You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

914 lines
27KB

  1. /*
  2. * Flash Screen Video Version 2 encoder
  3. * Copyright (C) 2009 Joshua Warner
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/flashsv2enc.c
  23. * Flash Screen Video Version 2 encoder
  24. * @author Joshua Warner
  25. */
  26. /* Differences from version 1 stream:
  27. * NOTE: Currently, the only player that supports version 2 streams is Adobe Flash Player itself.
  28. * * Supports sending only a range of scanlines in a block,
  29. * indicating a difference from the corresponding block in the last keyframe.
  30. * * Supports initializing the zlib dictionary with data from the corresponding
  31. * block in the last keyframe, to improve compression.
  32. * * Supports a hybrid 15-bit rgb / 7-bit palette color space.
  33. */
  34. /* TODO:
  35. * Don't keep Block structures for both current frame and keyframe.
  36. * Make better heuristics for deciding stream parameters (optimum_* functions). Currently these return constants.
  37. * Figure out how to encode palette information in the stream, choose an optimum palette at each keyframe.
  38. * Figure out how the zlibPrimeCompressCurrent flag works, implement support.
  39. * Find other sample files (that weren't generated here), develop a decoder.
  40. */
  41. #include <stdio.h>
  42. #include <stdlib.h>
  43. #include <zlib.h>
  44. #include "libavutil/imgutils.h"
  45. #include "avcodec.h"
  46. #include "put_bits.h"
  47. #include "bytestream.h"
  48. #define HAS_IFRAME_IMAGE 0x02
  49. #define HAS_PALLET_INFO 0x01
  50. #define COLORSPACE_BGR 0x00
  51. #define COLORSPACE_15_7 0x10
  52. #define HAS_DIFF_BLOCKS 0x04
  53. #define ZLIB_PRIME_COMPRESS_CURRENT 0x02
  54. #define ZLIB_PRIME_COMPRESS_PREVIOUS 0x01
  55. // Disables experimental "smart" parameter-choosing code, as well as the statistics that it depends on.
  56. // At the moment, the "smart" code is a great example of how the parameters *shouldn't* be chosen.
  57. #define FLASHSV2_DUMB
  58. typedef struct Block {
  59. uint8_t *enc;
  60. uint8_t *sl_begin, *sl_end;
  61. int enc_size;
  62. uint8_t *data;
  63. unsigned long data_size;
  64. uint8_t start, len;
  65. uint8_t dirty;
  66. uint8_t col, row, width, height;
  67. uint8_t flags;
  68. } Block;
  69. typedef struct Palette {
  70. unsigned colors[128];
  71. uint8_t index[1 << 15];
  72. } Palette;
  73. typedef struct FlashSV2Context {
  74. AVCodecContext *avctx;
  75. uint8_t *current_frame;
  76. uint8_t *key_frame;
  77. AVFrame frame;
  78. uint8_t *encbuffer;
  79. uint8_t *keybuffer;
  80. uint8_t *databuffer;
  81. Block *frame_blocks;
  82. Block *key_blocks;
  83. int frame_size;
  84. int blocks_size;
  85. int use15_7, dist, comp;
  86. int rows, cols;
  87. int last_key_frame;
  88. int image_width, image_height;
  89. int block_width, block_height;
  90. uint8_t flags;
  91. uint8_t use_custom_palette;
  92. uint8_t palette_type; ///< 0=>default, 1=>custom - changed when palette regenerated.
  93. Palette palette;
  94. #ifndef FLASHSV2_DUMB
  95. double tot_blocks; ///< blocks encoded since last keyframe
  96. double diff_blocks; ///< blocks that were different since last keyframe
  97. double tot_lines; ///< total scanlines in image since last keyframe
  98. double diff_lines; ///< scanlines that were different since last keyframe
  99. double raw_size; ///< size of raw frames since last keyframe
  100. double comp_size; ///< size of compressed data since last keyframe
  101. double uncomp_size; ///< size of uncompressed data since last keyframe
  102. double total_bits; ///< total bits written to stream so far
  103. #endif
  104. } FlashSV2Context;
  105. static av_cold void cleanup(FlashSV2Context * s)
  106. {
  107. if (s->encbuffer)
  108. av_free(s->encbuffer);
  109. if (s->keybuffer)
  110. av_free(s->keybuffer);
  111. if (s->databuffer)
  112. av_free(s->databuffer);
  113. if (s->current_frame)
  114. av_free(s->current_frame);
  115. if (s->key_frame)
  116. av_free(s->key_frame);
  117. if (s->frame_blocks)
  118. av_free(s->frame_blocks);
  119. if (s->key_blocks)
  120. av_free(s->key_blocks);
  121. }
  122. static void init_blocks(FlashSV2Context * s, Block * blocks,
  123. uint8_t * encbuf, uint8_t * databuf)
  124. {
  125. int row, col;
  126. Block *b;
  127. for (col = 0; col < s->cols; col++) {
  128. for (row = 0; row < s->rows; row++) {
  129. b = blocks + (col + row * s->cols);
  130. b->width = (col < s->cols - 1) ?
  131. s->block_width :
  132. s->image_width - col * s->block_width;
  133. b->height = (row < s->rows - 1) ?
  134. s->block_height :
  135. s->image_height - row * s->block_height;
  136. b->row = row;
  137. b->col = col;
  138. b->enc = encbuf;
  139. b->data = databuf;
  140. encbuf += b->width * b->height * 3;
  141. databuf += !databuf ? 0 : b->width * b->height * 6;
  142. }
  143. }
  144. }
  145. static void reset_stats(FlashSV2Context * s)
  146. {
  147. #ifndef FLASHSV2_DUMB
  148. s->diff_blocks = 0.1;
  149. s->tot_blocks = 1;
  150. s->diff_lines = 0.1;
  151. s->tot_lines = 1;
  152. s->raw_size = s->comp_size = s->uncomp_size = 10;
  153. #endif
  154. }
  155. static av_cold int flashsv2_encode_init(AVCodecContext * avctx)
  156. {
  157. FlashSV2Context *s = avctx->priv_data;
  158. s->avctx = avctx;
  159. s->comp = avctx->compression_level;
  160. if (s->comp == -1)
  161. s->comp = 9;
  162. if (s->comp < 0 || s->comp > 9) {
  163. av_log(avctx, AV_LOG_ERROR,
  164. "Compression level should be 0-9, not %d\n", s->comp);
  165. return -1;
  166. }
  167. if ((avctx->width > 4095) || (avctx->height > 4095)) {
  168. av_log(avctx, AV_LOG_ERROR,
  169. "Input dimensions too large, input must be max 4096x4096 !\n");
  170. return -1;
  171. }
  172. if (av_image_check_size(avctx->width, avctx->height, 0, avctx) < 0)
  173. return -1;
  174. s->last_key_frame = 0;
  175. s->image_width = avctx->width;
  176. s->image_height = avctx->height;
  177. s->block_width = (s->image_width / 12) & ~15;
  178. s->block_height = (s->image_height / 12) & ~15;
  179. s->rows = (s->image_height + s->block_height - 1) / s->block_height;
  180. s->cols = (s->image_width + s->block_width - 1) / s->block_width;
  181. s->frame_size = s->image_width * s->image_height * 3;
  182. s->blocks_size = s->rows * s->cols * sizeof(Block);
  183. s->encbuffer = av_mallocz(s->frame_size);
  184. s->keybuffer = av_mallocz(s->frame_size);
  185. s->databuffer = av_mallocz(s->frame_size * 6);
  186. s->current_frame = av_mallocz(s->frame_size);
  187. s->key_frame = av_mallocz(s->frame_size);
  188. s->frame_blocks = av_mallocz(s->blocks_size);
  189. s->key_blocks = av_mallocz(s->blocks_size);
  190. init_blocks(s, s->frame_blocks, s->encbuffer, s->databuffer);
  191. init_blocks(s, s->key_blocks, s->keybuffer, 0);
  192. reset_stats(s);
  193. #ifndef FLASHSV2_DUMB
  194. s->total_bits = 1;
  195. #endif
  196. s->use_custom_palette = 0;
  197. s->palette_type = -1; // so that the palette will be generated in reconfigure_at_keyframe
  198. if (!s->encbuffer || !s->keybuffer || !s->databuffer
  199. || !s->current_frame || !s->key_frame || !s->key_blocks
  200. || !s->frame_blocks) {
  201. av_log(avctx, AV_LOG_ERROR, "Memory allocation failed.\n");
  202. cleanup(s);
  203. return -1;
  204. }
  205. return 0;
  206. }
  207. static int new_key_frame(FlashSV2Context * s)
  208. {
  209. int i;
  210. FFSWAP(uint8_t * , s->keybuffer, s->encbuffer);
  211. memcpy(s->key_blocks, s->frame_blocks, s->blocks_size);
  212. memcpy(s->key_frame, s->current_frame, s->frame_size);
  213. for (i = 0; i < s->rows * s->cols; i++) {
  214. s->key_blocks[i].enc += (s->keybuffer - s->encbuffer);
  215. s->key_blocks[i].sl_begin = 0;
  216. s->key_blocks[i].sl_end = 0;
  217. s->key_blocks[i].data = 0;
  218. }
  219. return 0;
  220. }
  221. static int write_palette(FlashSV2Context * s, uint8_t * buf, int buf_size)
  222. {
  223. //this isn't implemented yet! Default palette only!
  224. return -1;
  225. }
  226. static int write_header(FlashSV2Context * s, uint8_t * buf, int buf_size)
  227. {
  228. PutBitContext pb;
  229. int buf_pos, len;
  230. if (buf_size < 5)
  231. return -1;
  232. init_put_bits(&pb, buf, buf_size * 8);
  233. put_bits(&pb, 4, (s->block_width >> 4) - 1);
  234. put_bits(&pb, 12, s->image_width);
  235. put_bits(&pb, 4, (s->block_height >> 4) - 1);
  236. put_bits(&pb, 12, s->image_height);
  237. flush_put_bits(&pb);
  238. buf_pos = 4;
  239. buf[buf_pos++] = s->flags;
  240. if (s->flags & HAS_PALLET_INFO) {
  241. len = write_palette(s, buf + buf_pos, buf_size - buf_pos);
  242. if (len < 0)
  243. return -1;
  244. buf_pos += len;
  245. }
  246. return buf_pos;
  247. }
  248. static int write_block(Block * b, uint8_t * buf, int buf_size)
  249. {
  250. int buf_pos = 0;
  251. unsigned block_size = b->data_size;
  252. if (b->flags & HAS_DIFF_BLOCKS)
  253. block_size += 2;
  254. if (b->flags & ZLIB_PRIME_COMPRESS_CURRENT)
  255. block_size += 2;
  256. if (block_size > 0)
  257. block_size += 1;
  258. if (buf_size < block_size + 2)
  259. return -1;
  260. buf[buf_pos++] = block_size >> 8;
  261. buf[buf_pos++] = block_size;
  262. if (block_size == 0)
  263. return buf_pos;
  264. buf[buf_pos++] = b->flags;
  265. if (b->flags & HAS_DIFF_BLOCKS) {
  266. buf[buf_pos++] = (uint8_t) (b->start);
  267. buf[buf_pos++] = (uint8_t) (b->len);
  268. }
  269. if (b->flags & ZLIB_PRIME_COMPRESS_CURRENT) {
  270. //This feature of the format is poorly understood, and as of now, unused.
  271. buf[buf_pos++] = (uint8_t) (b->col);
  272. buf[buf_pos++] = (uint8_t) (b->row);
  273. }
  274. memcpy(buf + buf_pos, b->data, b->data_size);
  275. buf_pos += b->data_size;
  276. return buf_pos;
  277. }
  278. static int encode_zlib(Block * b, uint8_t * buf, unsigned long *buf_size, int comp)
  279. {
  280. int res = compress2(buf, buf_size, b->sl_begin, b->sl_end - b->sl_begin, comp);
  281. return res == Z_OK ? 0 : -1;
  282. }
  283. static int encode_zlibprime(Block * b, Block * prime, uint8_t * buf,
  284. int *buf_size, int comp)
  285. {
  286. z_stream s;
  287. int res;
  288. s.zalloc = NULL;
  289. s.zfree = NULL;
  290. s.opaque = NULL;
  291. res = deflateInit(&s, comp);
  292. if (res < 0)
  293. return -1;
  294. s.next_in = prime->enc;
  295. s.avail_in = prime->enc_size;
  296. while (s.avail_in > 0) {
  297. s.next_out = buf;
  298. s.avail_out = *buf_size;
  299. res = deflate(&s, Z_SYNC_FLUSH);
  300. if (res < 0)
  301. return -1;
  302. }
  303. s.next_in = b->sl_begin;
  304. s.avail_in = b->sl_end - b->sl_begin;
  305. s.next_out = buf;
  306. s.avail_out = *buf_size;
  307. res = deflate(&s, Z_FINISH);
  308. deflateEnd(&s);
  309. *buf_size -= s.avail_out;
  310. if (res != Z_STREAM_END)
  311. return -1;
  312. return 0;
  313. }
  314. static int encode_bgr(Block * b, const uint8_t * src, int stride)
  315. {
  316. int i;
  317. uint8_t *ptr = b->enc;
  318. for (i = 0; i < b->start; i++)
  319. memcpy(ptr + i * b->width * 3, src + i * stride, b->width * 3);
  320. b->sl_begin = ptr + i * b->width * 3;
  321. for (; i < b->start + b->len; i++)
  322. memcpy(ptr + i * b->width * 3, src + i * stride, b->width * 3);
  323. b->sl_end = ptr + i * b->width * 3;
  324. for (; i < b->height; i++)
  325. memcpy(ptr + i * b->width * 3, src + i * stride, b->width * 3);
  326. b->enc_size = ptr + i * b->width * 3 - b->enc;
  327. return b->enc_size;
  328. }
  329. static inline unsigned pixel_color15(const uint8_t * src)
  330. {
  331. return (src[0] >> 3) | ((src[1] & 0xf8) << 2) | ((src[2] & 0xf8) << 7);
  332. }
  333. static inline unsigned int chroma_diff(unsigned int c1, unsigned int c2)
  334. {
  335. unsigned int t1 = (c1 & 0x000000ff) + ((c1 & 0x0000ff00) >> 8) + ((c1 & 0x00ff0000) >> 16);
  336. unsigned int t2 = (c2 & 0x000000ff) + ((c2 & 0x0000ff00) >> 8) + ((c2 & 0x00ff0000) >> 16);
  337. return abs(t1 - t2) + abs((c1 & 0x000000ff) - (c2 & 0x000000ff)) +
  338. abs(((c1 & 0x0000ff00) >> 8) - ((c2 & 0x0000ff00) >> 8)) +
  339. abs(((c1 & 0x00ff0000) >> 16) - ((c2 & 0x00ff0000) >> 16));
  340. }
  341. static inline int pixel_color7_fast(Palette * palette, unsigned c15)
  342. {
  343. return palette->index[c15];
  344. }
  345. static int pixel_color7_slow(Palette * palette, unsigned color)
  346. {
  347. int i, min = 0x7fffffff;
  348. int minc = -1;
  349. for (i = 0; i < 128; i++) {
  350. int c1 = palette->colors[i];
  351. int diff = chroma_diff(c1, color);
  352. if (diff < min) {
  353. min = diff;
  354. minc = i;
  355. }
  356. }
  357. return minc;
  358. }
  359. static inline unsigned pixel_bgr(const uint8_t * src)
  360. {
  361. return (src[0]) | (src[1] << 8) | (src[2] << 16);
  362. }
  363. static int write_pixel_15_7(Palette * palette, uint8_t * dest, const uint8_t * src,
  364. int dist)
  365. {
  366. unsigned c15 = pixel_color15(src);
  367. unsigned color = pixel_bgr(src);
  368. int d15 = chroma_diff(color, color & 0x00f8f8f8);
  369. int c7 = pixel_color7_fast(palette, c15);
  370. int d7 = chroma_diff(color, palette->colors[c7]);
  371. if (dist + d15 >= d7) {
  372. dest[0] = (uint8_t) c7;
  373. return 1;
  374. } else {
  375. dest[0] = 0x80 | (uint8_t) (c15 >> 8);
  376. dest[1] = c15 & 0xff;
  377. return 2;
  378. }
  379. }
  380. static int update_palette_index(Palette * palette)
  381. {
  382. int r, g, b;
  383. unsigned int bgr, c15, index;
  384. for (r = 4; r < 256; r += 8) {
  385. for (g = 4; g < 256; g += 8) {
  386. for (b = 4; b < 256; b += 8) {
  387. bgr = b | (g << 8) | (r << 16);
  388. c15 = (b >> 3) | ((g & 0xf8) << 2) | ((r & 0xf8) << 7);
  389. index = pixel_color7_slow(palette, bgr);
  390. palette->index[c15] = index;
  391. }
  392. }
  393. }
  394. return 0;
  395. }
  396. static const unsigned int default_screen_video_v2_palette[128] = {
  397. 0x00000000, 0x00333333, 0x00666666, 0x00999999, 0x00CCCCCC, 0x00FFFFFF,
  398. 0x00330000, 0x00660000, 0x00990000, 0x00CC0000, 0x00FF0000, 0x00003300,
  399. 0x00006600, 0x00009900, 0x0000CC00, 0x0000FF00, 0x00000033, 0x00000066,
  400. 0x00000099, 0x000000CC, 0x000000FF, 0x00333300, 0x00666600, 0x00999900,
  401. 0x00CCCC00, 0x00FFFF00, 0x00003333, 0x00006666, 0x00009999, 0x0000CCCC,
  402. 0x0000FFFF, 0x00330033, 0x00660066, 0x00990099, 0x00CC00CC, 0x00FF00FF,
  403. 0x00FFFF33, 0x00FFFF66, 0x00FFFF99, 0x00FFFFCC, 0x00FF33FF, 0x00FF66FF,
  404. 0x00FF99FF, 0x00FFCCFF, 0x0033FFFF, 0x0066FFFF, 0x0099FFFF, 0x00CCFFFF,
  405. 0x00CCCC33, 0x00CCCC66, 0x00CCCC99, 0x00CCCCFF, 0x00CC33CC, 0x00CC66CC,
  406. 0x00CC99CC, 0x00CCFFCC, 0x0033CCCC, 0x0066CCCC, 0x0099CCCC, 0x00FFCCCC,
  407. 0x00999933, 0x00999966, 0x009999CC, 0x009999FF, 0x00993399, 0x00996699,
  408. 0x0099CC99, 0x0099FF99, 0x00339999, 0x00669999, 0x00CC9999, 0x00FF9999,
  409. 0x00666633, 0x00666699, 0x006666CC, 0x006666FF, 0x00663366, 0x00669966,
  410. 0x0066CC66, 0x0066FF66, 0x00336666, 0x00996666, 0x00CC6666, 0x00FF6666,
  411. 0x00333366, 0x00333399, 0x003333CC, 0x003333FF, 0x00336633, 0x00339933,
  412. 0x0033CC33, 0x0033FF33, 0x00663333, 0x00993333, 0x00CC3333, 0x00FF3333,
  413. 0x00003366, 0x00336600, 0x00660033, 0x00006633, 0x00330066, 0x00663300,
  414. 0x00336699, 0x00669933, 0x00993366, 0x00339966, 0x00663399, 0x00996633,
  415. 0x006699CC, 0x0099CC66, 0x00CC6699, 0x0066CC99, 0x009966CC, 0x00CC9966,
  416. 0x0099CCFF, 0x00CCFF99, 0x00FF99CC, 0x0099FFCC, 0x00CC99FF, 0x00FFCC99,
  417. 0x00111111, 0x00222222, 0x00444444, 0x00555555, 0x00AAAAAA, 0x00BBBBBB,
  418. 0x00DDDDDD, 0x00EEEEEE
  419. };
  420. static int generate_default_palette(Palette * palette)
  421. {
  422. memcpy(palette->colors, default_screen_video_v2_palette,
  423. sizeof(default_screen_video_v2_palette));
  424. return update_palette_index(palette);
  425. }
  426. static int generate_optimum_palette(Palette * palette, const uint8_t * image,
  427. int width, int height, int stride)
  428. {
  429. //this isn't implemented yet! Default palette only!
  430. return -1;
  431. }
  432. static inline int encode_15_7_sl(Palette * palette, uint8_t * dest,
  433. const uint8_t * src, int width, int dist)
  434. {
  435. int len = 0, x;
  436. for (x = 0; x < width; x++) {
  437. len += write_pixel_15_7(palette, dest + len, src + 3 * x, dist);
  438. }
  439. return len;
  440. }
  441. static int encode_15_7(Palette * palette, Block * b, const uint8_t * src,
  442. int stride, int dist)
  443. {
  444. int i;
  445. uint8_t *ptr = b->enc;
  446. for (i = 0; i < b->start; i++)
  447. ptr += encode_15_7_sl(palette, ptr, src + i * stride, b->width, dist);
  448. b->sl_begin = ptr;
  449. for (; i < b->start + b->len; i++)
  450. ptr += encode_15_7_sl(palette, ptr, src + i * stride, b->width, dist);
  451. b->sl_end = ptr;
  452. for (; i < b->height; i++)
  453. ptr += encode_15_7_sl(palette, ptr, src + i * stride, b->width, dist);
  454. b->enc_size = ptr - b->enc;
  455. return b->enc_size;
  456. }
  457. static int encode_block(Palette * palette, Block * b, Block * prev,
  458. const uint8_t * src, int stride, int comp, int dist,
  459. int keyframe)
  460. {
  461. unsigned buf_size = b->width * b->height * 6;
  462. uint8_t buf[buf_size];
  463. int res;
  464. if (b->flags & COLORSPACE_15_7) {
  465. encode_15_7(palette, b, src, stride, dist);
  466. } else {
  467. encode_bgr(b, src, stride);
  468. }
  469. if (b->len > 0) {
  470. b->data_size = buf_size;
  471. res = encode_zlib(b, b->data, &b->data_size, comp);
  472. if (res)
  473. return res;
  474. if (!keyframe) {
  475. res = encode_zlibprime(b, prev, buf, &buf_size, comp);
  476. if (res)
  477. return res;
  478. if (buf_size < b->data_size) {
  479. b->data_size = buf_size;
  480. memcpy(b->data, buf, buf_size);
  481. b->flags |= ZLIB_PRIME_COMPRESS_PREVIOUS;
  482. }
  483. }
  484. } else {
  485. b->data_size = 0;
  486. }
  487. return 0;
  488. }
  489. static int compare_sl(FlashSV2Context * s, Block * b, const uint8_t * src,
  490. uint8_t * frame, uint8_t * key, int y, int keyframe)
  491. {
  492. if (memcmp(src, frame, b->width * 3) != 0) {
  493. b->dirty = 1;
  494. memcpy(frame, src, b->width * 3);
  495. #ifndef FLASHSV2_DUMB
  496. s->diff_lines++;
  497. #endif
  498. }
  499. if (memcmp(src, key, b->width * 3) != 0) {
  500. if (b->len == 0)
  501. b->start = y;
  502. b->len = y + 1 - b->start;
  503. }
  504. return 0;
  505. }
  506. static int mark_all_blocks(FlashSV2Context * s, const uint8_t * src, int stride,
  507. int keyframe)
  508. {
  509. int sl, rsl, col, pos, possl;
  510. Block *b;
  511. for (sl = s->image_height - 1; sl >= 0; sl--) {
  512. for (col = 0; col < s->cols; col++) {
  513. rsl = s->image_height - sl - 1;
  514. b = s->frame_blocks + col + rsl / s->block_height * s->cols;
  515. possl = stride * sl + col * s->block_width * 3;
  516. pos = s->image_width * rsl * 3 + col * s->block_width * 3;
  517. compare_sl(s, b, src + possl, s->current_frame + pos,
  518. s->key_frame + pos, rsl % s->block_height, keyframe);
  519. }
  520. }
  521. #ifndef FLASHSV2_DUMB
  522. s->tot_lines += s->image_height * s->cols;
  523. #endif
  524. return 0;
  525. }
  526. static int encode_all_blocks(FlashSV2Context * s, int keyframe)
  527. {
  528. int row, col, res;
  529. uint8_t *data;
  530. Block *b, *prev;
  531. for (row = 0; row < s->rows; row++) {
  532. for (col = 0; col < s->cols; col++) {
  533. b = s->frame_blocks + (row * s->cols + col);
  534. prev = s->key_blocks + (row * s->cols + col);
  535. if (keyframe) {
  536. b->start = 0;
  537. b->len = b->height;
  538. b->flags = s->use15_7 ? COLORSPACE_15_7 : 0;
  539. } else if (!b->dirty) {
  540. b->start = 0;
  541. b->len = 0;
  542. b->data_size = 0;
  543. b->flags = s->use15_7 ? COLORSPACE_15_7 : 0;
  544. continue;
  545. } else {
  546. b->flags = s->use15_7 ? COLORSPACE_15_7 | HAS_DIFF_BLOCKS : HAS_DIFF_BLOCKS;
  547. }
  548. data = s->current_frame + s->image_width * 3 * s->block_height * row + s->block_width * col * 3;
  549. res = encode_block(&s->palette, b, prev, data, s->image_width * 3, s->comp, s->dist, keyframe);
  550. #ifndef FLASHSV2_DUMB
  551. if (b->dirty)
  552. s->diff_blocks++;
  553. s->comp_size += b->data_size;
  554. s->uncomp_size += b->enc_size;
  555. #endif
  556. if (res)
  557. return res;
  558. }
  559. }
  560. #ifndef FLASHSV2_DUMB
  561. s->raw_size += s->image_width * s->image_height * 3;
  562. s->tot_blocks += s->rows * s->cols;
  563. #endif
  564. return 0;
  565. }
  566. static int write_all_blocks(FlashSV2Context * s, uint8_t * buf,
  567. int buf_size)
  568. {
  569. int row, col, buf_pos = 0, len;
  570. Block *b;
  571. for (row = 0; row < s->rows; row++) {
  572. for (col = 0; col < s->cols; col++) {
  573. b = s->frame_blocks + row * s->cols + col;
  574. len = write_block(b, buf + buf_pos, buf_size - buf_pos);
  575. b->start = b->len = b->dirty = 0;
  576. if (len < 0)
  577. return len;
  578. buf_pos += len;
  579. }
  580. }
  581. return buf_pos;
  582. }
  583. static int write_bitstream(FlashSV2Context * s, const uint8_t * src, int stride,
  584. uint8_t * buf, int buf_size, int keyframe)
  585. {
  586. int buf_pos, res;
  587. res = mark_all_blocks(s, src, stride, keyframe);
  588. if (res)
  589. return res;
  590. res = encode_all_blocks(s, keyframe);
  591. if (res)
  592. return res;
  593. res = write_header(s, buf, buf_size);
  594. if (res < 0) {
  595. return res;
  596. } else {
  597. buf_pos = res;
  598. }
  599. res = write_all_blocks(s, buf + buf_pos, buf_size - buf_pos);
  600. if (res < 0)
  601. return res;
  602. buf_pos += res;
  603. #ifndef FLASHSV2_DUMB
  604. s->total_bits += ((double) buf_pos) * 8.0;
  605. #endif
  606. return buf_pos;
  607. }
  608. static void recommend_keyframe(FlashSV2Context * s, int *keyframe)
  609. {
  610. #ifndef FLASHSV2_DUMB
  611. double block_ratio, line_ratio, enc_ratio, comp_ratio, data_ratio;
  612. if (s->avctx->gop_size > 0) {
  613. block_ratio = s->diff_blocks / s->tot_blocks;
  614. line_ratio = s->diff_lines / s->tot_lines;
  615. enc_ratio = s->uncomp_size / s->raw_size;
  616. comp_ratio = s->comp_size / s->uncomp_size;
  617. data_ratio = s->comp_size / s->raw_size;
  618. if ((block_ratio >= 0.5 && line_ratio / block_ratio <= 0.5) || line_ratio >= 0.95) {
  619. *keyframe = 1;
  620. return;
  621. }
  622. }
  623. #else
  624. return;
  625. #endif
  626. }
  627. static const double block_size_fraction = 1.0 / 300;
  628. static int optimum_block_width(FlashSV2Context * s)
  629. {
  630. #ifndef FLASHSV2_DUMB
  631. double save = (1-pow(s->diff_lines/s->diff_blocks/s->block_height, 0.5)) * s->comp_size/s->tot_blocks;
  632. double width = block_size_fraction * sqrt(0.5 * save * s->rows * s->cols) * s->image_width;
  633. int pwidth = ((int) width);
  634. return FFCLIP(pwidth & ~15, 256, 16);
  635. #else
  636. return 64;
  637. #endif
  638. }
  639. static int optimum_block_height(FlashSV2Context * s)
  640. {
  641. #ifndef FLASHSV2_DUMB
  642. double save = (1-pow(s->diff_lines/s->diff_blocks/s->block_height, 0.5)) * s->comp_size/s->tot_blocks;
  643. double height = block_size_fraction * sqrt(0.5 * save * s->rows * s->cols) * s->image_height;
  644. int pheight = ((int) height);
  645. return FFCLIP(pheight & ~15, 256, 16);
  646. #else
  647. return 64;
  648. #endif
  649. }
  650. static const double use15_7_threshold = 8192;
  651. static int optimum_use15_7(FlashSV2Context * s)
  652. {
  653. #ifndef FLASHSV2_DUMB
  654. double ideal = ((double)(s->avctx->bit_rate * s->avctx->time_base.den * s->avctx->ticks_per_frame)) /
  655. ((double) s->avctx->time_base.num) * s->avctx->frame_number;
  656. if (ideal + use15_7_threshold < s->total_bits) {
  657. return 1;
  658. } else {
  659. return 0;
  660. }
  661. #else
  662. return s->avctx->global_quality == 0;
  663. #endif
  664. }
  665. static const double color15_7_factor = 100;
  666. static int optimum_dist(FlashSV2Context * s)
  667. {
  668. #ifndef FLASHSV2_DUMB
  669. double ideal =
  670. s->avctx->bit_rate * s->avctx->time_base.den *
  671. s->avctx->ticks_per_frame;
  672. int dist = pow((s->total_bits / ideal) * color15_7_factor, 3);
  673. av_log(s->avctx, AV_LOG_DEBUG, "dist: %d\n", dist);
  674. return dist;
  675. #else
  676. return 15;
  677. #endif
  678. }
  679. static int reconfigure_at_keyframe(FlashSV2Context * s, const uint8_t * image,
  680. int stride)
  681. {
  682. int update_palette = 0;
  683. int res;
  684. s->block_width = optimum_block_width(s);
  685. s->block_height = optimum_block_height(s);
  686. s->rows = (s->image_height + s->block_height - 1) / s->block_height;
  687. s->cols = (s->image_width + s->block_width - 1) / s->block_width;
  688. if (s->rows * s->cols != s->blocks_size / sizeof(Block)) {
  689. if (s->rows * s->cols > s->blocks_size / sizeof(Block)) {
  690. s->frame_blocks = av_realloc(s->frame_blocks, s->rows * s->cols * sizeof(Block));
  691. s->key_blocks = av_realloc(s->key_blocks, s->cols * s->rows * sizeof(Block));
  692. if (!s->frame_blocks || !s->key_blocks) {
  693. av_log(s->avctx, AV_LOG_ERROR, "Memory allocation failed.\n");
  694. return -1;
  695. }
  696. s->blocks_size = s->rows * s->cols * sizeof(Block);
  697. }
  698. init_blocks(s, s->frame_blocks, s->encbuffer, s->databuffer);
  699. init_blocks(s, s->key_blocks, s->keybuffer, 0);
  700. }
  701. s->use15_7 = optimum_use15_7(s);
  702. if (s->use15_7) {
  703. if ((s->use_custom_palette && s->palette_type != 1) || update_palette) {
  704. res = generate_optimum_palette(&s->palette, image, s->image_width, s->image_height, stride);
  705. if (res)
  706. return res;
  707. s->palette_type = 1;
  708. av_log(s->avctx, AV_LOG_DEBUG, "Generated optimum palette\n");
  709. } else if (!s->use_custom_palette && s->palette_type != 0) {
  710. res = generate_default_palette(&s->palette);
  711. if (res)
  712. return res;
  713. s->palette_type = 0;
  714. av_log(s->avctx, AV_LOG_DEBUG, "Generated default palette\n");
  715. }
  716. }
  717. reset_stats(s);
  718. return 0;
  719. }
  720. static int flashsv2_encode_frame(AVCodecContext * avctx, uint8_t * buf,
  721. int buf_size, void *data)
  722. {
  723. FlashSV2Context *const s = avctx->priv_data;
  724. AVFrame *pict = data;
  725. AVFrame *const p = &s->frame;
  726. int res;
  727. int keyframe = 0;
  728. *p = *pict;
  729. /* First frame needs to be a keyframe */
  730. if (avctx->frame_number == 0)
  731. keyframe = 1;
  732. /* Check the placement of keyframes */
  733. if (avctx->gop_size > 0) {
  734. if (avctx->frame_number >= s->last_key_frame + avctx->gop_size)
  735. keyframe = 1;
  736. }
  737. if (buf_size < s->frame_size) {
  738. //Conservative upper bound check for compressed data
  739. av_log(avctx, AV_LOG_ERROR, "buf_size %d < %d\n", buf_size, s->frame_size);
  740. return -1;
  741. }
  742. if (!keyframe
  743. && avctx->frame_number > s->last_key_frame + avctx->keyint_min) {
  744. recommend_keyframe(s, &keyframe);
  745. if (keyframe)
  746. av_log(avctx, AV_LOG_DEBUG, "Recommending key frame at frame %d\n", avctx->frame_number);
  747. }
  748. if (keyframe) {
  749. res = reconfigure_at_keyframe(s, p->data[0], p->linesize[0]);
  750. if (res)
  751. return res;
  752. }
  753. if (s->use15_7)
  754. s->dist = optimum_dist(s);
  755. res = write_bitstream(s, p->data[0], p->linesize[0], buf, buf_size, keyframe);
  756. if (keyframe) {
  757. new_key_frame(s);
  758. p->pict_type = FF_I_TYPE;
  759. p->key_frame = 1;
  760. s->last_key_frame = avctx->frame_number;
  761. av_log(avctx, AV_LOG_DEBUG, "Inserting key frame at frame %d\n", avctx->frame_number);
  762. } else {
  763. p->pict_type = FF_P_TYPE;
  764. p->key_frame = 0;
  765. }
  766. avctx->coded_frame = p;
  767. return res;
  768. }
  769. static av_cold int flashsv2_encode_end(AVCodecContext * avctx)
  770. {
  771. FlashSV2Context *s = avctx->priv_data;
  772. cleanup(s);
  773. return 0;
  774. }
  775. AVCodec ff_flashsv2_encoder = {
  776. "flashsv2",
  777. AVMEDIA_TYPE_VIDEO,
  778. CODEC_ID_FLASHSV2,
  779. sizeof(FlashSV2Context),
  780. flashsv2_encode_init,
  781. flashsv2_encode_frame,
  782. flashsv2_encode_end,
  783. .pix_fmts = (enum PixelFormat[]) {PIX_FMT_BGR24, PIX_FMT_NONE},
  784. .long_name = NULL_IF_CONFIG_SMALL("Flash Screen Video Version 2"),
  785. };