You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

922 lines
31KB

  1. /*
  2. * Copyright (C) 2011-2013 Michael Niedermayer (michaelni@gmx.at)
  3. *
  4. * This file is part of libswresample
  5. *
  6. * libswresample is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * libswresample is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with libswresample; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "libavutil/opt.h"
  21. #include "swresample_internal.h"
  22. #include "audioconvert.h"
  23. #include "libavutil/avassert.h"
  24. #include "libavutil/channel_layout.h"
  25. #include "libavutil/internal.h"
  26. #include <float.h>
  27. #define ALIGN 32
  28. #include "libavutil/ffversion.h"
  29. const char swr_ffversion[] = "FFmpeg version " FFMPEG_VERSION;
  30. unsigned swresample_version(void)
  31. {
  32. av_assert0(LIBSWRESAMPLE_VERSION_MICRO >= 100);
  33. return LIBSWRESAMPLE_VERSION_INT;
  34. }
  35. const char *swresample_configuration(void)
  36. {
  37. return FFMPEG_CONFIGURATION;
  38. }
  39. const char *swresample_license(void)
  40. {
  41. #define LICENSE_PREFIX "libswresample license: "
  42. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  43. }
  44. int swr_set_channel_mapping(struct SwrContext *s, const int *channel_map){
  45. if(!s || s->in_convert) // s needs to be allocated but not initialized
  46. return AVERROR(EINVAL);
  47. s->channel_map = channel_map;
  48. return 0;
  49. }
  50. struct SwrContext *swr_alloc_set_opts(struct SwrContext *s,
  51. int64_t out_ch_layout, enum AVSampleFormat out_sample_fmt, int out_sample_rate,
  52. int64_t in_ch_layout, enum AVSampleFormat in_sample_fmt, int in_sample_rate,
  53. int log_offset, void *log_ctx){
  54. if(!s) s= swr_alloc();
  55. if(!s) return NULL;
  56. s->log_level_offset= log_offset;
  57. s->log_ctx= log_ctx;
  58. if (av_opt_set_int(s, "ocl", out_ch_layout, 0) < 0)
  59. goto fail;
  60. if (av_opt_set_int(s, "osf", out_sample_fmt, 0) < 0)
  61. goto fail;
  62. if (av_opt_set_int(s, "osr", out_sample_rate, 0) < 0)
  63. goto fail;
  64. if (av_opt_set_int(s, "icl", in_ch_layout, 0) < 0)
  65. goto fail;
  66. if (av_opt_set_int(s, "isf", in_sample_fmt, 0) < 0)
  67. goto fail;
  68. if (av_opt_set_int(s, "isr", in_sample_rate, 0) < 0)
  69. goto fail;
  70. if (av_opt_set_int(s, "tsf", AV_SAMPLE_FMT_NONE, 0) < 0)
  71. goto fail;
  72. if (av_opt_set_int(s, "ich", av_get_channel_layout_nb_channels(s-> user_in_ch_layout), 0) < 0)
  73. goto fail;
  74. if (av_opt_set_int(s, "och", av_get_channel_layout_nb_channels(s->user_out_ch_layout), 0) < 0)
  75. goto fail;
  76. av_opt_set_int(s, "uch", 0, 0);
  77. return s;
  78. fail:
  79. av_log(s, AV_LOG_ERROR, "Failed to set option\n");
  80. swr_free(&s);
  81. return NULL;
  82. }
  83. static void set_audiodata_fmt(AudioData *a, enum AVSampleFormat fmt){
  84. a->fmt = fmt;
  85. a->bps = av_get_bytes_per_sample(fmt);
  86. a->planar= av_sample_fmt_is_planar(fmt);
  87. if (a->ch_count == 1)
  88. a->planar = 1;
  89. }
  90. static void free_temp(AudioData *a){
  91. av_free(a->data);
  92. memset(a, 0, sizeof(*a));
  93. }
  94. static void clear_context(SwrContext *s){
  95. s->in_buffer_index= 0;
  96. s->in_buffer_count= 0;
  97. s->resample_in_constraint= 0;
  98. memset(s->in.ch, 0, sizeof(s->in.ch));
  99. memset(s->out.ch, 0, sizeof(s->out.ch));
  100. free_temp(&s->postin);
  101. free_temp(&s->midbuf);
  102. free_temp(&s->preout);
  103. free_temp(&s->in_buffer);
  104. free_temp(&s->silence);
  105. free_temp(&s->drop_temp);
  106. free_temp(&s->dither.noise);
  107. free_temp(&s->dither.temp);
  108. swri_audio_convert_free(&s-> in_convert);
  109. swri_audio_convert_free(&s->out_convert);
  110. swri_audio_convert_free(&s->full_convert);
  111. swri_rematrix_free(s);
  112. s->flushed = 0;
  113. }
  114. av_cold void swr_free(SwrContext **ss){
  115. SwrContext *s= *ss;
  116. if(s){
  117. clear_context(s);
  118. if (s->resampler)
  119. s->resampler->free(&s->resample);
  120. }
  121. av_freep(ss);
  122. }
  123. av_cold void swr_close(SwrContext *s){
  124. clear_context(s);
  125. }
  126. av_cold int swr_init(struct SwrContext *s){
  127. int ret;
  128. char l1[1024], l2[1024];
  129. clear_context(s);
  130. if(s-> in_sample_fmt >= AV_SAMPLE_FMT_NB){
  131. av_log(s, AV_LOG_ERROR, "Requested input sample format %d is invalid\n", s->in_sample_fmt);
  132. return AVERROR(EINVAL);
  133. }
  134. if(s->out_sample_fmt >= AV_SAMPLE_FMT_NB){
  135. av_log(s, AV_LOG_ERROR, "Requested output sample format %d is invalid\n", s->out_sample_fmt);
  136. return AVERROR(EINVAL);
  137. }
  138. s->out.ch_count = s-> user_out_ch_count;
  139. s-> in.ch_count = s-> user_in_ch_count;
  140. s->used_ch_count = s->user_used_ch_count;
  141. s-> in_ch_layout = s-> user_in_ch_layout;
  142. s->out_ch_layout = s->user_out_ch_layout;
  143. if(av_get_channel_layout_nb_channels(s-> in_ch_layout) > SWR_CH_MAX) {
  144. av_log(s, AV_LOG_WARNING, "Input channel layout 0x%"PRIx64" is invalid or unsupported.\n", s-> in_ch_layout);
  145. s->in_ch_layout = 0;
  146. }
  147. if(av_get_channel_layout_nb_channels(s->out_ch_layout) > SWR_CH_MAX) {
  148. av_log(s, AV_LOG_WARNING, "Output channel layout 0x%"PRIx64" is invalid or unsupported.\n", s->out_ch_layout);
  149. s->out_ch_layout = 0;
  150. }
  151. switch(s->engine){
  152. #if CONFIG_LIBSOXR
  153. case SWR_ENGINE_SOXR: s->resampler = &swri_soxr_resampler; break;
  154. #endif
  155. case SWR_ENGINE_SWR : s->resampler = &swri_resampler; break;
  156. default:
  157. av_log(s, AV_LOG_ERROR, "Requested resampling engine is unavailable\n");
  158. return AVERROR(EINVAL);
  159. }
  160. if(!s->used_ch_count)
  161. s->used_ch_count= s->in.ch_count;
  162. if(s->used_ch_count && s-> in_ch_layout && s->used_ch_count != av_get_channel_layout_nb_channels(s-> in_ch_layout)){
  163. av_log(s, AV_LOG_WARNING, "Input channel layout has a different number of channels than the number of used channels, ignoring layout\n");
  164. s-> in_ch_layout= 0;
  165. }
  166. if(!s-> in_ch_layout)
  167. s-> in_ch_layout= av_get_default_channel_layout(s->used_ch_count);
  168. if(!s->out_ch_layout)
  169. s->out_ch_layout= av_get_default_channel_layout(s->out.ch_count);
  170. s->rematrix= s->out_ch_layout !=s->in_ch_layout || s->rematrix_volume!=1.0 ||
  171. s->rematrix_custom;
  172. if(s->int_sample_fmt == AV_SAMPLE_FMT_NONE){
  173. if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_S16P){
  174. s->int_sample_fmt= AV_SAMPLE_FMT_S16P;
  175. }else if( av_get_planar_sample_fmt(s-> in_sample_fmt) == AV_SAMPLE_FMT_S32P
  176. && av_get_planar_sample_fmt(s->out_sample_fmt) == AV_SAMPLE_FMT_S32P
  177. && !s->rematrix
  178. && s->engine != SWR_ENGINE_SOXR){
  179. s->int_sample_fmt= AV_SAMPLE_FMT_S32P;
  180. }else if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_FLTP){
  181. s->int_sample_fmt= AV_SAMPLE_FMT_FLTP;
  182. }else{
  183. av_log(s, AV_LOG_DEBUG, "Using double precision mode\n");
  184. s->int_sample_fmt= AV_SAMPLE_FMT_DBLP;
  185. }
  186. }
  187. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  188. &&s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  189. &&s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  190. &&s->int_sample_fmt != AV_SAMPLE_FMT_DBLP){
  191. av_log(s, AV_LOG_ERROR, "Requested sample format %s is not supported internally, S16/S32/FLT/DBL is supported\n", av_get_sample_fmt_name(s->int_sample_fmt));
  192. return AVERROR(EINVAL);
  193. }
  194. set_audiodata_fmt(&s-> in, s-> in_sample_fmt);
  195. set_audiodata_fmt(&s->out, s->out_sample_fmt);
  196. if (s->firstpts_in_samples != AV_NOPTS_VALUE) {
  197. if (!s->async && s->min_compensation >= FLT_MAX/2)
  198. s->async = 1;
  199. s->firstpts =
  200. s->outpts = s->firstpts_in_samples * s->out_sample_rate;
  201. } else
  202. s->firstpts = AV_NOPTS_VALUE;
  203. if (s->async) {
  204. if (s->min_compensation >= FLT_MAX/2)
  205. s->min_compensation = 0.001;
  206. if (s->async > 1.0001) {
  207. s->max_soft_compensation = s->async / (double) s->in_sample_rate;
  208. }
  209. }
  210. if (s->out_sample_rate!=s->in_sample_rate || (s->flags & SWR_FLAG_RESAMPLE)){
  211. s->resample = s->resampler->init(s->resample, s->out_sample_rate, s->in_sample_rate, s->filter_size, s->phase_shift, s->linear_interp, s->cutoff, s->int_sample_fmt, s->filter_type, s->kaiser_beta, s->precision, s->cheby);
  212. if (!s->resample) {
  213. av_log(s, AV_LOG_ERROR, "Failed to initialize resampler\n");
  214. return AVERROR(ENOMEM);
  215. }
  216. }else
  217. s->resampler->free(&s->resample);
  218. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  219. && s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  220. && s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  221. && s->int_sample_fmt != AV_SAMPLE_FMT_DBLP
  222. && s->resample){
  223. av_log(s, AV_LOG_ERROR, "Resampling only supported with internal s16/s32/flt/dbl\n");
  224. ret = AVERROR(EINVAL);
  225. goto fail;
  226. }
  227. #define RSC 1 //FIXME finetune
  228. if(!s-> in.ch_count)
  229. s-> in.ch_count= av_get_channel_layout_nb_channels(s-> in_ch_layout);
  230. if(!s->used_ch_count)
  231. s->used_ch_count= s->in.ch_count;
  232. if(!s->out.ch_count)
  233. s->out.ch_count= av_get_channel_layout_nb_channels(s->out_ch_layout);
  234. if(!s-> in.ch_count){
  235. av_assert0(!s->in_ch_layout);
  236. av_log(s, AV_LOG_ERROR, "Input channel count and layout are unset\n");
  237. ret = AVERROR(EINVAL);
  238. goto fail;
  239. }
  240. av_get_channel_layout_string(l1, sizeof(l1), s-> in.ch_count, s-> in_ch_layout);
  241. av_get_channel_layout_string(l2, sizeof(l2), s->out.ch_count, s->out_ch_layout);
  242. if (s->out_ch_layout && s->out.ch_count != av_get_channel_layout_nb_channels(s->out_ch_layout)) {
  243. av_log(s, AV_LOG_ERROR, "Output channel layout %s mismatches specified channel count %d\n", l2, s->out.ch_count);
  244. ret = AVERROR(EINVAL);
  245. goto fail;
  246. }
  247. if (s->in_ch_layout && s->used_ch_count != av_get_channel_layout_nb_channels(s->in_ch_layout)) {
  248. av_log(s, AV_LOG_ERROR, "Input channel layout %s mismatches specified channel count %d\n", l1, s->used_ch_count);
  249. ret = AVERROR(EINVAL);
  250. goto fail;
  251. }
  252. if ((!s->out_ch_layout || !s->in_ch_layout) && s->used_ch_count != s->out.ch_count && !s->rematrix_custom) {
  253. av_log(s, AV_LOG_ERROR, "Rematrix is needed between %s and %s "
  254. "but there is not enough information to do it\n", l1, l2);
  255. ret = AVERROR(EINVAL);
  256. goto fail;
  257. }
  258. av_assert0(s->used_ch_count);
  259. av_assert0(s->out.ch_count);
  260. s->resample_first= RSC*s->out.ch_count/s->in.ch_count - RSC < s->out_sample_rate/(float)s-> in_sample_rate - 1.0;
  261. s->in_buffer= s->in;
  262. s->silence = s->in;
  263. s->drop_temp= s->out;
  264. if(!s->resample && !s->rematrix && !s->channel_map && !s->dither.method){
  265. s->full_convert = swri_audio_convert_alloc(s->out_sample_fmt,
  266. s-> in_sample_fmt, s-> in.ch_count, NULL, 0);
  267. return 0;
  268. }
  269. s->in_convert = swri_audio_convert_alloc(s->int_sample_fmt,
  270. s-> in_sample_fmt, s->used_ch_count, s->channel_map, 0);
  271. s->out_convert= swri_audio_convert_alloc(s->out_sample_fmt,
  272. s->int_sample_fmt, s->out.ch_count, NULL, 0);
  273. if (!s->in_convert || !s->out_convert) {
  274. ret = AVERROR(ENOMEM);
  275. goto fail;
  276. }
  277. s->postin= s->in;
  278. s->preout= s->out;
  279. s->midbuf= s->in;
  280. if(s->channel_map){
  281. s->postin.ch_count=
  282. s->midbuf.ch_count= s->used_ch_count;
  283. if(s->resample)
  284. s->in_buffer.ch_count= s->used_ch_count;
  285. }
  286. if(!s->resample_first){
  287. s->midbuf.ch_count= s->out.ch_count;
  288. if(s->resample)
  289. s->in_buffer.ch_count = s->out.ch_count;
  290. }
  291. set_audiodata_fmt(&s->postin, s->int_sample_fmt);
  292. set_audiodata_fmt(&s->midbuf, s->int_sample_fmt);
  293. set_audiodata_fmt(&s->preout, s->int_sample_fmt);
  294. if(s->resample){
  295. set_audiodata_fmt(&s->in_buffer, s->int_sample_fmt);
  296. }
  297. if ((ret = swri_dither_init(s, s->out_sample_fmt, s->int_sample_fmt)) < 0)
  298. goto fail;
  299. if(s->rematrix || s->dither.method) {
  300. ret = swri_rematrix_init(s);
  301. if (ret < 0)
  302. goto fail;
  303. }
  304. return 0;
  305. fail:
  306. swr_close(s);
  307. return ret;
  308. }
  309. int swri_realloc_audio(AudioData *a, int count){
  310. int i, countb;
  311. AudioData old;
  312. if(count < 0 || count > INT_MAX/2/a->bps/a->ch_count)
  313. return AVERROR(EINVAL);
  314. if(a->count >= count)
  315. return 0;
  316. count*=2;
  317. countb= FFALIGN(count*a->bps, ALIGN);
  318. old= *a;
  319. av_assert0(a->bps);
  320. av_assert0(a->ch_count);
  321. a->data= av_mallocz_array(countb, a->ch_count);
  322. if(!a->data)
  323. return AVERROR(ENOMEM);
  324. for(i=0; i<a->ch_count; i++){
  325. a->ch[i]= a->data + i*(a->planar ? countb : a->bps);
  326. if(a->planar) memcpy(a->ch[i], old.ch[i], a->count*a->bps);
  327. }
  328. if(!a->planar) memcpy(a->ch[0], old.ch[0], a->count*a->ch_count*a->bps);
  329. av_freep(&old.data);
  330. a->count= count;
  331. return 1;
  332. }
  333. static void copy(AudioData *out, AudioData *in,
  334. int count){
  335. av_assert0(out->planar == in->planar);
  336. av_assert0(out->bps == in->bps);
  337. av_assert0(out->ch_count == in->ch_count);
  338. if(out->planar){
  339. int ch;
  340. for(ch=0; ch<out->ch_count; ch++)
  341. memcpy(out->ch[ch], in->ch[ch], count*out->bps);
  342. }else
  343. memcpy(out->ch[0], in->ch[0], count*out->ch_count*out->bps);
  344. }
  345. static void fill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  346. int i;
  347. if(!in_arg){
  348. memset(out->ch, 0, sizeof(out->ch));
  349. }else if(out->planar){
  350. for(i=0; i<out->ch_count; i++)
  351. out->ch[i]= in_arg[i];
  352. }else{
  353. for(i=0; i<out->ch_count; i++)
  354. out->ch[i]= in_arg[0] + i*out->bps;
  355. }
  356. }
  357. static void reversefill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  358. int i;
  359. if(out->planar){
  360. for(i=0; i<out->ch_count; i++)
  361. in_arg[i]= out->ch[i];
  362. }else{
  363. in_arg[0]= out->ch[0];
  364. }
  365. }
  366. /**
  367. *
  368. * out may be equal in.
  369. */
  370. static void buf_set(AudioData *out, AudioData *in, int count){
  371. int ch;
  372. if(in->planar){
  373. for(ch=0; ch<out->ch_count; ch++)
  374. out->ch[ch]= in->ch[ch] + count*out->bps;
  375. }else{
  376. for(ch=out->ch_count-1; ch>=0; ch--)
  377. out->ch[ch]= in->ch[0] + (ch + count*out->ch_count) * out->bps;
  378. }
  379. }
  380. /**
  381. *
  382. * @return number of samples output per channel
  383. */
  384. static int resample(SwrContext *s, AudioData *out_param, int out_count,
  385. const AudioData * in_param, int in_count){
  386. AudioData in, out, tmp;
  387. int ret_sum=0;
  388. int border=0;
  389. int padless = ARCH_X86 && s->engine == SWR_ENGINE_SWR ? 7 : 0;
  390. av_assert1(s->in_buffer.ch_count == in_param->ch_count);
  391. av_assert1(s->in_buffer.planar == in_param->planar);
  392. av_assert1(s->in_buffer.fmt == in_param->fmt);
  393. tmp=out=*out_param;
  394. in = *in_param;
  395. border = s->resampler->invert_initial_buffer(s->resample, &s->in_buffer,
  396. &in, in_count, &s->in_buffer_index, &s->in_buffer_count);
  397. if (border == INT_MAX) {
  398. return 0;
  399. } else if (border < 0) {
  400. return border;
  401. } else if (border) {
  402. buf_set(&in, &in, border);
  403. in_count -= border;
  404. s->resample_in_constraint = 0;
  405. }
  406. do{
  407. int ret, size, consumed;
  408. if(!s->resample_in_constraint && s->in_buffer_count){
  409. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  410. ret= s->resampler->multiple_resample(s->resample, &out, out_count, &tmp, s->in_buffer_count, &consumed);
  411. out_count -= ret;
  412. ret_sum += ret;
  413. buf_set(&out, &out, ret);
  414. s->in_buffer_count -= consumed;
  415. s->in_buffer_index += consumed;
  416. if(!in_count)
  417. break;
  418. if(s->in_buffer_count <= border){
  419. buf_set(&in, &in, -s->in_buffer_count);
  420. in_count += s->in_buffer_count;
  421. s->in_buffer_count=0;
  422. s->in_buffer_index=0;
  423. border = 0;
  424. }
  425. }
  426. if((s->flushed || in_count > padless) && !s->in_buffer_count){
  427. s->in_buffer_index=0;
  428. ret= s->resampler->multiple_resample(s->resample, &out, out_count, &in, FFMAX(in_count-padless, 0), &consumed);
  429. out_count -= ret;
  430. ret_sum += ret;
  431. buf_set(&out, &out, ret);
  432. in_count -= consumed;
  433. buf_set(&in, &in, consumed);
  434. }
  435. //TODO is this check sane considering the advanced copy avoidance below
  436. size= s->in_buffer_index + s->in_buffer_count + in_count;
  437. if( size > s->in_buffer.count
  438. && s->in_buffer_count + in_count <= s->in_buffer_index){
  439. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  440. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  441. s->in_buffer_index=0;
  442. }else
  443. if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
  444. return ret;
  445. if(in_count){
  446. int count= in_count;
  447. if(s->in_buffer_count && s->in_buffer_count+2 < count && out_count) count= s->in_buffer_count+2;
  448. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  449. copy(&tmp, &in, /*in_*/count);
  450. s->in_buffer_count += count;
  451. in_count -= count;
  452. border += count;
  453. buf_set(&in, &in, count);
  454. s->resample_in_constraint= 0;
  455. if(s->in_buffer_count != count || in_count)
  456. continue;
  457. if (padless) {
  458. padless = 0;
  459. continue;
  460. }
  461. }
  462. break;
  463. }while(1);
  464. s->resample_in_constraint= !!out_count;
  465. return ret_sum;
  466. }
  467. static int swr_convert_internal(struct SwrContext *s, AudioData *out, int out_count,
  468. AudioData *in , int in_count){
  469. AudioData *postin, *midbuf, *preout;
  470. int ret/*, in_max*/;
  471. AudioData preout_tmp, midbuf_tmp;
  472. if(s->full_convert){
  473. av_assert0(!s->resample);
  474. swri_audio_convert(s->full_convert, out, in, in_count);
  475. return out_count;
  476. }
  477. // in_max= out_count*(int64_t)s->in_sample_rate / s->out_sample_rate + resample_filter_taps;
  478. // in_count= FFMIN(in_count, in_in + 2 - s->hist_buffer_count);
  479. if((ret=swri_realloc_audio(&s->postin, in_count))<0)
  480. return ret;
  481. if(s->resample_first){
  482. av_assert0(s->midbuf.ch_count == s->used_ch_count);
  483. if((ret=swri_realloc_audio(&s->midbuf, out_count))<0)
  484. return ret;
  485. }else{
  486. av_assert0(s->midbuf.ch_count == s->out.ch_count);
  487. if((ret=swri_realloc_audio(&s->midbuf, in_count))<0)
  488. return ret;
  489. }
  490. if((ret=swri_realloc_audio(&s->preout, out_count))<0)
  491. return ret;
  492. postin= &s->postin;
  493. midbuf_tmp= s->midbuf;
  494. midbuf= &midbuf_tmp;
  495. preout_tmp= s->preout;
  496. preout= &preout_tmp;
  497. if(s->int_sample_fmt == s-> in_sample_fmt && s->in.planar && !s->channel_map)
  498. postin= in;
  499. if(s->resample_first ? !s->resample : !s->rematrix)
  500. midbuf= postin;
  501. if(s->resample_first ? !s->rematrix : !s->resample)
  502. preout= midbuf;
  503. if(s->int_sample_fmt == s->out_sample_fmt && s->out.planar
  504. && !(s->out_sample_fmt==AV_SAMPLE_FMT_S32P && (s->dither.output_sample_bits&31))){
  505. if(preout==in){
  506. out_count= FFMIN(out_count, in_count); //TODO check at the end if this is needed or redundant
  507. av_assert0(s->in.planar); //we only support planar internally so it has to be, we support copying non planar though
  508. copy(out, in, out_count);
  509. return out_count;
  510. }
  511. else if(preout==postin) preout= midbuf= postin= out;
  512. else if(preout==midbuf) preout= midbuf= out;
  513. else preout= out;
  514. }
  515. if(in != postin){
  516. swri_audio_convert(s->in_convert, postin, in, in_count);
  517. }
  518. if(s->resample_first){
  519. if(postin != midbuf)
  520. out_count= resample(s, midbuf, out_count, postin, in_count);
  521. if(midbuf != preout)
  522. swri_rematrix(s, preout, midbuf, out_count, preout==out);
  523. }else{
  524. if(postin != midbuf)
  525. swri_rematrix(s, midbuf, postin, in_count, midbuf==out);
  526. if(midbuf != preout)
  527. out_count= resample(s, preout, out_count, midbuf, in_count);
  528. }
  529. if(preout != out && out_count){
  530. AudioData *conv_src = preout;
  531. if(s->dither.method){
  532. int ch;
  533. int dither_count= FFMAX(out_count, 1<<16);
  534. if (preout == in) {
  535. conv_src = &s->dither.temp;
  536. if((ret=swri_realloc_audio(&s->dither.temp, dither_count))<0)
  537. return ret;
  538. }
  539. if((ret=swri_realloc_audio(&s->dither.noise, dither_count))<0)
  540. return ret;
  541. if(ret)
  542. for(ch=0; ch<s->dither.noise.ch_count; ch++)
  543. if((ret=swri_get_dither(s, s->dither.noise.ch[ch], s->dither.noise.count, 12345678913579<<ch, s->dither.noise.fmt))<0)
  544. return ret;
  545. av_assert0(s->dither.noise.ch_count == preout->ch_count);
  546. if(s->dither.noise_pos + out_count > s->dither.noise.count)
  547. s->dither.noise_pos = 0;
  548. if (s->dither.method < SWR_DITHER_NS){
  549. if (s->mix_2_1_simd) {
  550. int len1= out_count&~15;
  551. int off = len1 * preout->bps;
  552. if(len1)
  553. for(ch=0; ch<preout->ch_count; ch++)
  554. s->mix_2_1_simd(conv_src->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos, s->native_simd_one, 0, 0, len1);
  555. if(out_count != len1)
  556. for(ch=0; ch<preout->ch_count; ch++)
  557. s->mix_2_1_f(conv_src->ch[ch] + off, preout->ch[ch] + off, s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos + off + len1, s->native_one, 0, 0, out_count - len1);
  558. } else {
  559. for(ch=0; ch<preout->ch_count; ch++)
  560. s->mix_2_1_f(conv_src->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos, s->native_one, 0, 0, out_count);
  561. }
  562. } else {
  563. switch(s->int_sample_fmt) {
  564. case AV_SAMPLE_FMT_S16P :swri_noise_shaping_int16(s, conv_src, preout, &s->dither.noise, out_count); break;
  565. case AV_SAMPLE_FMT_S32P :swri_noise_shaping_int32(s, conv_src, preout, &s->dither.noise, out_count); break;
  566. case AV_SAMPLE_FMT_FLTP :swri_noise_shaping_float(s, conv_src, preout, &s->dither.noise, out_count); break;
  567. case AV_SAMPLE_FMT_DBLP :swri_noise_shaping_double(s,conv_src, preout, &s->dither.noise, out_count); break;
  568. }
  569. }
  570. s->dither.noise_pos += out_count;
  571. }
  572. //FIXME packed doesn't need more than 1 chan here!
  573. swri_audio_convert(s->out_convert, out, conv_src, out_count);
  574. }
  575. return out_count;
  576. }
  577. int swr_is_initialized(struct SwrContext *s) {
  578. return !!s->in_buffer.ch_count;
  579. }
  580. int attribute_align_arg swr_convert(struct SwrContext *s, uint8_t *out_arg[SWR_CH_MAX], int out_count,
  581. const uint8_t *in_arg [SWR_CH_MAX], int in_count){
  582. AudioData * in= &s->in;
  583. AudioData *out= &s->out;
  584. int av_unused max_output;
  585. if (!swr_is_initialized(s)) {
  586. av_log(s, AV_LOG_ERROR, "Context has not been initialized\n");
  587. return AVERROR(EINVAL);
  588. }
  589. #if defined(ASSERT_LEVEL) && ASSERT_LEVEL >1
  590. max_output = swr_get_out_samples(s, in_count);
  591. #endif
  592. while(s->drop_output > 0){
  593. int ret;
  594. uint8_t *tmp_arg[SWR_CH_MAX];
  595. #define MAX_DROP_STEP 16384
  596. if((ret=swri_realloc_audio(&s->drop_temp, FFMIN(s->drop_output, MAX_DROP_STEP)))<0)
  597. return ret;
  598. reversefill_audiodata(&s->drop_temp, tmp_arg);
  599. s->drop_output *= -1; //FIXME find a less hackish solution
  600. ret = swr_convert(s, tmp_arg, FFMIN(-s->drop_output, MAX_DROP_STEP), in_arg, in_count); //FIXME optimize but this is as good as never called so maybe it doesn't matter
  601. s->drop_output *= -1;
  602. in_count = 0;
  603. if(ret>0) {
  604. s->drop_output -= ret;
  605. if (!s->drop_output && !out_arg)
  606. return 0;
  607. continue;
  608. }
  609. av_assert0(s->drop_output);
  610. return 0;
  611. }
  612. if(!in_arg){
  613. if(s->resample){
  614. if (!s->flushed)
  615. s->resampler->flush(s);
  616. s->resample_in_constraint = 0;
  617. s->flushed = 1;
  618. }else if(!s->in_buffer_count){
  619. return 0;
  620. }
  621. }else
  622. fill_audiodata(in , (void*)in_arg);
  623. fill_audiodata(out, out_arg);
  624. if(s->resample){
  625. int ret = swr_convert_internal(s, out, out_count, in, in_count);
  626. if(ret>0 && !s->drop_output)
  627. s->outpts += ret * (int64_t)s->in_sample_rate;
  628. av_assert2(max_output < 0 || ret < 0 || ret <= max_output);
  629. return ret;
  630. }else{
  631. AudioData tmp= *in;
  632. int ret2=0;
  633. int ret, size;
  634. size = FFMIN(out_count, s->in_buffer_count);
  635. if(size){
  636. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  637. ret= swr_convert_internal(s, out, size, &tmp, size);
  638. if(ret<0)
  639. return ret;
  640. ret2= ret;
  641. s->in_buffer_count -= ret;
  642. s->in_buffer_index += ret;
  643. buf_set(out, out, ret);
  644. out_count -= ret;
  645. if(!s->in_buffer_count)
  646. s->in_buffer_index = 0;
  647. }
  648. if(in_count){
  649. size= s->in_buffer_index + s->in_buffer_count + in_count - out_count;
  650. if(in_count > out_count) { //FIXME move after swr_convert_internal
  651. if( size > s->in_buffer.count
  652. && s->in_buffer_count + in_count - out_count <= s->in_buffer_index){
  653. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  654. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  655. s->in_buffer_index=0;
  656. }else
  657. if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
  658. return ret;
  659. }
  660. if(out_count){
  661. size = FFMIN(in_count, out_count);
  662. ret= swr_convert_internal(s, out, size, in, size);
  663. if(ret<0)
  664. return ret;
  665. buf_set(in, in, ret);
  666. in_count -= ret;
  667. ret2 += ret;
  668. }
  669. if(in_count){
  670. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  671. copy(&tmp, in, in_count);
  672. s->in_buffer_count += in_count;
  673. }
  674. }
  675. if(ret2>0 && !s->drop_output)
  676. s->outpts += ret2 * (int64_t)s->in_sample_rate;
  677. av_assert2(max_output < 0 || ret2 < 0 || ret2 <= max_output);
  678. return ret2;
  679. }
  680. }
  681. int swr_drop_output(struct SwrContext *s, int count){
  682. const uint8_t *tmp_arg[SWR_CH_MAX];
  683. s->drop_output += count;
  684. if(s->drop_output <= 0)
  685. return 0;
  686. av_log(s, AV_LOG_VERBOSE, "discarding %d audio samples\n", count);
  687. return swr_convert(s, NULL, s->drop_output, tmp_arg, 0);
  688. }
  689. int swr_inject_silence(struct SwrContext *s, int count){
  690. int ret, i;
  691. uint8_t *tmp_arg[SWR_CH_MAX];
  692. if(count <= 0)
  693. return 0;
  694. #define MAX_SILENCE_STEP 16384
  695. while (count > MAX_SILENCE_STEP) {
  696. if ((ret = swr_inject_silence(s, MAX_SILENCE_STEP)) < 0)
  697. return ret;
  698. count -= MAX_SILENCE_STEP;
  699. }
  700. if((ret=swri_realloc_audio(&s->silence, count))<0)
  701. return ret;
  702. if(s->silence.planar) for(i=0; i<s->silence.ch_count; i++) {
  703. memset(s->silence.ch[i], s->silence.bps==1 ? 0x80 : 0, count*s->silence.bps);
  704. } else
  705. memset(s->silence.ch[0], s->silence.bps==1 ? 0x80 : 0, count*s->silence.bps*s->silence.ch_count);
  706. reversefill_audiodata(&s->silence, tmp_arg);
  707. av_log(s, AV_LOG_VERBOSE, "adding %d audio samples of silence\n", count);
  708. ret = swr_convert(s, NULL, 0, (const uint8_t**)tmp_arg, count);
  709. return ret;
  710. }
  711. int64_t swr_get_delay(struct SwrContext *s, int64_t base){
  712. if (s->resampler && s->resample){
  713. return s->resampler->get_delay(s, base);
  714. }else{
  715. return (s->in_buffer_count*base + (s->in_sample_rate>>1))/ s->in_sample_rate;
  716. }
  717. }
  718. int swr_get_out_samples(struct SwrContext *s, int in_samples)
  719. {
  720. int64_t out_samples;
  721. if (in_samples < 0)
  722. return AVERROR(EINVAL);
  723. if (s->resampler && s->resample) {
  724. if (!s->resampler->get_out_samples)
  725. return AVERROR(ENOSYS);
  726. out_samples = s->resampler->get_out_samples(s, in_samples);
  727. } else {
  728. out_samples = s->in_buffer_count + in_samples;
  729. av_assert0(s->out_sample_rate == s->in_sample_rate);
  730. }
  731. if (out_samples > INT_MAX)
  732. return AVERROR(EINVAL);
  733. return out_samples;
  734. }
  735. int swr_set_compensation(struct SwrContext *s, int sample_delta, int compensation_distance){
  736. int ret;
  737. if (!s || compensation_distance < 0)
  738. return AVERROR(EINVAL);
  739. if (!compensation_distance && sample_delta)
  740. return AVERROR(EINVAL);
  741. if (!s->resample) {
  742. s->flags |= SWR_FLAG_RESAMPLE;
  743. ret = swr_init(s);
  744. if (ret < 0)
  745. return ret;
  746. }
  747. if (!s->resampler->set_compensation){
  748. return AVERROR(EINVAL);
  749. }else{
  750. return s->resampler->set_compensation(s->resample, sample_delta, compensation_distance);
  751. }
  752. }
  753. int64_t swr_next_pts(struct SwrContext *s, int64_t pts){
  754. if(pts == INT64_MIN)
  755. return s->outpts;
  756. if (s->firstpts == AV_NOPTS_VALUE)
  757. s->outpts = s->firstpts = pts;
  758. if(s->min_compensation >= FLT_MAX) {
  759. return (s->outpts = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate));
  760. } else {
  761. int64_t delta = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate) - s->outpts + s->drop_output*(int64_t)s->in_sample_rate;
  762. double fdelta = delta /(double)(s->in_sample_rate * (int64_t)s->out_sample_rate);
  763. if(fabs(fdelta) > s->min_compensation) {
  764. if(s->outpts == s->firstpts || fabs(fdelta) > s->min_hard_compensation){
  765. int ret;
  766. if(delta > 0) ret = swr_inject_silence(s, delta / s->out_sample_rate);
  767. else ret = swr_drop_output (s, -delta / s-> in_sample_rate);
  768. if(ret<0){
  769. av_log(s, AV_LOG_ERROR, "Failed to compensate for timestamp delta of %f\n", fdelta);
  770. }
  771. } else if(s->soft_compensation_duration && s->max_soft_compensation) {
  772. int duration = s->out_sample_rate * s->soft_compensation_duration;
  773. double max_soft_compensation = s->max_soft_compensation / (s->max_soft_compensation < 0 ? -s->in_sample_rate : 1);
  774. int comp = av_clipf(fdelta, -max_soft_compensation, max_soft_compensation) * duration ;
  775. av_log(s, AV_LOG_VERBOSE, "compensating audio timestamp drift:%f compensation:%d in:%d\n", fdelta, comp, duration);
  776. swr_set_compensation(s, comp, duration);
  777. }
  778. }
  779. return s->outpts;
  780. }
  781. }