You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2103 lines
72KB

  1. /*
  2. * Copyright (C) 2007 Marco Gerards <marco@gnu.org>
  3. * Copyright (C) 2009 David Conrad
  4. * Copyright (C) 2011 Jordi Ortiz
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Dirac Decoder
  25. * @author Marco Gerards <marco@gnu.org>, David Conrad, Jordi Ortiz <nenjordi@gmail.com>
  26. */
  27. #include "avcodec.h"
  28. #include "get_bits.h"
  29. #include "bytestream.h"
  30. #include "internal.h"
  31. #include "golomb.h"
  32. #include "dirac_arith.h"
  33. #include "mpeg12data.h"
  34. #include "libavcodec/mpegvideo.h"
  35. #include "mpegvideoencdsp.h"
  36. #include "dirac_dwt.h"
  37. #include "dirac.h"
  38. #include "diracdsp.h"
  39. #include "videodsp.h"
  40. /**
  41. * The spec limits the number of wavelet decompositions to 4 for both
  42. * level 1 (VC-2) and 128 (long-gop default).
  43. * 5 decompositions is the maximum before >16-bit buffers are needed.
  44. * Schroedinger allows this for DD 9,7 and 13,7 wavelets only, limiting
  45. * the others to 4 decompositions (or 3 for the fidelity filter).
  46. *
  47. * We use this instead of MAX_DECOMPOSITIONS to save some memory.
  48. */
  49. #define MAX_DWT_LEVELS 5
  50. /**
  51. * The spec limits this to 3 for frame coding, but in practice can be as high as 6
  52. */
  53. #define MAX_REFERENCE_FRAMES 8
  54. #define MAX_DELAY 5 /* limit for main profile for frame coding (TODO: field coding) */
  55. #define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1)
  56. #define MAX_QUANT 68 /* max quant for VC-2 */
  57. #define MAX_BLOCKSIZE 32 /* maximum xblen/yblen we support */
  58. /**
  59. * DiracBlock->ref flags, if set then the block does MC from the given ref
  60. */
  61. #define DIRAC_REF_MASK_REF1 1
  62. #define DIRAC_REF_MASK_REF2 2
  63. #define DIRAC_REF_MASK_GLOBAL 4
  64. /**
  65. * Value of Picture.reference when Picture is not a reference picture, but
  66. * is held for delayed output.
  67. */
  68. #define DELAYED_PIC_REF 4
  69. #define CALC_PADDING(size, depth) \
  70. (((size + (1 << depth) - 1) >> depth) << depth)
  71. #define DIVRNDUP(a, b) (((a) + (b) - 1) / (b))
  72. typedef struct {
  73. AVFrame *avframe;
  74. int interpolated[3]; /* 1 if hpel[] is valid */
  75. uint8_t *hpel[3][4];
  76. uint8_t *hpel_base[3][4];
  77. int reference;
  78. } DiracFrame;
  79. typedef struct {
  80. union {
  81. int16_t mv[2][2];
  82. int16_t dc[3];
  83. } u; /* anonymous unions aren't in C99 :( */
  84. uint8_t ref;
  85. } DiracBlock;
  86. typedef struct SubBand {
  87. int level;
  88. int orientation;
  89. int stride; /* in bytes */
  90. int width;
  91. int height;
  92. int pshift;
  93. int quant;
  94. uint8_t *ibuf;
  95. struct SubBand *parent;
  96. /* for low delay */
  97. unsigned length;
  98. const uint8_t *coeff_data;
  99. } SubBand;
  100. typedef struct Plane {
  101. int width;
  102. int height;
  103. ptrdiff_t stride;
  104. int idwt_width;
  105. int idwt_height;
  106. int idwt_stride;
  107. uint8_t *idwt_buf;
  108. uint8_t *idwt_buf_base;
  109. uint8_t *idwt_tmp;
  110. /* block length */
  111. uint8_t xblen;
  112. uint8_t yblen;
  113. /* block separation (block n+1 starts after this many pixels in block n) */
  114. uint8_t xbsep;
  115. uint8_t ybsep;
  116. /* amount of overspill on each edge (half of the overlap between blocks) */
  117. uint8_t xoffset;
  118. uint8_t yoffset;
  119. SubBand band[MAX_DWT_LEVELS][4];
  120. } Plane;
  121. typedef struct DiracContext {
  122. AVCodecContext *avctx;
  123. MpegvideoEncDSPContext mpvencdsp;
  124. VideoDSPContext vdsp;
  125. DiracDSPContext diracdsp;
  126. GetBitContext gb;
  127. dirac_source_params source;
  128. int seen_sequence_header;
  129. int frame_number; /* number of the next frame to display */
  130. Plane plane[3];
  131. int chroma_x_shift;
  132. int chroma_y_shift;
  133. int bit_depth; /* bit depth */
  134. int pshift; /* pixel shift = bit_depth > 8 */
  135. int zero_res; /* zero residue flag */
  136. int is_arith; /* whether coeffs use arith or golomb coding */
  137. int low_delay; /* use the low delay syntax */
  138. int globalmc_flag; /* use global motion compensation */
  139. int num_refs; /* number of reference pictures */
  140. /* wavelet decoding */
  141. unsigned wavelet_depth; /* depth of the IDWT */
  142. unsigned wavelet_idx;
  143. /**
  144. * schroedinger older than 1.0.8 doesn't store
  145. * quant delta if only one codebook exists in a band
  146. */
  147. unsigned old_delta_quant;
  148. unsigned codeblock_mode;
  149. struct {
  150. unsigned width;
  151. unsigned height;
  152. } codeblock[MAX_DWT_LEVELS+1];
  153. struct {
  154. unsigned num_x; /* number of horizontal slices */
  155. unsigned num_y; /* number of vertical slices */
  156. AVRational bytes; /* average bytes per slice */
  157. uint8_t quant[MAX_DWT_LEVELS][4]; /* [DIRAC_STD] E.1 */
  158. } lowdelay;
  159. struct {
  160. int pan_tilt[2]; /* pan/tilt vector */
  161. int zrs[2][2]; /* zoom/rotate/shear matrix */
  162. int perspective[2]; /* perspective vector */
  163. unsigned zrs_exp;
  164. unsigned perspective_exp;
  165. } globalmc[2];
  166. /* motion compensation */
  167. uint8_t mv_precision; /* [DIRAC_STD] REFS_WT_PRECISION */
  168. int16_t weight[2]; /* [DIRAC_STD] REF1_WT and REF2_WT */
  169. unsigned weight_log2denom; /* [DIRAC_STD] REFS_WT_PRECISION */
  170. int blwidth; /* number of blocks (horizontally) */
  171. int blheight; /* number of blocks (vertically) */
  172. int sbwidth; /* number of superblocks (horizontally) */
  173. int sbheight; /* number of superblocks (vertically) */
  174. uint8_t *sbsplit;
  175. DiracBlock *blmotion;
  176. uint8_t *edge_emu_buffer[4];
  177. uint8_t *edge_emu_buffer_base;
  178. uint16_t *mctmp; /* buffer holding the MC data multiplied by OBMC weights */
  179. uint8_t *mcscratch;
  180. int buffer_stride;
  181. DECLARE_ALIGNED(16, uint8_t, obmc_weight)[3][MAX_BLOCKSIZE*MAX_BLOCKSIZE];
  182. void (*put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
  183. void (*avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
  184. void (*add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen);
  185. dirac_weight_func weight_func;
  186. dirac_biweight_func biweight_func;
  187. DiracFrame *current_picture;
  188. DiracFrame *ref_pics[2];
  189. DiracFrame *ref_frames[MAX_REFERENCE_FRAMES+1];
  190. DiracFrame *delay_frames[MAX_DELAY+1];
  191. DiracFrame all_frames[MAX_FRAMES];
  192. } DiracContext;
  193. /**
  194. * Dirac Specification ->
  195. * Parse code values. 9.6.1 Table 9.1
  196. */
  197. enum dirac_parse_code {
  198. pc_seq_header = 0x00,
  199. pc_eos = 0x10,
  200. pc_aux_data = 0x20,
  201. pc_padding = 0x30,
  202. };
  203. enum dirac_subband {
  204. subband_ll = 0,
  205. subband_hl = 1,
  206. subband_lh = 2,
  207. subband_hh = 3,
  208. subband_nb,
  209. };
  210. static const uint8_t default_qmat[][4][4] = {
  211. { { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} },
  212. { { 4, 2, 2, 0}, { 0, 4, 4, 2}, { 0, 5, 5, 3}, { 0, 7, 7, 5} },
  213. { { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} },
  214. { { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} },
  215. { { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} },
  216. { { 0, 4, 4, 8}, { 0, 8, 8, 12}, { 0, 13, 13, 17}, { 0, 17, 17, 21} },
  217. { { 3, 1, 1, 0}, { 0, 4, 4, 2}, { 0, 6, 6, 5}, { 0, 9, 9, 7} },
  218. };
  219. static const int qscale_tab[MAX_QUANT+1] = {
  220. 4, 5, 6, 7, 8, 10, 11, 13,
  221. 16, 19, 23, 27, 32, 38, 45, 54,
  222. 64, 76, 91, 108, 128, 152, 181, 215,
  223. 256, 304, 362, 431, 512, 609, 724, 861,
  224. 1024, 1218, 1448, 1722, 2048, 2435, 2896, 3444,
  225. 4096, 4871, 5793, 6889, 8192, 9742, 11585, 13777,
  226. 16384, 19484, 23170, 27554, 32768, 38968, 46341, 55109,
  227. 65536, 77936
  228. };
  229. static const int qoffset_intra_tab[MAX_QUANT+1] = {
  230. 1, 2, 3, 4, 4, 5, 6, 7,
  231. 8, 10, 12, 14, 16, 19, 23, 27,
  232. 32, 38, 46, 54, 64, 76, 91, 108,
  233. 128, 152, 181, 216, 256, 305, 362, 431,
  234. 512, 609, 724, 861, 1024, 1218, 1448, 1722,
  235. 2048, 2436, 2897, 3445, 4096, 4871, 5793, 6889,
  236. 8192, 9742, 11585, 13777, 16384, 19484, 23171, 27555,
  237. 32768, 38968
  238. };
  239. static const int qoffset_inter_tab[MAX_QUANT+1] = {
  240. 1, 2, 2, 3, 3, 4, 4, 5,
  241. 6, 7, 9, 10, 12, 14, 17, 20,
  242. 24, 29, 34, 41, 48, 57, 68, 81,
  243. 96, 114, 136, 162, 192, 228, 272, 323,
  244. 384, 457, 543, 646, 768, 913, 1086, 1292,
  245. 1536, 1827, 2172, 2583, 3072, 3653, 4344, 5166,
  246. 6144, 7307, 8689, 10333, 12288, 14613, 17378, 20666,
  247. 24576, 29226
  248. };
  249. /* magic number division by 3 from schroedinger */
  250. static inline int divide3(int x)
  251. {
  252. return ((x+1)*21845 + 10922) >> 16;
  253. }
  254. static DiracFrame *remove_frame(DiracFrame *framelist[], int picnum)
  255. {
  256. DiracFrame *remove_pic = NULL;
  257. int i, remove_idx = -1;
  258. for (i = 0; framelist[i]; i++)
  259. if (framelist[i]->avframe->display_picture_number == picnum) {
  260. remove_pic = framelist[i];
  261. remove_idx = i;
  262. }
  263. if (remove_pic)
  264. for (i = remove_idx; framelist[i]; i++)
  265. framelist[i] = framelist[i+1];
  266. return remove_pic;
  267. }
  268. static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
  269. {
  270. int i;
  271. for (i = 0; i < maxframes; i++)
  272. if (!framelist[i]) {
  273. framelist[i] = frame;
  274. return 0;
  275. }
  276. return -1;
  277. }
  278. static int alloc_sequence_buffers(DiracContext *s)
  279. {
  280. int sbwidth = DIVRNDUP(s->source.width, 4);
  281. int sbheight = DIVRNDUP(s->source.height, 4);
  282. int i, w, h, top_padding;
  283. /* todo: think more about this / use or set Plane here */
  284. for (i = 0; i < 3; i++) {
  285. int max_xblen = MAX_BLOCKSIZE >> (i ? s->chroma_x_shift : 0);
  286. int max_yblen = MAX_BLOCKSIZE >> (i ? s->chroma_y_shift : 0);
  287. w = s->source.width >> (i ? s->chroma_x_shift : 0);
  288. h = s->source.height >> (i ? s->chroma_y_shift : 0);
  289. /* we allocate the max we support here since num decompositions can
  290. * change from frame to frame. Stride is aligned to 16 for SIMD, and
  291. * 1<<MAX_DWT_LEVELS top padding to avoid if(y>0) in arith decoding
  292. * MAX_BLOCKSIZE padding for MC: blocks can spill up to half of that
  293. * on each side */
  294. top_padding = FFMAX(1<<MAX_DWT_LEVELS, max_yblen/2);
  295. w = FFALIGN(CALC_PADDING(w, MAX_DWT_LEVELS), 8); /* FIXME: Should this be 16 for SSE??? */
  296. h = top_padding + CALC_PADDING(h, MAX_DWT_LEVELS) + max_yblen/2;
  297. s->plane[i].idwt_buf_base = av_mallocz_array((w+max_xblen), h * (2 << s->pshift));
  298. s->plane[i].idwt_tmp = av_malloc_array((w+16), 2 << s->pshift);
  299. s->plane[i].idwt_buf = s->plane[i].idwt_buf_base + (top_padding*w)*(2 << s->pshift);
  300. if (!s->plane[i].idwt_buf_base || !s->plane[i].idwt_tmp)
  301. return AVERROR(ENOMEM);
  302. }
  303. /* fixme: allocate using real stride here */
  304. s->sbsplit = av_malloc_array(sbwidth, sbheight);
  305. s->blmotion = av_malloc_array(sbwidth, sbheight * 16 * sizeof(*s->blmotion));
  306. if (!s->sbsplit || !s->blmotion)
  307. return AVERROR(ENOMEM);
  308. return 0;
  309. }
  310. static int alloc_buffers(DiracContext *s, int stride)
  311. {
  312. int w = s->source.width;
  313. int h = s->source.height;
  314. av_assert0(stride >= w);
  315. stride += 64;
  316. if (s->buffer_stride >= stride)
  317. return 0;
  318. s->buffer_stride = 0;
  319. av_freep(&s->edge_emu_buffer_base);
  320. memset(s->edge_emu_buffer, 0, sizeof(s->edge_emu_buffer));
  321. av_freep(&s->mctmp);
  322. av_freep(&s->mcscratch);
  323. s->edge_emu_buffer_base = av_malloc_array(stride, MAX_BLOCKSIZE);
  324. s->mctmp = av_malloc_array((stride+MAX_BLOCKSIZE), (h+MAX_BLOCKSIZE) * sizeof(*s->mctmp));
  325. s->mcscratch = av_malloc_array(stride, MAX_BLOCKSIZE);
  326. if (!s->edge_emu_buffer_base || !s->mctmp || !s->mcscratch)
  327. return AVERROR(ENOMEM);
  328. s->buffer_stride = stride;
  329. return 0;
  330. }
  331. static void free_sequence_buffers(DiracContext *s)
  332. {
  333. int i, j, k;
  334. for (i = 0; i < MAX_FRAMES; i++) {
  335. if (s->all_frames[i].avframe->data[0]) {
  336. av_frame_unref(s->all_frames[i].avframe);
  337. memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
  338. }
  339. for (j = 0; j < 3; j++)
  340. for (k = 1; k < 4; k++)
  341. av_freep(&s->all_frames[i].hpel_base[j][k]);
  342. }
  343. memset(s->ref_frames, 0, sizeof(s->ref_frames));
  344. memset(s->delay_frames, 0, sizeof(s->delay_frames));
  345. for (i = 0; i < 3; i++) {
  346. av_freep(&s->plane[i].idwt_buf_base);
  347. av_freep(&s->plane[i].idwt_tmp);
  348. }
  349. s->buffer_stride = 0;
  350. av_freep(&s->sbsplit);
  351. av_freep(&s->blmotion);
  352. av_freep(&s->edge_emu_buffer_base);
  353. av_freep(&s->mctmp);
  354. av_freep(&s->mcscratch);
  355. }
  356. static av_cold int dirac_decode_init(AVCodecContext *avctx)
  357. {
  358. DiracContext *s = avctx->priv_data;
  359. int i;
  360. s->avctx = avctx;
  361. s->frame_number = -1;
  362. ff_diracdsp_init(&s->diracdsp);
  363. ff_mpegvideoencdsp_init(&s->mpvencdsp, avctx);
  364. ff_videodsp_init(&s->vdsp, 8);
  365. for (i = 0; i < MAX_FRAMES; i++) {
  366. s->all_frames[i].avframe = av_frame_alloc();
  367. if (!s->all_frames[i].avframe) {
  368. while (i > 0)
  369. av_frame_free(&s->all_frames[--i].avframe);
  370. return AVERROR(ENOMEM);
  371. }
  372. }
  373. return 0;
  374. }
  375. static void dirac_decode_flush(AVCodecContext *avctx)
  376. {
  377. DiracContext *s = avctx->priv_data;
  378. free_sequence_buffers(s);
  379. s->seen_sequence_header = 0;
  380. s->frame_number = -1;
  381. }
  382. static av_cold int dirac_decode_end(AVCodecContext *avctx)
  383. {
  384. DiracContext *s = avctx->priv_data;
  385. int i;
  386. dirac_decode_flush(avctx);
  387. for (i = 0; i < MAX_FRAMES; i++)
  388. av_frame_free(&s->all_frames[i].avframe);
  389. return 0;
  390. }
  391. #define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
  392. static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
  393. {
  394. int sign, coeff;
  395. coeff = svq3_get_ue_golomb(gb);
  396. if (coeff) {
  397. coeff = (coeff * qfactor + qoffset + 2) >> 2;
  398. sign = get_bits1(gb);
  399. coeff = (coeff ^ -sign) + sign;
  400. }
  401. return coeff;
  402. }
  403. #define UNPACK_ARITH(n, type) \
  404. static inline void coeff_unpack_arith_##n(DiracArith *c, int qfactor, int qoffset, \
  405. SubBand *b, type *buf, int x, int y) \
  406. { \
  407. int coeff, sign, sign_pred = 0, pred_ctx = CTX_ZPZN_F1; \
  408. const int mstride = -(b->stride >> (1+b->pshift)); \
  409. if (b->parent) { \
  410. const type *pbuf = (type *)b->parent->ibuf; \
  411. const int stride = b->parent->stride >> (1+b->parent->pshift); \
  412. pred_ctx += !!pbuf[stride * (y>>1) + (x>>1)] << 1; \
  413. } \
  414. if (b->orientation == subband_hl) \
  415. sign_pred = buf[mstride]; \
  416. if (x) { \
  417. pred_ctx += !(buf[-1] | buf[mstride] | buf[-1 + mstride]); \
  418. if (b->orientation == subband_lh) \
  419. sign_pred = buf[-1]; \
  420. } else { \
  421. pred_ctx += !buf[mstride]; \
  422. } \
  423. coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA); \
  424. if (coeff) { \
  425. coeff = (coeff * qfactor + qoffset + 2) >> 2; \
  426. sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred)); \
  427. coeff = (coeff ^ -sign) + sign; \
  428. } \
  429. *buf = coeff; \
  430. } \
  431. UNPACK_ARITH(8, int16_t)
  432. UNPACK_ARITH(10, int32_t)
  433. /**
  434. * Decode the coeffs in the rectangle defined by left, right, top, bottom
  435. * [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock()
  436. */
  437. static inline void codeblock(DiracContext *s, SubBand *b,
  438. GetBitContext *gb, DiracArith *c,
  439. int left, int right, int top, int bottom,
  440. int blockcnt_one, int is_arith)
  441. {
  442. int x, y, zero_block;
  443. int qoffset, qfactor;
  444. uint8_t *buf;
  445. /* check for any coded coefficients in this codeblock */
  446. if (!blockcnt_one) {
  447. if (is_arith)
  448. zero_block = dirac_get_arith_bit(c, CTX_ZERO_BLOCK);
  449. else
  450. zero_block = get_bits1(gb);
  451. if (zero_block)
  452. return;
  453. }
  454. if (s->codeblock_mode && !(s->old_delta_quant && blockcnt_one)) {
  455. int quant = b->quant;
  456. if (is_arith)
  457. quant += dirac_get_arith_int(c, CTX_DELTA_Q_F, CTX_DELTA_Q_DATA);
  458. else
  459. quant += dirac_get_se_golomb(gb);
  460. if (quant < 0) {
  461. av_log(s->avctx, AV_LOG_ERROR, "Invalid quant\n");
  462. return;
  463. }
  464. b->quant = quant;
  465. }
  466. b->quant = FFMIN(b->quant, MAX_QUANT);
  467. qfactor = qscale_tab[b->quant];
  468. /* TODO: context pointer? */
  469. if (!s->num_refs)
  470. qoffset = qoffset_intra_tab[b->quant];
  471. else
  472. qoffset = qoffset_inter_tab[b->quant];
  473. buf = b->ibuf + top * b->stride;
  474. if (is_arith) {
  475. for (y = top; y < bottom; y++) {
  476. for (x = left; x < right; x++) {
  477. if (b->pshift) {
  478. coeff_unpack_arith_10(c, qfactor, qoffset, b, (int32_t*)(buf)+x, x, y);
  479. } else {
  480. coeff_unpack_arith_8(c, qfactor, qoffset, b, (int16_t*)(buf)+x, x, y);
  481. }
  482. }
  483. buf += b->stride;
  484. }
  485. } else {
  486. for (y = top; y < bottom; y++) {
  487. for (x = left; x < right; x++) {
  488. int val = coeff_unpack_golomb(gb, qfactor, qoffset);
  489. if (b->pshift) {
  490. AV_WN32(&buf[4*x], val);
  491. } else {
  492. AV_WN16(&buf[2*x], val);
  493. }
  494. }
  495. buf += b->stride;
  496. }
  497. }
  498. }
  499. /**
  500. * Dirac Specification ->
  501. * 13.3 intra_dc_prediction(band)
  502. */
  503. #define INTRA_DC_PRED(n, type) \
  504. static inline void intra_dc_prediction_##n(SubBand *b) \
  505. { \
  506. type *buf = (type*)b->ibuf; \
  507. int x, y; \
  508. \
  509. for (x = 1; x < b->width; x++) \
  510. buf[x] += buf[x-1]; \
  511. buf += (b->stride >> (1+b->pshift)); \
  512. \
  513. for (y = 1; y < b->height; y++) { \
  514. buf[0] += buf[-(b->stride >> (1+b->pshift))]; \
  515. \
  516. for (x = 1; x < b->width; x++) { \
  517. int pred = buf[x - 1] + buf[x - (b->stride >> (1+b->pshift))] + buf[x - (b->stride >> (1+b->pshift))-1]; \
  518. buf[x] += divide3(pred); \
  519. } \
  520. buf += (b->stride >> (1+b->pshift)); \
  521. } \
  522. } \
  523. INTRA_DC_PRED(8, int16_t)
  524. INTRA_DC_PRED(10, int32_t)
  525. /**
  526. * Dirac Specification ->
  527. * 13.4.2 Non-skipped subbands. subband_coeffs()
  528. */
  529. static av_always_inline void decode_subband_internal(DiracContext *s, SubBand *b, int is_arith)
  530. {
  531. int cb_x, cb_y, left, right, top, bottom;
  532. DiracArith c;
  533. GetBitContext gb;
  534. int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width;
  535. int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height;
  536. int blockcnt_one = (cb_width + cb_height) == 2;
  537. if (!b->length)
  538. return;
  539. init_get_bits8(&gb, b->coeff_data, b->length);
  540. if (is_arith)
  541. ff_dirac_init_arith_decoder(&c, &gb, b->length);
  542. top = 0;
  543. for (cb_y = 0; cb_y < cb_height; cb_y++) {
  544. bottom = (b->height * (cb_y+1LL)) / cb_height;
  545. left = 0;
  546. for (cb_x = 0; cb_x < cb_width; cb_x++) {
  547. right = (b->width * (cb_x+1LL)) / cb_width;
  548. codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith);
  549. left = right;
  550. }
  551. top = bottom;
  552. }
  553. if (b->orientation == subband_ll && s->num_refs == 0) {
  554. if (s->pshift) {
  555. intra_dc_prediction_10(b);
  556. } else {
  557. intra_dc_prediction_8(b);
  558. }
  559. }
  560. }
  561. static int decode_subband_arith(AVCodecContext *avctx, void *b)
  562. {
  563. DiracContext *s = avctx->priv_data;
  564. decode_subband_internal(s, b, 1);
  565. return 0;
  566. }
  567. static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
  568. {
  569. DiracContext *s = avctx->priv_data;
  570. SubBand **b = arg;
  571. decode_subband_internal(s, *b, 0);
  572. return 0;
  573. }
  574. /**
  575. * Dirac Specification ->
  576. * [DIRAC_STD] 13.4.1 core_transform_data()
  577. */
  578. static void decode_component(DiracContext *s, int comp)
  579. {
  580. AVCodecContext *avctx = s->avctx;
  581. SubBand *bands[3*MAX_DWT_LEVELS+1];
  582. enum dirac_subband orientation;
  583. int level, num_bands = 0;
  584. /* Unpack all subbands at all levels. */
  585. for (level = 0; level < s->wavelet_depth; level++) {
  586. for (orientation = !!level; orientation < 4; orientation++) {
  587. SubBand *b = &s->plane[comp].band[level][orientation];
  588. bands[num_bands++] = b;
  589. align_get_bits(&s->gb);
  590. /* [DIRAC_STD] 13.4.2 subband() */
  591. b->length = svq3_get_ue_golomb(&s->gb);
  592. if (b->length) {
  593. b->quant = svq3_get_ue_golomb(&s->gb);
  594. align_get_bits(&s->gb);
  595. b->coeff_data = s->gb.buffer + get_bits_count(&s->gb)/8;
  596. b->length = FFMIN(b->length, FFMAX(get_bits_left(&s->gb)/8, 0));
  597. skip_bits_long(&s->gb, b->length*8);
  598. }
  599. }
  600. /* arithmetic coding has inter-level dependencies, so we can only execute one level at a time */
  601. if (s->is_arith)
  602. avctx->execute(avctx, decode_subband_arith, &s->plane[comp].band[level][!!level],
  603. NULL, 4-!!level, sizeof(SubBand));
  604. }
  605. /* golomb coding has no inter-level dependencies, so we can execute all subbands in parallel */
  606. if (!s->is_arith)
  607. avctx->execute(avctx, decode_subband_golomb, bands, NULL, num_bands, sizeof(SubBand*));
  608. }
  609. #define PARSE_VALUES(type, x, gb, ebits, buf1, buf2) \
  610. type *buf = (type *)buf1; \
  611. buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
  612. if (get_bits_count(gb) >= ebits) \
  613. return; \
  614. if (buf2) { \
  615. buf = (type *)buf2; \
  616. buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
  617. if (get_bits_count(gb) >= ebits) \
  618. return; \
  619. } \
  620. /* [DIRAC_STD] 13.5.5.2 Luma slice subband data. luma_slice_band(level,orient,sx,sy) --> if b2 == NULL */
  621. /* [DIRAC_STD] 13.5.5.3 Chroma slice subband data. chroma_slice_band(level,orient,sx,sy) --> if b2 != NULL */
  622. static void lowdelay_subband(DiracContext *s, GetBitContext *gb, int quant,
  623. int slice_x, int slice_y, int bits_end,
  624. SubBand *b1, SubBand *b2)
  625. {
  626. int left = b1->width * slice_x / s->lowdelay.num_x;
  627. int right = b1->width *(slice_x+1) / s->lowdelay.num_x;
  628. int top = b1->height * slice_y / s->lowdelay.num_y;
  629. int bottom = b1->height *(slice_y+1) / s->lowdelay.num_y;
  630. int qfactor = qscale_tab[FFMIN(quant, MAX_QUANT)];
  631. int qoffset = qoffset_intra_tab[FFMIN(quant, MAX_QUANT)];
  632. uint8_t *buf1 = b1->ibuf + top * b1->stride;
  633. uint8_t *buf2 = b2 ? b2->ibuf + top * b2->stride: NULL;
  634. int x, y;
  635. /* we have to constantly check for overread since the spec explicitly
  636. requires this, with the meaning that all remaining coeffs are set to 0 */
  637. if (get_bits_count(gb) >= bits_end)
  638. return;
  639. if (s->pshift) {
  640. for (y = top; y < bottom; y++) {
  641. for (x = left; x < right; x++) {
  642. PARSE_VALUES(int32_t, x, gb, bits_end, buf1, buf2);
  643. }
  644. buf1 += b1->stride;
  645. if (buf2)
  646. buf2 += b2->stride;
  647. }
  648. }
  649. else {
  650. for (y = top; y < bottom; y++) {
  651. for (x = left; x < right; x++) {
  652. PARSE_VALUES(int16_t, x, gb, bits_end, buf1, buf2);
  653. }
  654. buf1 += b1->stride;
  655. if (buf2)
  656. buf2 += b2->stride;
  657. }
  658. }
  659. }
  660. struct lowdelay_slice {
  661. GetBitContext gb;
  662. int slice_x;
  663. int slice_y;
  664. int bytes;
  665. };
  666. /**
  667. * Dirac Specification ->
  668. * 13.5.2 Slices. slice(sx,sy)
  669. */
  670. static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
  671. {
  672. DiracContext *s = avctx->priv_data;
  673. struct lowdelay_slice *slice = arg;
  674. GetBitContext *gb = &slice->gb;
  675. enum dirac_subband orientation;
  676. int level, quant, chroma_bits, chroma_end;
  677. int quant_base = get_bits(gb, 7); /*[DIRAC_STD] qindex */
  678. int length_bits = av_log2(8 * slice->bytes)+1;
  679. int luma_bits = get_bits_long(gb, length_bits);
  680. int luma_end = get_bits_count(gb) + FFMIN(luma_bits, get_bits_left(gb));
  681. /* [DIRAC_STD] 13.5.5.2 luma_slice_band */
  682. for (level = 0; level < s->wavelet_depth; level++)
  683. for (orientation = !!level; orientation < 4; orientation++) {
  684. quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
  685. lowdelay_subband(s, gb, quant, slice->slice_x, slice->slice_y, luma_end,
  686. &s->plane[0].band[level][orientation], NULL);
  687. }
  688. /* consume any unused bits from luma */
  689. skip_bits_long(gb, get_bits_count(gb) - luma_end);
  690. chroma_bits = 8*slice->bytes - 7 - length_bits - luma_bits;
  691. chroma_end = get_bits_count(gb) + FFMIN(chroma_bits, get_bits_left(gb));
  692. /* [DIRAC_STD] 13.5.5.3 chroma_slice_band */
  693. for (level = 0; level < s->wavelet_depth; level++)
  694. for (orientation = !!level; orientation < 4; orientation++) {
  695. quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
  696. lowdelay_subband(s, gb, quant, slice->slice_x, slice->slice_y, chroma_end,
  697. &s->plane[1].band[level][orientation],
  698. &s->plane[2].band[level][orientation]);
  699. }
  700. return 0;
  701. }
  702. /**
  703. * Dirac Specification ->
  704. * 13.5.1 low_delay_transform_data()
  705. */
  706. static int decode_lowdelay(DiracContext *s)
  707. {
  708. AVCodecContext *avctx = s->avctx;
  709. int slice_x, slice_y, bytes, bufsize;
  710. const uint8_t *buf;
  711. struct lowdelay_slice *slices;
  712. int slice_num = 0;
  713. slices = av_mallocz_array(s->lowdelay.num_x, s->lowdelay.num_y * sizeof(struct lowdelay_slice));
  714. if (!slices)
  715. return AVERROR(ENOMEM);
  716. align_get_bits(&s->gb);
  717. /*[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) */
  718. buf = s->gb.buffer + get_bits_count(&s->gb)/8;
  719. bufsize = get_bits_left(&s->gb);
  720. for (slice_y = 0; bufsize > 0 && slice_y < s->lowdelay.num_y; slice_y++)
  721. for (slice_x = 0; bufsize > 0 && slice_x < s->lowdelay.num_x; slice_x++) {
  722. bytes = (slice_num+1) * s->lowdelay.bytes.num / s->lowdelay.bytes.den
  723. - slice_num * s->lowdelay.bytes.num / s->lowdelay.bytes.den;
  724. slices[slice_num].bytes = bytes;
  725. slices[slice_num].slice_x = slice_x;
  726. slices[slice_num].slice_y = slice_y;
  727. init_get_bits(&slices[slice_num].gb, buf, bufsize);
  728. slice_num++;
  729. buf += bytes;
  730. if (bufsize/8 >= bytes)
  731. bufsize -= bytes*8;
  732. else
  733. bufsize = 0;
  734. }
  735. avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num,
  736. sizeof(struct lowdelay_slice)); /* [DIRAC_STD] 13.5.2 Slices */
  737. if (s->pshift) {
  738. intra_dc_prediction_10(&s->plane[0].band[0][0]);
  739. intra_dc_prediction_10(&s->plane[1].band[0][0]);
  740. intra_dc_prediction_10(&s->plane[2].band[0][0]);
  741. } else {
  742. intra_dc_prediction_8(&s->plane[0].band[0][0]);
  743. intra_dc_prediction_8(&s->plane[1].band[0][0]);
  744. intra_dc_prediction_8(&s->plane[2].band[0][0]);
  745. }
  746. av_free(slices);
  747. return 0;
  748. }
  749. static void init_planes(DiracContext *s)
  750. {
  751. int i, w, h, level, orientation;
  752. for (i = 0; i < 3; i++) {
  753. Plane *p = &s->plane[i];
  754. p->width = s->source.width >> (i ? s->chroma_x_shift : 0);
  755. p->height = s->source.height >> (i ? s->chroma_y_shift : 0);
  756. p->idwt_width = w = CALC_PADDING(p->width , s->wavelet_depth);
  757. p->idwt_height = h = CALC_PADDING(p->height, s->wavelet_depth);
  758. p->idwt_stride = FFALIGN(p->idwt_width << (1 + s->pshift), 8);
  759. for (level = s->wavelet_depth-1; level >= 0; level--) {
  760. w = w>>1;
  761. h = h>>1;
  762. for (orientation = !!level; orientation < 4; orientation++) {
  763. SubBand *b = &p->band[level][orientation];
  764. b->pshift = s->pshift;
  765. b->ibuf = p->idwt_buf;
  766. b->level = level;
  767. b->stride = p->idwt_stride << (s->wavelet_depth - level);
  768. b->width = w;
  769. b->height = h;
  770. b->orientation = orientation;
  771. if (orientation & 1)
  772. b->ibuf += w << (1+b->pshift);
  773. if (orientation > 1)
  774. b->ibuf += (b->stride>>1);
  775. if (level)
  776. b->parent = &p->band[level-1][orientation];
  777. }
  778. }
  779. if (i > 0) {
  780. p->xblen = s->plane[0].xblen >> s->chroma_x_shift;
  781. p->yblen = s->plane[0].yblen >> s->chroma_y_shift;
  782. p->xbsep = s->plane[0].xbsep >> s->chroma_x_shift;
  783. p->ybsep = s->plane[0].ybsep >> s->chroma_y_shift;
  784. }
  785. p->xoffset = (p->xblen - p->xbsep)/2;
  786. p->yoffset = (p->yblen - p->ybsep)/2;
  787. }
  788. }
  789. /**
  790. * Unpack the motion compensation parameters
  791. * Dirac Specification ->
  792. * 11.2 Picture prediction data. picture_prediction()
  793. */
  794. static int dirac_unpack_prediction_parameters(DiracContext *s)
  795. {
  796. static const uint8_t default_blen[] = { 4, 12, 16, 24 };
  797. GetBitContext *gb = &s->gb;
  798. unsigned idx, ref;
  799. align_get_bits(gb);
  800. /* [DIRAC_STD] 11.2.2 Block parameters. block_parameters() */
  801. /* Luma and Chroma are equal. 11.2.3 */
  802. idx = svq3_get_ue_golomb(gb); /* [DIRAC_STD] index */
  803. if (idx > 4) {
  804. av_log(s->avctx, AV_LOG_ERROR, "Block prediction index too high\n");
  805. return AVERROR_INVALIDDATA;
  806. }
  807. if (idx == 0) {
  808. s->plane[0].xblen = svq3_get_ue_golomb(gb);
  809. s->plane[0].yblen = svq3_get_ue_golomb(gb);
  810. s->plane[0].xbsep = svq3_get_ue_golomb(gb);
  811. s->plane[0].ybsep = svq3_get_ue_golomb(gb);
  812. } else {
  813. /*[DIRAC_STD] preset_block_params(index). Table 11.1 */
  814. s->plane[0].xblen = default_blen[idx-1];
  815. s->plane[0].yblen = default_blen[idx-1];
  816. s->plane[0].xbsep = 4 * idx;
  817. s->plane[0].ybsep = 4 * idx;
  818. }
  819. /*[DIRAC_STD] 11.2.4 motion_data_dimensions()
  820. Calculated in function dirac_unpack_block_motion_data */
  821. if (s->plane[0].xblen % (1 << s->chroma_x_shift) != 0 ||
  822. s->plane[0].yblen % (1 << s->chroma_y_shift) != 0 ||
  823. !s->plane[0].xblen || !s->plane[0].yblen) {
  824. av_log(s->avctx, AV_LOG_ERROR,
  825. "invalid x/y block length (%d/%d) for x/y chroma shift (%d/%d)\n",
  826. s->plane[0].xblen, s->plane[0].yblen, s->chroma_x_shift, s->chroma_y_shift);
  827. return AVERROR_INVALIDDATA;
  828. }
  829. if (!s->plane[0].xbsep || !s->plane[0].ybsep || s->plane[0].xbsep < s->plane[0].xblen/2 || s->plane[0].ybsep < s->plane[0].yblen/2) {
  830. av_log(s->avctx, AV_LOG_ERROR, "Block separation too small\n");
  831. return AVERROR_INVALIDDATA;
  832. }
  833. if (s->plane[0].xbsep > s->plane[0].xblen || s->plane[0].ybsep > s->plane[0].yblen) {
  834. av_log(s->avctx, AV_LOG_ERROR, "Block separation greater than size\n");
  835. return AVERROR_INVALIDDATA;
  836. }
  837. if (FFMAX(s->plane[0].xblen, s->plane[0].yblen) > MAX_BLOCKSIZE) {
  838. av_log(s->avctx, AV_LOG_ERROR, "Unsupported large block size\n");
  839. return AVERROR_PATCHWELCOME;
  840. }
  841. /*[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision()
  842. Read motion vector precision */
  843. s->mv_precision = svq3_get_ue_golomb(gb);
  844. if (s->mv_precision > 3) {
  845. av_log(s->avctx, AV_LOG_ERROR, "MV precision finer than eighth-pel\n");
  846. return AVERROR_INVALIDDATA;
  847. }
  848. /*[DIRAC_STD] 11.2.6 Global motion. global_motion()
  849. Read the global motion compensation parameters */
  850. s->globalmc_flag = get_bits1(gb);
  851. if (s->globalmc_flag) {
  852. memset(s->globalmc, 0, sizeof(s->globalmc));
  853. /* [DIRAC_STD] pan_tilt(gparams) */
  854. for (ref = 0; ref < s->num_refs; ref++) {
  855. if (get_bits1(gb)) {
  856. s->globalmc[ref].pan_tilt[0] = dirac_get_se_golomb(gb);
  857. s->globalmc[ref].pan_tilt[1] = dirac_get_se_golomb(gb);
  858. }
  859. /* [DIRAC_STD] zoom_rotate_shear(gparams)
  860. zoom/rotation/shear parameters */
  861. if (get_bits1(gb)) {
  862. s->globalmc[ref].zrs_exp = svq3_get_ue_golomb(gb);
  863. s->globalmc[ref].zrs[0][0] = dirac_get_se_golomb(gb);
  864. s->globalmc[ref].zrs[0][1] = dirac_get_se_golomb(gb);
  865. s->globalmc[ref].zrs[1][0] = dirac_get_se_golomb(gb);
  866. s->globalmc[ref].zrs[1][1] = dirac_get_se_golomb(gb);
  867. } else {
  868. s->globalmc[ref].zrs[0][0] = 1;
  869. s->globalmc[ref].zrs[1][1] = 1;
  870. }
  871. /* [DIRAC_STD] perspective(gparams) */
  872. if (get_bits1(gb)) {
  873. s->globalmc[ref].perspective_exp = svq3_get_ue_golomb(gb);
  874. s->globalmc[ref].perspective[0] = dirac_get_se_golomb(gb);
  875. s->globalmc[ref].perspective[1] = dirac_get_se_golomb(gb);
  876. }
  877. }
  878. }
  879. /*[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode()
  880. Picture prediction mode, not currently used. */
  881. if (svq3_get_ue_golomb(gb)) {
  882. av_log(s->avctx, AV_LOG_ERROR, "Unknown picture prediction mode\n");
  883. return AVERROR_INVALIDDATA;
  884. }
  885. /* [DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights()
  886. just data read, weight calculation will be done later on. */
  887. s->weight_log2denom = 1;
  888. s->weight[0] = 1;
  889. s->weight[1] = 1;
  890. if (get_bits1(gb)) {
  891. s->weight_log2denom = svq3_get_ue_golomb(gb);
  892. s->weight[0] = dirac_get_se_golomb(gb);
  893. if (s->num_refs == 2)
  894. s->weight[1] = dirac_get_se_golomb(gb);
  895. }
  896. return 0;
  897. }
  898. /**
  899. * Dirac Specification ->
  900. * 11.3 Wavelet transform data. wavelet_transform()
  901. */
  902. static int dirac_unpack_idwt_params(DiracContext *s)
  903. {
  904. GetBitContext *gb = &s->gb;
  905. int i, level;
  906. unsigned tmp;
  907. #define CHECKEDREAD(dst, cond, errmsg) \
  908. tmp = svq3_get_ue_golomb(gb); \
  909. if (cond) { \
  910. av_log(s->avctx, AV_LOG_ERROR, errmsg); \
  911. return AVERROR_INVALIDDATA; \
  912. }\
  913. dst = tmp;
  914. align_get_bits(gb);
  915. s->zero_res = s->num_refs ? get_bits1(gb) : 0;
  916. if (s->zero_res)
  917. return 0;
  918. /*[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() */
  919. CHECKEDREAD(s->wavelet_idx, tmp > 6, "wavelet_idx is too big\n")
  920. CHECKEDREAD(s->wavelet_depth, tmp > MAX_DWT_LEVELS || tmp < 1, "invalid number of DWT decompositions\n")
  921. if (!s->low_delay) {
  922. /* Codeblock parameters (core syntax only) */
  923. if (get_bits1(gb)) {
  924. for (i = 0; i <= s->wavelet_depth; i++) {
  925. CHECKEDREAD(s->codeblock[i].width , tmp < 1 || tmp > (s->avctx->width >>s->wavelet_depth-i), "codeblock width invalid\n")
  926. CHECKEDREAD(s->codeblock[i].height, tmp < 1 || tmp > (s->avctx->height>>s->wavelet_depth-i), "codeblock height invalid\n")
  927. }
  928. CHECKEDREAD(s->codeblock_mode, tmp > 1, "unknown codeblock mode\n")
  929. } else
  930. for (i = 0; i <= s->wavelet_depth; i++)
  931. s->codeblock[i].width = s->codeblock[i].height = 1;
  932. } else {
  933. /* Slice parameters + quantization matrix*/
  934. /*[DIRAC_STD] 11.3.4 Slice coding Parameters (low delay syntax only). slice_parameters() */
  935. s->lowdelay.num_x = svq3_get_ue_golomb(gb);
  936. s->lowdelay.num_y = svq3_get_ue_golomb(gb);
  937. s->lowdelay.bytes.num = svq3_get_ue_golomb(gb);
  938. s->lowdelay.bytes.den = svq3_get_ue_golomb(gb);
  939. if (s->lowdelay.bytes.den <= 0) {
  940. av_log(s->avctx,AV_LOG_ERROR,"Invalid lowdelay.bytes.den\n");
  941. return AVERROR_INVALIDDATA;
  942. }
  943. /* [DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() */
  944. if (get_bits1(gb)) {
  945. av_log(s->avctx,AV_LOG_DEBUG,"Low Delay: Has Custom Quantization Matrix!\n");
  946. /* custom quantization matrix */
  947. s->lowdelay.quant[0][0] = svq3_get_ue_golomb(gb);
  948. for (level = 0; level < s->wavelet_depth; level++) {
  949. s->lowdelay.quant[level][1] = svq3_get_ue_golomb(gb);
  950. s->lowdelay.quant[level][2] = svq3_get_ue_golomb(gb);
  951. s->lowdelay.quant[level][3] = svq3_get_ue_golomb(gb);
  952. }
  953. } else {
  954. if (s->wavelet_depth > 4) {
  955. av_log(s->avctx,AV_LOG_ERROR,"Mandatory custom low delay matrix missing for depth %d\n", s->wavelet_depth);
  956. return AVERROR_INVALIDDATA;
  957. }
  958. /* default quantization matrix */
  959. for (level = 0; level < s->wavelet_depth; level++)
  960. for (i = 0; i < 4; i++) {
  961. s->lowdelay.quant[level][i] = default_qmat[s->wavelet_idx][level][i];
  962. /* haar with no shift differs for different depths */
  963. if (s->wavelet_idx == 3)
  964. s->lowdelay.quant[level][i] += 4*(s->wavelet_depth-1 - level);
  965. }
  966. }
  967. }
  968. return 0;
  969. }
  970. static inline int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
  971. {
  972. static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 };
  973. if (!(x|y))
  974. return 0;
  975. else if (!y)
  976. return sbsplit[-1];
  977. else if (!x)
  978. return sbsplit[-stride];
  979. return avgsplit[sbsplit[-1] + sbsplit[-stride] + sbsplit[-stride-1]];
  980. }
  981. static inline int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
  982. {
  983. int pred;
  984. if (!(x|y))
  985. return 0;
  986. else if (!y)
  987. return block[-1].ref & refmask;
  988. else if (!x)
  989. return block[-stride].ref & refmask;
  990. /* return the majority */
  991. pred = (block[-1].ref & refmask) + (block[-stride].ref & refmask) + (block[-stride-1].ref & refmask);
  992. return (pred >> 1) & refmask;
  993. }
  994. static inline void pred_block_dc(DiracBlock *block, int stride, int x, int y)
  995. {
  996. int i, n = 0;
  997. memset(block->u.dc, 0, sizeof(block->u.dc));
  998. if (x && !(block[-1].ref & 3)) {
  999. for (i = 0; i < 3; i++)
  1000. block->u.dc[i] += block[-1].u.dc[i];
  1001. n++;
  1002. }
  1003. if (y && !(block[-stride].ref & 3)) {
  1004. for (i = 0; i < 3; i++)
  1005. block->u.dc[i] += block[-stride].u.dc[i];
  1006. n++;
  1007. }
  1008. if (x && y && !(block[-1-stride].ref & 3)) {
  1009. for (i = 0; i < 3; i++)
  1010. block->u.dc[i] += block[-1-stride].u.dc[i];
  1011. n++;
  1012. }
  1013. if (n == 2) {
  1014. for (i = 0; i < 3; i++)
  1015. block->u.dc[i] = (block->u.dc[i]+1)>>1;
  1016. } else if (n == 3) {
  1017. for (i = 0; i < 3; i++)
  1018. block->u.dc[i] = divide3(block->u.dc[i]);
  1019. }
  1020. }
  1021. static inline void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
  1022. {
  1023. int16_t *pred[3];
  1024. int refmask = ref+1;
  1025. int mask = refmask | DIRAC_REF_MASK_GLOBAL; /* exclude gmc blocks */
  1026. int n = 0;
  1027. if (x && (block[-1].ref & mask) == refmask)
  1028. pred[n++] = block[-1].u.mv[ref];
  1029. if (y && (block[-stride].ref & mask) == refmask)
  1030. pred[n++] = block[-stride].u.mv[ref];
  1031. if (x && y && (block[-stride-1].ref & mask) == refmask)
  1032. pred[n++] = block[-stride-1].u.mv[ref];
  1033. switch (n) {
  1034. case 0:
  1035. block->u.mv[ref][0] = 0;
  1036. block->u.mv[ref][1] = 0;
  1037. break;
  1038. case 1:
  1039. block->u.mv[ref][0] = pred[0][0];
  1040. block->u.mv[ref][1] = pred[0][1];
  1041. break;
  1042. case 2:
  1043. block->u.mv[ref][0] = (pred[0][0] + pred[1][0] + 1) >> 1;
  1044. block->u.mv[ref][1] = (pred[0][1] + pred[1][1] + 1) >> 1;
  1045. break;
  1046. case 3:
  1047. block->u.mv[ref][0] = mid_pred(pred[0][0], pred[1][0], pred[2][0]);
  1048. block->u.mv[ref][1] = mid_pred(pred[0][1], pred[1][1], pred[2][1]);
  1049. break;
  1050. }
  1051. }
  1052. static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
  1053. {
  1054. int ez = s->globalmc[ref].zrs_exp;
  1055. int ep = s->globalmc[ref].perspective_exp;
  1056. int (*A)[2] = s->globalmc[ref].zrs;
  1057. int *b = s->globalmc[ref].pan_tilt;
  1058. int *c = s->globalmc[ref].perspective;
  1059. int m = (1<<ep) - (c[0]*x + c[1]*y);
  1060. int mx = m * ((A[0][0] * x + A[0][1]*y) + (1<<ez) * b[0]);
  1061. int my = m * ((A[1][0] * x + A[1][1]*y) + (1<<ez) * b[1]);
  1062. block->u.mv[ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep);
  1063. block->u.mv[ref][1] = (my + (1<<(ez+ep))) >> (ez+ep);
  1064. }
  1065. static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block,
  1066. int stride, int x, int y)
  1067. {
  1068. int i;
  1069. block->ref = pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF1);
  1070. block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF1);
  1071. if (s->num_refs == 2) {
  1072. block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF2);
  1073. block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF2) << 1;
  1074. }
  1075. if (!block->ref) {
  1076. pred_block_dc(block, stride, x, y);
  1077. for (i = 0; i < 3; i++)
  1078. block->u.dc[i] += dirac_get_arith_int(arith+1+i, CTX_DC_F1, CTX_DC_DATA);
  1079. return;
  1080. }
  1081. if (s->globalmc_flag) {
  1082. block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_GLOBAL);
  1083. block->ref ^= dirac_get_arith_bit(arith, CTX_GLOBAL_BLOCK) << 2;
  1084. }
  1085. for (i = 0; i < s->num_refs; i++)
  1086. if (block->ref & (i+1)) {
  1087. if (block->ref & DIRAC_REF_MASK_GLOBAL) {
  1088. global_mv(s, block, x, y, i);
  1089. } else {
  1090. pred_mv(block, stride, x, y, i);
  1091. block->u.mv[i][0] += dirac_get_arith_int(arith + 4 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
  1092. block->u.mv[i][1] += dirac_get_arith_int(arith + 5 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
  1093. }
  1094. }
  1095. }
  1096. /**
  1097. * Copies the current block to the other blocks covered by the current superblock split mode
  1098. */
  1099. static void propagate_block_data(DiracBlock *block, int stride, int size)
  1100. {
  1101. int x, y;
  1102. DiracBlock *dst = block;
  1103. for (x = 1; x < size; x++)
  1104. dst[x] = *block;
  1105. for (y = 1; y < size; y++) {
  1106. dst += stride;
  1107. for (x = 0; x < size; x++)
  1108. dst[x] = *block;
  1109. }
  1110. }
  1111. /**
  1112. * Dirac Specification ->
  1113. * 12. Block motion data syntax
  1114. */
  1115. static int dirac_unpack_block_motion_data(DiracContext *s)
  1116. {
  1117. GetBitContext *gb = &s->gb;
  1118. uint8_t *sbsplit = s->sbsplit;
  1119. int i, x, y, q, p;
  1120. DiracArith arith[8];
  1121. align_get_bits(gb);
  1122. /* [DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks */
  1123. s->sbwidth = DIVRNDUP(s->source.width, 4*s->plane[0].xbsep);
  1124. s->sbheight = DIVRNDUP(s->source.height, 4*s->plane[0].ybsep);
  1125. s->blwidth = 4 * s->sbwidth;
  1126. s->blheight = 4 * s->sbheight;
  1127. /* [DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes()
  1128. decode superblock split modes */
  1129. ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb)); /* svq3_get_ue_golomb(gb) is the length */
  1130. for (y = 0; y < s->sbheight; y++) {
  1131. for (x = 0; x < s->sbwidth; x++) {
  1132. unsigned int split = dirac_get_arith_uint(arith, CTX_SB_F1, CTX_SB_DATA);
  1133. if (split > 2)
  1134. return AVERROR_INVALIDDATA;
  1135. sbsplit[x] = (split + pred_sbsplit(sbsplit+x, s->sbwidth, x, y)) % 3;
  1136. }
  1137. sbsplit += s->sbwidth;
  1138. }
  1139. /* setup arith decoding */
  1140. ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb));
  1141. for (i = 0; i < s->num_refs; i++) {
  1142. ff_dirac_init_arith_decoder(arith + 4 + 2 * i, gb, svq3_get_ue_golomb(gb));
  1143. ff_dirac_init_arith_decoder(arith + 5 + 2 * i, gb, svq3_get_ue_golomb(gb));
  1144. }
  1145. for (i = 0; i < 3; i++)
  1146. ff_dirac_init_arith_decoder(arith+1+i, gb, svq3_get_ue_golomb(gb));
  1147. for (y = 0; y < s->sbheight; y++)
  1148. for (x = 0; x < s->sbwidth; x++) {
  1149. int blkcnt = 1 << s->sbsplit[y * s->sbwidth + x];
  1150. int step = 4 >> s->sbsplit[y * s->sbwidth + x];
  1151. for (q = 0; q < blkcnt; q++)
  1152. for (p = 0; p < blkcnt; p++) {
  1153. int bx = 4 * x + p*step;
  1154. int by = 4 * y + q*step;
  1155. DiracBlock *block = &s->blmotion[by*s->blwidth + bx];
  1156. decode_block_params(s, arith, block, s->blwidth, bx, by);
  1157. propagate_block_data(block, s->blwidth, step);
  1158. }
  1159. }
  1160. return 0;
  1161. }
  1162. static int weight(int i, int blen, int offset)
  1163. {
  1164. #define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \
  1165. (1 + (6*(i) + offset - 1) / (2*offset - 1))
  1166. if (i < 2*offset)
  1167. return ROLLOFF(i);
  1168. else if (i > blen-1 - 2*offset)
  1169. return ROLLOFF(blen-1 - i);
  1170. return 8;
  1171. }
  1172. static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride,
  1173. int left, int right, int wy)
  1174. {
  1175. int x;
  1176. for (x = 0; left && x < p->xblen >> 1; x++)
  1177. obmc_weight[x] = wy*8;
  1178. for (; x < p->xblen >> right; x++)
  1179. obmc_weight[x] = wy*weight(x, p->xblen, p->xoffset);
  1180. for (; x < p->xblen; x++)
  1181. obmc_weight[x] = wy*8;
  1182. for (; x < stride; x++)
  1183. obmc_weight[x] = 0;
  1184. }
  1185. static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride,
  1186. int left, int right, int top, int bottom)
  1187. {
  1188. int y;
  1189. for (y = 0; top && y < p->yblen >> 1; y++) {
  1190. init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
  1191. obmc_weight += stride;
  1192. }
  1193. for (; y < p->yblen >> bottom; y++) {
  1194. int wy = weight(y, p->yblen, p->yoffset);
  1195. init_obmc_weight_row(p, obmc_weight, stride, left, right, wy);
  1196. obmc_weight += stride;
  1197. }
  1198. for (; y < p->yblen; y++) {
  1199. init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
  1200. obmc_weight += stride;
  1201. }
  1202. }
  1203. static void init_obmc_weights(DiracContext *s, Plane *p, int by)
  1204. {
  1205. int top = !by;
  1206. int bottom = by == s->blheight-1;
  1207. /* don't bother re-initing for rows 2 to blheight-2, the weights don't change */
  1208. if (top || bottom || by == 1) {
  1209. init_obmc_weight(p, s->obmc_weight[0], MAX_BLOCKSIZE, 1, 0, top, bottom);
  1210. init_obmc_weight(p, s->obmc_weight[1], MAX_BLOCKSIZE, 0, 0, top, bottom);
  1211. init_obmc_weight(p, s->obmc_weight[2], MAX_BLOCKSIZE, 0, 1, top, bottom);
  1212. }
  1213. }
  1214. static const uint8_t epel_weights[4][4][4] = {
  1215. {{ 16, 0, 0, 0 },
  1216. { 12, 4, 0, 0 },
  1217. { 8, 8, 0, 0 },
  1218. { 4, 12, 0, 0 }},
  1219. {{ 12, 0, 4, 0 },
  1220. { 9, 3, 3, 1 },
  1221. { 6, 6, 2, 2 },
  1222. { 3, 9, 1, 3 }},
  1223. {{ 8, 0, 8, 0 },
  1224. { 6, 2, 6, 2 },
  1225. { 4, 4, 4, 4 },
  1226. { 2, 6, 2, 6 }},
  1227. {{ 4, 0, 12, 0 },
  1228. { 3, 1, 9, 3 },
  1229. { 2, 2, 6, 6 },
  1230. { 1, 3, 3, 9 }}
  1231. };
  1232. /**
  1233. * For block x,y, determine which of the hpel planes to do bilinear
  1234. * interpolation from and set src[] to the location in each hpel plane
  1235. * to MC from.
  1236. *
  1237. * @return the index of the put_dirac_pixels_tab function to use
  1238. * 0 for 1 plane (fpel,hpel), 1 for 2 planes (qpel), 2 for 4 planes (qpel), and 3 for epel
  1239. */
  1240. static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5],
  1241. int x, int y, int ref, int plane)
  1242. {
  1243. Plane *p = &s->plane[plane];
  1244. uint8_t **ref_hpel = s->ref_pics[ref]->hpel[plane];
  1245. int motion_x = block->u.mv[ref][0];
  1246. int motion_y = block->u.mv[ref][1];
  1247. int mx, my, i, epel, nplanes = 0;
  1248. if (plane) {
  1249. motion_x >>= s->chroma_x_shift;
  1250. motion_y >>= s->chroma_y_shift;
  1251. }
  1252. mx = motion_x & ~(-1U << s->mv_precision);
  1253. my = motion_y & ~(-1U << s->mv_precision);
  1254. motion_x >>= s->mv_precision;
  1255. motion_y >>= s->mv_precision;
  1256. /* normalize subpel coordinates to epel */
  1257. /* TODO: template this function? */
  1258. mx <<= 3 - s->mv_precision;
  1259. my <<= 3 - s->mv_precision;
  1260. x += motion_x;
  1261. y += motion_y;
  1262. epel = (mx|my)&1;
  1263. /* hpel position */
  1264. if (!((mx|my)&3)) {
  1265. nplanes = 1;
  1266. src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->stride + x;
  1267. } else {
  1268. /* qpel or epel */
  1269. nplanes = 4;
  1270. for (i = 0; i < 4; i++)
  1271. src[i] = ref_hpel[i] + y*p->stride + x;
  1272. /* if we're interpolating in the right/bottom halves, adjust the planes as needed
  1273. we increment x/y because the edge changes for half of the pixels */
  1274. if (mx > 4) {
  1275. src[0] += 1;
  1276. src[2] += 1;
  1277. x++;
  1278. }
  1279. if (my > 4) {
  1280. src[0] += p->stride;
  1281. src[1] += p->stride;
  1282. y++;
  1283. }
  1284. /* hpel planes are:
  1285. [0]: F [1]: H
  1286. [2]: V [3]: C */
  1287. if (!epel) {
  1288. /* check if we really only need 2 planes since either mx or my is
  1289. a hpel position. (epel weights of 0 handle this there) */
  1290. if (!(mx&3)) {
  1291. /* mx == 0: average [0] and [2]
  1292. mx == 4: average [1] and [3] */
  1293. src[!mx] = src[2 + !!mx];
  1294. nplanes = 2;
  1295. } else if (!(my&3)) {
  1296. src[0] = src[(my>>1) ];
  1297. src[1] = src[(my>>1)+1];
  1298. nplanes = 2;
  1299. }
  1300. } else {
  1301. /* adjust the ordering if needed so the weights work */
  1302. if (mx > 4) {
  1303. FFSWAP(const uint8_t *, src[0], src[1]);
  1304. FFSWAP(const uint8_t *, src[2], src[3]);
  1305. }
  1306. if (my > 4) {
  1307. FFSWAP(const uint8_t *, src[0], src[2]);
  1308. FFSWAP(const uint8_t *, src[1], src[3]);
  1309. }
  1310. src[4] = epel_weights[my&3][mx&3];
  1311. }
  1312. }
  1313. /* fixme: v/h _edge_pos */
  1314. if (x + p->xblen > p->width +EDGE_WIDTH/2 ||
  1315. y + p->yblen > p->height+EDGE_WIDTH/2 ||
  1316. x < 0 || y < 0) {
  1317. for (i = 0; i < nplanes; i++) {
  1318. s->vdsp.emulated_edge_mc(s->edge_emu_buffer[i], src[i],
  1319. p->stride, p->stride,
  1320. p->xblen, p->yblen, x, y,
  1321. p->width+EDGE_WIDTH/2, p->height+EDGE_WIDTH/2);
  1322. src[i] = s->edge_emu_buffer[i];
  1323. }
  1324. }
  1325. return (nplanes>>1) + epel;
  1326. }
  1327. static void add_dc(uint16_t *dst, int dc, int stride,
  1328. uint8_t *obmc_weight, int xblen, int yblen)
  1329. {
  1330. int x, y;
  1331. dc += 128;
  1332. for (y = 0; y < yblen; y++) {
  1333. for (x = 0; x < xblen; x += 2) {
  1334. dst[x ] += dc * obmc_weight[x ];
  1335. dst[x+1] += dc * obmc_weight[x+1];
  1336. }
  1337. dst += stride;
  1338. obmc_weight += MAX_BLOCKSIZE;
  1339. }
  1340. }
  1341. static void block_mc(DiracContext *s, DiracBlock *block,
  1342. uint16_t *mctmp, uint8_t *obmc_weight,
  1343. int plane, int dstx, int dsty)
  1344. {
  1345. Plane *p = &s->plane[plane];
  1346. const uint8_t *src[5];
  1347. int idx;
  1348. switch (block->ref&3) {
  1349. case 0: /* DC */
  1350. add_dc(mctmp, block->u.dc[plane], p->stride, obmc_weight, p->xblen, p->yblen);
  1351. return;
  1352. case 1:
  1353. case 2:
  1354. idx = mc_subpel(s, block, src, dstx, dsty, (block->ref&3)-1, plane);
  1355. s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1356. if (s->weight_func)
  1357. s->weight_func(s->mcscratch, p->stride, s->weight_log2denom,
  1358. s->weight[0] + s->weight[1], p->yblen);
  1359. break;
  1360. case 3:
  1361. idx = mc_subpel(s, block, src, dstx, dsty, 0, plane);
  1362. s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1363. idx = mc_subpel(s, block, src, dstx, dsty, 1, plane);
  1364. if (s->biweight_func) {
  1365. /* fixme: +32 is a quick hack */
  1366. s->put_pixels_tab[idx](s->mcscratch + 32, src, p->stride, p->yblen);
  1367. s->biweight_func(s->mcscratch, s->mcscratch+32, p->stride, s->weight_log2denom,
  1368. s->weight[0], s->weight[1], p->yblen);
  1369. } else
  1370. s->avg_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1371. break;
  1372. }
  1373. s->add_obmc(mctmp, s->mcscratch, p->stride, obmc_weight, p->yblen);
  1374. }
  1375. static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
  1376. {
  1377. Plane *p = &s->plane[plane];
  1378. int x, dstx = p->xbsep - p->xoffset;
  1379. block_mc(s, block, mctmp, s->obmc_weight[0], plane, -p->xoffset, dsty);
  1380. mctmp += p->xbsep;
  1381. for (x = 1; x < s->blwidth-1; x++) {
  1382. block_mc(s, block+x, mctmp, s->obmc_weight[1], plane, dstx, dsty);
  1383. dstx += p->xbsep;
  1384. mctmp += p->xbsep;
  1385. }
  1386. block_mc(s, block+x, mctmp, s->obmc_weight[2], plane, dstx, dsty);
  1387. }
  1388. static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
  1389. {
  1390. int idx = 0;
  1391. if (xblen > 8)
  1392. idx = 1;
  1393. if (xblen > 16)
  1394. idx = 2;
  1395. memcpy(s->put_pixels_tab, s->diracdsp.put_dirac_pixels_tab[idx], sizeof(s->put_pixels_tab));
  1396. memcpy(s->avg_pixels_tab, s->diracdsp.avg_dirac_pixels_tab[idx], sizeof(s->avg_pixels_tab));
  1397. s->add_obmc = s->diracdsp.add_dirac_obmc[idx];
  1398. if (s->weight_log2denom > 1 || s->weight[0] != 1 || s->weight[1] != 1) {
  1399. s->weight_func = s->diracdsp.weight_dirac_pixels_tab[idx];
  1400. s->biweight_func = s->diracdsp.biweight_dirac_pixels_tab[idx];
  1401. } else {
  1402. s->weight_func = NULL;
  1403. s->biweight_func = NULL;
  1404. }
  1405. }
  1406. static int interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height)
  1407. {
  1408. /* chroma allocates an edge of 8 when subsampled
  1409. which for 4:2:2 means an h edge of 16 and v edge of 8
  1410. just use 8 for everything for the moment */
  1411. int i, edge = EDGE_WIDTH/2;
  1412. ref->hpel[plane][0] = ref->avframe->data[plane];
  1413. s->mpvencdsp.draw_edges(ref->hpel[plane][0], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); /* EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured */
  1414. /* no need for hpel if we only have fpel vectors */
  1415. if (!s->mv_precision)
  1416. return 0;
  1417. for (i = 1; i < 4; i++) {
  1418. if (!ref->hpel_base[plane][i])
  1419. ref->hpel_base[plane][i] = av_malloc((height+2*edge) * ref->avframe->linesize[plane] + 32);
  1420. if (!ref->hpel_base[plane][i]) {
  1421. return AVERROR(ENOMEM);
  1422. }
  1423. /* we need to be 16-byte aligned even for chroma */
  1424. ref->hpel[plane][i] = ref->hpel_base[plane][i] + edge*ref->avframe->linesize[plane] + 16;
  1425. }
  1426. if (!ref->interpolated[plane]) {
  1427. s->diracdsp.dirac_hpel_filter(ref->hpel[plane][1], ref->hpel[plane][2],
  1428. ref->hpel[plane][3], ref->hpel[plane][0],
  1429. ref->avframe->linesize[plane], width, height);
  1430. s->mpvencdsp.draw_edges(ref->hpel[plane][1], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1431. s->mpvencdsp.draw_edges(ref->hpel[plane][2], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1432. s->mpvencdsp.draw_edges(ref->hpel[plane][3], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1433. }
  1434. ref->interpolated[plane] = 1;
  1435. return 0;
  1436. }
  1437. /**
  1438. * Dirac Specification ->
  1439. * 13.0 Transform data syntax. transform_data()
  1440. */
  1441. static int dirac_decode_frame_internal(DiracContext *s)
  1442. {
  1443. DWTContext d;
  1444. int y, i, comp, dsty;
  1445. int ret;
  1446. if (s->low_delay) {
  1447. /* [DIRAC_STD] 13.5.1 low_delay_transform_data() */
  1448. for (comp = 0; comp < 3; comp++) {
  1449. Plane *p = &s->plane[comp];
  1450. memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height);
  1451. }
  1452. if (!s->zero_res) {
  1453. if ((ret = decode_lowdelay(s)) < 0)
  1454. return ret;
  1455. }
  1456. }
  1457. for (comp = 0; comp < 3; comp++) {
  1458. Plane *p = &s->plane[comp];
  1459. uint8_t *frame = s->current_picture->avframe->data[comp];
  1460. /* FIXME: small resolutions */
  1461. for (i = 0; i < 4; i++)
  1462. s->edge_emu_buffer[i] = s->edge_emu_buffer_base + i*FFALIGN(p->width, 16);
  1463. if (!s->zero_res && !s->low_delay)
  1464. {
  1465. memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height);
  1466. decode_component(s, comp); /* [DIRAC_STD] 13.4.1 core_transform_data() */
  1467. }
  1468. ret = ff_spatial_idwt_init2(&d, p->idwt_buf, p->idwt_width, p->idwt_height, p->idwt_stride,
  1469. s->wavelet_idx+2, s->wavelet_depth, p->idwt_tmp, s->bit_depth);
  1470. if (ret < 0)
  1471. return ret;
  1472. if (!s->num_refs) { /* intra */
  1473. for (y = 0; y < p->height; y += 16) {
  1474. ff_spatial_idwt_slice2(&d, y+16); /* decode */
  1475. s->diracdsp.put_signed_rect_clamped[s->pshift](frame + y*p->stride, p->stride,
  1476. p->idwt_buf + y*p->idwt_stride, p->idwt_stride, p->width, 16);
  1477. }
  1478. } else { /* inter */
  1479. int rowheight = p->ybsep*p->stride;
  1480. select_dsp_funcs(s, p->width, p->height, p->xblen, p->yblen);
  1481. for (i = 0; i < s->num_refs; i++) {
  1482. int ret = interpolate_refplane(s, s->ref_pics[i], comp, p->width, p->height);
  1483. if (ret < 0)
  1484. return ret;
  1485. }
  1486. memset(s->mctmp, 0, 4*p->yoffset*p->stride);
  1487. dsty = -p->yoffset;
  1488. for (y = 0; y < s->blheight; y++) {
  1489. int h = 0,
  1490. start = FFMAX(dsty, 0);
  1491. uint16_t *mctmp = s->mctmp + y*rowheight;
  1492. DiracBlock *blocks = s->blmotion + y*s->blwidth;
  1493. init_obmc_weights(s, p, y);
  1494. if (y == s->blheight-1 || start+p->ybsep > p->height)
  1495. h = p->height - start;
  1496. else
  1497. h = p->ybsep - (start - dsty);
  1498. if (h < 0)
  1499. break;
  1500. memset(mctmp+2*p->yoffset*p->stride, 0, 2*rowheight);
  1501. mc_row(s, blocks, mctmp, comp, dsty);
  1502. mctmp += (start - dsty)*p->stride + p->xoffset;
  1503. ff_spatial_idwt_slice2(&d, start + h); /* decode */
  1504. /* NOTE: add_rect_clamped hasn't been templated hence the shifts.
  1505. * idwt_stride is passed as pixels, not in bytes as in the rest of the decoder */
  1506. s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride,
  1507. (int16_t*)(p->idwt_buf) + start*(p->idwt_stride >> 1), (p->idwt_stride >> 1), p->width, h);
  1508. dsty += p->ybsep;
  1509. }
  1510. }
  1511. }
  1512. return 0;
  1513. }
  1514. static int get_buffer_with_edge(AVCodecContext *avctx, AVFrame *f, int flags)
  1515. {
  1516. int ret, i;
  1517. int chroma_x_shift, chroma_y_shift;
  1518. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &chroma_x_shift, &chroma_y_shift);
  1519. f->width = avctx->width + 2 * EDGE_WIDTH;
  1520. f->height = avctx->height + 2 * EDGE_WIDTH + 2;
  1521. ret = ff_get_buffer(avctx, f, flags);
  1522. if (ret < 0)
  1523. return ret;
  1524. for (i = 0; f->data[i]; i++) {
  1525. int offset = (EDGE_WIDTH >> (i && i<3 ? chroma_y_shift : 0)) *
  1526. f->linesize[i] + 32;
  1527. f->data[i] += offset;
  1528. }
  1529. f->width = avctx->width;
  1530. f->height = avctx->height;
  1531. return 0;
  1532. }
  1533. /**
  1534. * Dirac Specification ->
  1535. * 11.1.1 Picture Header. picture_header()
  1536. */
  1537. static int dirac_decode_picture_header(DiracContext *s)
  1538. {
  1539. unsigned retire, picnum;
  1540. int i, j, ret;
  1541. int64_t refdist, refnum;
  1542. GetBitContext *gb = &s->gb;
  1543. /* [DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM */
  1544. picnum = s->current_picture->avframe->display_picture_number = get_bits_long(gb, 32);
  1545. av_log(s->avctx,AV_LOG_DEBUG,"PICTURE_NUM: %d\n",picnum);
  1546. /* if this is the first keyframe after a sequence header, start our
  1547. reordering from here */
  1548. if (s->frame_number < 0)
  1549. s->frame_number = picnum;
  1550. s->ref_pics[0] = s->ref_pics[1] = NULL;
  1551. for (i = 0; i < s->num_refs; i++) {
  1552. refnum = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
  1553. refdist = INT64_MAX;
  1554. /* find the closest reference to the one we want */
  1555. /* Jordi: this is needed if the referenced picture hasn't yet arrived */
  1556. for (j = 0; j < MAX_REFERENCE_FRAMES && refdist; j++)
  1557. if (s->ref_frames[j]
  1558. && FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum) < refdist) {
  1559. s->ref_pics[i] = s->ref_frames[j];
  1560. refdist = FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum);
  1561. }
  1562. if (!s->ref_pics[i] || refdist)
  1563. av_log(s->avctx, AV_LOG_DEBUG, "Reference not found\n");
  1564. /* if there were no references at all, allocate one */
  1565. if (!s->ref_pics[i])
  1566. for (j = 0; j < MAX_FRAMES; j++)
  1567. if (!s->all_frames[j].avframe->data[0]) {
  1568. s->ref_pics[i] = &s->all_frames[j];
  1569. get_buffer_with_edge(s->avctx, s->ref_pics[i]->avframe, AV_GET_BUFFER_FLAG_REF);
  1570. break;
  1571. }
  1572. if (!s->ref_pics[i]) {
  1573. av_log(s->avctx, AV_LOG_ERROR, "Reference could not be allocated\n");
  1574. return AVERROR_INVALIDDATA;
  1575. }
  1576. }
  1577. /* retire the reference frames that are not used anymore */
  1578. if (s->current_picture->reference) {
  1579. retire = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
  1580. if (retire != picnum) {
  1581. DiracFrame *retire_pic = remove_frame(s->ref_frames, retire);
  1582. if (retire_pic)
  1583. retire_pic->reference &= DELAYED_PIC_REF;
  1584. else
  1585. av_log(s->avctx, AV_LOG_DEBUG, "Frame to retire not found\n");
  1586. }
  1587. /* if reference array is full, remove the oldest as per the spec */
  1588. while (add_frame(s->ref_frames, MAX_REFERENCE_FRAMES, s->current_picture)) {
  1589. av_log(s->avctx, AV_LOG_ERROR, "Reference frame overflow\n");
  1590. remove_frame(s->ref_frames, s->ref_frames[0]->avframe->display_picture_number)->reference &= DELAYED_PIC_REF;
  1591. }
  1592. }
  1593. if (s->num_refs) {
  1594. ret = dirac_unpack_prediction_parameters(s); /* [DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() */
  1595. if (ret < 0)
  1596. return ret;
  1597. ret = dirac_unpack_block_motion_data(s); /* [DIRAC_STD] 12. Block motion data syntax */
  1598. if (ret < 0)
  1599. return ret;
  1600. }
  1601. ret = dirac_unpack_idwt_params(s); /* [DIRAC_STD] 11.3 Wavelet transform data */
  1602. if (ret < 0)
  1603. return ret;
  1604. init_planes(s);
  1605. return 0;
  1606. }
  1607. static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
  1608. {
  1609. DiracFrame *out = s->delay_frames[0];
  1610. int i, out_idx = 0;
  1611. int ret;
  1612. /* find frame with lowest picture number */
  1613. for (i = 1; s->delay_frames[i]; i++)
  1614. if (s->delay_frames[i]->avframe->display_picture_number < out->avframe->display_picture_number) {
  1615. out = s->delay_frames[i];
  1616. out_idx = i;
  1617. }
  1618. for (i = out_idx; s->delay_frames[i]; i++)
  1619. s->delay_frames[i] = s->delay_frames[i+1];
  1620. if (out) {
  1621. out->reference ^= DELAYED_PIC_REF;
  1622. *got_frame = 1;
  1623. if((ret = av_frame_ref(picture, out->avframe)) < 0)
  1624. return ret;
  1625. }
  1626. return 0;
  1627. }
  1628. /**
  1629. * Dirac Specification ->
  1630. * 9.6 Parse Info Header Syntax. parse_info()
  1631. * 4 byte start code + byte parse code + 4 byte size + 4 byte previous size
  1632. */
  1633. #define DATA_UNIT_HEADER_SIZE 13
  1634. /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3
  1635. inside the function parse_sequence() */
  1636. static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
  1637. {
  1638. DiracContext *s = avctx->priv_data;
  1639. DiracFrame *pic = NULL;
  1640. int ret, i, parse_code;
  1641. unsigned tmp;
  1642. if (size < DATA_UNIT_HEADER_SIZE)
  1643. return AVERROR_INVALIDDATA;
  1644. parse_code = buf[4];
  1645. init_get_bits(&s->gb, &buf[13], 8*(size - DATA_UNIT_HEADER_SIZE));
  1646. if (parse_code == pc_seq_header) {
  1647. if (s->seen_sequence_header)
  1648. return 0;
  1649. /* [DIRAC_STD] 10. Sequence header */
  1650. ret = avpriv_dirac_parse_sequence_header(avctx, &s->gb, &s->source,
  1651. &s->bit_depth);
  1652. if (ret < 0)
  1653. return ret;
  1654. s->pshift = s->bit_depth > 8;
  1655. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
  1656. ret = alloc_sequence_buffers(s);
  1657. if (ret < 0)
  1658. return ret;
  1659. s->seen_sequence_header = 1;
  1660. } else if (parse_code == pc_eos) { /* [DIRAC_STD] End of Sequence */
  1661. free_sequence_buffers(s);
  1662. s->seen_sequence_header = 0;
  1663. } else if (parse_code == pc_aux_data) {
  1664. if (buf[13] == 1) { /* encoder implementation/version */
  1665. int ver[3];
  1666. /* versions older than 1.0.8 don't store quant delta for
  1667. subbands with only one codeblock */
  1668. if (sscanf(buf+14, "Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3)
  1669. if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7)
  1670. s->old_delta_quant = 1;
  1671. }
  1672. } else if (parse_code & 0x8) { /* picture data unit */
  1673. if (!s->seen_sequence_header) {
  1674. av_log(avctx, AV_LOG_DEBUG, "Dropping frame without sequence header\n");
  1675. return AVERROR_INVALIDDATA;
  1676. }
  1677. /* find an unused frame */
  1678. for (i = 0; i < MAX_FRAMES; i++)
  1679. if (s->all_frames[i].avframe->data[0] == NULL)
  1680. pic = &s->all_frames[i];
  1681. if (!pic) {
  1682. av_log(avctx, AV_LOG_ERROR, "framelist full\n");
  1683. return AVERROR_INVALIDDATA;
  1684. }
  1685. av_frame_unref(pic->avframe);
  1686. /* [DIRAC_STD] Defined in 9.6.1 ... */
  1687. tmp = parse_code & 0x03; /* [DIRAC_STD] num_refs() */
  1688. if (tmp > 2) {
  1689. av_log(avctx, AV_LOG_ERROR, "num_refs of 3\n");
  1690. return AVERROR_INVALIDDATA;
  1691. }
  1692. s->num_refs = tmp;
  1693. s->is_arith = (parse_code & 0x48) == 0x08; /* [DIRAC_STD] using_ac() */
  1694. s->low_delay = (parse_code & 0x88) == 0x88; /* [DIRAC_STD] is_low_delay() */
  1695. pic->reference = (parse_code & 0x0C) == 0x0C; /* [DIRAC_STD] is_reference() */
  1696. pic->avframe->key_frame = s->num_refs == 0; /* [DIRAC_STD] is_intra() */
  1697. pic->avframe->pict_type = s->num_refs + 1; /* Definition of AVPictureType in avutil.h */
  1698. if ((ret = get_buffer_with_edge(avctx, pic->avframe, (parse_code & 0x0C) == 0x0C ? AV_GET_BUFFER_FLAG_REF : 0)) < 0)
  1699. return ret;
  1700. s->current_picture = pic;
  1701. s->plane[0].stride = pic->avframe->linesize[0];
  1702. s->plane[1].stride = pic->avframe->linesize[1];
  1703. s->plane[2].stride = pic->avframe->linesize[2];
  1704. if (alloc_buffers(s, FFMAX3(FFABS(s->plane[0].stride), FFABS(s->plane[1].stride), FFABS(s->plane[2].stride))) < 0)
  1705. return AVERROR(ENOMEM);
  1706. /* [DIRAC_STD] 11.1 Picture parse. picture_parse() */
  1707. ret = dirac_decode_picture_header(s);
  1708. if (ret < 0)
  1709. return ret;
  1710. /* [DIRAC_STD] 13.0 Transform data syntax. transform_data() */
  1711. ret = dirac_decode_frame_internal(s);
  1712. if (ret < 0)
  1713. return ret;
  1714. }
  1715. return 0;
  1716. }
  1717. static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
  1718. {
  1719. DiracContext *s = avctx->priv_data;
  1720. AVFrame *picture = data;
  1721. uint8_t *buf = pkt->data;
  1722. int buf_size = pkt->size;
  1723. int i, buf_idx = 0;
  1724. int ret;
  1725. unsigned data_unit_size;
  1726. /* release unused frames */
  1727. for (i = 0; i < MAX_FRAMES; i++)
  1728. if (s->all_frames[i].avframe->data[0] && !s->all_frames[i].reference) {
  1729. av_frame_unref(s->all_frames[i].avframe);
  1730. memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
  1731. }
  1732. s->current_picture = NULL;
  1733. *got_frame = 0;
  1734. /* end of stream, so flush delayed pics */
  1735. if (buf_size == 0)
  1736. return get_delayed_pic(s, (AVFrame *)data, got_frame);
  1737. for (;;) {
  1738. /*[DIRAC_STD] Here starts the code from parse_info() defined in 9.6
  1739. [DIRAC_STD] PARSE_INFO_PREFIX = "BBCD" as defined in ISO/IEC 646
  1740. BBCD start code search */
  1741. for (; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size; buf_idx++) {
  1742. if (buf[buf_idx ] == 'B' && buf[buf_idx+1] == 'B' &&
  1743. buf[buf_idx+2] == 'C' && buf[buf_idx+3] == 'D')
  1744. break;
  1745. }
  1746. /* BBCD found or end of data */
  1747. if (buf_idx + DATA_UNIT_HEADER_SIZE >= buf_size)
  1748. break;
  1749. data_unit_size = AV_RB32(buf+buf_idx+5);
  1750. if (data_unit_size > buf_size - buf_idx || !data_unit_size) {
  1751. if(data_unit_size > buf_size - buf_idx)
  1752. av_log(s->avctx, AV_LOG_ERROR,
  1753. "Data unit with size %d is larger than input buffer, discarding\n",
  1754. data_unit_size);
  1755. buf_idx += 4;
  1756. continue;
  1757. }
  1758. /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */
  1759. ret = dirac_decode_data_unit(avctx, buf+buf_idx, data_unit_size);
  1760. if (ret < 0)
  1761. {
  1762. av_log(s->avctx, AV_LOG_ERROR,"Error in dirac_decode_data_unit\n");
  1763. return ret;
  1764. }
  1765. buf_idx += data_unit_size;
  1766. }
  1767. if (!s->current_picture)
  1768. return buf_size;
  1769. if (s->current_picture->avframe->display_picture_number > s->frame_number) {
  1770. DiracFrame *delayed_frame = remove_frame(s->delay_frames, s->frame_number);
  1771. s->current_picture->reference |= DELAYED_PIC_REF;
  1772. if (add_frame(s->delay_frames, MAX_DELAY, s->current_picture)) {
  1773. int min_num = s->delay_frames[0]->avframe->display_picture_number;
  1774. /* Too many delayed frames, so we display the frame with the lowest pts */
  1775. av_log(avctx, AV_LOG_ERROR, "Delay frame overflow\n");
  1776. for (i = 1; s->delay_frames[i]; i++)
  1777. if (s->delay_frames[i]->avframe->display_picture_number < min_num)
  1778. min_num = s->delay_frames[i]->avframe->display_picture_number;
  1779. delayed_frame = remove_frame(s->delay_frames, min_num);
  1780. add_frame(s->delay_frames, MAX_DELAY, s->current_picture);
  1781. }
  1782. if (delayed_frame) {
  1783. delayed_frame->reference ^= DELAYED_PIC_REF;
  1784. if((ret=av_frame_ref(data, delayed_frame->avframe)) < 0)
  1785. return ret;
  1786. *got_frame = 1;
  1787. }
  1788. } else if (s->current_picture->avframe->display_picture_number == s->frame_number) {
  1789. /* The right frame at the right time :-) */
  1790. if((ret=av_frame_ref(data, s->current_picture->avframe)) < 0)
  1791. return ret;
  1792. *got_frame = 1;
  1793. }
  1794. if (*got_frame)
  1795. s->frame_number = picture->display_picture_number + 1;
  1796. return buf_idx;
  1797. }
  1798. AVCodec ff_dirac_decoder = {
  1799. .name = "dirac",
  1800. .long_name = NULL_IF_CONFIG_SMALL("BBC Dirac VC-2"),
  1801. .type = AVMEDIA_TYPE_VIDEO,
  1802. .id = AV_CODEC_ID_DIRAC,
  1803. .priv_data_size = sizeof(DiracContext),
  1804. .init = dirac_decode_init,
  1805. .close = dirac_decode_end,
  1806. .decode = dirac_decode_frame,
  1807. .capabilities = AV_CODEC_CAP_DELAY,
  1808. .flush = dirac_decode_flush,
  1809. };