You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1038 lines
38KB

  1. /*
  2. * MPEG-4 Parametric Stereo decoding functions
  3. * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include <stdint.h>
  22. #include "libavutil/mathematics.h"
  23. #include "avcodec.h"
  24. #include "get_bits.h"
  25. #include "ps.h"
  26. #include "ps_tablegen.h"
  27. #include "psdata.c"
  28. #define PS_BASELINE 0 //< Operate in Baseline PS mode
  29. //< Baseline implies 10 or 20 stereo bands,
  30. //< mixing mode A, and no ipd/opd
  31. #define numQMFSlots 32 //numTimeSlots * RATE
  32. static const int8_t num_env_tab[2][4] = {
  33. { 0, 1, 2, 4, },
  34. { 1, 2, 3, 4, },
  35. };
  36. static const int8_t nr_iidicc_par_tab[] = {
  37. 10, 20, 34, 10, 20, 34,
  38. };
  39. static const int8_t nr_iidopd_par_tab[] = {
  40. 5, 11, 17, 5, 11, 17,
  41. };
  42. enum {
  43. huff_iid_df1,
  44. huff_iid_dt1,
  45. huff_iid_df0,
  46. huff_iid_dt0,
  47. huff_icc_df,
  48. huff_icc_dt,
  49. huff_ipd_df,
  50. huff_ipd_dt,
  51. huff_opd_df,
  52. huff_opd_dt,
  53. };
  54. static const int huff_iid[] = {
  55. huff_iid_df0,
  56. huff_iid_df1,
  57. huff_iid_dt0,
  58. huff_iid_dt1,
  59. };
  60. static VLC vlc_ps[10];
  61. /**
  62. * Read Inter-channel Intensity Difference/Inter-Channel Coherence/
  63. * Inter-channel Phase Difference/Overall Phase Difference parameters from the
  64. * bitstream.
  65. *
  66. * @param avctx contains the current codec context
  67. * @param gb pointer to the input bitstream
  68. * @param ps pointer to the Parametric Stereo context
  69. * @param par pointer to the parameter to be read
  70. * @param e envelope to decode
  71. * @param dt 1: time delta-coded, 0: frequency delta-coded
  72. */
  73. #define READ_PAR_DATA(PAR, OFFSET, MASK, ERR_CONDITION) \
  74. static int read_ ## PAR ## _data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, \
  75. int8_t (*PAR)[PS_MAX_NR_IIDICC], int table_idx, int e, int dt) \
  76. { \
  77. int b, num = ps->nr_ ## PAR ## _par; \
  78. VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table; \
  79. if (dt) { \
  80. int e_prev = e ? e - 1 : ps->num_env_old - 1; \
  81. e_prev = FFMAX(e_prev, 0); \
  82. for (b = 0; b < num; b++) { \
  83. int val = PAR[e_prev][b] + get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
  84. if (MASK) val &= MASK; \
  85. PAR[e][b] = val; \
  86. if (ERR_CONDITION) \
  87. goto err; \
  88. } \
  89. } else { \
  90. int val = 0; \
  91. for (b = 0; b < num; b++) { \
  92. val += get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
  93. if (MASK) val &= MASK; \
  94. PAR[e][b] = val; \
  95. if (ERR_CONDITION) \
  96. goto err; \
  97. } \
  98. } \
  99. return 0; \
  100. err: \
  101. av_log(avctx, AV_LOG_ERROR, "illegal "#PAR"\n"); \
  102. return -1; \
  103. }
  104. READ_PAR_DATA(iid, huff_offset[table_idx], 0, FFABS(ps->iid_par[e][b]) > 7 + 8 * ps->iid_quant)
  105. READ_PAR_DATA(icc, huff_offset[table_idx], 0, ps->icc_par[e][b] > 7U)
  106. READ_PAR_DATA(ipdopd, 0, 0x07, 0)
  107. static int ps_read_extension_data(GetBitContext *gb, PSContext *ps, int ps_extension_id)
  108. {
  109. int e;
  110. int count = get_bits_count(gb);
  111. if (ps_extension_id)
  112. return 0;
  113. ps->enable_ipdopd = get_bits1(gb);
  114. if (ps->enable_ipdopd) {
  115. for (e = 0; e < ps->num_env; e++) {
  116. int dt = get_bits1(gb);
  117. read_ipdopd_data(NULL, gb, ps, ps->ipd_par, dt ? huff_ipd_dt : huff_ipd_df, e, dt);
  118. dt = get_bits1(gb);
  119. read_ipdopd_data(NULL, gb, ps, ps->opd_par, dt ? huff_opd_dt : huff_opd_df, e, dt);
  120. }
  121. }
  122. skip_bits1(gb); //reserved_ps
  123. return get_bits_count(gb) - count;
  124. }
  125. static void ipdopd_reset(int8_t *opd_hist, int8_t *ipd_hist)
  126. {
  127. int i;
  128. for (i = 0; i < PS_MAX_NR_IPDOPD; i++) {
  129. opd_hist[i] = 0;
  130. ipd_hist[i] = 0;
  131. }
  132. }
  133. int ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
  134. {
  135. int e;
  136. int bit_count_start = get_bits_count(gb_host);
  137. int header;
  138. int bits_consumed;
  139. GetBitContext gbc = *gb_host, *gb = &gbc;
  140. header = get_bits1(gb);
  141. if (header) { //enable_ps_header
  142. ps->enable_iid = get_bits1(gb);
  143. if (ps->enable_iid) {
  144. int iid_mode = get_bits(gb, 3);
  145. if (iid_mode > 5) {
  146. av_log(avctx, AV_LOG_ERROR, "iid_mode %d is reserved.\n",
  147. iid_mode);
  148. goto err;
  149. }
  150. ps->nr_iid_par = nr_iidicc_par_tab[iid_mode];
  151. ps->iid_quant = iid_mode > 2;
  152. ps->nr_ipdopd_par = nr_iidopd_par_tab[iid_mode];
  153. }
  154. ps->enable_icc = get_bits1(gb);
  155. if (ps->enable_icc) {
  156. ps->icc_mode = get_bits(gb, 3);
  157. if (ps->icc_mode > 5) {
  158. av_log(avctx, AV_LOG_ERROR, "icc_mode %d is reserved.\n",
  159. ps->icc_mode);
  160. goto err;
  161. }
  162. ps->nr_icc_par = nr_iidicc_par_tab[ps->icc_mode];
  163. }
  164. ps->enable_ext = get_bits1(gb);
  165. }
  166. ps->frame_class = get_bits1(gb);
  167. ps->num_env_old = ps->num_env;
  168. ps->num_env = num_env_tab[ps->frame_class][get_bits(gb, 2)];
  169. ps->border_position[0] = -1;
  170. if (ps->frame_class) {
  171. for (e = 1; e <= ps->num_env; e++)
  172. ps->border_position[e] = get_bits(gb, 5);
  173. } else
  174. for (e = 1; e <= ps->num_env; e++)
  175. ps->border_position[e] = e * numQMFSlots / ps->num_env - 1;
  176. if (ps->enable_iid) {
  177. for (e = 0; e < ps->num_env; e++) {
  178. int dt = get_bits1(gb);
  179. if (read_iid_data(avctx, gb, ps, ps->iid_par, huff_iid[2*dt+ps->iid_quant], e, dt))
  180. goto err;
  181. }
  182. } else
  183. memset(ps->iid_par, 0, sizeof(ps->iid_par));
  184. if (ps->enable_icc)
  185. for (e = 0; e < ps->num_env; e++) {
  186. int dt = get_bits1(gb);
  187. if (read_icc_data(avctx, gb, ps, ps->icc_par, dt ? huff_icc_dt : huff_icc_df, e, dt))
  188. goto err;
  189. }
  190. else
  191. memset(ps->icc_par, 0, sizeof(ps->icc_par));
  192. if (ps->enable_ext) {
  193. int cnt = get_bits(gb, 4);
  194. if (cnt == 15) {
  195. cnt += get_bits(gb, 8);
  196. }
  197. cnt *= 8;
  198. while (cnt > 7) {
  199. int ps_extension_id = get_bits(gb, 2);
  200. cnt -= 2 + ps_read_extension_data(gb, ps, ps_extension_id);
  201. }
  202. if (cnt < 0) {
  203. av_log(avctx, AV_LOG_ERROR, "ps extension overflow %d", cnt);
  204. goto err;
  205. }
  206. skip_bits(gb, cnt);
  207. }
  208. ps->enable_ipdopd &= !PS_BASELINE;
  209. //Fix up envelopes
  210. if (!ps->num_env || ps->border_position[ps->num_env] < numQMFSlots - 1) {
  211. //Create a fake envelope
  212. int source = ps->num_env ? ps->num_env - 1 : ps->num_env_old - 1;
  213. if (source >= 0 && source != ps->num_env) {
  214. if (ps->enable_iid) {
  215. memcpy(ps->iid_par+ps->num_env, ps->iid_par+source, sizeof(ps->iid_par[0]));
  216. }
  217. if (ps->enable_icc) {
  218. memcpy(ps->icc_par+ps->num_env, ps->icc_par+source, sizeof(ps->icc_par[0]));
  219. }
  220. if (ps->enable_ipdopd) {
  221. memcpy(ps->ipd_par+ps->num_env, ps->ipd_par+source, sizeof(ps->ipd_par[0]));
  222. memcpy(ps->opd_par+ps->num_env, ps->opd_par+source, sizeof(ps->opd_par[0]));
  223. }
  224. }
  225. ps->num_env++;
  226. ps->border_position[ps->num_env] = numQMFSlots - 1;
  227. }
  228. ps->is34bands_old = ps->is34bands;
  229. if (!PS_BASELINE && (ps->enable_iid || ps->enable_icc))
  230. ps->is34bands = (ps->enable_iid && ps->nr_iid_par == 34) ||
  231. (ps->enable_icc && ps->nr_icc_par == 34);
  232. //Baseline
  233. if (!ps->enable_ipdopd) {
  234. memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
  235. memset(ps->opd_par, 0, sizeof(ps->opd_par));
  236. }
  237. if (header)
  238. ps->start = 1;
  239. bits_consumed = get_bits_count(gb) - bit_count_start;
  240. if (bits_consumed <= bits_left) {
  241. skip_bits_long(gb_host, bits_consumed);
  242. return bits_consumed;
  243. }
  244. av_log(avctx, AV_LOG_ERROR, "Expected to read %d PS bits actually read %d.\n", bits_left, bits_consumed);
  245. err:
  246. ps->start = 0;
  247. skip_bits_long(gb_host, bits_left);
  248. return bits_left;
  249. }
  250. /** Split one subband into 2 subsubbands with a symmetric real filter.
  251. * The filter must have its non-center even coefficients equal to zero. */
  252. static void hybrid2_re(float (*in)[2], float (*out)[32][2], const float filter[7], int len, int reverse)
  253. {
  254. int i, j;
  255. for (i = 0; i < len; i++) {
  256. float re_in = filter[6] * in[6+i][0]; //real inphase
  257. float re_op = 0.0f; //real out of phase
  258. float im_in = filter[6] * in[6+i][1]; //imag inphase
  259. float im_op = 0.0f; //imag out of phase
  260. for (j = 0; j < 6; j += 2) {
  261. re_op += filter[j+1] * (in[i+j+1][0] + in[12-j-1+i][0]);
  262. im_op += filter[j+1] * (in[i+j+1][1] + in[12-j-1+i][1]);
  263. }
  264. out[ reverse][i][0] = re_in + re_op;
  265. out[ reverse][i][1] = im_in + im_op;
  266. out[!reverse][i][0] = re_in - re_op;
  267. out[!reverse][i][1] = im_in - im_op;
  268. }
  269. }
  270. /** Split one subband into 6 subsubbands with a complex filter */
  271. static void hybrid6_cx(float (*in)[2], float (*out)[32][2], const float (*filter)[7][2], int len)
  272. {
  273. int i, j, ssb;
  274. int N = 8;
  275. float temp[8][2];
  276. for (i = 0; i < len; i++) {
  277. for (ssb = 0; ssb < N; ssb++) {
  278. float sum_re = filter[ssb][6][0] * in[i+6][0], sum_im = filter[ssb][6][0] * in[i+6][1];
  279. for (j = 0; j < 6; j++) {
  280. float in0_re = in[i+j][0];
  281. float in0_im = in[i+j][1];
  282. float in1_re = in[i+12-j][0];
  283. float in1_im = in[i+12-j][1];
  284. sum_re += filter[ssb][j][0] * (in0_re + in1_re) - filter[ssb][j][1] * (in0_im - in1_im);
  285. sum_im += filter[ssb][j][0] * (in0_im + in1_im) + filter[ssb][j][1] * (in0_re - in1_re);
  286. }
  287. temp[ssb][0] = sum_re;
  288. temp[ssb][1] = sum_im;
  289. }
  290. out[0][i][0] = temp[6][0];
  291. out[0][i][1] = temp[6][1];
  292. out[1][i][0] = temp[7][0];
  293. out[1][i][1] = temp[7][1];
  294. out[2][i][0] = temp[0][0];
  295. out[2][i][1] = temp[0][1];
  296. out[3][i][0] = temp[1][0];
  297. out[3][i][1] = temp[1][1];
  298. out[4][i][0] = temp[2][0] + temp[5][0];
  299. out[4][i][1] = temp[2][1] + temp[5][1];
  300. out[5][i][0] = temp[3][0] + temp[4][0];
  301. out[5][i][1] = temp[3][1] + temp[4][1];
  302. }
  303. }
  304. static void hybrid4_8_12_cx(float (*in)[2], float (*out)[32][2], const float (*filter)[7][2], int N, int len)
  305. {
  306. int i, j, ssb;
  307. for (i = 0; i < len; i++) {
  308. for (ssb = 0; ssb < N; ssb++) {
  309. float sum_re = filter[ssb][6][0] * in[i+6][0], sum_im = filter[ssb][6][0] * in[i+6][1];
  310. for (j = 0; j < 6; j++) {
  311. float in0_re = in[i+j][0];
  312. float in0_im = in[i+j][1];
  313. float in1_re = in[i+12-j][0];
  314. float in1_im = in[i+12-j][1];
  315. sum_re += filter[ssb][j][0] * (in0_re + in1_re) - filter[ssb][j][1] * (in0_im - in1_im);
  316. sum_im += filter[ssb][j][0] * (in0_im + in1_im) + filter[ssb][j][1] * (in0_re - in1_re);
  317. }
  318. out[ssb][i][0] = sum_re;
  319. out[ssb][i][1] = sum_im;
  320. }
  321. }
  322. }
  323. static void hybrid_analysis(float out[91][32][2], float in[5][44][2], float L[2][38][64], int is34, int len)
  324. {
  325. int i, j;
  326. for (i = 0; i < 5; i++) {
  327. for (j = 0; j < 38; j++) {
  328. in[i][j+6][0] = L[0][j][i];
  329. in[i][j+6][1] = L[1][j][i];
  330. }
  331. }
  332. if(is34) {
  333. hybrid4_8_12_cx(in[0], out, f34_0_12, 12, len);
  334. hybrid4_8_12_cx(in[1], out+12, f34_1_8, 8, len);
  335. hybrid4_8_12_cx(in[2], out+20, f34_2_4, 4, len);
  336. hybrid4_8_12_cx(in[3], out+24, f34_2_4, 4, len);
  337. hybrid4_8_12_cx(in[4], out+28, f34_2_4, 4, len);
  338. for (i = 0; i < 59; i++) {
  339. for (j = 0; j < len; j++) {
  340. out[i+32][j][0] = L[0][j][i+5];
  341. out[i+32][j][1] = L[1][j][i+5];
  342. }
  343. }
  344. } else {
  345. hybrid6_cx(in[0], out, f20_0_8, len);
  346. hybrid2_re(in[1], out+6, g1_Q2, len, 1);
  347. hybrid2_re(in[2], out+8, g1_Q2, len, 0);
  348. for (i = 0; i < 61; i++) {
  349. for (j = 0; j < len; j++) {
  350. out[i+10][j][0] = L[0][j][i+3];
  351. out[i+10][j][1] = L[1][j][i+3];
  352. }
  353. }
  354. }
  355. //update in_buf
  356. for (i = 0; i < 5; i++) {
  357. memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0]));
  358. }
  359. }
  360. static void hybrid_synthesis(float out[2][38][64], float in[91][32][2], int is34, int len)
  361. {
  362. int i, n;
  363. if(is34) {
  364. for (n = 0; n < len; n++) {
  365. memset(out[0][n], 0, 5*sizeof(out[0][n][0]));
  366. memset(out[1][n], 0, 5*sizeof(out[1][n][0]));
  367. for(i = 0; i < 12; i++) {
  368. out[0][n][0] += in[ i][n][0];
  369. out[1][n][0] += in[ i][n][1];
  370. }
  371. for(i = 0; i < 8; i++) {
  372. out[0][n][1] += in[12+i][n][0];
  373. out[1][n][1] += in[12+i][n][1];
  374. }
  375. for(i = 0; i < 4; i++) {
  376. out[0][n][2] += in[20+i][n][0];
  377. out[1][n][2] += in[20+i][n][1];
  378. out[0][n][3] += in[24+i][n][0];
  379. out[1][n][3] += in[24+i][n][1];
  380. out[0][n][4] += in[28+i][n][0];
  381. out[1][n][4] += in[28+i][n][1];
  382. }
  383. }
  384. for (i = 0; i < 59; i++) {
  385. for (n = 0; n < len; n++) {
  386. out[0][n][i+5] = in[i+32][n][0];
  387. out[1][n][i+5] = in[i+32][n][1];
  388. }
  389. }
  390. } else {
  391. for (n = 0; n < len; n++) {
  392. out[0][n][0] = in[0][n][0] + in[1][n][0] + in[2][n][0] +
  393. in[3][n][0] + in[4][n][0] + in[5][n][0];
  394. out[1][n][0] = in[0][n][1] + in[1][n][1] + in[2][n][1] +
  395. in[3][n][1] + in[4][n][1] + in[5][n][1];
  396. out[0][n][1] = in[6][n][0] + in[7][n][0];
  397. out[1][n][1] = in[6][n][1] + in[7][n][1];
  398. out[0][n][2] = in[8][n][0] + in[9][n][0];
  399. out[1][n][2] = in[8][n][1] + in[9][n][1];
  400. }
  401. for (i = 0; i < 61; i++) {
  402. for (n = 0; n < len; n++) {
  403. out[0][n][i+3] = in[i+10][n][0];
  404. out[1][n][i+3] = in[i+10][n][1];
  405. }
  406. }
  407. }
  408. }
  409. /// All-pass filter decay slope
  410. #define DECAY_SLOPE 0.05f
  411. /// Number of frequency bands that can be addressed by the parameter index, b(k)
  412. static const int NR_PAR_BANDS[] = { 20, 34 };
  413. /// Number of frequency bands that can be addressed by the sub subband index, k
  414. static const int NR_BANDS[] = { 71, 91 };
  415. /// Start frequency band for the all-pass filter decay slope
  416. static const int DECAY_CUTOFF[] = { 10, 32 };
  417. /// Number of all-pass filer bands
  418. static const int NR_ALLPASS_BANDS[] = { 30, 50 };
  419. /// First stereo band using the short one sample delay
  420. static const int SHORT_DELAY_BAND[] = { 42, 62 };
  421. /** Table 8.46 */
  422. static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
  423. {
  424. int b;
  425. if (full)
  426. b = 9;
  427. else {
  428. b = 4;
  429. par_mapped[10] = 0;
  430. }
  431. for (; b >= 0; b--) {
  432. par_mapped[2*b+1] = par_mapped[2*b] = par[b];
  433. }
  434. }
  435. static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
  436. {
  437. par_mapped[ 0] = (2*par[ 0] + par[ 1]) / 3;
  438. par_mapped[ 1] = ( par[ 1] + 2*par[ 2]) / 3;
  439. par_mapped[ 2] = (2*par[ 3] + par[ 4]) / 3;
  440. par_mapped[ 3] = ( par[ 4] + 2*par[ 5]) / 3;
  441. par_mapped[ 4] = ( par[ 6] + par[ 7]) / 2;
  442. par_mapped[ 5] = ( par[ 8] + par[ 9]) / 2;
  443. par_mapped[ 6] = par[10];
  444. par_mapped[ 7] = par[11];
  445. par_mapped[ 8] = ( par[12] + par[13]) / 2;
  446. par_mapped[ 9] = ( par[14] + par[15]) / 2;
  447. par_mapped[10] = par[16];
  448. if (full) {
  449. par_mapped[11] = par[17];
  450. par_mapped[12] = par[18];
  451. par_mapped[13] = par[19];
  452. par_mapped[14] = ( par[20] + par[21]) / 2;
  453. par_mapped[15] = ( par[22] + par[23]) / 2;
  454. par_mapped[16] = ( par[24] + par[25]) / 2;
  455. par_mapped[17] = ( par[26] + par[27]) / 2;
  456. par_mapped[18] = ( par[28] + par[29] + par[30] + par[31]) / 4;
  457. par_mapped[19] = ( par[32] + par[33]) / 2;
  458. }
  459. }
  460. static void map_val_34_to_20(float par[PS_MAX_NR_IIDICC])
  461. {
  462. par[ 0] = (2*par[ 0] + par[ 1]) * 0.33333333f;
  463. par[ 1] = ( par[ 1] + 2*par[ 2]) * 0.33333333f;
  464. par[ 2] = (2*par[ 3] + par[ 4]) * 0.33333333f;
  465. par[ 3] = ( par[ 4] + 2*par[ 5]) * 0.33333333f;
  466. par[ 4] = ( par[ 6] + par[ 7]) * 0.5f;
  467. par[ 5] = ( par[ 8] + par[ 9]) * 0.5f;
  468. par[ 6] = par[10];
  469. par[ 7] = par[11];
  470. par[ 8] = ( par[12] + par[13]) * 0.5f;
  471. par[ 9] = ( par[14] + par[15]) * 0.5f;
  472. par[10] = par[16];
  473. par[11] = par[17];
  474. par[12] = par[18];
  475. par[13] = par[19];
  476. par[14] = ( par[20] + par[21]) * 0.5f;
  477. par[15] = ( par[22] + par[23]) * 0.5f;
  478. par[16] = ( par[24] + par[25]) * 0.5f;
  479. par[17] = ( par[26] + par[27]) * 0.5f;
  480. par[18] = ( par[28] + par[29] + par[30] + par[31]) * 0.25f;
  481. par[19] = ( par[32] + par[33]) * 0.5f;
  482. }
  483. static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
  484. {
  485. if (full) {
  486. par_mapped[33] = par[9];
  487. par_mapped[32] = par[9];
  488. par_mapped[31] = par[9];
  489. par_mapped[30] = par[9];
  490. par_mapped[29] = par[9];
  491. par_mapped[28] = par[9];
  492. par_mapped[27] = par[8];
  493. par_mapped[26] = par[8];
  494. par_mapped[25] = par[8];
  495. par_mapped[24] = par[8];
  496. par_mapped[23] = par[7];
  497. par_mapped[22] = par[7];
  498. par_mapped[21] = par[7];
  499. par_mapped[20] = par[7];
  500. par_mapped[19] = par[6];
  501. par_mapped[18] = par[6];
  502. par_mapped[17] = par[5];
  503. par_mapped[16] = par[5];
  504. } else {
  505. par_mapped[16] = 0;
  506. }
  507. par_mapped[15] = par[4];
  508. par_mapped[14] = par[4];
  509. par_mapped[13] = par[4];
  510. par_mapped[12] = par[4];
  511. par_mapped[11] = par[3];
  512. par_mapped[10] = par[3];
  513. par_mapped[ 9] = par[2];
  514. par_mapped[ 8] = par[2];
  515. par_mapped[ 7] = par[2];
  516. par_mapped[ 6] = par[2];
  517. par_mapped[ 5] = par[1];
  518. par_mapped[ 4] = par[1];
  519. par_mapped[ 3] = par[1];
  520. par_mapped[ 2] = par[0];
  521. par_mapped[ 1] = par[0];
  522. par_mapped[ 0] = par[0];
  523. }
  524. static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
  525. {
  526. if (full) {
  527. par_mapped[33] = par[19];
  528. par_mapped[32] = par[19];
  529. par_mapped[31] = par[18];
  530. par_mapped[30] = par[18];
  531. par_mapped[29] = par[18];
  532. par_mapped[28] = par[18];
  533. par_mapped[27] = par[17];
  534. par_mapped[26] = par[17];
  535. par_mapped[25] = par[16];
  536. par_mapped[24] = par[16];
  537. par_mapped[23] = par[15];
  538. par_mapped[22] = par[15];
  539. par_mapped[21] = par[14];
  540. par_mapped[20] = par[14];
  541. par_mapped[19] = par[13];
  542. par_mapped[18] = par[12];
  543. par_mapped[17] = par[11];
  544. }
  545. par_mapped[16] = par[10];
  546. par_mapped[15] = par[ 9];
  547. par_mapped[14] = par[ 9];
  548. par_mapped[13] = par[ 8];
  549. par_mapped[12] = par[ 8];
  550. par_mapped[11] = par[ 7];
  551. par_mapped[10] = par[ 6];
  552. par_mapped[ 9] = par[ 5];
  553. par_mapped[ 8] = par[ 5];
  554. par_mapped[ 7] = par[ 4];
  555. par_mapped[ 6] = par[ 4];
  556. par_mapped[ 5] = par[ 3];
  557. par_mapped[ 4] = (par[ 2] + par[ 3]) / 2;
  558. par_mapped[ 3] = par[ 2];
  559. par_mapped[ 2] = par[ 1];
  560. par_mapped[ 1] = (par[ 0] + par[ 1]) / 2;
  561. par_mapped[ 0] = par[ 0];
  562. }
  563. static void map_val_20_to_34(float par[PS_MAX_NR_IIDICC])
  564. {
  565. par[33] = par[19];
  566. par[32] = par[19];
  567. par[31] = par[18];
  568. par[30] = par[18];
  569. par[29] = par[18];
  570. par[28] = par[18];
  571. par[27] = par[17];
  572. par[26] = par[17];
  573. par[25] = par[16];
  574. par[24] = par[16];
  575. par[23] = par[15];
  576. par[22] = par[15];
  577. par[21] = par[14];
  578. par[20] = par[14];
  579. par[19] = par[13];
  580. par[18] = par[12];
  581. par[17] = par[11];
  582. par[16] = par[10];
  583. par[15] = par[ 9];
  584. par[14] = par[ 9];
  585. par[13] = par[ 8];
  586. par[12] = par[ 8];
  587. par[11] = par[ 7];
  588. par[10] = par[ 6];
  589. par[ 9] = par[ 5];
  590. par[ 8] = par[ 5];
  591. par[ 7] = par[ 4];
  592. par[ 6] = par[ 4];
  593. par[ 5] = par[ 3];
  594. par[ 4] = (par[ 2] + par[ 3]) * 0.5f;
  595. par[ 3] = par[ 2];
  596. par[ 2] = par[ 1];
  597. par[ 1] = (par[ 0] + par[ 1]) * 0.5f;
  598. par[ 0] = par[ 0];
  599. }
  600. static void decorrelation(PSContext *ps, float (*out)[32][2], const float (*s)[32][2], int is34)
  601. {
  602. float power[34][PS_QMF_TIME_SLOTS] = {{0}};
  603. float transient_gain[34][PS_QMF_TIME_SLOTS];
  604. float *peak_decay_nrg = ps->peak_decay_nrg;
  605. float *power_smooth = ps->power_smooth;
  606. float *peak_decay_diff_smooth = ps->peak_decay_diff_smooth;
  607. float (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay;
  608. float (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay;
  609. const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
  610. const float peak_decay_factor = 0.76592833836465f;
  611. const float transient_impact = 1.5f;
  612. const float a_smooth = 0.25f; //< Smoothing coefficient
  613. int i, k, m, n;
  614. int n0 = 0, nL = 32;
  615. static const int link_delay[] = { 3, 4, 5 };
  616. static const float a[] = { 0.65143905753106f,
  617. 0.56471812200776f,
  618. 0.48954165955695f };
  619. if (is34 != ps->is34bands_old) {
  620. memset(ps->peak_decay_nrg, 0, sizeof(ps->peak_decay_nrg));
  621. memset(ps->power_smooth, 0, sizeof(ps->power_smooth));
  622. memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth));
  623. memset(ps->delay, 0, sizeof(ps->delay));
  624. memset(ps->ap_delay, 0, sizeof(ps->ap_delay));
  625. }
  626. for (n = n0; n < nL; n++) {
  627. for (k = 0; k < NR_BANDS[is34]; k++) {
  628. int i = k_to_i[k];
  629. power[i][n] += s[k][n][0] * s[k][n][0] + s[k][n][1] * s[k][n][1];
  630. }
  631. }
  632. //Transient detection
  633. for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
  634. for (n = n0; n < nL; n++) {
  635. float decayed_peak = peak_decay_factor * peak_decay_nrg[i];
  636. float denom;
  637. peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
  638. power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]);
  639. peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]);
  640. denom = transient_impact * peak_decay_diff_smooth[i];
  641. transient_gain[i][n] = (denom > power_smooth[i]) ?
  642. power_smooth[i] / denom : 1.0f;
  643. }
  644. }
  645. //Decorrelation and transient reduction
  646. // PS_AP_LINKS - 1
  647. // -----
  648. // | | Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k]
  649. //H[k][z] = z^-2 * phi_fract[k] * | | ----------------------------------------------------------------
  650. // | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m]
  651. // m = 0
  652. //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z]
  653. for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) {
  654. int b = k_to_i[k];
  655. float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
  656. float ag[PS_AP_LINKS];
  657. g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f);
  658. memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  659. memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  660. for (m = 0; m < PS_AP_LINKS; m++) {
  661. memcpy(ap_delay[k][m], ap_delay[k][m]+numQMFSlots, 5*sizeof(ap_delay[k][m][0]));
  662. ag[m] = a[m] * g_decay_slope;
  663. }
  664. for (n = n0; n < nL; n++) {
  665. float in_re = delay[k][n+PS_MAX_DELAY-2][0] * phi_fract[is34][k][0] -
  666. delay[k][n+PS_MAX_DELAY-2][1] * phi_fract[is34][k][1];
  667. float in_im = delay[k][n+PS_MAX_DELAY-2][0] * phi_fract[is34][k][1] +
  668. delay[k][n+PS_MAX_DELAY-2][1] * phi_fract[is34][k][0];
  669. for (m = 0; m < PS_AP_LINKS; m++) {
  670. float a_re = ag[m] * in_re;
  671. float a_im = ag[m] * in_im;
  672. float link_delay_re = ap_delay[k][m][n+5-link_delay[m]][0];
  673. float link_delay_im = ap_delay[k][m][n+5-link_delay[m]][1];
  674. float fractional_delay_re = Q_fract_allpass[is34][k][m][0];
  675. float fractional_delay_im = Q_fract_allpass[is34][k][m][1];
  676. ap_delay[k][m][n+5][0] = in_re;
  677. ap_delay[k][m][n+5][1] = in_im;
  678. in_re = link_delay_re * fractional_delay_re - link_delay_im * fractional_delay_im - a_re;
  679. in_im = link_delay_re * fractional_delay_im + link_delay_im * fractional_delay_re - a_im;
  680. ap_delay[k][m][n+5][0] += ag[m] * in_re;
  681. ap_delay[k][m][n+5][1] += ag[m] * in_im;
  682. }
  683. out[k][n][0] = transient_gain[b][n] * in_re;
  684. out[k][n][1] = transient_gain[b][n] * in_im;
  685. }
  686. }
  687. for (; k < SHORT_DELAY_BAND[is34]; k++) {
  688. memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  689. memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  690. for (n = n0; n < nL; n++) {
  691. //H = delay 14
  692. out[k][n][0] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-14][0];
  693. out[k][n][1] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-14][1];
  694. }
  695. }
  696. for (; k < NR_BANDS[is34]; k++) {
  697. memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  698. memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  699. for (n = n0; n < nL; n++) {
  700. //H = delay 1
  701. out[k][n][0] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-1][0];
  702. out[k][n][1] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-1][1];
  703. }
  704. }
  705. }
  706. static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
  707. int8_t (*par)[PS_MAX_NR_IIDICC],
  708. int num_par, int num_env, int full)
  709. {
  710. int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
  711. int e;
  712. if (num_par == 20 || num_par == 11) {
  713. for (e = 0; e < num_env; e++) {
  714. map_idx_20_to_34(par_mapped[e], par[e], full);
  715. }
  716. } else if (num_par == 10 || num_par == 5) {
  717. for (e = 0; e < num_env; e++) {
  718. map_idx_10_to_34(par_mapped[e], par[e], full);
  719. }
  720. } else {
  721. *p_par_mapped = par;
  722. }
  723. }
  724. static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
  725. int8_t (*par)[PS_MAX_NR_IIDICC],
  726. int num_par, int num_env, int full)
  727. {
  728. int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
  729. int e;
  730. if (num_par == 34 || num_par == 17) {
  731. for (e = 0; e < num_env; e++) {
  732. map_idx_34_to_20(par_mapped[e], par[e], full);
  733. }
  734. } else if (num_par == 10 || num_par == 5) {
  735. for (e = 0; e < num_env; e++) {
  736. map_idx_10_to_20(par_mapped[e], par[e], full);
  737. }
  738. } else {
  739. *p_par_mapped = par;
  740. }
  741. }
  742. static void stereo_processing(PSContext *ps, float (*l)[32][2], float (*r)[32][2], int is34)
  743. {
  744. int e, b, k, n;
  745. float (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11;
  746. float (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12;
  747. float (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21;
  748. float (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22;
  749. int8_t *opd_hist = ps->opd_hist;
  750. int8_t *ipd_hist = ps->ipd_hist;
  751. int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  752. int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  753. int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  754. int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  755. int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf;
  756. int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf;
  757. int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf;
  758. int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf;
  759. const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
  760. const float (*H_LUT)[8][4] = (PS_BASELINE || ps->icc_mode < 3) ? HA : HB;
  761. //Remapping
  762. memcpy(H11[0][0], H11[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[0][0][0]));
  763. memcpy(H11[1][0], H11[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[1][0][0]));
  764. memcpy(H12[0][0], H12[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[0][0][0]));
  765. memcpy(H12[1][0], H12[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[1][0][0]));
  766. memcpy(H21[0][0], H21[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[0][0][0]));
  767. memcpy(H21[1][0], H21[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[1][0][0]));
  768. memcpy(H22[0][0], H22[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[0][0][0]));
  769. memcpy(H22[1][0], H22[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[1][0][0]));
  770. if (is34) {
  771. remap34(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
  772. remap34(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
  773. if (ps->enable_ipdopd) {
  774. remap34(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  775. remap34(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  776. }
  777. if (!ps->is34bands_old) {
  778. map_val_20_to_34(H11[0][0]);
  779. map_val_20_to_34(H11[1][0]);
  780. map_val_20_to_34(H12[0][0]);
  781. map_val_20_to_34(H12[1][0]);
  782. map_val_20_to_34(H21[0][0]);
  783. map_val_20_to_34(H21[1][0]);
  784. map_val_20_to_34(H22[0][0]);
  785. map_val_20_to_34(H22[1][0]);
  786. ipdopd_reset(ipd_hist, opd_hist);
  787. }
  788. } else {
  789. remap20(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
  790. remap20(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
  791. if (ps->enable_ipdopd) {
  792. remap20(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  793. remap20(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  794. }
  795. if (ps->is34bands_old) {
  796. map_val_34_to_20(H11[0][0]);
  797. map_val_34_to_20(H11[1][0]);
  798. map_val_34_to_20(H12[0][0]);
  799. map_val_34_to_20(H12[1][0]);
  800. map_val_34_to_20(H21[0][0]);
  801. map_val_34_to_20(H21[1][0]);
  802. map_val_34_to_20(H22[0][0]);
  803. map_val_34_to_20(H22[1][0]);
  804. ipdopd_reset(ipd_hist, opd_hist);
  805. }
  806. }
  807. //Mixing
  808. for (e = 0; e < ps->num_env; e++) {
  809. for (b = 0; b < NR_PAR_BANDS[is34]; b++) {
  810. float h11, h12, h21, h22;
  811. h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][0];
  812. h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][1];
  813. h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][2];
  814. h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][3];
  815. if (!PS_BASELINE && ps->enable_ipdopd && b < ps->nr_ipdopd_par) {
  816. //The spec say says to only run this smoother when enable_ipdopd
  817. //is set but the reference decoder appears to run it constantly
  818. float h11i, h12i, h21i, h22i;
  819. float ipd_adj_re, ipd_adj_im;
  820. int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b];
  821. int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b];
  822. float opd_re = pd_re_smooth[opd_idx];
  823. float opd_im = pd_im_smooth[opd_idx];
  824. float ipd_re = pd_re_smooth[ipd_idx];
  825. float ipd_im = pd_im_smooth[ipd_idx];
  826. opd_hist[b] = opd_idx & 0x3F;
  827. ipd_hist[b] = ipd_idx & 0x3F;
  828. ipd_adj_re = opd_re*ipd_re + opd_im*ipd_im;
  829. ipd_adj_im = opd_im*ipd_re - opd_re*ipd_im;
  830. h11i = h11 * opd_im;
  831. h11 = h11 * opd_re;
  832. h12i = h12 * ipd_adj_im;
  833. h12 = h12 * ipd_adj_re;
  834. h21i = h21 * opd_im;
  835. h21 = h21 * opd_re;
  836. h22i = h22 * ipd_adj_im;
  837. h22 = h22 * ipd_adj_re;
  838. H11[1][e+1][b] = h11i;
  839. H12[1][e+1][b] = h12i;
  840. H21[1][e+1][b] = h21i;
  841. H22[1][e+1][b] = h22i;
  842. }
  843. H11[0][e+1][b] = h11;
  844. H12[0][e+1][b] = h12;
  845. H21[0][e+1][b] = h21;
  846. H22[0][e+1][b] = h22;
  847. }
  848. for (k = 0; k < NR_BANDS[is34]; k++) {
  849. float h11r, h12r, h21r, h22r;
  850. float h11i, h12i, h21i, h22i;
  851. float h11r_step, h12r_step, h21r_step, h22r_step;
  852. float h11i_step, h12i_step, h21i_step, h22i_step;
  853. int start = ps->border_position[e];
  854. int stop = ps->border_position[e+1];
  855. float width = 1.f / (stop - start);
  856. b = k_to_i[k];
  857. h11r = H11[0][e][b];
  858. h12r = H12[0][e][b];
  859. h21r = H21[0][e][b];
  860. h22r = H22[0][e][b];
  861. if (!PS_BASELINE && ps->enable_ipdopd) {
  862. //Is this necessary? ps_04_new seems unchanged
  863. if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) {
  864. h11i = -H11[1][e][b];
  865. h12i = -H12[1][e][b];
  866. h21i = -H21[1][e][b];
  867. h22i = -H22[1][e][b];
  868. } else {
  869. h11i = H11[1][e][b];
  870. h12i = H12[1][e][b];
  871. h21i = H21[1][e][b];
  872. h22i = H22[1][e][b];
  873. }
  874. }
  875. //Interpolation
  876. h11r_step = (H11[0][e+1][b] - h11r) * width;
  877. h12r_step = (H12[0][e+1][b] - h12r) * width;
  878. h21r_step = (H21[0][e+1][b] - h21r) * width;
  879. h22r_step = (H22[0][e+1][b] - h22r) * width;
  880. if (!PS_BASELINE && ps->enable_ipdopd) {
  881. h11i_step = (H11[1][e+1][b] - h11i) * width;
  882. h12i_step = (H12[1][e+1][b] - h12i) * width;
  883. h21i_step = (H21[1][e+1][b] - h21i) * width;
  884. h22i_step = (H22[1][e+1][b] - h22i) * width;
  885. }
  886. for (n = start + 1; n <= stop; n++) {
  887. //l is s, r is d
  888. float l_re = l[k][n][0];
  889. float l_im = l[k][n][1];
  890. float r_re = r[k][n][0];
  891. float r_im = r[k][n][1];
  892. h11r += h11r_step;
  893. h12r += h12r_step;
  894. h21r += h21r_step;
  895. h22r += h22r_step;
  896. if (!PS_BASELINE && ps->enable_ipdopd) {
  897. h11i += h11i_step;
  898. h12i += h12i_step;
  899. h21i += h21i_step;
  900. h22i += h22i_step;
  901. l[k][n][0] = h11r*l_re + h21r*r_re - h11i*l_im - h21i*r_im;
  902. l[k][n][1] = h11r*l_im + h21r*r_im + h11i*l_re + h21i*r_re;
  903. r[k][n][0] = h12r*l_re + h22r*r_re - h12i*l_im - h22i*r_im;
  904. r[k][n][1] = h12r*l_im + h22r*r_im + h12i*l_re + h22i*r_re;
  905. } else {
  906. l[k][n][0] = h11r*l_re + h21r*r_re;
  907. l[k][n][1] = h11r*l_im + h21r*r_im;
  908. r[k][n][0] = h12r*l_re + h22r*r_re;
  909. r[k][n][1] = h12r*l_im + h22r*r_im;
  910. }
  911. }
  912. }
  913. }
  914. }
  915. int ff_ps_apply(AVCodecContext *avctx, PSContext *ps, float L[2][38][64], float R[2][38][64], int top)
  916. {
  917. float Lbuf[91][32][2];
  918. float Rbuf[91][32][2];
  919. const int len = 32;
  920. int is34 = ps->is34bands;
  921. top += NR_BANDS[is34] - 64;
  922. memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0]));
  923. if (top < NR_ALLPASS_BANDS[is34])
  924. memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0]));
  925. hybrid_analysis(Lbuf, ps->in_buf, L, is34, len);
  926. decorrelation(ps, Rbuf, Lbuf, is34);
  927. stereo_processing(ps, Lbuf, Rbuf, is34);
  928. hybrid_synthesis(L, Lbuf, is34, len);
  929. hybrid_synthesis(R, Rbuf, is34, len);
  930. return 0;
  931. }
  932. #define PS_INIT_VLC_STATIC(num, size) \
  933. INIT_VLC_STATIC(&vlc_ps[num], 9, ps_tmp[num].table_size / ps_tmp[num].elem_size, \
  934. ps_tmp[num].ps_bits, 1, 1, \
  935. ps_tmp[num].ps_codes, ps_tmp[num].elem_size, ps_tmp[num].elem_size, \
  936. size);
  937. #define PS_VLC_ROW(name) \
  938. { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  939. av_cold void ff_ps_init(void) {
  940. // Syntax initialization
  941. static const struct {
  942. const void *ps_codes, *ps_bits;
  943. const unsigned int table_size, elem_size;
  944. } ps_tmp[] = {
  945. PS_VLC_ROW(huff_iid_df1),
  946. PS_VLC_ROW(huff_iid_dt1),
  947. PS_VLC_ROW(huff_iid_df0),
  948. PS_VLC_ROW(huff_iid_dt0),
  949. PS_VLC_ROW(huff_icc_df),
  950. PS_VLC_ROW(huff_icc_dt),
  951. PS_VLC_ROW(huff_ipd_df),
  952. PS_VLC_ROW(huff_ipd_dt),
  953. PS_VLC_ROW(huff_opd_df),
  954. PS_VLC_ROW(huff_opd_dt),
  955. };
  956. PS_INIT_VLC_STATIC(0, 1544);
  957. PS_INIT_VLC_STATIC(1, 832);
  958. PS_INIT_VLC_STATIC(2, 1024);
  959. PS_INIT_VLC_STATIC(3, 1036);
  960. PS_INIT_VLC_STATIC(4, 544);
  961. PS_INIT_VLC_STATIC(5, 544);
  962. PS_INIT_VLC_STATIC(6, 512);
  963. PS_INIT_VLC_STATIC(7, 512);
  964. PS_INIT_VLC_STATIC(8, 512);
  965. PS_INIT_VLC_STATIC(9, 512);
  966. ps_tableinit();
  967. }
  968. av_cold void ff_ps_ctx_init(PSContext *ps)
  969. {
  970. ipdopd_reset(ps->ipd_hist, ps->opd_hist);
  971. }