFFER_COUNT){
  596. i= free_index;
  597. f->cfrm[i].id= id;
  598. }
  599. cfrm= &f->cfrm[i];
  600. cfrm->data= av_fast_realloc(cfrm->data, &cfrm->allocated_size, cfrm->size + data_size + FF_INPUT_BUFFER_PADDING_SIZE);
  601. if(!cfrm->data){ //explicit check needed as memcpy below might not catch a NULL
  602. av_log(f->avctx, AV_LOG_ERROR, "realloc falure");
  603. return -1;
  604. }
  605. memcpy(cfrm->data + cfrm->size, buf+20, data_size);
  606. cfrm->size += data_size;
  607. if(cfrm->size >= whole_size){
  608. buf= cfrm->data;
  609. frame_size= cfrm->size;
  610. if(id != avctx->frame_number){
  611. av_log(f->avctx, AV_LOG_ERROR, "cframe id mismatch %d %d\n", id, avctx->frame_number);
  612. }
  613. cfrm->size= cfrm->id= 0;
  614. frame_4cc= ff_get_fourcc("pfrm");
  615. }else
  616. return buf_size;
  617. }else{
  618. buf= buf + 12;
  619. frame_size= buf_size - 12;
  620. }
  621. temp= f->current_picture;
  622. f->current_picture= f->last_picture;
  623. f->last_picture= temp;
  624. p= &f->current_picture;
  625. avctx->coded_frame= p;
  626. avctx->flags |= CODEC_FLAG_EMU_EDGE; // alternatively we would have to use our own buffer management
  627. if(p->data[0])
  628. avctx->release_buffer(avctx, p);
  629. p->reference= 1;
  630. if(avctx->get_buffer(avctx, p) < 0){
  631. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  632. return -1;
  633. }
  634. if(frame_4cc == ff_get_fourcc("ifr2")){
  635. p->pict_type= I_TYPE;
  636. if(decode_i2_frame(f, buf-4, frame_size) < 0)
  637. return -1;
  638. }else if(frame_4cc == ff_get_fourcc("ifrm")){
  639. p->pict_type= I_TYPE;
  640. if(decode_i_frame(f, buf, frame_size) < 0)
  641. return -1;
  642. }else if(frame_4cc == ff_get_fourcc("pfrm") || frame_4cc == ff_get_fourcc("pfr2")){
  643. p->pict_type= P_TYPE;
  644. if(decode_p_frame(f, buf, frame_size) < 0)
  645. return -1;
  646. }else if(frame_4cc == ff_get_fourcc("snd_")){
  647. av_log(avctx, AV_LOG_ERROR, "ignoring snd_ chunk length:%d\n", buf_size);
  648. }else{
  649. av_log(avctx, AV_LOG_ERROR, "ignoring unknown chunk length:%d\n", buf_size);
  650. }
  651. p->key_frame= p->pict_type == I_TYPE;
  652. *picture= *p;
  653. *data_size = sizeof(AVPicture);
  654. emms_c();
  655. return buf_size;
  656. }
  657. static void common_init(AVCodecContext *avctx){
  658. FourXContext * const f = avctx->priv_data;
  659. dsputil_init(&f->dsp, avctx);
  660. f->avctx= avctx;
  661. }
  662. static int decode_init(AVCodecContext *avctx){
  663. FourXContext * const f = avctx->priv_data;
  664. f->version= avctx->codec_tag == 0x40000;
  665. common_init(avctx);
  666. init_vlcs(f);
  667. if(f->version) avctx->pix_fmt= PIX_FMT_RGB565;
  668. else avctx->pix_fmt= PIX_FMT_RGB555;
  669. return 0;
  670. }
  671. static int decode_end(AVCodecContext *avctx){
  672. FourXContext * const f = avctx->priv_data;
  673. int i;
  674. av_freep(&f->bitstream_buffer);
  675. f->bitstream_buffer_size=0;
  676. for(i=0; i<CFRAME_BUFFER_COUNT; i++){
  677. av_freep(&f->cfrm[i].data);
  678. f->cfrm[i].allocated_size= 0;
  679. }
  680. free_vlc(&f->pre_vlc);
  681. return 0;
  682. }
  683. AVCodec fourxm_decoder = {
  684. "4xm",
  685. CODEC_TYPE_VIDEO,
  686. CODEC_ID_4XM,
  687. sizeof(FourXContext),
  688. decode_init,
  689. NULL,
  690. decode_end,
  691. decode_frame,
  692. /*CODEC_CAP_DR1,*/
  693. };