You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3525 lines
133KB

  1. /*
  2. * HEVC video Decoder
  3. *
  4. * Copyright (C) 2012 - 2013 Guillaume Martres
  5. * Copyright (C) 2012 - 2013 Mickael Raulet
  6. * Copyright (C) 2012 - 2013 Gildas Cocherel
  7. * Copyright (C) 2012 - 2013 Wassim Hamidouche
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/atomic.h"
  26. #include "libavutil/attributes.h"
  27. #include "libavutil/common.h"
  28. #include "libavutil/display.h"
  29. #include "libavutil/internal.h"
  30. #include "libavutil/md5.h"
  31. #include "libavutil/opt.h"
  32. #include "libavutil/pixdesc.h"
  33. #include "libavutil/stereo3d.h"
  34. #include "bswapdsp.h"
  35. #include "bytestream.h"
  36. #include "cabac_functions.h"
  37. #include "golomb.h"
  38. #include "hevc.h"
  39. const uint8_t ff_hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 };
  40. /**
  41. * NOTE: Each function hls_foo correspond to the function foo in the
  42. * specification (HLS stands for High Level Syntax).
  43. */
  44. /**
  45. * Section 5.7
  46. */
  47. /* free everything allocated by pic_arrays_init() */
  48. static void pic_arrays_free(HEVCContext *s)
  49. {
  50. av_freep(&s->sao);
  51. av_freep(&s->deblock);
  52. av_freep(&s->skip_flag);
  53. av_freep(&s->tab_ct_depth);
  54. av_freep(&s->tab_ipm);
  55. av_freep(&s->cbf_luma);
  56. av_freep(&s->is_pcm);
  57. av_freep(&s->qp_y_tab);
  58. av_freep(&s->tab_slice_address);
  59. av_freep(&s->filter_slice_edges);
  60. av_freep(&s->horizontal_bs);
  61. av_freep(&s->vertical_bs);
  62. av_freep(&s->sh.entry_point_offset);
  63. av_freep(&s->sh.size);
  64. av_freep(&s->sh.offset);
  65. av_buffer_pool_uninit(&s->tab_mvf_pool);
  66. av_buffer_pool_uninit(&s->rpl_tab_pool);
  67. }
  68. /* allocate arrays that depend on frame dimensions */
  69. static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
  70. {
  71. int log2_min_cb_size = sps->log2_min_cb_size;
  72. int width = sps->width;
  73. int height = sps->height;
  74. int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) *
  75. ((height >> log2_min_cb_size) + 1);
  76. int ctb_count = sps->ctb_width * sps->ctb_height;
  77. int min_pu_size = sps->min_pu_width * sps->min_pu_height;
  78. s->bs_width = (width >> 2) + 1;
  79. s->bs_height = (height >> 2) + 1;
  80. s->sao = av_mallocz_array(ctb_count, sizeof(*s->sao));
  81. s->deblock = av_mallocz_array(ctb_count, sizeof(*s->deblock));
  82. if (!s->sao || !s->deblock)
  83. goto fail;
  84. s->skip_flag = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  85. s->tab_ct_depth = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  86. if (!s->skip_flag || !s->tab_ct_depth)
  87. goto fail;
  88. s->cbf_luma = av_malloc_array(sps->min_tb_width, sps->min_tb_height);
  89. s->tab_ipm = av_mallocz(min_pu_size);
  90. s->is_pcm = av_malloc_array(sps->min_pu_width + 1, sps->min_pu_height + 1);
  91. if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
  92. goto fail;
  93. s->filter_slice_edges = av_mallocz(ctb_count);
  94. s->tab_slice_address = av_malloc_array(pic_size_in_ctb,
  95. sizeof(*s->tab_slice_address));
  96. s->qp_y_tab = av_malloc_array(pic_size_in_ctb,
  97. sizeof(*s->qp_y_tab));
  98. if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
  99. goto fail;
  100. s->horizontal_bs = av_mallocz_array(s->bs_width, s->bs_height);
  101. s->vertical_bs = av_mallocz_array(s->bs_width, s->bs_height);
  102. if (!s->horizontal_bs || !s->vertical_bs)
  103. goto fail;
  104. s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
  105. av_buffer_allocz);
  106. s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
  107. av_buffer_allocz);
  108. if (!s->tab_mvf_pool || !s->rpl_tab_pool)
  109. goto fail;
  110. return 0;
  111. fail:
  112. pic_arrays_free(s);
  113. return AVERROR(ENOMEM);
  114. }
  115. static void pred_weight_table(HEVCContext *s, GetBitContext *gb)
  116. {
  117. int i = 0;
  118. int j = 0;
  119. uint8_t luma_weight_l0_flag[16];
  120. uint8_t chroma_weight_l0_flag[16];
  121. uint8_t luma_weight_l1_flag[16];
  122. uint8_t chroma_weight_l1_flag[16];
  123. int luma_log2_weight_denom;
  124. luma_log2_weight_denom = get_ue_golomb_long(gb);
  125. if (luma_log2_weight_denom < 0 || luma_log2_weight_denom > 7)
  126. av_log(s->avctx, AV_LOG_ERROR, "luma_log2_weight_denom %d is invalid\n", luma_log2_weight_denom);
  127. s->sh.luma_log2_weight_denom = av_clip(luma_log2_weight_denom, 0, 7);
  128. if (s->sps->chroma_format_idc != 0) {
  129. int delta = get_se_golomb(gb);
  130. s->sh.chroma_log2_weight_denom = av_clip(s->sh.luma_log2_weight_denom + delta, 0, 7);
  131. }
  132. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  133. luma_weight_l0_flag[i] = get_bits1(gb);
  134. if (!luma_weight_l0_flag[i]) {
  135. s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
  136. s->sh.luma_offset_l0[i] = 0;
  137. }
  138. }
  139. if (s->sps->chroma_format_idc != 0) {
  140. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  141. chroma_weight_l0_flag[i] = get_bits1(gb);
  142. } else {
  143. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  144. chroma_weight_l0_flag[i] = 0;
  145. }
  146. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  147. if (luma_weight_l0_flag[i]) {
  148. int delta_luma_weight_l0 = get_se_golomb(gb);
  149. s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
  150. s->sh.luma_offset_l0[i] = get_se_golomb(gb);
  151. }
  152. if (chroma_weight_l0_flag[i]) {
  153. for (j = 0; j < 2; j++) {
  154. int delta_chroma_weight_l0 = get_se_golomb(gb);
  155. int delta_chroma_offset_l0 = get_se_golomb(gb);
  156. s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
  157. s->sh.chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
  158. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  159. }
  160. } else {
  161. s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  162. s->sh.chroma_offset_l0[i][0] = 0;
  163. s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  164. s->sh.chroma_offset_l0[i][1] = 0;
  165. }
  166. }
  167. if (s->sh.slice_type == B_SLICE) {
  168. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  169. luma_weight_l1_flag[i] = get_bits1(gb);
  170. if (!luma_weight_l1_flag[i]) {
  171. s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
  172. s->sh.luma_offset_l1[i] = 0;
  173. }
  174. }
  175. if (s->sps->chroma_format_idc != 0) {
  176. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  177. chroma_weight_l1_flag[i] = get_bits1(gb);
  178. } else {
  179. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  180. chroma_weight_l1_flag[i] = 0;
  181. }
  182. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  183. if (luma_weight_l1_flag[i]) {
  184. int delta_luma_weight_l1 = get_se_golomb(gb);
  185. s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
  186. s->sh.luma_offset_l1[i] = get_se_golomb(gb);
  187. }
  188. if (chroma_weight_l1_flag[i]) {
  189. for (j = 0; j < 2; j++) {
  190. int delta_chroma_weight_l1 = get_se_golomb(gb);
  191. int delta_chroma_offset_l1 = get_se_golomb(gb);
  192. s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
  193. s->sh.chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
  194. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  195. }
  196. } else {
  197. s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  198. s->sh.chroma_offset_l1[i][0] = 0;
  199. s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  200. s->sh.chroma_offset_l1[i][1] = 0;
  201. }
  202. }
  203. }
  204. }
  205. static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
  206. {
  207. const HEVCSPS *sps = s->sps;
  208. int max_poc_lsb = 1 << sps->log2_max_poc_lsb;
  209. int prev_delta_msb = 0;
  210. unsigned int nb_sps = 0, nb_sh;
  211. int i;
  212. rps->nb_refs = 0;
  213. if (!sps->long_term_ref_pics_present_flag)
  214. return 0;
  215. if (sps->num_long_term_ref_pics_sps > 0)
  216. nb_sps = get_ue_golomb_long(gb);
  217. nb_sh = get_ue_golomb_long(gb);
  218. if (nb_sh + (uint64_t)nb_sps > FF_ARRAY_ELEMS(rps->poc))
  219. return AVERROR_INVALIDDATA;
  220. rps->nb_refs = nb_sh + nb_sps;
  221. for (i = 0; i < rps->nb_refs; i++) {
  222. uint8_t delta_poc_msb_present;
  223. if (i < nb_sps) {
  224. uint8_t lt_idx_sps = 0;
  225. if (sps->num_long_term_ref_pics_sps > 1)
  226. lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
  227. rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
  228. rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
  229. } else {
  230. rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb);
  231. rps->used[i] = get_bits1(gb);
  232. }
  233. delta_poc_msb_present = get_bits1(gb);
  234. if (delta_poc_msb_present) {
  235. int delta = get_ue_golomb_long(gb);
  236. if (i && i != nb_sps)
  237. delta += prev_delta_msb;
  238. rps->poc[i] += s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
  239. prev_delta_msb = delta;
  240. }
  241. }
  242. return 0;
  243. }
  244. static int set_sps(HEVCContext *s, const HEVCSPS *sps)
  245. {
  246. #define HWACCEL_MAX (CONFIG_HEVC_DXVA2_HWACCEL)
  247. enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
  248. int ret, i;
  249. unsigned int num = 0, den = 0;
  250. pic_arrays_free(s);
  251. ret = pic_arrays_init(s, sps);
  252. if (ret < 0)
  253. goto fail;
  254. s->avctx->coded_width = sps->width;
  255. s->avctx->coded_height = sps->height;
  256. s->avctx->width = sps->output_width;
  257. s->avctx->height = sps->output_height;
  258. s->avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
  259. if (sps->pix_fmt == AV_PIX_FMT_YUV420P || sps->pix_fmt == AV_PIX_FMT_YUVJ420P) {
  260. #if CONFIG_HEVC_DXVA2_HWACCEL
  261. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  262. #endif
  263. }
  264. *fmt++ = sps->pix_fmt;
  265. *fmt = AV_PIX_FMT_NONE;
  266. ret = ff_thread_get_format(s->avctx, pix_fmts);
  267. if (ret < 0)
  268. goto fail;
  269. s->avctx->pix_fmt = ret;
  270. ff_set_sar(s->avctx, sps->vui.sar);
  271. if (sps->vui.video_signal_type_present_flag)
  272. s->avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
  273. : AVCOL_RANGE_MPEG;
  274. else
  275. s->avctx->color_range = AVCOL_RANGE_MPEG;
  276. if (sps->vui.colour_description_present_flag) {
  277. s->avctx->color_primaries = sps->vui.colour_primaries;
  278. s->avctx->color_trc = sps->vui.transfer_characteristic;
  279. s->avctx->colorspace = sps->vui.matrix_coeffs;
  280. } else {
  281. s->avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
  282. s->avctx->color_trc = AVCOL_TRC_UNSPECIFIED;
  283. s->avctx->colorspace = AVCOL_SPC_UNSPECIFIED;
  284. }
  285. ff_hevc_pred_init(&s->hpc, sps->bit_depth);
  286. ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
  287. ff_videodsp_init (&s->vdsp, sps->bit_depth);
  288. for (i = 0; i < 3; i++) {
  289. av_freep(&s->sao_pixel_buffer_h[i]);
  290. av_freep(&s->sao_pixel_buffer_v[i]);
  291. }
  292. if (sps->sao_enabled && !s->avctx->hwaccel) {
  293. int c_count = (sps->chroma_format_idc != 0) ? 3 : 1;
  294. int c_idx;
  295. for(c_idx = 0; c_idx < c_count; c_idx++) {
  296. int w = sps->width >> sps->hshift[c_idx];
  297. int h = sps->height >> sps->vshift[c_idx];
  298. s->sao_pixel_buffer_h[c_idx] =
  299. av_malloc((w * 2 * sps->ctb_height) <<
  300. sps->pixel_shift);
  301. s->sao_pixel_buffer_v[c_idx] =
  302. av_malloc((h * 2 * sps->ctb_width) <<
  303. sps->pixel_shift);
  304. }
  305. }
  306. s->sps = sps;
  307. s->vps = (HEVCVPS*) s->vps_list[s->sps->vps_id]->data;
  308. if (s->vps->vps_timing_info_present_flag) {
  309. num = s->vps->vps_num_units_in_tick;
  310. den = s->vps->vps_time_scale;
  311. } else if (sps->vui.vui_timing_info_present_flag) {
  312. num = sps->vui.vui_num_units_in_tick;
  313. den = sps->vui.vui_time_scale;
  314. }
  315. if (num != 0 && den != 0)
  316. av_reduce(&s->avctx->framerate.den, &s->avctx->framerate.num,
  317. num, den, 1 << 30);
  318. return 0;
  319. fail:
  320. pic_arrays_free(s);
  321. s->sps = NULL;
  322. return ret;
  323. }
  324. static int hls_slice_header(HEVCContext *s)
  325. {
  326. GetBitContext *gb = &s->HEVClc->gb;
  327. SliceHeader *sh = &s->sh;
  328. int i, j, ret;
  329. // Coded parameters
  330. sh->first_slice_in_pic_flag = get_bits1(gb);
  331. if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
  332. s->seq_decode = (s->seq_decode + 1) & 0xff;
  333. s->max_ra = INT_MAX;
  334. if (IS_IDR(s))
  335. ff_hevc_clear_refs(s);
  336. }
  337. sh->no_output_of_prior_pics_flag = 0;
  338. if (IS_IRAP(s))
  339. sh->no_output_of_prior_pics_flag = get_bits1(gb);
  340. sh->pps_id = get_ue_golomb_long(gb);
  341. if (sh->pps_id >= MAX_PPS_COUNT || !s->pps_list[sh->pps_id]) {
  342. av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
  343. return AVERROR_INVALIDDATA;
  344. }
  345. if (!sh->first_slice_in_pic_flag &&
  346. s->pps != (HEVCPPS*)s->pps_list[sh->pps_id]->data) {
  347. av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
  348. return AVERROR_INVALIDDATA;
  349. }
  350. s->pps = (HEVCPPS*)s->pps_list[sh->pps_id]->data;
  351. if (s->nal_unit_type == NAL_CRA_NUT && s->last_eos == 1)
  352. sh->no_output_of_prior_pics_flag = 1;
  353. if (s->sps != (HEVCSPS*)s->sps_list[s->pps->sps_id]->data) {
  354. const HEVCSPS* last_sps = s->sps;
  355. s->sps = (HEVCSPS*)s->sps_list[s->pps->sps_id]->data;
  356. if (last_sps && IS_IRAP(s) && s->nal_unit_type != NAL_CRA_NUT) {
  357. if (s->sps->width != last_sps->width || s->sps->height != last_sps->height ||
  358. s->sps->temporal_layer[s->sps->max_sub_layers - 1].max_dec_pic_buffering !=
  359. last_sps->temporal_layer[last_sps->max_sub_layers - 1].max_dec_pic_buffering)
  360. sh->no_output_of_prior_pics_flag = 0;
  361. }
  362. ff_hevc_clear_refs(s);
  363. ret = set_sps(s, s->sps);
  364. if (ret < 0)
  365. return ret;
  366. s->seq_decode = (s->seq_decode + 1) & 0xff;
  367. s->max_ra = INT_MAX;
  368. }
  369. s->avctx->profile = s->sps->ptl.general_ptl.profile_idc;
  370. s->avctx->level = s->sps->ptl.general_ptl.level_idc;
  371. sh->dependent_slice_segment_flag = 0;
  372. if (!sh->first_slice_in_pic_flag) {
  373. int slice_address_length;
  374. if (s->pps->dependent_slice_segments_enabled_flag)
  375. sh->dependent_slice_segment_flag = get_bits1(gb);
  376. slice_address_length = av_ceil_log2(s->sps->ctb_width *
  377. s->sps->ctb_height);
  378. sh->slice_segment_addr = get_bits(gb, slice_address_length);
  379. if (sh->slice_segment_addr >= s->sps->ctb_width * s->sps->ctb_height) {
  380. av_log(s->avctx, AV_LOG_ERROR,
  381. "Invalid slice segment address: %u.\n",
  382. sh->slice_segment_addr);
  383. return AVERROR_INVALIDDATA;
  384. }
  385. if (!sh->dependent_slice_segment_flag) {
  386. sh->slice_addr = sh->slice_segment_addr;
  387. s->slice_idx++;
  388. }
  389. } else {
  390. sh->slice_segment_addr = sh->slice_addr = 0;
  391. s->slice_idx = 0;
  392. s->slice_initialized = 0;
  393. }
  394. if (!sh->dependent_slice_segment_flag) {
  395. s->slice_initialized = 0;
  396. for (i = 0; i < s->pps->num_extra_slice_header_bits; i++)
  397. skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
  398. sh->slice_type = get_ue_golomb_long(gb);
  399. if (!(sh->slice_type == I_SLICE ||
  400. sh->slice_type == P_SLICE ||
  401. sh->slice_type == B_SLICE)) {
  402. av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
  403. sh->slice_type);
  404. return AVERROR_INVALIDDATA;
  405. }
  406. if (IS_IRAP(s) && sh->slice_type != I_SLICE) {
  407. av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
  408. return AVERROR_INVALIDDATA;
  409. }
  410. // when flag is not present, picture is inferred to be output
  411. sh->pic_output_flag = 1;
  412. if (s->pps->output_flag_present_flag)
  413. sh->pic_output_flag = get_bits1(gb);
  414. if (s->sps->separate_colour_plane_flag)
  415. sh->colour_plane_id = get_bits(gb, 2);
  416. if (!IS_IDR(s)) {
  417. int poc;
  418. sh->pic_order_cnt_lsb = get_bits(gb, s->sps->log2_max_poc_lsb);
  419. poc = ff_hevc_compute_poc(s, sh->pic_order_cnt_lsb);
  420. if (!sh->first_slice_in_pic_flag && poc != s->poc) {
  421. av_log(s->avctx, AV_LOG_WARNING,
  422. "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
  423. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  424. return AVERROR_INVALIDDATA;
  425. poc = s->poc;
  426. }
  427. s->poc = poc;
  428. sh->short_term_ref_pic_set_sps_flag = get_bits1(gb);
  429. if (!sh->short_term_ref_pic_set_sps_flag) {
  430. int pos = get_bits_left(gb);
  431. ret = ff_hevc_decode_short_term_rps(s, &sh->slice_rps, s->sps, 1);
  432. if (ret < 0)
  433. return ret;
  434. sh->short_term_ref_pic_set_size = pos - get_bits_left(gb);
  435. sh->short_term_rps = &sh->slice_rps;
  436. } else {
  437. int numbits, rps_idx;
  438. if (!s->sps->nb_st_rps) {
  439. av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
  440. return AVERROR_INVALIDDATA;
  441. }
  442. numbits = av_ceil_log2(s->sps->nb_st_rps);
  443. rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
  444. sh->short_term_rps = &s->sps->st_rps[rps_idx];
  445. }
  446. ret = decode_lt_rps(s, &sh->long_term_rps, gb);
  447. if (ret < 0) {
  448. av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
  449. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  450. return AVERROR_INVALIDDATA;
  451. }
  452. if (s->sps->sps_temporal_mvp_enabled_flag)
  453. sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
  454. else
  455. sh->slice_temporal_mvp_enabled_flag = 0;
  456. } else {
  457. s->sh.short_term_rps = NULL;
  458. s->poc = 0;
  459. }
  460. /* 8.3.1 */
  461. if (s->temporal_id == 0 &&
  462. s->nal_unit_type != NAL_TRAIL_N &&
  463. s->nal_unit_type != NAL_TSA_N &&
  464. s->nal_unit_type != NAL_STSA_N &&
  465. s->nal_unit_type != NAL_RADL_N &&
  466. s->nal_unit_type != NAL_RADL_R &&
  467. s->nal_unit_type != NAL_RASL_N &&
  468. s->nal_unit_type != NAL_RASL_R)
  469. s->pocTid0 = s->poc;
  470. if (s->sps->sao_enabled) {
  471. sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
  472. if (s->sps->chroma_format_idc) {
  473. sh->slice_sample_adaptive_offset_flag[1] =
  474. sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
  475. }
  476. } else {
  477. sh->slice_sample_adaptive_offset_flag[0] = 0;
  478. sh->slice_sample_adaptive_offset_flag[1] = 0;
  479. sh->slice_sample_adaptive_offset_flag[2] = 0;
  480. }
  481. sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
  482. if (sh->slice_type == P_SLICE || sh->slice_type == B_SLICE) {
  483. int nb_refs;
  484. sh->nb_refs[L0] = s->pps->num_ref_idx_l0_default_active;
  485. if (sh->slice_type == B_SLICE)
  486. sh->nb_refs[L1] = s->pps->num_ref_idx_l1_default_active;
  487. if (get_bits1(gb)) { // num_ref_idx_active_override_flag
  488. sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
  489. if (sh->slice_type == B_SLICE)
  490. sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
  491. }
  492. if (sh->nb_refs[L0] > MAX_REFS || sh->nb_refs[L1] > MAX_REFS) {
  493. av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
  494. sh->nb_refs[L0], sh->nb_refs[L1]);
  495. return AVERROR_INVALIDDATA;
  496. }
  497. sh->rpl_modification_flag[0] = 0;
  498. sh->rpl_modification_flag[1] = 0;
  499. nb_refs = ff_hevc_frame_nb_refs(s);
  500. if (!nb_refs) {
  501. av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
  502. return AVERROR_INVALIDDATA;
  503. }
  504. if (s->pps->lists_modification_present_flag && nb_refs > 1) {
  505. sh->rpl_modification_flag[0] = get_bits1(gb);
  506. if (sh->rpl_modification_flag[0]) {
  507. for (i = 0; i < sh->nb_refs[L0]; i++)
  508. sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
  509. }
  510. if (sh->slice_type == B_SLICE) {
  511. sh->rpl_modification_flag[1] = get_bits1(gb);
  512. if (sh->rpl_modification_flag[1] == 1)
  513. for (i = 0; i < sh->nb_refs[L1]; i++)
  514. sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
  515. }
  516. }
  517. if (sh->slice_type == B_SLICE)
  518. sh->mvd_l1_zero_flag = get_bits1(gb);
  519. if (s->pps->cabac_init_present_flag)
  520. sh->cabac_init_flag = get_bits1(gb);
  521. else
  522. sh->cabac_init_flag = 0;
  523. sh->collocated_ref_idx = 0;
  524. if (sh->slice_temporal_mvp_enabled_flag) {
  525. sh->collocated_list = L0;
  526. if (sh->slice_type == B_SLICE)
  527. sh->collocated_list = !get_bits1(gb);
  528. if (sh->nb_refs[sh->collocated_list] > 1) {
  529. sh->collocated_ref_idx = get_ue_golomb_long(gb);
  530. if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
  531. av_log(s->avctx, AV_LOG_ERROR,
  532. "Invalid collocated_ref_idx: %d.\n",
  533. sh->collocated_ref_idx);
  534. return AVERROR_INVALIDDATA;
  535. }
  536. }
  537. }
  538. if ((s->pps->weighted_pred_flag && sh->slice_type == P_SLICE) ||
  539. (s->pps->weighted_bipred_flag && sh->slice_type == B_SLICE)) {
  540. pred_weight_table(s, gb);
  541. }
  542. sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
  543. if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
  544. av_log(s->avctx, AV_LOG_ERROR,
  545. "Invalid number of merging MVP candidates: %d.\n",
  546. sh->max_num_merge_cand);
  547. return AVERROR_INVALIDDATA;
  548. }
  549. }
  550. sh->slice_qp_delta = get_se_golomb(gb);
  551. if (s->pps->pic_slice_level_chroma_qp_offsets_present_flag) {
  552. sh->slice_cb_qp_offset = get_se_golomb(gb);
  553. sh->slice_cr_qp_offset = get_se_golomb(gb);
  554. } else {
  555. sh->slice_cb_qp_offset = 0;
  556. sh->slice_cr_qp_offset = 0;
  557. }
  558. if (s->pps->chroma_qp_offset_list_enabled_flag)
  559. sh->cu_chroma_qp_offset_enabled_flag = get_bits1(gb);
  560. else
  561. sh->cu_chroma_qp_offset_enabled_flag = 0;
  562. if (s->pps->deblocking_filter_control_present_flag) {
  563. int deblocking_filter_override_flag = 0;
  564. if (s->pps->deblocking_filter_override_enabled_flag)
  565. deblocking_filter_override_flag = get_bits1(gb);
  566. if (deblocking_filter_override_flag) {
  567. sh->disable_deblocking_filter_flag = get_bits1(gb);
  568. if (!sh->disable_deblocking_filter_flag) {
  569. sh->beta_offset = get_se_golomb(gb) * 2;
  570. sh->tc_offset = get_se_golomb(gb) * 2;
  571. }
  572. } else {
  573. sh->disable_deblocking_filter_flag = s->pps->disable_dbf;
  574. sh->beta_offset = s->pps->beta_offset;
  575. sh->tc_offset = s->pps->tc_offset;
  576. }
  577. } else {
  578. sh->disable_deblocking_filter_flag = 0;
  579. sh->beta_offset = 0;
  580. sh->tc_offset = 0;
  581. }
  582. if (s->pps->seq_loop_filter_across_slices_enabled_flag &&
  583. (sh->slice_sample_adaptive_offset_flag[0] ||
  584. sh->slice_sample_adaptive_offset_flag[1] ||
  585. !sh->disable_deblocking_filter_flag)) {
  586. sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
  587. } else {
  588. sh->slice_loop_filter_across_slices_enabled_flag = s->pps->seq_loop_filter_across_slices_enabled_flag;
  589. }
  590. } else if (!s->slice_initialized) {
  591. av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
  592. return AVERROR_INVALIDDATA;
  593. }
  594. sh->num_entry_point_offsets = 0;
  595. if (s->pps->tiles_enabled_flag || s->pps->entropy_coding_sync_enabled_flag) {
  596. sh->num_entry_point_offsets = get_ue_golomb_long(gb);
  597. if (sh->num_entry_point_offsets > 0) {
  598. int offset_len = get_ue_golomb_long(gb) + 1;
  599. int segments = offset_len >> 4;
  600. int rest = (offset_len & 15);
  601. av_freep(&sh->entry_point_offset);
  602. av_freep(&sh->offset);
  603. av_freep(&sh->size);
  604. sh->entry_point_offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  605. sh->offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  606. sh->size = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  607. if (!sh->entry_point_offset || !sh->offset || !sh->size) {
  608. sh->num_entry_point_offsets = 0;
  609. av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n");
  610. return AVERROR(ENOMEM);
  611. }
  612. for (i = 0; i < sh->num_entry_point_offsets; i++) {
  613. int val = 0;
  614. for (j = 0; j < segments; j++) {
  615. val <<= 16;
  616. val += get_bits(gb, 16);
  617. }
  618. if (rest) {
  619. val <<= rest;
  620. val += get_bits(gb, rest);
  621. }
  622. sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size
  623. }
  624. if (s->threads_number > 1 && (s->pps->num_tile_rows > 1 || s->pps->num_tile_columns > 1)) {
  625. s->enable_parallel_tiles = 0; // TODO: you can enable tiles in parallel here
  626. s->threads_number = 1;
  627. } else
  628. s->enable_parallel_tiles = 0;
  629. } else
  630. s->enable_parallel_tiles = 0;
  631. }
  632. if (s->pps->slice_header_extension_present_flag) {
  633. unsigned int length = get_ue_golomb_long(gb);
  634. if (length*8LL > get_bits_left(gb)) {
  635. av_log(s->avctx, AV_LOG_ERROR, "too many slice_header_extension_data_bytes\n");
  636. return AVERROR_INVALIDDATA;
  637. }
  638. for (i = 0; i < length; i++)
  639. skip_bits(gb, 8); // slice_header_extension_data_byte
  640. }
  641. // Inferred parameters
  642. sh->slice_qp = 26U + s->pps->pic_init_qp_minus26 + sh->slice_qp_delta;
  643. if (sh->slice_qp > 51 ||
  644. sh->slice_qp < -s->sps->qp_bd_offset) {
  645. av_log(s->avctx, AV_LOG_ERROR,
  646. "The slice_qp %d is outside the valid range "
  647. "[%d, 51].\n",
  648. sh->slice_qp,
  649. -s->sps->qp_bd_offset);
  650. return AVERROR_INVALIDDATA;
  651. }
  652. sh->slice_ctb_addr_rs = sh->slice_segment_addr;
  653. if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
  654. av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
  655. return AVERROR_INVALIDDATA;
  656. }
  657. if (get_bits_left(gb) < 0) {
  658. av_log(s->avctx, AV_LOG_ERROR,
  659. "Overread slice header by %d bits\n", -get_bits_left(gb));
  660. return AVERROR_INVALIDDATA;
  661. }
  662. s->HEVClc->first_qp_group = !s->sh.dependent_slice_segment_flag;
  663. if (!s->pps->cu_qp_delta_enabled_flag)
  664. s->HEVClc->qp_y = s->sh.slice_qp;
  665. s->slice_initialized = 1;
  666. s->HEVClc->tu.cu_qp_offset_cb = 0;
  667. s->HEVClc->tu.cu_qp_offset_cr = 0;
  668. return 0;
  669. }
  670. #define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)])
  671. #define SET_SAO(elem, value) \
  672. do { \
  673. if (!sao_merge_up_flag && !sao_merge_left_flag) \
  674. sao->elem = value; \
  675. else if (sao_merge_left_flag) \
  676. sao->elem = CTB(s->sao, rx-1, ry).elem; \
  677. else if (sao_merge_up_flag) \
  678. sao->elem = CTB(s->sao, rx, ry-1).elem; \
  679. else \
  680. sao->elem = 0; \
  681. } while (0)
  682. static void hls_sao_param(HEVCContext *s, int rx, int ry)
  683. {
  684. HEVCLocalContext *lc = s->HEVClc;
  685. int sao_merge_left_flag = 0;
  686. int sao_merge_up_flag = 0;
  687. SAOParams *sao = &CTB(s->sao, rx, ry);
  688. int c_idx, i;
  689. if (s->sh.slice_sample_adaptive_offset_flag[0] ||
  690. s->sh.slice_sample_adaptive_offset_flag[1]) {
  691. if (rx > 0) {
  692. if (lc->ctb_left_flag)
  693. sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
  694. }
  695. if (ry > 0 && !sao_merge_left_flag) {
  696. if (lc->ctb_up_flag)
  697. sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
  698. }
  699. }
  700. for (c_idx = 0; c_idx < (s->sps->chroma_format_idc ? 3 : 1); c_idx++) {
  701. int log2_sao_offset_scale = c_idx == 0 ? s->pps->log2_sao_offset_scale_luma :
  702. s->pps->log2_sao_offset_scale_chroma;
  703. if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
  704. sao->type_idx[c_idx] = SAO_NOT_APPLIED;
  705. continue;
  706. }
  707. if (c_idx == 2) {
  708. sao->type_idx[2] = sao->type_idx[1];
  709. sao->eo_class[2] = sao->eo_class[1];
  710. } else {
  711. SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
  712. }
  713. if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
  714. continue;
  715. for (i = 0; i < 4; i++)
  716. SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
  717. if (sao->type_idx[c_idx] == SAO_BAND) {
  718. for (i = 0; i < 4; i++) {
  719. if (sao->offset_abs[c_idx][i]) {
  720. SET_SAO(offset_sign[c_idx][i],
  721. ff_hevc_sao_offset_sign_decode(s));
  722. } else {
  723. sao->offset_sign[c_idx][i] = 0;
  724. }
  725. }
  726. SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
  727. } else if (c_idx != 2) {
  728. SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
  729. }
  730. // Inferred parameters
  731. sao->offset_val[c_idx][0] = 0;
  732. for (i = 0; i < 4; i++) {
  733. sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i];
  734. if (sao->type_idx[c_idx] == SAO_EDGE) {
  735. if (i > 1)
  736. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  737. } else if (sao->offset_sign[c_idx][i]) {
  738. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  739. }
  740. sao->offset_val[c_idx][i + 1] <<= log2_sao_offset_scale;
  741. }
  742. }
  743. }
  744. #undef SET_SAO
  745. #undef CTB
  746. static int hls_cross_component_pred(HEVCContext *s, int idx) {
  747. HEVCLocalContext *lc = s->HEVClc;
  748. int log2_res_scale_abs_plus1 = ff_hevc_log2_res_scale_abs(s, idx);
  749. if (log2_res_scale_abs_plus1 != 0) {
  750. int res_scale_sign_flag = ff_hevc_res_scale_sign_flag(s, idx);
  751. lc->tu.res_scale_val = (1 << (log2_res_scale_abs_plus1 - 1)) *
  752. (1 - 2 * res_scale_sign_flag);
  753. } else {
  754. lc->tu.res_scale_val = 0;
  755. }
  756. return 0;
  757. }
  758. static int hls_transform_unit(HEVCContext *s, int x0, int y0,
  759. int xBase, int yBase, int cb_xBase, int cb_yBase,
  760. int log2_cb_size, int log2_trafo_size,
  761. int blk_idx, int cbf_luma, int *cbf_cb, int *cbf_cr)
  762. {
  763. HEVCLocalContext *lc = s->HEVClc;
  764. const int log2_trafo_size_c = log2_trafo_size - s->sps->hshift[1];
  765. int i;
  766. if (lc->cu.pred_mode == MODE_INTRA) {
  767. int trafo_size = 1 << log2_trafo_size;
  768. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
  769. s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
  770. }
  771. if (cbf_luma || cbf_cb[0] || cbf_cr[0] ||
  772. (s->sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  773. int scan_idx = SCAN_DIAG;
  774. int scan_idx_c = SCAN_DIAG;
  775. int cbf_chroma = cbf_cb[0] || cbf_cr[0] ||
  776. (s->sps->chroma_format_idc == 2 &&
  777. (cbf_cb[1] || cbf_cr[1]));
  778. if (s->pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
  779. lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
  780. if (lc->tu.cu_qp_delta != 0)
  781. if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
  782. lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
  783. lc->tu.is_cu_qp_delta_coded = 1;
  784. if (lc->tu.cu_qp_delta < -(26 + s->sps->qp_bd_offset / 2) ||
  785. lc->tu.cu_qp_delta > (25 + s->sps->qp_bd_offset / 2)) {
  786. av_log(s->avctx, AV_LOG_ERROR,
  787. "The cu_qp_delta %d is outside the valid range "
  788. "[%d, %d].\n",
  789. lc->tu.cu_qp_delta,
  790. -(26 + s->sps->qp_bd_offset / 2),
  791. (25 + s->sps->qp_bd_offset / 2));
  792. return AVERROR_INVALIDDATA;
  793. }
  794. ff_hevc_set_qPy(s, cb_xBase, cb_yBase, log2_cb_size);
  795. }
  796. if (s->sh.cu_chroma_qp_offset_enabled_flag && cbf_chroma &&
  797. !lc->cu.cu_transquant_bypass_flag && !lc->tu.is_cu_chroma_qp_offset_coded) {
  798. int cu_chroma_qp_offset_flag = ff_hevc_cu_chroma_qp_offset_flag(s);
  799. if (cu_chroma_qp_offset_flag) {
  800. int cu_chroma_qp_offset_idx = 0;
  801. if (s->pps->chroma_qp_offset_list_len_minus1 > 0) {
  802. cu_chroma_qp_offset_idx = ff_hevc_cu_chroma_qp_offset_idx(s);
  803. av_log(s->avctx, AV_LOG_ERROR,
  804. "cu_chroma_qp_offset_idx not yet tested.\n");
  805. }
  806. lc->tu.cu_qp_offset_cb = s->pps->cb_qp_offset_list[cu_chroma_qp_offset_idx];
  807. lc->tu.cu_qp_offset_cr = s->pps->cr_qp_offset_list[cu_chroma_qp_offset_idx];
  808. } else {
  809. lc->tu.cu_qp_offset_cb = 0;
  810. lc->tu.cu_qp_offset_cr = 0;
  811. }
  812. lc->tu.is_cu_chroma_qp_offset_coded = 1;
  813. }
  814. if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
  815. if (lc->tu.intra_pred_mode >= 6 &&
  816. lc->tu.intra_pred_mode <= 14) {
  817. scan_idx = SCAN_VERT;
  818. } else if (lc->tu.intra_pred_mode >= 22 &&
  819. lc->tu.intra_pred_mode <= 30) {
  820. scan_idx = SCAN_HORIZ;
  821. }
  822. if (lc->tu.intra_pred_mode_c >= 6 &&
  823. lc->tu.intra_pred_mode_c <= 14) {
  824. scan_idx_c = SCAN_VERT;
  825. } else if (lc->tu.intra_pred_mode_c >= 22 &&
  826. lc->tu.intra_pred_mode_c <= 30) {
  827. scan_idx_c = SCAN_HORIZ;
  828. }
  829. }
  830. lc->tu.cross_pf = 0;
  831. if (cbf_luma)
  832. ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
  833. if (s->sps->chroma_format_idc && (log2_trafo_size > 2 || s->sps->chroma_format_idc == 3)) {
  834. int trafo_size_h = 1 << (log2_trafo_size_c + s->sps->hshift[1]);
  835. int trafo_size_v = 1 << (log2_trafo_size_c + s->sps->vshift[1]);
  836. lc->tu.cross_pf = (s->pps->cross_component_prediction_enabled_flag && cbf_luma &&
  837. (lc->cu.pred_mode == MODE_INTER ||
  838. (lc->tu.chroma_mode_c == 4)));
  839. if (lc->tu.cross_pf) {
  840. hls_cross_component_pred(s, 0);
  841. }
  842. for (i = 0; i < (s->sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  843. if (lc->cu.pred_mode == MODE_INTRA) {
  844. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  845. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 1);
  846. }
  847. if (cbf_cb[i])
  848. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  849. log2_trafo_size_c, scan_idx_c, 1);
  850. else
  851. if (lc->tu.cross_pf) {
  852. ptrdiff_t stride = s->frame->linesize[1];
  853. int hshift = s->sps->hshift[1];
  854. int vshift = s->sps->vshift[1];
  855. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  856. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  857. int size = 1 << log2_trafo_size_c;
  858. uint8_t *dst = &s->frame->data[1][(y0 >> vshift) * stride +
  859. ((x0 >> hshift) << s->sps->pixel_shift)];
  860. for (i = 0; i < (size * size); i++) {
  861. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  862. }
  863. s->hevcdsp.transform_add[log2_trafo_size_c-2](dst, coeffs, stride);
  864. }
  865. }
  866. if (lc->tu.cross_pf) {
  867. hls_cross_component_pred(s, 1);
  868. }
  869. for (i = 0; i < (s->sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  870. if (lc->cu.pred_mode == MODE_INTRA) {
  871. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  872. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 2);
  873. }
  874. if (cbf_cr[i])
  875. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  876. log2_trafo_size_c, scan_idx_c, 2);
  877. else
  878. if (lc->tu.cross_pf) {
  879. ptrdiff_t stride = s->frame->linesize[2];
  880. int hshift = s->sps->hshift[2];
  881. int vshift = s->sps->vshift[2];
  882. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  883. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  884. int size = 1 << log2_trafo_size_c;
  885. uint8_t *dst = &s->frame->data[2][(y0 >> vshift) * stride +
  886. ((x0 >> hshift) << s->sps->pixel_shift)];
  887. for (i = 0; i < (size * size); i++) {
  888. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  889. }
  890. s->hevcdsp.transform_add[log2_trafo_size_c-2](dst, coeffs, stride);
  891. }
  892. }
  893. } else if (s->sps->chroma_format_idc && blk_idx == 3) {
  894. int trafo_size_h = 1 << (log2_trafo_size + 1);
  895. int trafo_size_v = 1 << (log2_trafo_size + s->sps->vshift[1]);
  896. for (i = 0; i < (s->sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  897. if (lc->cu.pred_mode == MODE_INTRA) {
  898. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  899. trafo_size_h, trafo_size_v);
  900. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 1);
  901. }
  902. if (cbf_cb[i])
  903. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  904. log2_trafo_size, scan_idx_c, 1);
  905. }
  906. for (i = 0; i < (s->sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  907. if (lc->cu.pred_mode == MODE_INTRA) {
  908. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  909. trafo_size_h, trafo_size_v);
  910. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 2);
  911. }
  912. if (cbf_cr[i])
  913. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  914. log2_trafo_size, scan_idx_c, 2);
  915. }
  916. }
  917. } else if (s->sps->chroma_format_idc && lc->cu.pred_mode == MODE_INTRA) {
  918. if (log2_trafo_size > 2 || s->sps->chroma_format_idc == 3) {
  919. int trafo_size_h = 1 << (log2_trafo_size_c + s->sps->hshift[1]);
  920. int trafo_size_v = 1 << (log2_trafo_size_c + s->sps->vshift[1]);
  921. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size_h, trafo_size_v);
  922. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 1);
  923. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 2);
  924. if (s->sps->chroma_format_idc == 2) {
  925. ff_hevc_set_neighbour_available(s, x0, y0 + (1 << log2_trafo_size_c),
  926. trafo_size_h, trafo_size_v);
  927. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 1);
  928. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 2);
  929. }
  930. } else if (blk_idx == 3) {
  931. int trafo_size_h = 1 << (log2_trafo_size + 1);
  932. int trafo_size_v = 1 << (log2_trafo_size + s->sps->vshift[1]);
  933. ff_hevc_set_neighbour_available(s, xBase, yBase,
  934. trafo_size_h, trafo_size_v);
  935. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
  936. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
  937. if (s->sps->chroma_format_idc == 2) {
  938. ff_hevc_set_neighbour_available(s, xBase, yBase + (1 << (log2_trafo_size)),
  939. trafo_size_h, trafo_size_v);
  940. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 1);
  941. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 2);
  942. }
  943. }
  944. }
  945. return 0;
  946. }
  947. static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
  948. {
  949. int cb_size = 1 << log2_cb_size;
  950. int log2_min_pu_size = s->sps->log2_min_pu_size;
  951. int min_pu_width = s->sps->min_pu_width;
  952. int x_end = FFMIN(x0 + cb_size, s->sps->width);
  953. int y_end = FFMIN(y0 + cb_size, s->sps->height);
  954. int i, j;
  955. for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
  956. for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
  957. s->is_pcm[i + j * min_pu_width] = 2;
  958. }
  959. static int hls_transform_tree(HEVCContext *s, int x0, int y0,
  960. int xBase, int yBase, int cb_xBase, int cb_yBase,
  961. int log2_cb_size, int log2_trafo_size,
  962. int trafo_depth, int blk_idx,
  963. const int *base_cbf_cb, const int *base_cbf_cr)
  964. {
  965. HEVCLocalContext *lc = s->HEVClc;
  966. uint8_t split_transform_flag;
  967. int cbf_cb[2];
  968. int cbf_cr[2];
  969. int ret;
  970. cbf_cb[0] = base_cbf_cb[0];
  971. cbf_cb[1] = base_cbf_cb[1];
  972. cbf_cr[0] = base_cbf_cr[0];
  973. cbf_cr[1] = base_cbf_cr[1];
  974. if (lc->cu.intra_split_flag) {
  975. if (trafo_depth == 1) {
  976. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
  977. if (s->sps->chroma_format_idc == 3) {
  978. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[blk_idx];
  979. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[blk_idx];
  980. } else {
  981. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  982. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  983. }
  984. }
  985. } else {
  986. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[0];
  987. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  988. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  989. }
  990. if (log2_trafo_size <= s->sps->log2_max_trafo_size &&
  991. log2_trafo_size > s->sps->log2_min_tb_size &&
  992. trafo_depth < lc->cu.max_trafo_depth &&
  993. !(lc->cu.intra_split_flag && trafo_depth == 0)) {
  994. split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
  995. } else {
  996. int inter_split = s->sps->max_transform_hierarchy_depth_inter == 0 &&
  997. lc->cu.pred_mode == MODE_INTER &&
  998. lc->cu.part_mode != PART_2Nx2N &&
  999. trafo_depth == 0;
  1000. split_transform_flag = log2_trafo_size > s->sps->log2_max_trafo_size ||
  1001. (lc->cu.intra_split_flag && trafo_depth == 0) ||
  1002. inter_split;
  1003. }
  1004. if (s->sps->chroma_format_idc && (log2_trafo_size > 2 || s->sps->chroma_format_idc == 3)) {
  1005. if (trafo_depth == 0 || cbf_cb[0]) {
  1006. cbf_cb[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1007. if (s->sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1008. cbf_cb[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1009. }
  1010. }
  1011. if (trafo_depth == 0 || cbf_cr[0]) {
  1012. cbf_cr[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1013. if (s->sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1014. cbf_cr[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1015. }
  1016. }
  1017. }
  1018. if (split_transform_flag) {
  1019. const int trafo_size_split = 1 << (log2_trafo_size - 1);
  1020. const int x1 = x0 + trafo_size_split;
  1021. const int y1 = y0 + trafo_size_split;
  1022. #define SUBDIVIDE(x, y, idx) \
  1023. do { \
  1024. ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
  1025. log2_trafo_size - 1, trafo_depth + 1, idx, \
  1026. cbf_cb, cbf_cr); \
  1027. if (ret < 0) \
  1028. return ret; \
  1029. } while (0)
  1030. SUBDIVIDE(x0, y0, 0);
  1031. SUBDIVIDE(x1, y0, 1);
  1032. SUBDIVIDE(x0, y1, 2);
  1033. SUBDIVIDE(x1, y1, 3);
  1034. #undef SUBDIVIDE
  1035. } else {
  1036. int min_tu_size = 1 << s->sps->log2_min_tb_size;
  1037. int log2_min_tu_size = s->sps->log2_min_tb_size;
  1038. int min_tu_width = s->sps->min_tb_width;
  1039. int cbf_luma = 1;
  1040. if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
  1041. cbf_cb[0] || cbf_cr[0] ||
  1042. (s->sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  1043. cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
  1044. }
  1045. ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
  1046. log2_cb_size, log2_trafo_size,
  1047. blk_idx, cbf_luma, cbf_cb, cbf_cr);
  1048. if (ret < 0)
  1049. return ret;
  1050. // TODO: store cbf_luma somewhere else
  1051. if (cbf_luma) {
  1052. int i, j;
  1053. for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
  1054. for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
  1055. int x_tu = (x0 + j) >> log2_min_tu_size;
  1056. int y_tu = (y0 + i) >> log2_min_tu_size;
  1057. s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
  1058. }
  1059. }
  1060. if (!s->sh.disable_deblocking_filter_flag) {
  1061. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
  1062. if (s->pps->transquant_bypass_enable_flag &&
  1063. lc->cu.cu_transquant_bypass_flag)
  1064. set_deblocking_bypass(s, x0, y0, log2_trafo_size);
  1065. }
  1066. }
  1067. return 0;
  1068. }
  1069. static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1070. {
  1071. HEVCLocalContext *lc = s->HEVClc;
  1072. GetBitContext gb;
  1073. int cb_size = 1 << log2_cb_size;
  1074. int stride0 = s->frame->linesize[0];
  1075. uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->sps->pixel_shift)];
  1076. int stride1 = s->frame->linesize[1];
  1077. uint8_t *dst1 = &s->frame->data[1][(y0 >> s->sps->vshift[1]) * stride1 + ((x0 >> s->sps->hshift[1]) << s->sps->pixel_shift)];
  1078. int stride2 = s->frame->linesize[2];
  1079. uint8_t *dst2 = &s->frame->data[2][(y0 >> s->sps->vshift[2]) * stride2 + ((x0 >> s->sps->hshift[2]) << s->sps->pixel_shift)];
  1080. int length = cb_size * cb_size * s->sps->pcm.bit_depth +
  1081. (((cb_size >> s->sps->hshift[1]) * (cb_size >> s->sps->vshift[1])) +
  1082. ((cb_size >> s->sps->hshift[2]) * (cb_size >> s->sps->vshift[2]))) *
  1083. s->sps->pcm.bit_depth_chroma;
  1084. const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
  1085. int ret;
  1086. if (!s->sh.disable_deblocking_filter_flag)
  1087. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1088. ret = init_get_bits(&gb, pcm, length);
  1089. if (ret < 0)
  1090. return ret;
  1091. s->hevcdsp.put_pcm(dst0, stride0, cb_size, cb_size, &gb, s->sps->pcm.bit_depth);
  1092. if (s->sps->chroma_format_idc) {
  1093. s->hevcdsp.put_pcm(dst1, stride1,
  1094. cb_size >> s->sps->hshift[1],
  1095. cb_size >> s->sps->vshift[1],
  1096. &gb, s->sps->pcm.bit_depth_chroma);
  1097. s->hevcdsp.put_pcm(dst2, stride2,
  1098. cb_size >> s->sps->hshift[2],
  1099. cb_size >> s->sps->vshift[2],
  1100. &gb, s->sps->pcm.bit_depth_chroma);
  1101. }
  1102. return 0;
  1103. }
  1104. /**
  1105. * 8.5.3.2.2.1 Luma sample unidirectional interpolation process
  1106. *
  1107. * @param s HEVC decoding context
  1108. * @param dst target buffer for block data at block position
  1109. * @param dststride stride of the dst buffer
  1110. * @param ref reference picture buffer at origin (0, 0)
  1111. * @param mv motion vector (relative to block position) to get pixel data from
  1112. * @param x_off horizontal position of block from origin (0, 0)
  1113. * @param y_off vertical position of block from origin (0, 0)
  1114. * @param block_w width of block
  1115. * @param block_h height of block
  1116. * @param luma_weight weighting factor applied to the luma prediction
  1117. * @param luma_offset additive offset applied to the luma prediction value
  1118. */
  1119. static void luma_mc_uni(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1120. AVFrame *ref, const Mv *mv, int x_off, int y_off,
  1121. int block_w, int block_h, int luma_weight, int luma_offset)
  1122. {
  1123. HEVCLocalContext *lc = s->HEVClc;
  1124. uint8_t *src = ref->data[0];
  1125. ptrdiff_t srcstride = ref->linesize[0];
  1126. int pic_width = s->sps->width;
  1127. int pic_height = s->sps->height;
  1128. int mx = mv->x & 3;
  1129. int my = mv->y & 3;
  1130. int weight_flag = (s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
  1131. (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag);
  1132. int idx = ff_hevc_pel_weight[block_w];
  1133. x_off += mv->x >> 2;
  1134. y_off += mv->y >> 2;
  1135. src += y_off * srcstride + (x_off << s->sps->pixel_shift);
  1136. if (x_off < QPEL_EXTRA_BEFORE || y_off < QPEL_EXTRA_AFTER ||
  1137. x_off >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1138. y_off >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1139. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
  1140. int offset = QPEL_EXTRA_BEFORE * srcstride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift);
  1141. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift);
  1142. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
  1143. edge_emu_stride, srcstride,
  1144. block_w + QPEL_EXTRA,
  1145. block_h + QPEL_EXTRA,
  1146. x_off - QPEL_EXTRA_BEFORE, y_off - QPEL_EXTRA_BEFORE,
  1147. pic_width, pic_height);
  1148. src = lc->edge_emu_buffer + buf_offset;
  1149. srcstride = edge_emu_stride;
  1150. }
  1151. if (!weight_flag)
  1152. s->hevcdsp.put_hevc_qpel_uni[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1153. block_h, mx, my, block_w);
  1154. else
  1155. s->hevcdsp.put_hevc_qpel_uni_w[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1156. block_h, s->sh.luma_log2_weight_denom,
  1157. luma_weight, luma_offset, mx, my, block_w);
  1158. }
  1159. /**
  1160. * 8.5.3.2.2.1 Luma sample bidirectional interpolation process
  1161. *
  1162. * @param s HEVC decoding context
  1163. * @param dst target buffer for block data at block position
  1164. * @param dststride stride of the dst buffer
  1165. * @param ref0 reference picture0 buffer at origin (0, 0)
  1166. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1167. * @param x_off horizontal position of block from origin (0, 0)
  1168. * @param y_off vertical position of block from origin (0, 0)
  1169. * @param block_w width of block
  1170. * @param block_h height of block
  1171. * @param ref1 reference picture1 buffer at origin (0, 0)
  1172. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1173. * @param current_mv current motion vector structure
  1174. */
  1175. static void luma_mc_bi(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1176. AVFrame *ref0, const Mv *mv0, int x_off, int y_off,
  1177. int block_w, int block_h, AVFrame *ref1, const Mv *mv1, struct MvField *current_mv)
  1178. {
  1179. HEVCLocalContext *lc = s->HEVClc;
  1180. ptrdiff_t src0stride = ref0->linesize[0];
  1181. ptrdiff_t src1stride = ref1->linesize[0];
  1182. int pic_width = s->sps->width;
  1183. int pic_height = s->sps->height;
  1184. int mx0 = mv0->x & 3;
  1185. int my0 = mv0->y & 3;
  1186. int mx1 = mv1->x & 3;
  1187. int my1 = mv1->y & 3;
  1188. int weight_flag = (s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
  1189. (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag);
  1190. int x_off0 = x_off + (mv0->x >> 2);
  1191. int y_off0 = y_off + (mv0->y >> 2);
  1192. int x_off1 = x_off + (mv1->x >> 2);
  1193. int y_off1 = y_off + (mv1->y >> 2);
  1194. int idx = ff_hevc_pel_weight[block_w];
  1195. uint8_t *src0 = ref0->data[0] + y_off0 * src0stride + (int)((unsigned)x_off0 << s->sps->pixel_shift);
  1196. uint8_t *src1 = ref1->data[0] + y_off1 * src1stride + (int)((unsigned)x_off1 << s->sps->pixel_shift);
  1197. if (x_off0 < QPEL_EXTRA_BEFORE || y_off0 < QPEL_EXTRA_AFTER ||
  1198. x_off0 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1199. y_off0 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1200. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
  1201. int offset = QPEL_EXTRA_BEFORE * src0stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift);
  1202. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift);
  1203. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset,
  1204. edge_emu_stride, src0stride,
  1205. block_w + QPEL_EXTRA,
  1206. block_h + QPEL_EXTRA,
  1207. x_off0 - QPEL_EXTRA_BEFORE, y_off0 - QPEL_EXTRA_BEFORE,
  1208. pic_width, pic_height);
  1209. src0 = lc->edge_emu_buffer + buf_offset;
  1210. src0stride = edge_emu_stride;
  1211. }
  1212. if (x_off1 < QPEL_EXTRA_BEFORE || y_off1 < QPEL_EXTRA_AFTER ||
  1213. x_off1 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1214. y_off1 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1215. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
  1216. int offset = QPEL_EXTRA_BEFORE * src1stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift);
  1217. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift);
  1218. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src1 - offset,
  1219. edge_emu_stride, src1stride,
  1220. block_w + QPEL_EXTRA,
  1221. block_h + QPEL_EXTRA,
  1222. x_off1 - QPEL_EXTRA_BEFORE, y_off1 - QPEL_EXTRA_BEFORE,
  1223. pic_width, pic_height);
  1224. src1 = lc->edge_emu_buffer2 + buf_offset;
  1225. src1stride = edge_emu_stride;
  1226. }
  1227. s->hevcdsp.put_hevc_qpel[idx][!!my0][!!mx0](lc->tmp, src0, src0stride,
  1228. block_h, mx0, my0, block_w);
  1229. if (!weight_flag)
  1230. s->hevcdsp.put_hevc_qpel_bi[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1231. block_h, mx1, my1, block_w);
  1232. else
  1233. s->hevcdsp.put_hevc_qpel_bi_w[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1234. block_h, s->sh.luma_log2_weight_denom,
  1235. s->sh.luma_weight_l0[current_mv->ref_idx[0]],
  1236. s->sh.luma_weight_l1[current_mv->ref_idx[1]],
  1237. s->sh.luma_offset_l0[current_mv->ref_idx[0]],
  1238. s->sh.luma_offset_l1[current_mv->ref_idx[1]],
  1239. mx1, my1, block_w);
  1240. }
  1241. /**
  1242. * 8.5.3.2.2.2 Chroma sample uniprediction interpolation process
  1243. *
  1244. * @param s HEVC decoding context
  1245. * @param dst1 target buffer for block data at block position (U plane)
  1246. * @param dst2 target buffer for block data at block position (V plane)
  1247. * @param dststride stride of the dst1 and dst2 buffers
  1248. * @param ref reference picture buffer at origin (0, 0)
  1249. * @param mv motion vector (relative to block position) to get pixel data from
  1250. * @param x_off horizontal position of block from origin (0, 0)
  1251. * @param y_off vertical position of block from origin (0, 0)
  1252. * @param block_w width of block
  1253. * @param block_h height of block
  1254. * @param chroma_weight weighting factor applied to the chroma prediction
  1255. * @param chroma_offset additive offset applied to the chroma prediction value
  1256. */
  1257. static void chroma_mc_uni(HEVCContext *s, uint8_t *dst0,
  1258. ptrdiff_t dststride, uint8_t *src0, ptrdiff_t srcstride, int reflist,
  1259. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int chroma_weight, int chroma_offset)
  1260. {
  1261. HEVCLocalContext *lc = s->HEVClc;
  1262. int pic_width = s->sps->width >> s->sps->hshift[1];
  1263. int pic_height = s->sps->height >> s->sps->vshift[1];
  1264. const Mv *mv = &current_mv->mv[reflist];
  1265. int weight_flag = (s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
  1266. (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag);
  1267. int idx = ff_hevc_pel_weight[block_w];
  1268. int hshift = s->sps->hshift[1];
  1269. int vshift = s->sps->vshift[1];
  1270. intptr_t mx = mv->x & ((1 << (2 + hshift)) - 1);
  1271. intptr_t my = mv->y & ((1 << (2 + vshift)) - 1);
  1272. intptr_t _mx = mx << (1 - hshift);
  1273. intptr_t _my = my << (1 - vshift);
  1274. x_off += mv->x >> (2 + hshift);
  1275. y_off += mv->y >> (2 + vshift);
  1276. src0 += y_off * srcstride + (x_off << s->sps->pixel_shift);
  1277. if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
  1278. x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1279. y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1280. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
  1281. int offset0 = EPEL_EXTRA_BEFORE * (srcstride + (1 << s->sps->pixel_shift));
  1282. int buf_offset0 = EPEL_EXTRA_BEFORE *
  1283. (edge_emu_stride + (1 << s->sps->pixel_shift));
  1284. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset0,
  1285. edge_emu_stride, srcstride,
  1286. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1287. x_off - EPEL_EXTRA_BEFORE,
  1288. y_off - EPEL_EXTRA_BEFORE,
  1289. pic_width, pic_height);
  1290. src0 = lc->edge_emu_buffer + buf_offset0;
  1291. srcstride = edge_emu_stride;
  1292. }
  1293. if (!weight_flag)
  1294. s->hevcdsp.put_hevc_epel_uni[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1295. block_h, _mx, _my, block_w);
  1296. else
  1297. s->hevcdsp.put_hevc_epel_uni_w[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1298. block_h, s->sh.chroma_log2_weight_denom,
  1299. chroma_weight, chroma_offset, _mx, _my, block_w);
  1300. }
  1301. /**
  1302. * 8.5.3.2.2.2 Chroma sample bidirectional interpolation process
  1303. *
  1304. * @param s HEVC decoding context
  1305. * @param dst target buffer for block data at block position
  1306. * @param dststride stride of the dst buffer
  1307. * @param ref0 reference picture0 buffer at origin (0, 0)
  1308. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1309. * @param x_off horizontal position of block from origin (0, 0)
  1310. * @param y_off vertical position of block from origin (0, 0)
  1311. * @param block_w width of block
  1312. * @param block_h height of block
  1313. * @param ref1 reference picture1 buffer at origin (0, 0)
  1314. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1315. * @param current_mv current motion vector structure
  1316. * @param cidx chroma component(cb, cr)
  1317. */
  1318. static void chroma_mc_bi(HEVCContext *s, uint8_t *dst0, ptrdiff_t dststride, AVFrame *ref0, AVFrame *ref1,
  1319. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int cidx)
  1320. {
  1321. HEVCLocalContext *lc = s->HEVClc;
  1322. uint8_t *src1 = ref0->data[cidx+1];
  1323. uint8_t *src2 = ref1->data[cidx+1];
  1324. ptrdiff_t src1stride = ref0->linesize[cidx+1];
  1325. ptrdiff_t src2stride = ref1->linesize[cidx+1];
  1326. int weight_flag = (s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
  1327. (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag);
  1328. int pic_width = s->sps->width >> s->sps->hshift[1];
  1329. int pic_height = s->sps->height >> s->sps->vshift[1];
  1330. Mv *mv0 = &current_mv->mv[0];
  1331. Mv *mv1 = &current_mv->mv[1];
  1332. int hshift = s->sps->hshift[1];
  1333. int vshift = s->sps->vshift[1];
  1334. intptr_t mx0 = mv0->x & ((1 << (2 + hshift)) - 1);
  1335. intptr_t my0 = mv0->y & ((1 << (2 + vshift)) - 1);
  1336. intptr_t mx1 = mv1->x & ((1 << (2 + hshift)) - 1);
  1337. intptr_t my1 = mv1->y & ((1 << (2 + vshift)) - 1);
  1338. intptr_t _mx0 = mx0 << (1 - hshift);
  1339. intptr_t _my0 = my0 << (1 - vshift);
  1340. intptr_t _mx1 = mx1 << (1 - hshift);
  1341. intptr_t _my1 = my1 << (1 - vshift);
  1342. int x_off0 = x_off + (mv0->x >> (2 + hshift));
  1343. int y_off0 = y_off + (mv0->y >> (2 + vshift));
  1344. int x_off1 = x_off + (mv1->x >> (2 + hshift));
  1345. int y_off1 = y_off + (mv1->y >> (2 + vshift));
  1346. int idx = ff_hevc_pel_weight[block_w];
  1347. src1 += y_off0 * src1stride + (int)((unsigned)x_off0 << s->sps->pixel_shift);
  1348. src2 += y_off1 * src2stride + (int)((unsigned)x_off1 << s->sps->pixel_shift);
  1349. if (x_off0 < EPEL_EXTRA_BEFORE || y_off0 < EPEL_EXTRA_AFTER ||
  1350. x_off0 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1351. y_off0 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1352. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
  1353. int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->sps->pixel_shift));
  1354. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1355. (edge_emu_stride + (1 << s->sps->pixel_shift));
  1356. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
  1357. edge_emu_stride, src1stride,
  1358. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1359. x_off0 - EPEL_EXTRA_BEFORE,
  1360. y_off0 - EPEL_EXTRA_BEFORE,
  1361. pic_width, pic_height);
  1362. src1 = lc->edge_emu_buffer + buf_offset1;
  1363. src1stride = edge_emu_stride;
  1364. }
  1365. if (x_off1 < EPEL_EXTRA_BEFORE || y_off1 < EPEL_EXTRA_AFTER ||
  1366. x_off1 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1367. y_off1 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1368. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
  1369. int offset1 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->sps->pixel_shift));
  1370. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1371. (edge_emu_stride + (1 << s->sps->pixel_shift));
  1372. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src2 - offset1,
  1373. edge_emu_stride, src2stride,
  1374. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1375. x_off1 - EPEL_EXTRA_BEFORE,
  1376. y_off1 - EPEL_EXTRA_BEFORE,
  1377. pic_width, pic_height);
  1378. src2 = lc->edge_emu_buffer2 + buf_offset1;
  1379. src2stride = edge_emu_stride;
  1380. }
  1381. s->hevcdsp.put_hevc_epel[idx][!!my0][!!mx0](lc->tmp, src1, src1stride,
  1382. block_h, _mx0, _my0, block_w);
  1383. if (!weight_flag)
  1384. s->hevcdsp.put_hevc_epel_bi[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1385. src2, src2stride, lc->tmp,
  1386. block_h, _mx1, _my1, block_w);
  1387. else
  1388. s->hevcdsp.put_hevc_epel_bi_w[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1389. src2, src2stride, lc->tmp,
  1390. block_h,
  1391. s->sh.chroma_log2_weight_denom,
  1392. s->sh.chroma_weight_l0[current_mv->ref_idx[0]][cidx],
  1393. s->sh.chroma_weight_l1[current_mv->ref_idx[1]][cidx],
  1394. s->sh.chroma_offset_l0[current_mv->ref_idx[0]][cidx],
  1395. s->sh.chroma_offset_l1[current_mv->ref_idx[1]][cidx],
  1396. _mx1, _my1, block_w);
  1397. }
  1398. static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
  1399. const Mv *mv, int y0, int height)
  1400. {
  1401. int y = FFMAX(0, (mv->y >> 2) + y0 + height + 9);
  1402. if (s->threads_type == FF_THREAD_FRAME )
  1403. ff_thread_await_progress(&ref->tf, y, 0);
  1404. }
  1405. static void hevc_luma_mv_mpv_mode(HEVCContext *s, int x0, int y0, int nPbW,
  1406. int nPbH, int log2_cb_size, int part_idx,
  1407. int merge_idx, MvField *mv)
  1408. {
  1409. HEVCLocalContext *lc = s->HEVClc;
  1410. enum InterPredIdc inter_pred_idc = PRED_L0;
  1411. int mvp_flag;
  1412. ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
  1413. mv->pred_flag = 0;
  1414. if (s->sh.slice_type == B_SLICE)
  1415. inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
  1416. if (inter_pred_idc != PRED_L1) {
  1417. if (s->sh.nb_refs[L0])
  1418. mv->ref_idx[0]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
  1419. mv->pred_flag = PF_L0;
  1420. ff_hevc_hls_mvd_coding(s, x0, y0, 0);
  1421. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1422. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1423. part_idx, merge_idx, mv, mvp_flag, 0);
  1424. mv->mv[0].x += lc->pu.mvd.x;
  1425. mv->mv[0].y += lc->pu.mvd.y;
  1426. }
  1427. if (inter_pred_idc != PRED_L0) {
  1428. if (s->sh.nb_refs[L1])
  1429. mv->ref_idx[1]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
  1430. if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
  1431. AV_ZERO32(&lc->pu.mvd);
  1432. } else {
  1433. ff_hevc_hls_mvd_coding(s, x0, y0, 1);
  1434. }
  1435. mv->pred_flag += PF_L1;
  1436. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1437. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1438. part_idx, merge_idx, mv, mvp_flag, 1);
  1439. mv->mv[1].x += lc->pu.mvd.x;
  1440. mv->mv[1].y += lc->pu.mvd.y;
  1441. }
  1442. }
  1443. static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
  1444. int nPbW, int nPbH,
  1445. int log2_cb_size, int partIdx, int idx)
  1446. {
  1447. #define POS(c_idx, x, y) \
  1448. &s->frame->data[c_idx][((y) >> s->sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
  1449. (((x) >> s->sps->hshift[c_idx]) << s->sps->pixel_shift)]
  1450. HEVCLocalContext *lc = s->HEVClc;
  1451. int merge_idx = 0;
  1452. struct MvField current_mv = {{{ 0 }}};
  1453. int min_pu_width = s->sps->min_pu_width;
  1454. MvField *tab_mvf = s->ref->tab_mvf;
  1455. RefPicList *refPicList = s->ref->refPicList;
  1456. HEVCFrame *ref0 = NULL, *ref1 = NULL;
  1457. uint8_t *dst0 = POS(0, x0, y0);
  1458. uint8_t *dst1 = POS(1, x0, y0);
  1459. uint8_t *dst2 = POS(2, x0, y0);
  1460. int log2_min_cb_size = s->sps->log2_min_cb_size;
  1461. int min_cb_width = s->sps->min_cb_width;
  1462. int x_cb = x0 >> log2_min_cb_size;
  1463. int y_cb = y0 >> log2_min_cb_size;
  1464. int x_pu, y_pu;
  1465. int i, j;
  1466. int skip_flag = SAMPLE_CTB(s->skip_flag, x_cb, y_cb);
  1467. if (!skip_flag)
  1468. lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
  1469. if (skip_flag || lc->pu.merge_flag) {
  1470. if (s->sh.max_num_merge_cand > 1)
  1471. merge_idx = ff_hevc_merge_idx_decode(s);
  1472. else
  1473. merge_idx = 0;
  1474. ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1475. partIdx, merge_idx, &current_mv);
  1476. } else {
  1477. hevc_luma_mv_mpv_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1478. partIdx, merge_idx, &current_mv);
  1479. }
  1480. x_pu = x0 >> s->sps->log2_min_pu_size;
  1481. y_pu = y0 >> s->sps->log2_min_pu_size;
  1482. for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
  1483. for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
  1484. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
  1485. if (current_mv.pred_flag & PF_L0) {
  1486. ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
  1487. if (!ref0)
  1488. return;
  1489. hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
  1490. }
  1491. if (current_mv.pred_flag & PF_L1) {
  1492. ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
  1493. if (!ref1)
  1494. return;
  1495. hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
  1496. }
  1497. if (current_mv.pred_flag == PF_L0) {
  1498. int x0_c = x0 >> s->sps->hshift[1];
  1499. int y0_c = y0 >> s->sps->vshift[1];
  1500. int nPbW_c = nPbW >> s->sps->hshift[1];
  1501. int nPbH_c = nPbH >> s->sps->vshift[1];
  1502. luma_mc_uni(s, dst0, s->frame->linesize[0], ref0->frame,
  1503. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1504. s->sh.luma_weight_l0[current_mv.ref_idx[0]],
  1505. s->sh.luma_offset_l0[current_mv.ref_idx[0]]);
  1506. if (s->sps->chroma_format_idc) {
  1507. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref0->frame->data[1], ref0->frame->linesize[1],
  1508. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1509. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0]);
  1510. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref0->frame->data[2], ref0->frame->linesize[2],
  1511. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1512. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1]);
  1513. }
  1514. } else if (current_mv.pred_flag == PF_L1) {
  1515. int x0_c = x0 >> s->sps->hshift[1];
  1516. int y0_c = y0 >> s->sps->vshift[1];
  1517. int nPbW_c = nPbW >> s->sps->hshift[1];
  1518. int nPbH_c = nPbH >> s->sps->vshift[1];
  1519. luma_mc_uni(s, dst0, s->frame->linesize[0], ref1->frame,
  1520. &current_mv.mv[1], x0, y0, nPbW, nPbH,
  1521. s->sh.luma_weight_l1[current_mv.ref_idx[1]],
  1522. s->sh.luma_offset_l1[current_mv.ref_idx[1]]);
  1523. if (s->sps->chroma_format_idc) {
  1524. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref1->frame->data[1], ref1->frame->linesize[1],
  1525. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1526. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0]);
  1527. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref1->frame->data[2], ref1->frame->linesize[2],
  1528. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1529. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1]);
  1530. }
  1531. } else if (current_mv.pred_flag == PF_BI) {
  1532. int x0_c = x0 >> s->sps->hshift[1];
  1533. int y0_c = y0 >> s->sps->vshift[1];
  1534. int nPbW_c = nPbW >> s->sps->hshift[1];
  1535. int nPbH_c = nPbH >> s->sps->vshift[1];
  1536. luma_mc_bi(s, dst0, s->frame->linesize[0], ref0->frame,
  1537. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1538. ref1->frame, &current_mv.mv[1], &current_mv);
  1539. if (s->sps->chroma_format_idc) {
  1540. chroma_mc_bi(s, dst1, s->frame->linesize[1], ref0->frame, ref1->frame,
  1541. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 0);
  1542. chroma_mc_bi(s, dst2, s->frame->linesize[2], ref0->frame, ref1->frame,
  1543. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 1);
  1544. }
  1545. }
  1546. }
  1547. /**
  1548. * 8.4.1
  1549. */
  1550. static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
  1551. int prev_intra_luma_pred_flag)
  1552. {
  1553. HEVCLocalContext *lc = s->HEVClc;
  1554. int x_pu = x0 >> s->sps->log2_min_pu_size;
  1555. int y_pu = y0 >> s->sps->log2_min_pu_size;
  1556. int min_pu_width = s->sps->min_pu_width;
  1557. int size_in_pus = pu_size >> s->sps->log2_min_pu_size;
  1558. int x0b = x0 & ((1 << s->sps->log2_ctb_size) - 1);
  1559. int y0b = y0 & ((1 << s->sps->log2_ctb_size) - 1);
  1560. int cand_up = (lc->ctb_up_flag || y0b) ?
  1561. s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
  1562. int cand_left = (lc->ctb_left_flag || x0b) ?
  1563. s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC;
  1564. int y_ctb = (y0 >> (s->sps->log2_ctb_size)) << (s->sps->log2_ctb_size);
  1565. MvField *tab_mvf = s->ref->tab_mvf;
  1566. int intra_pred_mode;
  1567. int candidate[3];
  1568. int i, j;
  1569. // intra_pred_mode prediction does not cross vertical CTB boundaries
  1570. if ((y0 - 1) < y_ctb)
  1571. cand_up = INTRA_DC;
  1572. if (cand_left == cand_up) {
  1573. if (cand_left < 2) {
  1574. candidate[0] = INTRA_PLANAR;
  1575. candidate[1] = INTRA_DC;
  1576. candidate[2] = INTRA_ANGULAR_26;
  1577. } else {
  1578. candidate[0] = cand_left;
  1579. candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
  1580. candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
  1581. }
  1582. } else {
  1583. candidate[0] = cand_left;
  1584. candidate[1] = cand_up;
  1585. if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
  1586. candidate[2] = INTRA_PLANAR;
  1587. } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
  1588. candidate[2] = INTRA_DC;
  1589. } else {
  1590. candidate[2] = INTRA_ANGULAR_26;
  1591. }
  1592. }
  1593. if (prev_intra_luma_pred_flag) {
  1594. intra_pred_mode = candidate[lc->pu.mpm_idx];
  1595. } else {
  1596. if (candidate[0] > candidate[1])
  1597. FFSWAP(uint8_t, candidate[0], candidate[1]);
  1598. if (candidate[0] > candidate[2])
  1599. FFSWAP(uint8_t, candidate[0], candidate[2]);
  1600. if (candidate[1] > candidate[2])
  1601. FFSWAP(uint8_t, candidate[1], candidate[2]);
  1602. intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
  1603. for (i = 0; i < 3; i++)
  1604. if (intra_pred_mode >= candidate[i])
  1605. intra_pred_mode++;
  1606. }
  1607. /* write the intra prediction units into the mv array */
  1608. if (!size_in_pus)
  1609. size_in_pus = 1;
  1610. for (i = 0; i < size_in_pus; i++) {
  1611. memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
  1612. intra_pred_mode, size_in_pus);
  1613. for (j = 0; j < size_in_pus; j++) {
  1614. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag = PF_INTRA;
  1615. }
  1616. }
  1617. return intra_pred_mode;
  1618. }
  1619. static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
  1620. int log2_cb_size, int ct_depth)
  1621. {
  1622. int length = (1 << log2_cb_size) >> s->sps->log2_min_cb_size;
  1623. int x_cb = x0 >> s->sps->log2_min_cb_size;
  1624. int y_cb = y0 >> s->sps->log2_min_cb_size;
  1625. int y;
  1626. for (y = 0; y < length; y++)
  1627. memset(&s->tab_ct_depth[(y_cb + y) * s->sps->min_cb_width + x_cb],
  1628. ct_depth, length);
  1629. }
  1630. static const uint8_t tab_mode_idx[] = {
  1631. 0, 1, 2, 2, 2, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20,
  1632. 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29, 30, 31};
  1633. static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
  1634. int log2_cb_size)
  1635. {
  1636. HEVCLocalContext *lc = s->HEVClc;
  1637. static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
  1638. uint8_t prev_intra_luma_pred_flag[4];
  1639. int split = lc->cu.part_mode == PART_NxN;
  1640. int pb_size = (1 << log2_cb_size) >> split;
  1641. int side = split + 1;
  1642. int chroma_mode;
  1643. int i, j;
  1644. for (i = 0; i < side; i++)
  1645. for (j = 0; j < side; j++)
  1646. prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
  1647. for (i = 0; i < side; i++) {
  1648. for (j = 0; j < side; j++) {
  1649. if (prev_intra_luma_pred_flag[2 * i + j])
  1650. lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
  1651. else
  1652. lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
  1653. lc->pu.intra_pred_mode[2 * i + j] =
  1654. luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
  1655. prev_intra_luma_pred_flag[2 * i + j]);
  1656. }
  1657. }
  1658. if (s->sps->chroma_format_idc == 3) {
  1659. for (i = 0; i < side; i++) {
  1660. for (j = 0; j < side; j++) {
  1661. lc->pu.chroma_mode_c[2 * i + j] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1662. if (chroma_mode != 4) {
  1663. if (lc->pu.intra_pred_mode[2 * i + j] == intra_chroma_table[chroma_mode])
  1664. lc->pu.intra_pred_mode_c[2 * i + j] = 34;
  1665. else
  1666. lc->pu.intra_pred_mode_c[2 * i + j] = intra_chroma_table[chroma_mode];
  1667. } else {
  1668. lc->pu.intra_pred_mode_c[2 * i + j] = lc->pu.intra_pred_mode[2 * i + j];
  1669. }
  1670. }
  1671. }
  1672. } else if (s->sps->chroma_format_idc == 2) {
  1673. int mode_idx;
  1674. lc->pu.chroma_mode_c[0] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1675. if (chroma_mode != 4) {
  1676. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1677. mode_idx = 34;
  1678. else
  1679. mode_idx = intra_chroma_table[chroma_mode];
  1680. } else {
  1681. mode_idx = lc->pu.intra_pred_mode[0];
  1682. }
  1683. lc->pu.intra_pred_mode_c[0] = tab_mode_idx[mode_idx];
  1684. } else if (s->sps->chroma_format_idc != 0) {
  1685. chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1686. if (chroma_mode != 4) {
  1687. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1688. lc->pu.intra_pred_mode_c[0] = 34;
  1689. else
  1690. lc->pu.intra_pred_mode_c[0] = intra_chroma_table[chroma_mode];
  1691. } else {
  1692. lc->pu.intra_pred_mode_c[0] = lc->pu.intra_pred_mode[0];
  1693. }
  1694. }
  1695. }
  1696. static void intra_prediction_unit_default_value(HEVCContext *s,
  1697. int x0, int y0,
  1698. int log2_cb_size)
  1699. {
  1700. HEVCLocalContext *lc = s->HEVClc;
  1701. int pb_size = 1 << log2_cb_size;
  1702. int size_in_pus = pb_size >> s->sps->log2_min_pu_size;
  1703. int min_pu_width = s->sps->min_pu_width;
  1704. MvField *tab_mvf = s->ref->tab_mvf;
  1705. int x_pu = x0 >> s->sps->log2_min_pu_size;
  1706. int y_pu = y0 >> s->sps->log2_min_pu_size;
  1707. int j, k;
  1708. if (size_in_pus == 0)
  1709. size_in_pus = 1;
  1710. for (j = 0; j < size_in_pus; j++)
  1711. memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
  1712. if (lc->cu.pred_mode == MODE_INTRA)
  1713. for (j = 0; j < size_in_pus; j++)
  1714. for (k = 0; k < size_in_pus; k++)
  1715. tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].pred_flag = PF_INTRA;
  1716. }
  1717. static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1718. {
  1719. int cb_size = 1 << log2_cb_size;
  1720. HEVCLocalContext *lc = s->HEVClc;
  1721. int log2_min_cb_size = s->sps->log2_min_cb_size;
  1722. int length = cb_size >> log2_min_cb_size;
  1723. int min_cb_width = s->sps->min_cb_width;
  1724. int x_cb = x0 >> log2_min_cb_size;
  1725. int y_cb = y0 >> log2_min_cb_size;
  1726. int idx = log2_cb_size - 2;
  1727. int qp_block_mask = (1<<(s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth)) - 1;
  1728. int x, y, ret;
  1729. lc->cu.x = x0;
  1730. lc->cu.y = y0;
  1731. lc->cu.pred_mode = MODE_INTRA;
  1732. lc->cu.part_mode = PART_2Nx2N;
  1733. lc->cu.intra_split_flag = 0;
  1734. SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
  1735. for (x = 0; x < 4; x++)
  1736. lc->pu.intra_pred_mode[x] = 1;
  1737. if (s->pps->transquant_bypass_enable_flag) {
  1738. lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
  1739. if (lc->cu.cu_transquant_bypass_flag)
  1740. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1741. } else
  1742. lc->cu.cu_transquant_bypass_flag = 0;
  1743. if (s->sh.slice_type != I_SLICE) {
  1744. uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
  1745. x = y_cb * min_cb_width + x_cb;
  1746. for (y = 0; y < length; y++) {
  1747. memset(&s->skip_flag[x], skip_flag, length);
  1748. x += min_cb_width;
  1749. }
  1750. lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
  1751. } else {
  1752. x = y_cb * min_cb_width + x_cb;
  1753. for (y = 0; y < length; y++) {
  1754. memset(&s->skip_flag[x], 0, length);
  1755. x += min_cb_width;
  1756. }
  1757. }
  1758. if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
  1759. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1760. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1761. if (!s->sh.disable_deblocking_filter_flag)
  1762. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1763. } else {
  1764. int pcm_flag = 0;
  1765. if (s->sh.slice_type != I_SLICE)
  1766. lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
  1767. if (lc->cu.pred_mode != MODE_INTRA ||
  1768. log2_cb_size == s->sps->log2_min_cb_size) {
  1769. lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size);
  1770. lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
  1771. lc->cu.pred_mode == MODE_INTRA;
  1772. }
  1773. if (lc->cu.pred_mode == MODE_INTRA) {
  1774. if (lc->cu.part_mode == PART_2Nx2N && s->sps->pcm_enabled_flag &&
  1775. log2_cb_size >= s->sps->pcm.log2_min_pcm_cb_size &&
  1776. log2_cb_size <= s->sps->pcm.log2_max_pcm_cb_size) {
  1777. pcm_flag = ff_hevc_pcm_flag_decode(s);
  1778. }
  1779. if (pcm_flag) {
  1780. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1781. ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
  1782. if (s->sps->pcm.loop_filter_disable_flag)
  1783. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1784. if (ret < 0)
  1785. return ret;
  1786. } else {
  1787. intra_prediction_unit(s, x0, y0, log2_cb_size);
  1788. }
  1789. } else {
  1790. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1791. switch (lc->cu.part_mode) {
  1792. case PART_2Nx2N:
  1793. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1794. break;
  1795. case PART_2NxN:
  1796. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0, idx);
  1797. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1, idx);
  1798. break;
  1799. case PART_Nx2N:
  1800. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0, idx - 1);
  1801. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1, idx - 1);
  1802. break;
  1803. case PART_2NxnU:
  1804. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0, idx);
  1805. hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1, idx);
  1806. break;
  1807. case PART_2NxnD:
  1808. hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0, idx);
  1809. hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1, idx);
  1810. break;
  1811. case PART_nLx2N:
  1812. hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size, 0, idx - 2);
  1813. hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1, idx - 2);
  1814. break;
  1815. case PART_nRx2N:
  1816. hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0, idx - 2);
  1817. hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1, idx - 2);
  1818. break;
  1819. case PART_NxN:
  1820. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0, idx - 1);
  1821. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1, idx - 1);
  1822. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2, idx - 1);
  1823. hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3, idx - 1);
  1824. break;
  1825. }
  1826. }
  1827. if (!pcm_flag) {
  1828. int rqt_root_cbf = 1;
  1829. if (lc->cu.pred_mode != MODE_INTRA &&
  1830. !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
  1831. rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
  1832. }
  1833. if (rqt_root_cbf) {
  1834. const static int cbf[2] = { 0 };
  1835. lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
  1836. s->sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
  1837. s->sps->max_transform_hierarchy_depth_inter;
  1838. ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
  1839. log2_cb_size,
  1840. log2_cb_size, 0, 0, cbf, cbf);
  1841. if (ret < 0)
  1842. return ret;
  1843. } else {
  1844. if (!s->sh.disable_deblocking_filter_flag)
  1845. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1846. }
  1847. }
  1848. }
  1849. if (s->pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
  1850. ff_hevc_set_qPy(s, x0, y0, log2_cb_size);
  1851. x = y_cb * min_cb_width + x_cb;
  1852. for (y = 0; y < length; y++) {
  1853. memset(&s->qp_y_tab[x], lc->qp_y, length);
  1854. x += min_cb_width;
  1855. }
  1856. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  1857. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) {
  1858. lc->qPy_pred = lc->qp_y;
  1859. }
  1860. set_ct_depth(s, x0, y0, log2_cb_size, lc->ct_depth);
  1861. return 0;
  1862. }
  1863. static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
  1864. int log2_cb_size, int cb_depth)
  1865. {
  1866. HEVCLocalContext *lc = s->HEVClc;
  1867. const int cb_size = 1 << log2_cb_size;
  1868. int ret;
  1869. int split_cu;
  1870. lc->ct_depth = cb_depth;
  1871. if (x0 + cb_size <= s->sps->width &&
  1872. y0 + cb_size <= s->sps->height &&
  1873. log2_cb_size > s->sps->log2_min_cb_size) {
  1874. split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
  1875. } else {
  1876. split_cu = (log2_cb_size > s->sps->log2_min_cb_size);
  1877. }
  1878. if (s->pps->cu_qp_delta_enabled_flag &&
  1879. log2_cb_size >= s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth) {
  1880. lc->tu.is_cu_qp_delta_coded = 0;
  1881. lc->tu.cu_qp_delta = 0;
  1882. }
  1883. if (s->sh.cu_chroma_qp_offset_enabled_flag &&
  1884. log2_cb_size >= s->sps->log2_ctb_size - s->pps->diff_cu_chroma_qp_offset_depth) {
  1885. lc->tu.is_cu_chroma_qp_offset_coded = 0;
  1886. }
  1887. if (split_cu) {
  1888. int qp_block_mask = (1<<(s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth)) - 1;
  1889. const int cb_size_split = cb_size >> 1;
  1890. const int x1 = x0 + cb_size_split;
  1891. const int y1 = y0 + cb_size_split;
  1892. int more_data = 0;
  1893. more_data = hls_coding_quadtree(s, x0, y0, log2_cb_size - 1, cb_depth + 1);
  1894. if (more_data < 0)
  1895. return more_data;
  1896. if (more_data && x1 < s->sps->width) {
  1897. more_data = hls_coding_quadtree(s, x1, y0, log2_cb_size - 1, cb_depth + 1);
  1898. if (more_data < 0)
  1899. return more_data;
  1900. }
  1901. if (more_data && y1 < s->sps->height) {
  1902. more_data = hls_coding_quadtree(s, x0, y1, log2_cb_size - 1, cb_depth + 1);
  1903. if (more_data < 0)
  1904. return more_data;
  1905. }
  1906. if (more_data && x1 < s->sps->width &&
  1907. y1 < s->sps->height) {
  1908. more_data = hls_coding_quadtree(s, x1, y1, log2_cb_size - 1, cb_depth + 1);
  1909. if (more_data < 0)
  1910. return more_data;
  1911. }
  1912. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  1913. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0)
  1914. lc->qPy_pred = lc->qp_y;
  1915. if (more_data)
  1916. return ((x1 + cb_size_split) < s->sps->width ||
  1917. (y1 + cb_size_split) < s->sps->height);
  1918. else
  1919. return 0;
  1920. } else {
  1921. ret = hls_coding_unit(s, x0, y0, log2_cb_size);
  1922. if (ret < 0)
  1923. return ret;
  1924. if ((!((x0 + cb_size) %
  1925. (1 << (s->sps->log2_ctb_size))) ||
  1926. (x0 + cb_size >= s->sps->width)) &&
  1927. (!((y0 + cb_size) %
  1928. (1 << (s->sps->log2_ctb_size))) ||
  1929. (y0 + cb_size >= s->sps->height))) {
  1930. int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(s);
  1931. return !end_of_slice_flag;
  1932. } else {
  1933. return 1;
  1934. }
  1935. }
  1936. return 0;
  1937. }
  1938. static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
  1939. int ctb_addr_ts)
  1940. {
  1941. HEVCLocalContext *lc = s->HEVClc;
  1942. int ctb_size = 1 << s->sps->log2_ctb_size;
  1943. int ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  1944. int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
  1945. s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
  1946. if (s->pps->entropy_coding_sync_enabled_flag) {
  1947. if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
  1948. lc->first_qp_group = 1;
  1949. lc->end_of_tiles_x = s->sps->width;
  1950. } else if (s->pps->tiles_enabled_flag) {
  1951. if (ctb_addr_ts && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[ctb_addr_ts - 1]) {
  1952. int idxX = s->pps->col_idxX[x_ctb >> s->sps->log2_ctb_size];
  1953. lc->end_of_tiles_x = x_ctb + (s->pps->column_width[idxX] << s->sps->log2_ctb_size);
  1954. lc->first_qp_group = 1;
  1955. }
  1956. } else {
  1957. lc->end_of_tiles_x = s->sps->width;
  1958. }
  1959. lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->sps->height);
  1960. lc->boundary_flags = 0;
  1961. if (s->pps->tiles_enabled_flag) {
  1962. if (x_ctb > 0 && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
  1963. lc->boundary_flags |= BOUNDARY_LEFT_TILE;
  1964. if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1])
  1965. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  1966. if (y_ctb > 0 && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->sps->ctb_width]])
  1967. lc->boundary_flags |= BOUNDARY_UPPER_TILE;
  1968. if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->sps->ctb_width])
  1969. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  1970. } else {
  1971. if (!ctb_addr_in_slice > 0)
  1972. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  1973. if (ctb_addr_in_slice < s->sps->ctb_width)
  1974. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  1975. }
  1976. lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
  1977. lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= s->sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
  1978. lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->sps->ctb_width]]));
  1979. lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->sps->ctb_width]]));
  1980. }
  1981. static int hls_decode_entry(AVCodecContext *avctxt, void *isFilterThread)
  1982. {
  1983. HEVCContext *s = avctxt->priv_data;
  1984. int ctb_size = 1 << s->sps->log2_ctb_size;
  1985. int more_data = 1;
  1986. int x_ctb = 0;
  1987. int y_ctb = 0;
  1988. int ctb_addr_ts = s->pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
  1989. if (!ctb_addr_ts && s->sh.dependent_slice_segment_flag) {
  1990. av_log(s->avctx, AV_LOG_ERROR, "Impossible initial tile.\n");
  1991. return AVERROR_INVALIDDATA;
  1992. }
  1993. if (s->sh.dependent_slice_segment_flag) {
  1994. int prev_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts - 1];
  1995. if (s->tab_slice_address[prev_rs] != s->sh.slice_addr) {
  1996. av_log(s->avctx, AV_LOG_ERROR, "Previous slice segment missing\n");
  1997. return AVERROR_INVALIDDATA;
  1998. }
  1999. }
  2000. while (more_data && ctb_addr_ts < s->sps->ctb_size) {
  2001. int ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2002. x_ctb = (ctb_addr_rs % ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
  2003. y_ctb = (ctb_addr_rs / ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
  2004. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2005. ff_hevc_cabac_init(s, ctb_addr_ts);
  2006. hls_sao_param(s, x_ctb >> s->sps->log2_ctb_size, y_ctb >> s->sps->log2_ctb_size);
  2007. s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
  2008. s->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset;
  2009. s->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag;
  2010. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->sps->log2_ctb_size, 0);
  2011. if (more_data < 0) {
  2012. s->tab_slice_address[ctb_addr_rs] = -1;
  2013. return more_data;
  2014. }
  2015. ctb_addr_ts++;
  2016. ff_hevc_save_states(s, ctb_addr_ts);
  2017. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2018. }
  2019. if (x_ctb + ctb_size >= s->sps->width &&
  2020. y_ctb + ctb_size >= s->sps->height)
  2021. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2022. return ctb_addr_ts;
  2023. }
  2024. static int hls_slice_data(HEVCContext *s)
  2025. {
  2026. int arg[2];
  2027. int ret[2];
  2028. arg[0] = 0;
  2029. arg[1] = 1;
  2030. s->avctx->execute(s->avctx, hls_decode_entry, arg, ret , 1, sizeof(int));
  2031. return ret[0];
  2032. }
  2033. static int hls_decode_entry_wpp(AVCodecContext *avctxt, void *input_ctb_row, int job, int self_id)
  2034. {
  2035. HEVCContext *s1 = avctxt->priv_data, *s;
  2036. HEVCLocalContext *lc;
  2037. int ctb_size = 1<< s1->sps->log2_ctb_size;
  2038. int more_data = 1;
  2039. int *ctb_row_p = input_ctb_row;
  2040. int ctb_row = ctb_row_p[job];
  2041. int ctb_addr_rs = s1->sh.slice_ctb_addr_rs + ctb_row * ((s1->sps->width + ctb_size - 1) >> s1->sps->log2_ctb_size);
  2042. int ctb_addr_ts = s1->pps->ctb_addr_rs_to_ts[ctb_addr_rs];
  2043. int thread = ctb_row % s1->threads_number;
  2044. int ret;
  2045. s = s1->sList[self_id];
  2046. lc = s->HEVClc;
  2047. if(ctb_row) {
  2048. ret = init_get_bits8(&lc->gb, s->data + s->sh.offset[ctb_row - 1], s->sh.size[ctb_row - 1]);
  2049. if (ret < 0)
  2050. return ret;
  2051. ff_init_cabac_decoder(&lc->cc, s->data + s->sh.offset[(ctb_row)-1], s->sh.size[ctb_row - 1]);
  2052. }
  2053. while(more_data && ctb_addr_ts < s->sps->ctb_size) {
  2054. int x_ctb = (ctb_addr_rs % s->sps->ctb_width) << s->sps->log2_ctb_size;
  2055. int y_ctb = (ctb_addr_rs / s->sps->ctb_width) << s->sps->log2_ctb_size;
  2056. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2057. ff_thread_await_progress2(s->avctx, ctb_row, thread, SHIFT_CTB_WPP);
  2058. if (avpriv_atomic_int_get(&s1->wpp_err)){
  2059. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2060. return 0;
  2061. }
  2062. ff_hevc_cabac_init(s, ctb_addr_ts);
  2063. hls_sao_param(s, x_ctb >> s->sps->log2_ctb_size, y_ctb >> s->sps->log2_ctb_size);
  2064. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->sps->log2_ctb_size, 0);
  2065. if (more_data < 0) {
  2066. s->tab_slice_address[ctb_addr_rs] = -1;
  2067. return more_data;
  2068. }
  2069. ctb_addr_ts++;
  2070. ff_hevc_save_states(s, ctb_addr_ts);
  2071. ff_thread_report_progress2(s->avctx, ctb_row, thread, 1);
  2072. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2073. if (!more_data && (x_ctb+ctb_size) < s->sps->width && ctb_row != s->sh.num_entry_point_offsets) {
  2074. avpriv_atomic_int_set(&s1->wpp_err, 1);
  2075. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2076. return 0;
  2077. }
  2078. if ((x_ctb+ctb_size) >= s->sps->width && (y_ctb+ctb_size) >= s->sps->height ) {
  2079. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2080. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2081. return ctb_addr_ts;
  2082. }
  2083. ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2084. x_ctb+=ctb_size;
  2085. if(x_ctb >= s->sps->width) {
  2086. break;
  2087. }
  2088. }
  2089. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2090. return 0;
  2091. }
  2092. static int hls_slice_data_wpp(HEVCContext *s, const uint8_t *nal, int length)
  2093. {
  2094. HEVCLocalContext *lc = s->HEVClc;
  2095. int *ret = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2096. int *arg = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2097. int offset;
  2098. int startheader, cmpt = 0;
  2099. int i, j, res = 0;
  2100. if (!ret || !arg) {
  2101. av_free(ret);
  2102. av_free(arg);
  2103. return AVERROR(ENOMEM);
  2104. }
  2105. if (!s->sList[1]) {
  2106. ff_alloc_entries(s->avctx, s->sh.num_entry_point_offsets + 1);
  2107. for (i = 1; i < s->threads_number; i++) {
  2108. s->sList[i] = av_malloc(sizeof(HEVCContext));
  2109. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2110. s->HEVClcList[i] = av_mallocz(sizeof(HEVCLocalContext));
  2111. s->sList[i]->HEVClc = s->HEVClcList[i];
  2112. }
  2113. }
  2114. offset = (lc->gb.index >> 3);
  2115. for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < s->skipped_bytes; j++) {
  2116. if (s->skipped_bytes_pos[j] >= offset && s->skipped_bytes_pos[j] < startheader) {
  2117. startheader--;
  2118. cmpt++;
  2119. }
  2120. }
  2121. for (i = 1; i < s->sh.num_entry_point_offsets; i++) {
  2122. offset += (s->sh.entry_point_offset[i - 1] - cmpt);
  2123. for (j = 0, cmpt = 0, startheader = offset
  2124. + s->sh.entry_point_offset[i]; j < s->skipped_bytes; j++) {
  2125. if (s->skipped_bytes_pos[j] >= offset && s->skipped_bytes_pos[j] < startheader) {
  2126. startheader--;
  2127. cmpt++;
  2128. }
  2129. }
  2130. s->sh.size[i - 1] = s->sh.entry_point_offset[i] - cmpt;
  2131. s->sh.offset[i - 1] = offset;
  2132. }
  2133. if (s->sh.num_entry_point_offsets != 0) {
  2134. offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt;
  2135. s->sh.size[s->sh.num_entry_point_offsets - 1] = length - offset;
  2136. s->sh.offset[s->sh.num_entry_point_offsets - 1] = offset;
  2137. }
  2138. s->data = nal;
  2139. for (i = 1; i < s->threads_number; i++) {
  2140. s->sList[i]->HEVClc->first_qp_group = 1;
  2141. s->sList[i]->HEVClc->qp_y = s->sList[0]->HEVClc->qp_y;
  2142. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2143. s->sList[i]->HEVClc = s->HEVClcList[i];
  2144. }
  2145. avpriv_atomic_int_set(&s->wpp_err, 0);
  2146. ff_reset_entries(s->avctx);
  2147. for (i = 0; i <= s->sh.num_entry_point_offsets; i++) {
  2148. arg[i] = i;
  2149. ret[i] = 0;
  2150. }
  2151. if (s->pps->entropy_coding_sync_enabled_flag)
  2152. s->avctx->execute2(s->avctx, (void *) hls_decode_entry_wpp, arg, ret, s->sh.num_entry_point_offsets + 1);
  2153. for (i = 0; i <= s->sh.num_entry_point_offsets; i++)
  2154. res += ret[i];
  2155. av_free(ret);
  2156. av_free(arg);
  2157. return res;
  2158. }
  2159. /**
  2160. * @return AVERROR_INVALIDDATA if the packet is not a valid NAL unit,
  2161. * 0 if the unit should be skipped, 1 otherwise
  2162. */
  2163. static int hls_nal_unit(HEVCContext *s)
  2164. {
  2165. GetBitContext *gb = &s->HEVClc->gb;
  2166. int nuh_layer_id;
  2167. if (get_bits1(gb) != 0)
  2168. return AVERROR_INVALIDDATA;
  2169. s->nal_unit_type = get_bits(gb, 6);
  2170. nuh_layer_id = get_bits(gb, 6);
  2171. s->temporal_id = get_bits(gb, 3) - 1;
  2172. if (s->temporal_id < 0)
  2173. return AVERROR_INVALIDDATA;
  2174. av_log(s->avctx, AV_LOG_DEBUG,
  2175. "nal_unit_type: %d, nuh_layer_id: %d, temporal_id: %d\n",
  2176. s->nal_unit_type, nuh_layer_id, s->temporal_id);
  2177. return nuh_layer_id == 0;
  2178. }
  2179. static int set_side_data(HEVCContext *s)
  2180. {
  2181. AVFrame *out = s->ref->frame;
  2182. if (s->sei_frame_packing_present &&
  2183. s->frame_packing_arrangement_type >= 3 &&
  2184. s->frame_packing_arrangement_type <= 5 &&
  2185. s->content_interpretation_type > 0 &&
  2186. s->content_interpretation_type < 3) {
  2187. AVStereo3D *stereo = av_stereo3d_create_side_data(out);
  2188. if (!stereo)
  2189. return AVERROR(ENOMEM);
  2190. switch (s->frame_packing_arrangement_type) {
  2191. case 3:
  2192. if (s->quincunx_subsampling)
  2193. stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
  2194. else
  2195. stereo->type = AV_STEREO3D_SIDEBYSIDE;
  2196. break;
  2197. case 4:
  2198. stereo->type = AV_STEREO3D_TOPBOTTOM;
  2199. break;
  2200. case 5:
  2201. stereo->type = AV_STEREO3D_FRAMESEQUENCE;
  2202. break;
  2203. }
  2204. if (s->content_interpretation_type == 2)
  2205. stereo->flags = AV_STEREO3D_FLAG_INVERT;
  2206. }
  2207. if (s->sei_display_orientation_present &&
  2208. (s->sei_anticlockwise_rotation || s->sei_hflip || s->sei_vflip)) {
  2209. double angle = s->sei_anticlockwise_rotation * 360 / (double) (1 << 16);
  2210. AVFrameSideData *rotation = av_frame_new_side_data(out,
  2211. AV_FRAME_DATA_DISPLAYMATRIX,
  2212. sizeof(int32_t) * 9);
  2213. if (!rotation)
  2214. return AVERROR(ENOMEM);
  2215. av_display_rotation_set((int32_t *)rotation->data, angle);
  2216. av_display_matrix_flip((int32_t *)rotation->data,
  2217. s->sei_hflip, s->sei_vflip);
  2218. }
  2219. return 0;
  2220. }
  2221. static int hevc_frame_start(HEVCContext *s)
  2222. {
  2223. HEVCLocalContext *lc = s->HEVClc;
  2224. int pic_size_in_ctb = ((s->sps->width >> s->sps->log2_min_cb_size) + 1) *
  2225. ((s->sps->height >> s->sps->log2_min_cb_size) + 1);
  2226. int ret;
  2227. memset(s->horizontal_bs, 0, s->bs_width * s->bs_height);
  2228. memset(s->vertical_bs, 0, s->bs_width * s->bs_height);
  2229. memset(s->cbf_luma, 0, s->sps->min_tb_width * s->sps->min_tb_height);
  2230. memset(s->is_pcm, 0, (s->sps->min_pu_width + 1) * (s->sps->min_pu_height + 1));
  2231. memset(s->tab_slice_address, -1, pic_size_in_ctb * sizeof(*s->tab_slice_address));
  2232. s->is_decoded = 0;
  2233. s->first_nal_type = s->nal_unit_type;
  2234. if (s->pps->tiles_enabled_flag)
  2235. lc->end_of_tiles_x = s->pps->column_width[0] << s->sps->log2_ctb_size;
  2236. ret = ff_hevc_set_new_ref(s, &s->frame, s->poc);
  2237. if (ret < 0)
  2238. goto fail;
  2239. ret = ff_hevc_frame_rps(s);
  2240. if (ret < 0) {
  2241. av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
  2242. goto fail;
  2243. }
  2244. s->ref->frame->key_frame = IS_IRAP(s);
  2245. ret = set_side_data(s);
  2246. if (ret < 0)
  2247. goto fail;
  2248. s->frame->pict_type = 3 - s->sh.slice_type;
  2249. if (!IS_IRAP(s))
  2250. ff_hevc_bump_frame(s);
  2251. av_frame_unref(s->output_frame);
  2252. ret = ff_hevc_output_frame(s, s->output_frame, 0);
  2253. if (ret < 0)
  2254. goto fail;
  2255. ff_thread_finish_setup(s->avctx);
  2256. return 0;
  2257. fail:
  2258. if (s->ref)
  2259. ff_hevc_unref_frame(s, s->ref, ~0);
  2260. s->ref = NULL;
  2261. return ret;
  2262. }
  2263. static int decode_nal_unit(HEVCContext *s, const HEVCNAL *nal)
  2264. {
  2265. HEVCLocalContext *lc = s->HEVClc;
  2266. GetBitContext *gb = &lc->gb;
  2267. int ctb_addr_ts, ret;
  2268. ret = init_get_bits8(gb, nal->data, nal->size);
  2269. if (ret < 0)
  2270. return ret;
  2271. ret = hls_nal_unit(s);
  2272. if (ret < 0) {
  2273. av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit %d, skipping.\n",
  2274. s->nal_unit_type);
  2275. goto fail;
  2276. } else if (!ret)
  2277. return 0;
  2278. switch (s->nal_unit_type) {
  2279. case NAL_VPS:
  2280. ret = ff_hevc_decode_nal_vps(s);
  2281. if (ret < 0)
  2282. goto fail;
  2283. break;
  2284. case NAL_SPS:
  2285. ret = ff_hevc_decode_nal_sps(s);
  2286. if (ret < 0)
  2287. goto fail;
  2288. break;
  2289. case NAL_PPS:
  2290. ret = ff_hevc_decode_nal_pps(s);
  2291. if (ret < 0)
  2292. goto fail;
  2293. break;
  2294. case NAL_SEI_PREFIX:
  2295. case NAL_SEI_SUFFIX:
  2296. ret = ff_hevc_decode_nal_sei(s);
  2297. if (ret < 0)
  2298. goto fail;
  2299. break;
  2300. case NAL_TRAIL_R:
  2301. case NAL_TRAIL_N:
  2302. case NAL_TSA_N:
  2303. case NAL_TSA_R:
  2304. case NAL_STSA_N:
  2305. case NAL_STSA_R:
  2306. case NAL_BLA_W_LP:
  2307. case NAL_BLA_W_RADL:
  2308. case NAL_BLA_N_LP:
  2309. case NAL_IDR_W_RADL:
  2310. case NAL_IDR_N_LP:
  2311. case NAL_CRA_NUT:
  2312. case NAL_RADL_N:
  2313. case NAL_RADL_R:
  2314. case NAL_RASL_N:
  2315. case NAL_RASL_R:
  2316. ret = hls_slice_header(s);
  2317. if (ret < 0)
  2318. return ret;
  2319. if (s->max_ra == INT_MAX) {
  2320. if (s->nal_unit_type == NAL_CRA_NUT || IS_BLA(s)) {
  2321. s->max_ra = s->poc;
  2322. } else {
  2323. if (IS_IDR(s))
  2324. s->max_ra = INT_MIN;
  2325. }
  2326. }
  2327. if ((s->nal_unit_type == NAL_RASL_R || s->nal_unit_type == NAL_RASL_N) &&
  2328. s->poc <= s->max_ra) {
  2329. s->is_decoded = 0;
  2330. break;
  2331. } else {
  2332. if (s->nal_unit_type == NAL_RASL_R && s->poc > s->max_ra)
  2333. s->max_ra = INT_MIN;
  2334. }
  2335. if (s->sh.first_slice_in_pic_flag) {
  2336. ret = hevc_frame_start(s);
  2337. if (ret < 0)
  2338. return ret;
  2339. } else if (!s->ref) {
  2340. av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
  2341. goto fail;
  2342. }
  2343. if (s->nal_unit_type != s->first_nal_type) {
  2344. av_log(s->avctx, AV_LOG_ERROR,
  2345. "Non-matching NAL types of the VCL NALUs: %d %d\n",
  2346. s->first_nal_type, s->nal_unit_type);
  2347. return AVERROR_INVALIDDATA;
  2348. }
  2349. if (!s->sh.dependent_slice_segment_flag &&
  2350. s->sh.slice_type != I_SLICE) {
  2351. ret = ff_hevc_slice_rpl(s);
  2352. if (ret < 0) {
  2353. av_log(s->avctx, AV_LOG_WARNING,
  2354. "Error constructing the reference lists for the current slice.\n");
  2355. goto fail;
  2356. }
  2357. }
  2358. if (s->sh.first_slice_in_pic_flag && s->avctx->hwaccel) {
  2359. ret = s->avctx->hwaccel->start_frame(s->avctx, NULL, 0);
  2360. if (ret < 0)
  2361. goto fail;
  2362. }
  2363. if (s->avctx->hwaccel) {
  2364. ret = s->avctx->hwaccel->decode_slice(s->avctx, nal->raw_data, nal->raw_size);
  2365. if (ret < 0)
  2366. goto fail;
  2367. } else {
  2368. if (s->threads_number > 1 && s->sh.num_entry_point_offsets > 0)
  2369. ctb_addr_ts = hls_slice_data_wpp(s, nal->data, nal->size);
  2370. else
  2371. ctb_addr_ts = hls_slice_data(s);
  2372. if (ctb_addr_ts >= (s->sps->ctb_width * s->sps->ctb_height)) {
  2373. s->is_decoded = 1;
  2374. }
  2375. if (ctb_addr_ts < 0) {
  2376. ret = ctb_addr_ts;
  2377. goto fail;
  2378. }
  2379. }
  2380. break;
  2381. case NAL_EOS_NUT:
  2382. case NAL_EOB_NUT:
  2383. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2384. s->max_ra = INT_MAX;
  2385. break;
  2386. case NAL_AUD:
  2387. case NAL_FD_NUT:
  2388. break;
  2389. default:
  2390. av_log(s->avctx, AV_LOG_INFO,
  2391. "Skipping NAL unit %d\n", s->nal_unit_type);
  2392. }
  2393. return 0;
  2394. fail:
  2395. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  2396. return ret;
  2397. return 0;
  2398. }
  2399. /* FIXME: This is adapted from ff_h264_decode_nal, avoiding duplication
  2400. * between these functions would be nice. */
  2401. int ff_hevc_extract_rbsp(HEVCContext *s, const uint8_t *src, int length,
  2402. HEVCNAL *nal)
  2403. {
  2404. int i, si, di;
  2405. uint8_t *dst;
  2406. s->skipped_bytes = 0;
  2407. #define STARTCODE_TEST \
  2408. if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) { \
  2409. if (src[i + 2] != 3) { \
  2410. /* startcode, so we must be past the end */ \
  2411. length = i; \
  2412. } \
  2413. break; \
  2414. }
  2415. #if HAVE_FAST_UNALIGNED
  2416. #define FIND_FIRST_ZERO \
  2417. if (i > 0 && !src[i]) \
  2418. i--; \
  2419. while (src[i]) \
  2420. i++
  2421. #if HAVE_FAST_64BIT
  2422. for (i = 0; i + 1 < length; i += 9) {
  2423. if (!((~AV_RN64A(src + i) &
  2424. (AV_RN64A(src + i) - 0x0100010001000101ULL)) &
  2425. 0x8000800080008080ULL))
  2426. continue;
  2427. FIND_FIRST_ZERO;
  2428. STARTCODE_TEST;
  2429. i -= 7;
  2430. }
  2431. #else
  2432. for (i = 0; i + 1 < length; i += 5) {
  2433. if (!((~AV_RN32A(src + i) &
  2434. (AV_RN32A(src + i) - 0x01000101U)) &
  2435. 0x80008080U))
  2436. continue;
  2437. FIND_FIRST_ZERO;
  2438. STARTCODE_TEST;
  2439. i -= 3;
  2440. }
  2441. #endif /* HAVE_FAST_64BIT */
  2442. #else
  2443. for (i = 0; i + 1 < length; i += 2) {
  2444. if (src[i])
  2445. continue;
  2446. if (i > 0 && src[i - 1] == 0)
  2447. i--;
  2448. STARTCODE_TEST;
  2449. }
  2450. #endif /* HAVE_FAST_UNALIGNED */
  2451. if (i >= length - 1) { // no escaped 0
  2452. nal->data =
  2453. nal->raw_data = src;
  2454. nal->size =
  2455. nal->raw_size = length;
  2456. return length;
  2457. }
  2458. av_fast_malloc(&nal->rbsp_buffer, &nal->rbsp_buffer_size,
  2459. length + FF_INPUT_BUFFER_PADDING_SIZE);
  2460. if (!nal->rbsp_buffer)
  2461. return AVERROR(ENOMEM);
  2462. dst = nal->rbsp_buffer;
  2463. memcpy(dst, src, i);
  2464. si = di = i;
  2465. while (si + 2 < length) {
  2466. // remove escapes (very rare 1:2^22)
  2467. if (src[si + 2] > 3) {
  2468. dst[di++] = src[si++];
  2469. dst[di++] = src[si++];
  2470. } else if (src[si] == 0 && src[si + 1] == 0) {
  2471. if (src[si + 2] == 3) { // escape
  2472. dst[di++] = 0;
  2473. dst[di++] = 0;
  2474. si += 3;
  2475. s->skipped_bytes++;
  2476. if (s->skipped_bytes_pos_size < s->skipped_bytes) {
  2477. s->skipped_bytes_pos_size *= 2;
  2478. av_reallocp_array(&s->skipped_bytes_pos,
  2479. s->skipped_bytes_pos_size,
  2480. sizeof(*s->skipped_bytes_pos));
  2481. if (!s->skipped_bytes_pos)
  2482. return AVERROR(ENOMEM);
  2483. }
  2484. if (s->skipped_bytes_pos)
  2485. s->skipped_bytes_pos[s->skipped_bytes-1] = di - 1;
  2486. continue;
  2487. } else // next start code
  2488. goto nsc;
  2489. }
  2490. dst[di++] = src[si++];
  2491. }
  2492. while (si < length)
  2493. dst[di++] = src[si++];
  2494. nsc:
  2495. memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  2496. nal->data = dst;
  2497. nal->size = di;
  2498. nal->raw_data = src;
  2499. nal->raw_size = si;
  2500. return si;
  2501. }
  2502. static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
  2503. {
  2504. int i, consumed, ret = 0;
  2505. s->ref = NULL;
  2506. s->last_eos = s->eos;
  2507. s->eos = 0;
  2508. /* split the input packet into NAL units, so we know the upper bound on the
  2509. * number of slices in the frame */
  2510. s->nb_nals = 0;
  2511. while (length >= 4) {
  2512. HEVCNAL *nal;
  2513. int extract_length = 0;
  2514. if (s->is_nalff) {
  2515. int i;
  2516. for (i = 0; i < s->nal_length_size; i++)
  2517. extract_length = (extract_length << 8) | buf[i];
  2518. buf += s->nal_length_size;
  2519. length -= s->nal_length_size;
  2520. if (extract_length > length) {
  2521. av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit size.\n");
  2522. ret = AVERROR_INVALIDDATA;
  2523. goto fail;
  2524. }
  2525. } else {
  2526. /* search start code */
  2527. while (buf[0] != 0 || buf[1] != 0 || buf[2] != 1) {
  2528. ++buf;
  2529. --length;
  2530. if (length < 4) {
  2531. av_log(s->avctx, AV_LOG_ERROR, "No start code is found.\n");
  2532. ret = AVERROR_INVALIDDATA;
  2533. goto fail;
  2534. }
  2535. }
  2536. buf += 3;
  2537. length -= 3;
  2538. }
  2539. if (!s->is_nalff)
  2540. extract_length = length;
  2541. if (s->nals_allocated < s->nb_nals + 1) {
  2542. int new_size = s->nals_allocated + 1;
  2543. void *tmp = av_realloc_array(s->nals, new_size, sizeof(*s->nals));
  2544. ret = AVERROR(ENOMEM);
  2545. if (!tmp) {
  2546. goto fail;
  2547. }
  2548. s->nals = tmp;
  2549. memset(s->nals + s->nals_allocated, 0,
  2550. (new_size - s->nals_allocated) * sizeof(*s->nals));
  2551. tmp = av_realloc_array(s->skipped_bytes_nal, new_size, sizeof(*s->skipped_bytes_nal));
  2552. if (!tmp)
  2553. goto fail;
  2554. s->skipped_bytes_nal = tmp;
  2555. tmp = av_realloc_array(s->skipped_bytes_pos_size_nal, new_size, sizeof(*s->skipped_bytes_pos_size_nal));
  2556. if (!tmp)
  2557. goto fail;
  2558. s->skipped_bytes_pos_size_nal = tmp;
  2559. tmp = av_realloc_array(s->skipped_bytes_pos_nal, new_size, sizeof(*s->skipped_bytes_pos_nal));
  2560. if (!tmp)
  2561. goto fail;
  2562. s->skipped_bytes_pos_nal = tmp;
  2563. s->skipped_bytes_pos_size_nal[s->nals_allocated] = 1024; // initial buffer size
  2564. s->skipped_bytes_pos_nal[s->nals_allocated] = av_malloc_array(s->skipped_bytes_pos_size_nal[s->nals_allocated], sizeof(*s->skipped_bytes_pos));
  2565. if (!s->skipped_bytes_pos_nal[s->nals_allocated])
  2566. goto fail;
  2567. s->nals_allocated = new_size;
  2568. }
  2569. s->skipped_bytes_pos_size = s->skipped_bytes_pos_size_nal[s->nb_nals];
  2570. s->skipped_bytes_pos = s->skipped_bytes_pos_nal[s->nb_nals];
  2571. nal = &s->nals[s->nb_nals];
  2572. consumed = ff_hevc_extract_rbsp(s, buf, extract_length, nal);
  2573. s->skipped_bytes_nal[s->nb_nals] = s->skipped_bytes;
  2574. s->skipped_bytes_pos_size_nal[s->nb_nals] = s->skipped_bytes_pos_size;
  2575. s->skipped_bytes_pos_nal[s->nb_nals++] = s->skipped_bytes_pos;
  2576. if (consumed < 0) {
  2577. ret = consumed;
  2578. goto fail;
  2579. }
  2580. ret = init_get_bits8(&s->HEVClc->gb, nal->data, nal->size);
  2581. if (ret < 0)
  2582. goto fail;
  2583. hls_nal_unit(s);
  2584. if (s->nal_unit_type == NAL_EOB_NUT ||
  2585. s->nal_unit_type == NAL_EOS_NUT)
  2586. s->eos = 1;
  2587. buf += consumed;
  2588. length -= consumed;
  2589. }
  2590. /* parse the NAL units */
  2591. for (i = 0; i < s->nb_nals; i++) {
  2592. int ret;
  2593. s->skipped_bytes = s->skipped_bytes_nal[i];
  2594. s->skipped_bytes_pos = s->skipped_bytes_pos_nal[i];
  2595. ret = decode_nal_unit(s, &s->nals[i]);
  2596. if (ret < 0) {
  2597. av_log(s->avctx, AV_LOG_WARNING,
  2598. "Error parsing NAL unit #%d.\n", i);
  2599. goto fail;
  2600. }
  2601. }
  2602. fail:
  2603. if (s->ref && s->threads_type == FF_THREAD_FRAME)
  2604. ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
  2605. return ret;
  2606. }
  2607. static void print_md5(void *log_ctx, int level, uint8_t md5[16])
  2608. {
  2609. int i;
  2610. for (i = 0; i < 16; i++)
  2611. av_log(log_ctx, level, "%02"PRIx8, md5[i]);
  2612. }
  2613. static int verify_md5(HEVCContext *s, AVFrame *frame)
  2614. {
  2615. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
  2616. int pixel_shift;
  2617. int i, j;
  2618. if (!desc)
  2619. return AVERROR(EINVAL);
  2620. pixel_shift = desc->comp[0].depth_minus1 > 7;
  2621. av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
  2622. s->poc);
  2623. /* the checksums are LE, so we have to byteswap for >8bpp formats
  2624. * on BE arches */
  2625. #if HAVE_BIGENDIAN
  2626. if (pixel_shift && !s->checksum_buf) {
  2627. av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
  2628. FFMAX3(frame->linesize[0], frame->linesize[1],
  2629. frame->linesize[2]));
  2630. if (!s->checksum_buf)
  2631. return AVERROR(ENOMEM);
  2632. }
  2633. #endif
  2634. for (i = 0; frame->data[i]; i++) {
  2635. int width = s->avctx->coded_width;
  2636. int height = s->avctx->coded_height;
  2637. int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width;
  2638. int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
  2639. uint8_t md5[16];
  2640. av_md5_init(s->md5_ctx);
  2641. for (j = 0; j < h; j++) {
  2642. const uint8_t *src = frame->data[i] + j * frame->linesize[i];
  2643. #if HAVE_BIGENDIAN
  2644. if (pixel_shift) {
  2645. s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
  2646. (const uint16_t *) src, w);
  2647. src = s->checksum_buf;
  2648. }
  2649. #endif
  2650. av_md5_update(s->md5_ctx, src, w << pixel_shift);
  2651. }
  2652. av_md5_final(s->md5_ctx, md5);
  2653. if (!memcmp(md5, s->md5[i], 16)) {
  2654. av_log (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
  2655. print_md5(s->avctx, AV_LOG_DEBUG, md5);
  2656. av_log (s->avctx, AV_LOG_DEBUG, "; ");
  2657. } else {
  2658. av_log (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
  2659. print_md5(s->avctx, AV_LOG_ERROR, md5);
  2660. av_log (s->avctx, AV_LOG_ERROR, " != ");
  2661. print_md5(s->avctx, AV_LOG_ERROR, s->md5[i]);
  2662. av_log (s->avctx, AV_LOG_ERROR, "\n");
  2663. return AVERROR_INVALIDDATA;
  2664. }
  2665. }
  2666. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  2667. return 0;
  2668. }
  2669. static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
  2670. AVPacket *avpkt)
  2671. {
  2672. int ret;
  2673. HEVCContext *s = avctx->priv_data;
  2674. if (!avpkt->size) {
  2675. ret = ff_hevc_output_frame(s, data, 1);
  2676. if (ret < 0)
  2677. return ret;
  2678. *got_output = ret;
  2679. return 0;
  2680. }
  2681. s->ref = NULL;
  2682. ret = decode_nal_units(s, avpkt->data, avpkt->size);
  2683. if (ret < 0)
  2684. return ret;
  2685. if (avctx->hwaccel) {
  2686. if (s->ref && avctx->hwaccel->end_frame(avctx) < 0)
  2687. av_log(avctx, AV_LOG_ERROR,
  2688. "hardware accelerator failed to decode picture\n");
  2689. } else {
  2690. /* verify the SEI checksum */
  2691. if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
  2692. s->is_md5) {
  2693. ret = verify_md5(s, s->ref->frame);
  2694. if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
  2695. ff_hevc_unref_frame(s, s->ref, ~0);
  2696. return ret;
  2697. }
  2698. }
  2699. }
  2700. s->is_md5 = 0;
  2701. if (s->is_decoded) {
  2702. av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
  2703. s->is_decoded = 0;
  2704. }
  2705. if (s->output_frame->buf[0]) {
  2706. av_frame_move_ref(data, s->output_frame);
  2707. *got_output = 1;
  2708. }
  2709. return avpkt->size;
  2710. }
  2711. static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
  2712. {
  2713. int ret;
  2714. ret = ff_thread_ref_frame(&dst->tf, &src->tf);
  2715. if (ret < 0)
  2716. return ret;
  2717. dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
  2718. if (!dst->tab_mvf_buf)
  2719. goto fail;
  2720. dst->tab_mvf = src->tab_mvf;
  2721. dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
  2722. if (!dst->rpl_tab_buf)
  2723. goto fail;
  2724. dst->rpl_tab = src->rpl_tab;
  2725. dst->rpl_buf = av_buffer_ref(src->rpl_buf);
  2726. if (!dst->rpl_buf)
  2727. goto fail;
  2728. dst->poc = src->poc;
  2729. dst->ctb_count = src->ctb_count;
  2730. dst->window = src->window;
  2731. dst->flags = src->flags;
  2732. dst->sequence = src->sequence;
  2733. if (src->hwaccel_picture_private) {
  2734. dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf);
  2735. if (!dst->hwaccel_priv_buf)
  2736. goto fail;
  2737. dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data;
  2738. }
  2739. return 0;
  2740. fail:
  2741. ff_hevc_unref_frame(s, dst, ~0);
  2742. return AVERROR(ENOMEM);
  2743. }
  2744. static av_cold int hevc_decode_free(AVCodecContext *avctx)
  2745. {
  2746. HEVCContext *s = avctx->priv_data;
  2747. int i;
  2748. pic_arrays_free(s);
  2749. av_freep(&s->md5_ctx);
  2750. for(i=0; i < s->nals_allocated; i++) {
  2751. av_freep(&s->skipped_bytes_pos_nal[i]);
  2752. }
  2753. av_freep(&s->skipped_bytes_pos_size_nal);
  2754. av_freep(&s->skipped_bytes_nal);
  2755. av_freep(&s->skipped_bytes_pos_nal);
  2756. av_freep(&s->cabac_state);
  2757. for (i = 0; i < 3; i++) {
  2758. av_freep(&s->sao_pixel_buffer_h[i]);
  2759. av_freep(&s->sao_pixel_buffer_v[i]);
  2760. }
  2761. av_frame_free(&s->output_frame);
  2762. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2763. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2764. av_frame_free(&s->DPB[i].frame);
  2765. }
  2766. for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++)
  2767. av_buffer_unref(&s->vps_list[i]);
  2768. for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++)
  2769. av_buffer_unref(&s->sps_list[i]);
  2770. for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++)
  2771. av_buffer_unref(&s->pps_list[i]);
  2772. s->sps = NULL;
  2773. s->pps = NULL;
  2774. s->vps = NULL;
  2775. av_buffer_unref(&s->current_sps);
  2776. av_freep(&s->sh.entry_point_offset);
  2777. av_freep(&s->sh.offset);
  2778. av_freep(&s->sh.size);
  2779. for (i = 1; i < s->threads_number; i++) {
  2780. HEVCLocalContext *lc = s->HEVClcList[i];
  2781. if (lc) {
  2782. av_freep(&s->HEVClcList[i]);
  2783. av_freep(&s->sList[i]);
  2784. }
  2785. }
  2786. if (s->HEVClc == s->HEVClcList[0])
  2787. s->HEVClc = NULL;
  2788. av_freep(&s->HEVClcList[0]);
  2789. for (i = 0; i < s->nals_allocated; i++)
  2790. av_freep(&s->nals[i].rbsp_buffer);
  2791. av_freep(&s->nals);
  2792. s->nals_allocated = 0;
  2793. return 0;
  2794. }
  2795. static av_cold int hevc_init_context(AVCodecContext *avctx)
  2796. {
  2797. HEVCContext *s = avctx->priv_data;
  2798. int i;
  2799. s->avctx = avctx;
  2800. s->HEVClc = av_mallocz(sizeof(HEVCLocalContext));
  2801. if (!s->HEVClc)
  2802. goto fail;
  2803. s->HEVClcList[0] = s->HEVClc;
  2804. s->sList[0] = s;
  2805. s->cabac_state = av_malloc(HEVC_CONTEXTS);
  2806. if (!s->cabac_state)
  2807. goto fail;
  2808. s->output_frame = av_frame_alloc();
  2809. if (!s->output_frame)
  2810. goto fail;
  2811. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2812. s->DPB[i].frame = av_frame_alloc();
  2813. if (!s->DPB[i].frame)
  2814. goto fail;
  2815. s->DPB[i].tf.f = s->DPB[i].frame;
  2816. }
  2817. s->max_ra = INT_MAX;
  2818. s->md5_ctx = av_md5_alloc();
  2819. if (!s->md5_ctx)
  2820. goto fail;
  2821. ff_bswapdsp_init(&s->bdsp);
  2822. s->context_initialized = 1;
  2823. s->eos = 0;
  2824. return 0;
  2825. fail:
  2826. hevc_decode_free(avctx);
  2827. return AVERROR(ENOMEM);
  2828. }
  2829. static int hevc_update_thread_context(AVCodecContext *dst,
  2830. const AVCodecContext *src)
  2831. {
  2832. HEVCContext *s = dst->priv_data;
  2833. HEVCContext *s0 = src->priv_data;
  2834. int i, ret;
  2835. if (!s->context_initialized) {
  2836. ret = hevc_init_context(dst);
  2837. if (ret < 0)
  2838. return ret;
  2839. }
  2840. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2841. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2842. if (s0->DPB[i].frame->buf[0]) {
  2843. ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
  2844. if (ret < 0)
  2845. return ret;
  2846. }
  2847. }
  2848. if (s->sps != s0->sps)
  2849. s->sps = NULL;
  2850. for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++) {
  2851. av_buffer_unref(&s->vps_list[i]);
  2852. if (s0->vps_list[i]) {
  2853. s->vps_list[i] = av_buffer_ref(s0->vps_list[i]);
  2854. if (!s->vps_list[i])
  2855. return AVERROR(ENOMEM);
  2856. }
  2857. }
  2858. for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++) {
  2859. av_buffer_unref(&s->sps_list[i]);
  2860. if (s0->sps_list[i]) {
  2861. s->sps_list[i] = av_buffer_ref(s0->sps_list[i]);
  2862. if (!s->sps_list[i])
  2863. return AVERROR(ENOMEM);
  2864. }
  2865. }
  2866. for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++) {
  2867. av_buffer_unref(&s->pps_list[i]);
  2868. if (s0->pps_list[i]) {
  2869. s->pps_list[i] = av_buffer_ref(s0->pps_list[i]);
  2870. if (!s->pps_list[i])
  2871. return AVERROR(ENOMEM);
  2872. }
  2873. }
  2874. av_buffer_unref(&s->current_sps);
  2875. if (s0->current_sps) {
  2876. s->current_sps = av_buffer_ref(s0->current_sps);
  2877. if (!s->current_sps)
  2878. return AVERROR(ENOMEM);
  2879. }
  2880. if (s->sps != s0->sps)
  2881. if ((ret = set_sps(s, s0->sps)) < 0)
  2882. return ret;
  2883. s->seq_decode = s0->seq_decode;
  2884. s->seq_output = s0->seq_output;
  2885. s->pocTid0 = s0->pocTid0;
  2886. s->max_ra = s0->max_ra;
  2887. s->eos = s0->eos;
  2888. s->is_nalff = s0->is_nalff;
  2889. s->nal_length_size = s0->nal_length_size;
  2890. s->threads_number = s0->threads_number;
  2891. s->threads_type = s0->threads_type;
  2892. if (s0->eos) {
  2893. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2894. s->max_ra = INT_MAX;
  2895. }
  2896. return 0;
  2897. }
  2898. static int hevc_decode_extradata(HEVCContext *s)
  2899. {
  2900. AVCodecContext *avctx = s->avctx;
  2901. GetByteContext gb;
  2902. int ret;
  2903. bytestream2_init(&gb, avctx->extradata, avctx->extradata_size);
  2904. if (avctx->extradata_size > 3 &&
  2905. (avctx->extradata[0] || avctx->extradata[1] ||
  2906. avctx->extradata[2] > 1)) {
  2907. /* It seems the extradata is encoded as hvcC format.
  2908. * Temporarily, we support configurationVersion==0 until 14496-15 3rd
  2909. * is finalized. When finalized, configurationVersion will be 1 and we
  2910. * can recognize hvcC by checking if avctx->extradata[0]==1 or not. */
  2911. int i, j, num_arrays, nal_len_size;
  2912. s->is_nalff = 1;
  2913. bytestream2_skip(&gb, 21);
  2914. nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1;
  2915. num_arrays = bytestream2_get_byte(&gb);
  2916. /* nal units in the hvcC always have length coded with 2 bytes,
  2917. * so put a fake nal_length_size = 2 while parsing them */
  2918. s->nal_length_size = 2;
  2919. /* Decode nal units from hvcC. */
  2920. for (i = 0; i < num_arrays; i++) {
  2921. int type = bytestream2_get_byte(&gb) & 0x3f;
  2922. int cnt = bytestream2_get_be16(&gb);
  2923. for (j = 0; j < cnt; j++) {
  2924. // +2 for the nal size field
  2925. int nalsize = bytestream2_peek_be16(&gb) + 2;
  2926. if (bytestream2_get_bytes_left(&gb) < nalsize) {
  2927. av_log(s->avctx, AV_LOG_ERROR,
  2928. "Invalid NAL unit size in extradata.\n");
  2929. return AVERROR_INVALIDDATA;
  2930. }
  2931. ret = decode_nal_units(s, gb.buffer, nalsize);
  2932. if (ret < 0) {
  2933. av_log(avctx, AV_LOG_ERROR,
  2934. "Decoding nal unit %d %d from hvcC failed\n",
  2935. type, i);
  2936. return ret;
  2937. }
  2938. bytestream2_skip(&gb, nalsize);
  2939. }
  2940. }
  2941. /* Now store right nal length size, that will be used to parse
  2942. * all other nals */
  2943. s->nal_length_size = nal_len_size;
  2944. } else {
  2945. s->is_nalff = 0;
  2946. ret = decode_nal_units(s, avctx->extradata, avctx->extradata_size);
  2947. if (ret < 0)
  2948. return ret;
  2949. }
  2950. return 0;
  2951. }
  2952. static av_cold int hevc_decode_init(AVCodecContext *avctx)
  2953. {
  2954. HEVCContext *s = avctx->priv_data;
  2955. int ret;
  2956. ff_init_cabac_states();
  2957. avctx->internal->allocate_progress = 1;
  2958. ret = hevc_init_context(avctx);
  2959. if (ret < 0)
  2960. return ret;
  2961. s->enable_parallel_tiles = 0;
  2962. s->picture_struct = 0;
  2963. if(avctx->active_thread_type & FF_THREAD_SLICE)
  2964. s->threads_number = avctx->thread_count;
  2965. else
  2966. s->threads_number = 1;
  2967. if (avctx->extradata_size > 0 && avctx->extradata) {
  2968. ret = hevc_decode_extradata(s);
  2969. if (ret < 0) {
  2970. hevc_decode_free(avctx);
  2971. return ret;
  2972. }
  2973. }
  2974. if((avctx->active_thread_type & FF_THREAD_FRAME) && avctx->thread_count > 1)
  2975. s->threads_type = FF_THREAD_FRAME;
  2976. else
  2977. s->threads_type = FF_THREAD_SLICE;
  2978. return 0;
  2979. }
  2980. static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
  2981. {
  2982. HEVCContext *s = avctx->priv_data;
  2983. int ret;
  2984. memset(s, 0, sizeof(*s));
  2985. ret = hevc_init_context(avctx);
  2986. if (ret < 0)
  2987. return ret;
  2988. return 0;
  2989. }
  2990. static void hevc_decode_flush(AVCodecContext *avctx)
  2991. {
  2992. HEVCContext *s = avctx->priv_data;
  2993. ff_hevc_flush_dpb(s);
  2994. s->max_ra = INT_MAX;
  2995. }
  2996. #define OFFSET(x) offsetof(HEVCContext, x)
  2997. #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
  2998. static const AVProfile profiles[] = {
  2999. { FF_PROFILE_HEVC_MAIN, "Main" },
  3000. { FF_PROFILE_HEVC_MAIN_10, "Main 10" },
  3001. { FF_PROFILE_HEVC_MAIN_STILL_PICTURE, "Main Still Picture" },
  3002. { FF_PROFILE_HEVC_REXT, "Rext" },
  3003. { FF_PROFILE_UNKNOWN },
  3004. };
  3005. static const AVOption options[] = {
  3006. { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
  3007. AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR },
  3008. { "strict-displaywin", "stricly apply default display window size", OFFSET(apply_defdispwin),
  3009. AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR },
  3010. { NULL },
  3011. };
  3012. static const AVClass hevc_decoder_class = {
  3013. .class_name = "HEVC decoder",
  3014. .item_name = av_default_item_name,
  3015. .option = options,
  3016. .version = LIBAVUTIL_VERSION_INT,
  3017. };
  3018. AVCodec ff_hevc_decoder = {
  3019. .name = "hevc",
  3020. .long_name = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
  3021. .type = AVMEDIA_TYPE_VIDEO,
  3022. .id = AV_CODEC_ID_HEVC,
  3023. .priv_data_size = sizeof(HEVCContext),
  3024. .priv_class = &hevc_decoder_class,
  3025. .init = hevc_decode_init,
  3026. .close = hevc_decode_free,
  3027. .decode = hevc_decode_frame,
  3028. .flush = hevc_decode_flush,
  3029. .update_thread_context = hevc_update_thread_context,
  3030. .init_thread_copy = hevc_init_thread_copy,
  3031. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY |
  3032. CODEC_CAP_SLICE_THREADS | CODEC_CAP_FRAME_THREADS,
  3033. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  3034. };