You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4478 lines
151KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. /**
  24. * @file vc1.c
  25. * VC-1 and WMV3 decoder
  26. *
  27. */
  28. #include "common.h"
  29. #include "dsputil.h"
  30. #include "avcodec.h"
  31. #include "mpegvideo.h"
  32. #include "vc1data.h"
  33. #include "vc1acdata.h"
  34. #undef NDEBUG
  35. #include <assert.h>
  36. extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
  37. extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
  38. extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
  39. #define MB_INTRA_VLC_BITS 9
  40. extern VLC ff_msmp4_mb_i_vlc;
  41. extern const uint16_t ff_msmp4_mb_i_table[64][2];
  42. #define DC_VLC_BITS 9
  43. #define AC_VLC_BITS 9
  44. static const uint16_t table_mb_intra[64][2];
  45. /** Markers used if VC-1 AP frame data */
  46. //@{
  47. enum VC1Code{
  48. VC1_CODE_RES0 = 0x00000100,
  49. VC1_CODE_ESCAPE = 0x00000103,
  50. VC1_CODE_ENDOFSEQ = 0x0000010A,
  51. VC1_CODE_SLICE,
  52. VC1_CODE_FIELD,
  53. VC1_CODE_FRAME,
  54. VC1_CODE_ENTRYPOINT,
  55. VC1_CODE_SEQHDR,
  56. };
  57. //@}
  58. /** Available Profiles */
  59. //@{
  60. enum Profile {
  61. PROFILE_SIMPLE,
  62. PROFILE_MAIN,
  63. PROFILE_COMPLEX, ///< TODO: WMV9 specific
  64. PROFILE_ADVANCED
  65. };
  66. //@}
  67. /** Sequence quantizer mode */
  68. //@{
  69. enum QuantMode {
  70. QUANT_FRAME_IMPLICIT, ///< Implicitly specified at frame level
  71. QUANT_FRAME_EXPLICIT, ///< Explicitly specified at frame level
  72. QUANT_NON_UNIFORM, ///< Non-uniform quant used for all frames
  73. QUANT_UNIFORM ///< Uniform quant used for all frames
  74. };
  75. //@}
  76. /** Where quant can be changed */
  77. //@{
  78. enum DQProfile {
  79. DQPROFILE_FOUR_EDGES,
  80. DQPROFILE_DOUBLE_EDGES,
  81. DQPROFILE_SINGLE_EDGE,
  82. DQPROFILE_ALL_MBS
  83. };
  84. //@}
  85. /** @name Where quant can be changed
  86. */
  87. //@{
  88. enum DQSingleEdge {
  89. DQSINGLE_BEDGE_LEFT,
  90. DQSINGLE_BEDGE_TOP,
  91. DQSINGLE_BEDGE_RIGHT,
  92. DQSINGLE_BEDGE_BOTTOM
  93. };
  94. //@}
  95. /** Which pair of edges is quantized with ALTPQUANT */
  96. //@{
  97. enum DQDoubleEdge {
  98. DQDOUBLE_BEDGE_TOPLEFT,
  99. DQDOUBLE_BEDGE_TOPRIGHT,
  100. DQDOUBLE_BEDGE_BOTTOMRIGHT,
  101. DQDOUBLE_BEDGE_BOTTOMLEFT
  102. };
  103. //@}
  104. /** MV modes for P frames */
  105. //@{
  106. enum MVModes {
  107. MV_PMODE_1MV_HPEL_BILIN,
  108. MV_PMODE_1MV,
  109. MV_PMODE_1MV_HPEL,
  110. MV_PMODE_MIXED_MV,
  111. MV_PMODE_INTENSITY_COMP
  112. };
  113. //@}
  114. /** @name MV types for B frames */
  115. //@{
  116. enum BMVTypes {
  117. BMV_TYPE_BACKWARD,
  118. BMV_TYPE_FORWARD,
  119. BMV_TYPE_INTERPOLATED
  120. };
  121. //@}
  122. /** @name Block types for P/B frames */
  123. //@{
  124. enum TransformTypes {
  125. TT_8X8,
  126. TT_8X4_BOTTOM,
  127. TT_8X4_TOP,
  128. TT_8X4, //Both halves
  129. TT_4X8_RIGHT,
  130. TT_4X8_LEFT,
  131. TT_4X8, //Both halves
  132. TT_4X4
  133. };
  134. //@}
  135. /** Table for conversion between TTBLK and TTMB */
  136. static const int ttblk_to_tt[3][8] = {
  137. { TT_8X4, TT_4X8, TT_8X8, TT_4X4, TT_8X4_TOP, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT },
  138. { TT_8X8, TT_4X8_RIGHT, TT_4X8_LEFT, TT_4X4, TT_8X4, TT_4X8, TT_8X4_BOTTOM, TT_8X4_TOP },
  139. { TT_8X8, TT_4X8, TT_4X4, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT, TT_8X4, TT_8X4_TOP }
  140. };
  141. static const int ttfrm_to_tt[4] = { TT_8X8, TT_8X4, TT_4X8, TT_4X4 };
  142. /** MV P mode - the 5th element is only used for mode 1 */
  143. static const uint8_t mv_pmode_table[2][5] = {
  144. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_MIXED_MV },
  145. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_1MV_HPEL_BILIN }
  146. };
  147. static const uint8_t mv_pmode_table2[2][4] = {
  148. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_MIXED_MV },
  149. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_1MV_HPEL_BILIN }
  150. };
  151. /** One more frame type */
  152. #define BI_TYPE 7
  153. static const int fps_nr[5] = { 24, 25, 30, 50, 60 },
  154. fps_dr[2] = { 1000, 1001 };
  155. static const uint8_t pquant_table[3][32] = {
  156. { /* Implicit quantizer */
  157. 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12,
  158. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31
  159. },
  160. { /* Explicit quantizer, pquantizer uniform */
  161. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  162. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
  163. },
  164. { /* Explicit quantizer, pquantizer non-uniform */
  165. 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  166. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31
  167. }
  168. };
  169. /** @name VC-1 VLC tables and defines
  170. * @todo TODO move this into the context
  171. */
  172. //@{
  173. #define VC1_BFRACTION_VLC_BITS 7
  174. static VLC vc1_bfraction_vlc;
  175. #define VC1_IMODE_VLC_BITS 4
  176. static VLC vc1_imode_vlc;
  177. #define VC1_NORM2_VLC_BITS 3
  178. static VLC vc1_norm2_vlc;
  179. #define VC1_NORM6_VLC_BITS 9
  180. static VLC vc1_norm6_vlc;
  181. /* Could be optimized, one table only needs 8 bits */
  182. #define VC1_TTMB_VLC_BITS 9 //12
  183. static VLC vc1_ttmb_vlc[3];
  184. #define VC1_MV_DIFF_VLC_BITS 9 //15
  185. static VLC vc1_mv_diff_vlc[4];
  186. #define VC1_CBPCY_P_VLC_BITS 9 //14
  187. static VLC vc1_cbpcy_p_vlc[4];
  188. #define VC1_4MV_BLOCK_PATTERN_VLC_BITS 6
  189. static VLC vc1_4mv_block_pattern_vlc[4];
  190. #define VC1_TTBLK_VLC_BITS 5
  191. static VLC vc1_ttblk_vlc[3];
  192. #define VC1_SUBBLKPAT_VLC_BITS 6
  193. static VLC vc1_subblkpat_vlc[3];
  194. static VLC vc1_ac_coeff_table[8];
  195. //@}
  196. enum CodingSet {
  197. CS_HIGH_MOT_INTRA = 0,
  198. CS_HIGH_MOT_INTER,
  199. CS_LOW_MOT_INTRA,
  200. CS_LOW_MOT_INTER,
  201. CS_MID_RATE_INTRA,
  202. CS_MID_RATE_INTER,
  203. CS_HIGH_RATE_INTRA,
  204. CS_HIGH_RATE_INTER
  205. };
  206. /** @name Overlap conditions for Advanced Profile */
  207. //@{
  208. enum COTypes {
  209. CONDOVER_NONE = 0,
  210. CONDOVER_ALL,
  211. CONDOVER_SELECT
  212. };
  213. //@}
  214. /** The VC1 Context
  215. * @fixme Change size wherever another size is more efficient
  216. * Many members are only used for Advanced Profile
  217. */
  218. typedef struct VC1Context{
  219. MpegEncContext s;
  220. int bits;
  221. /** Simple/Main Profile sequence header */
  222. //@{
  223. int res_sm; ///< reserved, 2b
  224. int res_x8; ///< reserved
  225. int multires; ///< frame-level RESPIC syntax element present
  226. int res_fasttx; ///< reserved, always 1
  227. int res_transtab; ///< reserved, always 0
  228. int rangered; ///< RANGEREDFRM (range reduction) syntax element present
  229. ///< at frame level
  230. int res_rtm_flag; ///< reserved, set to 1
  231. int reserved; ///< reserved
  232. //@}
  233. /** Advanced Profile */
  234. //@{
  235. int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer
  236. int chromaformat; ///< 2bits, 2=4:2:0, only defined
  237. int postprocflag; ///< Per-frame processing suggestion flag present
  238. int broadcast; ///< TFF/RFF present
  239. int interlace; ///< Progressive/interlaced (RPTFTM syntax element)
  240. int tfcntrflag; ///< TFCNTR present
  241. int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present
  242. int extended_dmv; ///< Additional extended dmv range at P/B frame-level
  243. int color_prim; ///< 8bits, chroma coordinates of the color primaries
  244. int transfer_char; ///< 8bits, Opto-electronic transfer characteristics
  245. int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix
  246. int hrd_param_flag; ///< Presence of Hypothetical Reference
  247. ///< Decoder parameters
  248. int psf; ///< Progressive Segmented Frame
  249. //@}
  250. /** Sequence header data for all Profiles
  251. * TODO: choose between ints, uint8_ts and monobit flags
  252. */
  253. //@{
  254. int profile; ///< 2bits, Profile
  255. int frmrtq_postproc; ///< 3bits,
  256. int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength
  257. int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple)
  258. int extended_mv; ///< Ext MV in P/B (not in Simple)
  259. int dquant; ///< How qscale varies with MBs, 2bits (not in Simple)
  260. int vstransform; ///< variable-size [48]x[48] transform type + info
  261. int overlap; ///< overlapped transforms in use
  262. int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_*
  263. int finterpflag; ///< INTERPFRM present
  264. //@}
  265. /** Frame decoding info for all profiles */
  266. //@{
  267. uint8_t mv_mode; ///< MV coding monde
  268. uint8_t mv_mode2; ///< Secondary MV coding mode (B frames)
  269. int k_x; ///< Number of bits for MVs (depends on MV range)
  270. int k_y; ///< Number of bits for MVs (depends on MV range)
  271. int range_x, range_y; ///< MV range
  272. uint8_t pq, altpq; ///< Current/alternate frame quantizer scale
  273. /** pquant parameters */
  274. //@{
  275. uint8_t dquantfrm;
  276. uint8_t dqprofile;
  277. uint8_t dqsbedge;
  278. uint8_t dqbilevel;
  279. //@}
  280. /** AC coding set indexes
  281. * @see 8.1.1.10, p(1)10
  282. */
  283. //@{
  284. int c_ac_table_index; ///< Chroma index from ACFRM element
  285. int y_ac_table_index; ///< Luma index from AC2FRM element
  286. //@}
  287. int ttfrm; ///< Transform type info present at frame level
  288. uint8_t ttmbf; ///< Transform type flag
  289. uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform
  290. int codingset; ///< index of current table set from 11.8 to use for luma block decoding
  291. int codingset2; ///< index of current table set from 11.8 to use for chroma block decoding
  292. int pqindex; ///< raw pqindex used in coding set selection
  293. int a_avail, c_avail;
  294. uint8_t *mb_type_base, *mb_type[3];
  295. /** Luma compensation parameters */
  296. //@{
  297. uint8_t lumscale;
  298. uint8_t lumshift;
  299. //@}
  300. int16_t bfraction; ///< Relative position % anchors=> how to scale MVs
  301. uint8_t halfpq; ///< Uniform quant over image and qp+.5
  302. uint8_t respic; ///< Frame-level flag for resized images
  303. int buffer_fullness; ///< HRD info
  304. /** Ranges:
  305. * -# 0 -> [-64n 63.f] x [-32, 31.f]
  306. * -# 1 -> [-128, 127.f] x [-64, 63.f]
  307. * -# 2 -> [-512, 511.f] x [-128, 127.f]
  308. * -# 3 -> [-1024, 1023.f] x [-256, 255.f]
  309. */
  310. uint8_t mvrange;
  311. uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use
  312. VLC *cbpcy_vlc; ///< CBPCY VLC table
  313. int tt_index; ///< Index for Transform Type tables
  314. uint8_t* mv_type_mb_plane; ///< bitplane for mv_type == (4MV)
  315. uint8_t* direct_mb_plane; ///< bitplane for "direct" MBs
  316. int mv_type_is_raw; ///< mv type mb plane is not coded
  317. int dmb_is_raw; ///< direct mb plane is raw
  318. int skip_is_raw; ///< skip mb plane is not coded
  319. uint8_t luty[256], lutuv[256]; // lookup tables used for intensity compensation
  320. int use_ic; ///< use intensity compensation in B-frames
  321. int rnd; ///< rounding control
  322. /** Frame decoding info for S/M profiles only */
  323. //@{
  324. uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128)
  325. uint8_t interpfrm;
  326. //@}
  327. /** Frame decoding info for Advanced profile */
  328. //@{
  329. uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace
  330. uint8_t numpanscanwin;
  331. uint8_t tfcntr;
  332. uint8_t rptfrm, tff, rff;
  333. uint16_t topleftx;
  334. uint16_t toplefty;
  335. uint16_t bottomrightx;
  336. uint16_t bottomrighty;
  337. uint8_t uvsamp;
  338. uint8_t postproc;
  339. int hrd_num_leaky_buckets;
  340. uint8_t bit_rate_exponent;
  341. uint8_t buffer_size_exponent;
  342. uint8_t* acpred_plane; ///< AC prediction flags bitplane
  343. int acpred_is_raw;
  344. uint8_t* over_flags_plane; ///< Overflags bitplane
  345. int overflg_is_raw;
  346. uint8_t condover;
  347. uint16_t *hrd_rate, *hrd_buffer;
  348. uint8_t *hrd_fullness;
  349. uint8_t range_mapy_flag;
  350. uint8_t range_mapuv_flag;
  351. uint8_t range_mapy;
  352. uint8_t range_mapuv;
  353. //@}
  354. int p_frame_skipped;
  355. int bi_type;
  356. } VC1Context;
  357. /**
  358. * Get unary code of limited length
  359. * @fixme FIXME Slow and ugly
  360. * @param gb GetBitContext
  361. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  362. * @param[in] len Maximum length
  363. * @return Unary length/index
  364. */
  365. static int get_prefix(GetBitContext *gb, int stop, int len)
  366. {
  367. #if 1
  368. int i;
  369. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  370. return i;
  371. /* int i = 0, tmp = !stop;
  372. while (i != len && tmp != stop)
  373. {
  374. tmp = get_bits(gb, 1);
  375. i++;
  376. }
  377. if (i == len && tmp != stop) return len+1;
  378. return i;*/
  379. #else
  380. unsigned int buf;
  381. int log;
  382. OPEN_READER(re, gb);
  383. UPDATE_CACHE(re, gb);
  384. buf=GET_CACHE(re, gb); //Still not sure
  385. if (stop) buf = ~buf;
  386. log= av_log2(-buf); //FIXME: -?
  387. if (log < limit){
  388. LAST_SKIP_BITS(re, gb, log+1);
  389. CLOSE_READER(re, gb);
  390. return log;
  391. }
  392. LAST_SKIP_BITS(re, gb, limit);
  393. CLOSE_READER(re, gb);
  394. return limit;
  395. #endif
  396. }
  397. static inline int decode210(GetBitContext *gb){
  398. int n;
  399. n = get_bits1(gb);
  400. if (n == 1)
  401. return 0;
  402. else
  403. return 2 - get_bits1(gb);
  404. }
  405. /**
  406. * Init VC-1 specific tables and VC1Context members
  407. * @param v The VC1Context to initialize
  408. * @return Status
  409. */
  410. static int vc1_init_common(VC1Context *v)
  411. {
  412. static int done = 0;
  413. int i = 0;
  414. v->hrd_rate = v->hrd_buffer = NULL;
  415. /* VLC tables */
  416. if(!done)
  417. {
  418. done = 1;
  419. init_vlc(&vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  420. vc1_bfraction_bits, 1, 1,
  421. vc1_bfraction_codes, 1, 1, 1);
  422. init_vlc(&vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  423. vc1_norm2_bits, 1, 1,
  424. vc1_norm2_codes, 1, 1, 1);
  425. init_vlc(&vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  426. vc1_norm6_bits, 1, 1,
  427. vc1_norm6_codes, 2, 2, 1);
  428. init_vlc(&vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  429. vc1_imode_bits, 1, 1,
  430. vc1_imode_codes, 1, 1, 1);
  431. for (i=0; i<3; i++)
  432. {
  433. init_vlc(&vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  434. vc1_ttmb_bits[i], 1, 1,
  435. vc1_ttmb_codes[i], 2, 2, 1);
  436. init_vlc(&vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  437. vc1_ttblk_bits[i], 1, 1,
  438. vc1_ttblk_codes[i], 1, 1, 1);
  439. init_vlc(&vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  440. vc1_subblkpat_bits[i], 1, 1,
  441. vc1_subblkpat_codes[i], 1, 1, 1);
  442. }
  443. for(i=0; i<4; i++)
  444. {
  445. init_vlc(&vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  446. vc1_4mv_block_pattern_bits[i], 1, 1,
  447. vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  448. init_vlc(&vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  449. vc1_cbpcy_p_bits[i], 1, 1,
  450. vc1_cbpcy_p_codes[i], 2, 2, 1);
  451. init_vlc(&vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  452. vc1_mv_diff_bits[i], 1, 1,
  453. vc1_mv_diff_codes[i], 2, 2, 1);
  454. }
  455. for(i=0; i<8; i++)
  456. init_vlc(&vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  457. &vc1_ac_tables[i][0][1], 8, 4,
  458. &vc1_ac_tables[i][0][0], 8, 4, 1);
  459. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  460. &ff_msmp4_mb_i_table[0][1], 4, 2,
  461. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  462. }
  463. /* Other defaults */
  464. v->pq = -1;
  465. v->mvrange = 0; /* 7.1.1.18, p80 */
  466. return 0;
  467. }
  468. /***********************************************************************/
  469. /**
  470. * @defgroup bitplane VC9 Bitplane decoding
  471. * @see 8.7, p56
  472. * @{
  473. */
  474. /** @addtogroup bitplane
  475. * Imode types
  476. * @{
  477. */
  478. enum Imode {
  479. IMODE_RAW,
  480. IMODE_NORM2,
  481. IMODE_DIFF2,
  482. IMODE_NORM6,
  483. IMODE_DIFF6,
  484. IMODE_ROWSKIP,
  485. IMODE_COLSKIP
  486. };
  487. /** @} */ //imode defines
  488. /** Decode rows by checking if they are skipped
  489. * @param plane Buffer to store decoded bits
  490. * @param[in] width Width of this buffer
  491. * @param[in] height Height of this buffer
  492. * @param[in] stride of this buffer
  493. */
  494. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  495. int x, y;
  496. for (y=0; y<height; y++){
  497. if (!get_bits(gb, 1)) //rowskip
  498. memset(plane, 0, width);
  499. else
  500. for (x=0; x<width; x++)
  501. plane[x] = get_bits(gb, 1);
  502. plane += stride;
  503. }
  504. }
  505. /** Decode columns by checking if they are skipped
  506. * @param plane Buffer to store decoded bits
  507. * @param[in] width Width of this buffer
  508. * @param[in] height Height of this buffer
  509. * @param[in] stride of this buffer
  510. * @fixme FIXME: Optimize
  511. */
  512. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  513. int x, y;
  514. for (x=0; x<width; x++){
  515. if (!get_bits(gb, 1)) //colskip
  516. for (y=0; y<height; y++)
  517. plane[y*stride] = 0;
  518. else
  519. for (y=0; y<height; y++)
  520. plane[y*stride] = get_bits(gb, 1);
  521. plane ++;
  522. }
  523. }
  524. /** Decode a bitplane's bits
  525. * @param bp Bitplane where to store the decode bits
  526. * @param v VC-1 context for bit reading and logging
  527. * @return Status
  528. * @fixme FIXME: Optimize
  529. */
  530. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  531. {
  532. GetBitContext *gb = &v->s.gb;
  533. int imode, x, y, code, offset;
  534. uint8_t invert, *planep = data;
  535. int width, height, stride;
  536. width = v->s.mb_width;
  537. height = v->s.mb_height;
  538. stride = v->s.mb_stride;
  539. invert = get_bits(gb, 1);
  540. imode = get_vlc2(gb, vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  541. *raw_flag = 0;
  542. switch (imode)
  543. {
  544. case IMODE_RAW:
  545. //Data is actually read in the MB layer (same for all tests == "raw")
  546. *raw_flag = 1; //invert ignored
  547. return invert;
  548. case IMODE_DIFF2:
  549. case IMODE_NORM2:
  550. if ((height * width) & 1)
  551. {
  552. *planep++ = get_bits(gb, 1);
  553. offset = 1;
  554. }
  555. else offset = 0;
  556. // decode bitplane as one long line
  557. for (y = offset; y < height * width; y += 2) {
  558. code = get_vlc2(gb, vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  559. *planep++ = code & 1;
  560. offset++;
  561. if(offset == width) {
  562. offset = 0;
  563. planep += stride - width;
  564. }
  565. *planep++ = code >> 1;
  566. offset++;
  567. if(offset == width) {
  568. offset = 0;
  569. planep += stride - width;
  570. }
  571. }
  572. break;
  573. case IMODE_DIFF6:
  574. case IMODE_NORM6:
  575. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  576. for(y = 0; y < height; y+= 3) {
  577. for(x = width & 1; x < width; x += 2) {
  578. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  579. if(code < 0){
  580. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  581. return -1;
  582. }
  583. planep[x + 0] = (code >> 0) & 1;
  584. planep[x + 1] = (code >> 1) & 1;
  585. planep[x + 0 + stride] = (code >> 2) & 1;
  586. planep[x + 1 + stride] = (code >> 3) & 1;
  587. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  588. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  589. }
  590. planep += stride * 3;
  591. }
  592. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  593. } else { // 3x2
  594. planep += (height & 1) * stride;
  595. for(y = height & 1; y < height; y += 2) {
  596. for(x = width % 3; x < width; x += 3) {
  597. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  598. if(code < 0){
  599. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  600. return -1;
  601. }
  602. planep[x + 0] = (code >> 0) & 1;
  603. planep[x + 1] = (code >> 1) & 1;
  604. planep[x + 2] = (code >> 2) & 1;
  605. planep[x + 0 + stride] = (code >> 3) & 1;
  606. planep[x + 1 + stride] = (code >> 4) & 1;
  607. planep[x + 2 + stride] = (code >> 5) & 1;
  608. }
  609. planep += stride * 2;
  610. }
  611. x = width % 3;
  612. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  613. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  614. }
  615. break;
  616. case IMODE_ROWSKIP:
  617. decode_rowskip(data, width, height, stride, &v->s.gb);
  618. break;
  619. case IMODE_COLSKIP:
  620. decode_colskip(data, width, height, stride, &v->s.gb);
  621. break;
  622. default: break;
  623. }
  624. /* Applying diff operator */
  625. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  626. {
  627. planep = data;
  628. planep[0] ^= invert;
  629. for (x=1; x<width; x++)
  630. planep[x] ^= planep[x-1];
  631. for (y=1; y<height; y++)
  632. {
  633. planep += stride;
  634. planep[0] ^= planep[-stride];
  635. for (x=1; x<width; x++)
  636. {
  637. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  638. else planep[x] ^= planep[x-1];
  639. }
  640. }
  641. }
  642. else if (invert)
  643. {
  644. planep = data;
  645. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  646. }
  647. return (imode<<1) + invert;
  648. }
  649. /** @} */ //Bitplane group
  650. /***********************************************************************/
  651. /** VOP Dquant decoding
  652. * @param v VC-1 Context
  653. */
  654. static int vop_dquant_decoding(VC1Context *v)
  655. {
  656. GetBitContext *gb = &v->s.gb;
  657. int pqdiff;
  658. //variable size
  659. if (v->dquant == 2)
  660. {
  661. pqdiff = get_bits(gb, 3);
  662. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  663. else v->altpq = v->pq + pqdiff + 1;
  664. }
  665. else
  666. {
  667. v->dquantfrm = get_bits(gb, 1);
  668. if ( v->dquantfrm )
  669. {
  670. v->dqprofile = get_bits(gb, 2);
  671. switch (v->dqprofile)
  672. {
  673. case DQPROFILE_SINGLE_EDGE:
  674. case DQPROFILE_DOUBLE_EDGES:
  675. v->dqsbedge = get_bits(gb, 2);
  676. break;
  677. case DQPROFILE_ALL_MBS:
  678. v->dqbilevel = get_bits(gb, 1);
  679. default: break; //Forbidden ?
  680. }
  681. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  682. {
  683. pqdiff = get_bits(gb, 3);
  684. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  685. else v->altpq = v->pq + pqdiff + 1;
  686. }
  687. }
  688. }
  689. return 0;
  690. }
  691. /** Put block onto picture
  692. */
  693. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  694. {
  695. uint8_t *Y;
  696. int ys, us, vs;
  697. DSPContext *dsp = &v->s.dsp;
  698. if(v->rangeredfrm) {
  699. int i, j, k;
  700. for(k = 0; k < 6; k++)
  701. for(j = 0; j < 8; j++)
  702. for(i = 0; i < 8; i++)
  703. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  704. }
  705. ys = v->s.current_picture.linesize[0];
  706. us = v->s.current_picture.linesize[1];
  707. vs = v->s.current_picture.linesize[2];
  708. Y = v->s.dest[0];
  709. dsp->put_pixels_clamped(block[0], Y, ys);
  710. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  711. Y += ys * 8;
  712. dsp->put_pixels_clamped(block[2], Y, ys);
  713. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  714. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  715. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  716. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  717. }
  718. }
  719. /** Do motion compensation over 1 macroblock
  720. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  721. */
  722. static void vc1_mc_1mv(VC1Context *v, int dir)
  723. {
  724. MpegEncContext *s = &v->s;
  725. DSPContext *dsp = &v->s.dsp;
  726. uint8_t *srcY, *srcU, *srcV;
  727. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  728. if(!v->s.last_picture.data[0])return;
  729. mx = s->mv[dir][0][0];
  730. my = s->mv[dir][0][1];
  731. // store motion vectors for further use in B frames
  732. if(s->pict_type == P_TYPE) {
  733. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  734. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  735. }
  736. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  737. uvmy = (my + ((my & 3) == 3)) >> 1;
  738. if(v->fastuvmc) {
  739. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  740. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  741. }
  742. if(!dir) {
  743. srcY = s->last_picture.data[0];
  744. srcU = s->last_picture.data[1];
  745. srcV = s->last_picture.data[2];
  746. } else {
  747. srcY = s->next_picture.data[0];
  748. srcU = s->next_picture.data[1];
  749. srcV = s->next_picture.data[2];
  750. }
  751. src_x = s->mb_x * 16 + (mx >> 2);
  752. src_y = s->mb_y * 16 + (my >> 2);
  753. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  754. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  755. src_x = clip( src_x, -16, s->mb_width * 16);
  756. src_y = clip( src_y, -16, s->mb_height * 16);
  757. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  758. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  759. srcY += src_y * s->linesize + src_x;
  760. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  761. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  762. /* for grayscale we should not try to read from unknown area */
  763. if(s->flags & CODEC_FLAG_GRAY) {
  764. srcU = s->edge_emu_buffer + 18 * s->linesize;
  765. srcV = s->edge_emu_buffer + 18 * s->linesize;
  766. }
  767. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  768. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  769. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  770. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  771. srcY -= s->mspel * (1 + s->linesize);
  772. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  773. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  774. srcY = s->edge_emu_buffer;
  775. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  776. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  777. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  778. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  779. srcU = uvbuf;
  780. srcV = uvbuf + 16;
  781. /* if we deal with range reduction we need to scale source blocks */
  782. if(v->rangeredfrm) {
  783. int i, j;
  784. uint8_t *src, *src2;
  785. src = srcY;
  786. for(j = 0; j < 17 + s->mspel*2; j++) {
  787. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  788. src += s->linesize;
  789. }
  790. src = srcU; src2 = srcV;
  791. for(j = 0; j < 9; j++) {
  792. for(i = 0; i < 9; i++) {
  793. src[i] = ((src[i] - 128) >> 1) + 128;
  794. src2[i] = ((src2[i] - 128) >> 1) + 128;
  795. }
  796. src += s->uvlinesize;
  797. src2 += s->uvlinesize;
  798. }
  799. }
  800. /* if we deal with intensity compensation we need to scale source blocks */
  801. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  802. int i, j;
  803. uint8_t *src, *src2;
  804. src = srcY;
  805. for(j = 0; j < 17 + s->mspel*2; j++) {
  806. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  807. src += s->linesize;
  808. }
  809. src = srcU; src2 = srcV;
  810. for(j = 0; j < 9; j++) {
  811. for(i = 0; i < 9; i++) {
  812. src[i] = v->lutuv[src[i]];
  813. src2[i] = v->lutuv[src2[i]];
  814. }
  815. src += s->uvlinesize;
  816. src2 += s->uvlinesize;
  817. }
  818. }
  819. srcY += s->mspel * (1 + s->linesize);
  820. }
  821. if(s->mspel) {
  822. dxy = ((my & 3) << 2) | (mx & 3);
  823. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  824. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  825. srcY += s->linesize * 8;
  826. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  827. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  828. } else { // hpel mc - always used for luma
  829. dxy = (my & 2) | ((mx & 2) >> 1);
  830. if(!v->rnd)
  831. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  832. else
  833. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  834. }
  835. if(s->flags & CODEC_FLAG_GRAY) return;
  836. /* Chroma MC always uses qpel bilinear */
  837. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  838. uvmx = (uvmx&3)<<1;
  839. uvmy = (uvmy&3)<<1;
  840. if(!v->rnd){
  841. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  842. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  843. }else{
  844. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  845. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  846. }
  847. }
  848. /** Do motion compensation for 4-MV macroblock - luminance block
  849. */
  850. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  851. {
  852. MpegEncContext *s = &v->s;
  853. DSPContext *dsp = &v->s.dsp;
  854. uint8_t *srcY;
  855. int dxy, mx, my, src_x, src_y;
  856. int off;
  857. if(!v->s.last_picture.data[0])return;
  858. mx = s->mv[0][n][0];
  859. my = s->mv[0][n][1];
  860. srcY = s->last_picture.data[0];
  861. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  862. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  863. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  864. src_x = clip( src_x, -16, s->mb_width * 16);
  865. src_y = clip( src_y, -16, s->mb_height * 16);
  866. srcY += src_y * s->linesize + src_x;
  867. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  868. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  869. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  870. srcY -= s->mspel * (1 + s->linesize);
  871. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  872. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  873. srcY = s->edge_emu_buffer;
  874. /* if we deal with range reduction we need to scale source blocks */
  875. if(v->rangeredfrm) {
  876. int i, j;
  877. uint8_t *src;
  878. src = srcY;
  879. for(j = 0; j < 9 + s->mspel*2; j++) {
  880. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  881. src += s->linesize;
  882. }
  883. }
  884. /* if we deal with intensity compensation we need to scale source blocks */
  885. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  886. int i, j;
  887. uint8_t *src;
  888. src = srcY;
  889. for(j = 0; j < 9 + s->mspel*2; j++) {
  890. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  891. src += s->linesize;
  892. }
  893. }
  894. srcY += s->mspel * (1 + s->linesize);
  895. }
  896. if(s->mspel) {
  897. dxy = ((my & 3) << 2) | (mx & 3);
  898. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  899. } else { // hpel mc - always used for luma
  900. dxy = (my & 2) | ((mx & 2) >> 1);
  901. if(!v->rnd)
  902. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  903. else
  904. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  905. }
  906. }
  907. static inline int median4(int a, int b, int c, int d)
  908. {
  909. if(a < b) {
  910. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  911. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  912. } else {
  913. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  914. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  915. }
  916. }
  917. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  918. */
  919. static void vc1_mc_4mv_chroma(VC1Context *v)
  920. {
  921. MpegEncContext *s = &v->s;
  922. DSPContext *dsp = &v->s.dsp;
  923. uint8_t *srcU, *srcV;
  924. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  925. int i, idx, tx = 0, ty = 0;
  926. int mvx[4], mvy[4], intra[4];
  927. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  928. if(!v->s.last_picture.data[0])return;
  929. if(s->flags & CODEC_FLAG_GRAY) return;
  930. for(i = 0; i < 4; i++) {
  931. mvx[i] = s->mv[0][i][0];
  932. mvy[i] = s->mv[0][i][1];
  933. intra[i] = v->mb_type[0][s->block_index[i]];
  934. }
  935. /* calculate chroma MV vector from four luma MVs */
  936. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  937. if(!idx) { // all blocks are inter
  938. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  939. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  940. } else if(count[idx] == 1) { // 3 inter blocks
  941. switch(idx) {
  942. case 0x1:
  943. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  944. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  945. break;
  946. case 0x2:
  947. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  948. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  949. break;
  950. case 0x4:
  951. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  952. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  953. break;
  954. case 0x8:
  955. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  956. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  957. break;
  958. }
  959. } else if(count[idx] == 2) {
  960. int t1 = 0, t2 = 0;
  961. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  962. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  963. tx = (mvx[t1] + mvx[t2]) / 2;
  964. ty = (mvy[t1] + mvy[t2]) / 2;
  965. } else
  966. return; //no need to do MC for inter blocks
  967. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  968. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  969. uvmx = (tx + ((tx&3) == 3)) >> 1;
  970. uvmy = (ty + ((ty&3) == 3)) >> 1;
  971. if(v->fastuvmc) {
  972. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  973. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  974. }
  975. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  976. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  977. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  978. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  979. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  980. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  981. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  982. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  983. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  984. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  985. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  986. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  987. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  988. srcU = s->edge_emu_buffer;
  989. srcV = s->edge_emu_buffer + 16;
  990. /* if we deal with range reduction we need to scale source blocks */
  991. if(v->rangeredfrm) {
  992. int i, j;
  993. uint8_t *src, *src2;
  994. src = srcU; src2 = srcV;
  995. for(j = 0; j < 9; j++) {
  996. for(i = 0; i < 9; i++) {
  997. src[i] = ((src[i] - 128) >> 1) + 128;
  998. src2[i] = ((src2[i] - 128) >> 1) + 128;
  999. }
  1000. src += s->uvlinesize;
  1001. src2 += s->uvlinesize;
  1002. }
  1003. }
  1004. /* if we deal with intensity compensation we need to scale source blocks */
  1005. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1006. int i, j;
  1007. uint8_t *src, *src2;
  1008. src = srcU; src2 = srcV;
  1009. for(j = 0; j < 9; j++) {
  1010. for(i = 0; i < 9; i++) {
  1011. src[i] = v->lutuv[src[i]];
  1012. src2[i] = v->lutuv[src2[i]];
  1013. }
  1014. src += s->uvlinesize;
  1015. src2 += s->uvlinesize;
  1016. }
  1017. }
  1018. }
  1019. /* Chroma MC always uses qpel bilinear */
  1020. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1021. uvmx = (uvmx&3)<<1;
  1022. uvmy = (uvmy&3)<<1;
  1023. if(!v->rnd){
  1024. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1025. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1026. }else{
  1027. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1028. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1029. }
  1030. }
  1031. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  1032. /**
  1033. * Decode Simple/Main Profiles sequence header
  1034. * @see Figure 7-8, p16-17
  1035. * @param avctx Codec context
  1036. * @param gb GetBit context initialized from Codec context extra_data
  1037. * @return Status
  1038. */
  1039. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  1040. {
  1041. VC1Context *v = avctx->priv_data;
  1042. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  1043. v->profile = get_bits(gb, 2);
  1044. if (v->profile == 2)
  1045. {
  1046. av_log(avctx, AV_LOG_ERROR, "Profile value 2 is forbidden (and WMV3 Complex Profile is unsupported)\n");
  1047. return -1;
  1048. }
  1049. if (v->profile == PROFILE_ADVANCED)
  1050. {
  1051. return decode_sequence_header_adv(v, gb);
  1052. }
  1053. else
  1054. {
  1055. v->res_sm = get_bits(gb, 2); //reserved
  1056. if (v->res_sm)
  1057. {
  1058. av_log(avctx, AV_LOG_ERROR,
  1059. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  1060. return -1;
  1061. }
  1062. }
  1063. // (fps-2)/4 (->30)
  1064. v->frmrtq_postproc = get_bits(gb, 3); //common
  1065. // (bitrate-32kbps)/64kbps
  1066. v->bitrtq_postproc = get_bits(gb, 5); //common
  1067. v->s.loop_filter = get_bits(gb, 1); //common
  1068. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  1069. {
  1070. av_log(avctx, AV_LOG_ERROR,
  1071. "LOOPFILTER shell not be enabled in simple profile\n");
  1072. }
  1073. v->res_x8 = get_bits(gb, 1); //reserved
  1074. if (v->res_x8)
  1075. {
  1076. av_log(avctx, AV_LOG_ERROR,
  1077. "1 for reserved RES_X8 is forbidden\n");
  1078. //return -1;
  1079. }
  1080. v->multires = get_bits(gb, 1);
  1081. v->res_fasttx = get_bits(gb, 1);
  1082. if (!v->res_fasttx)
  1083. {
  1084. av_log(avctx, AV_LOG_ERROR,
  1085. "0 for reserved RES_FASTTX is forbidden\n");
  1086. //return -1;
  1087. }
  1088. v->fastuvmc = get_bits(gb, 1); //common
  1089. if (!v->profile && !v->fastuvmc)
  1090. {
  1091. av_log(avctx, AV_LOG_ERROR,
  1092. "FASTUVMC unavailable in Simple Profile\n");
  1093. return -1;
  1094. }
  1095. v->extended_mv = get_bits(gb, 1); //common
  1096. if (!v->profile && v->extended_mv)
  1097. {
  1098. av_log(avctx, AV_LOG_ERROR,
  1099. "Extended MVs unavailable in Simple Profile\n");
  1100. return -1;
  1101. }
  1102. v->dquant = get_bits(gb, 2); //common
  1103. v->vstransform = get_bits(gb, 1); //common
  1104. v->res_transtab = get_bits(gb, 1);
  1105. if (v->res_transtab)
  1106. {
  1107. av_log(avctx, AV_LOG_ERROR,
  1108. "1 for reserved RES_TRANSTAB is forbidden\n");
  1109. return -1;
  1110. }
  1111. v->overlap = get_bits(gb, 1); //common
  1112. v->s.resync_marker = get_bits(gb, 1);
  1113. v->rangered = get_bits(gb, 1);
  1114. if (v->rangered && v->profile == PROFILE_SIMPLE)
  1115. {
  1116. av_log(avctx, AV_LOG_INFO,
  1117. "RANGERED should be set to 0 in simple profile\n");
  1118. }
  1119. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  1120. v->quantizer_mode = get_bits(gb, 2); //common
  1121. v->finterpflag = get_bits(gb, 1); //common
  1122. v->res_rtm_flag = get_bits(gb, 1); //reserved
  1123. if (!v->res_rtm_flag)
  1124. {
  1125. // av_log(avctx, AV_LOG_ERROR,
  1126. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  1127. av_log(avctx, AV_LOG_ERROR,
  1128. "Old WMV3 version detected, only I-frames will be decoded\n");
  1129. //return -1;
  1130. }
  1131. av_log(avctx, AV_LOG_DEBUG,
  1132. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1133. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  1134. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  1135. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  1136. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  1137. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  1138. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  1139. v->dquant, v->quantizer_mode, avctx->max_b_frames
  1140. );
  1141. return 0;
  1142. }
  1143. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  1144. {
  1145. v->res_rtm_flag = 1;
  1146. v->level = get_bits(gb, 3);
  1147. if(v->level >= 5)
  1148. {
  1149. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  1150. }
  1151. v->chromaformat = get_bits(gb, 2);
  1152. if (v->chromaformat != 1)
  1153. {
  1154. av_log(v->s.avctx, AV_LOG_ERROR,
  1155. "Only 4:2:0 chroma format supported\n");
  1156. return -1;
  1157. }
  1158. // (fps-2)/4 (->30)
  1159. v->frmrtq_postproc = get_bits(gb, 3); //common
  1160. // (bitrate-32kbps)/64kbps
  1161. v->bitrtq_postproc = get_bits(gb, 5); //common
  1162. v->postprocflag = get_bits(gb, 1); //common
  1163. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  1164. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  1165. v->broadcast = get_bits1(gb);
  1166. v->interlace = get_bits1(gb);
  1167. if(v->interlace){
  1168. av_log(v->s.avctx, AV_LOG_ERROR, "Interlaced mode not supported (yet)\n");
  1169. return -1;
  1170. }
  1171. v->tfcntrflag = get_bits1(gb);
  1172. v->finterpflag = get_bits1(gb);
  1173. get_bits1(gb); // reserved
  1174. av_log(v->s.avctx, AV_LOG_DEBUG,
  1175. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1176. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  1177. "TFCTRflag=%i, FINTERPflag=%i\n",
  1178. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  1179. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  1180. v->tfcntrflag, v->finterpflag
  1181. );
  1182. v->psf = get_bits1(gb);
  1183. if(v->psf) { //PsF, 6.1.13
  1184. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  1185. return -1;
  1186. }
  1187. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  1188. int w, h, ar = 0;
  1189. av_log(v->s.avctx, AV_LOG_INFO, "Display extended info:\n");
  1190. w = get_bits(gb, 14) + 1;
  1191. h = get_bits(gb, 14) + 1;
  1192. av_log(v->s.avctx, AV_LOG_INFO, "Display dimensions: %ix%i\n", w, h);
  1193. if(get_bits1(gb))
  1194. ar = get_bits(gb, 4);
  1195. if(ar && ar < 14){
  1196. v->s.avctx->sample_aspect_ratio = vc1_pixel_aspect[ar];
  1197. }else if(ar == 15){
  1198. w = get_bits(gb, 8);
  1199. h = get_bits(gb, 8);
  1200. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  1201. }
  1202. if(get_bits1(gb)){ //framerate stuff
  1203. if(get_bits1(gb)) {
  1204. get_bits(gb, 16);
  1205. } else {
  1206. get_bits(gb, 8);
  1207. get_bits(gb, 4);
  1208. }
  1209. }
  1210. if(get_bits1(gb)){
  1211. v->color_prim = get_bits(gb, 8);
  1212. v->transfer_char = get_bits(gb, 8);
  1213. v->matrix_coef = get_bits(gb, 8);
  1214. }
  1215. }
  1216. v->hrd_param_flag = get_bits1(gb);
  1217. if(v->hrd_param_flag) {
  1218. int i;
  1219. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  1220. get_bits(gb, 4); //bitrate exponent
  1221. get_bits(gb, 4); //buffer size exponent
  1222. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  1223. get_bits(gb, 16); //hrd_rate[n]
  1224. get_bits(gb, 16); //hrd_buffer[n]
  1225. }
  1226. }
  1227. return 0;
  1228. }
  1229. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  1230. {
  1231. VC1Context *v = avctx->priv_data;
  1232. int i, blink, refdist;
  1233. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  1234. blink = get_bits1(gb); // broken link
  1235. avctx->max_b_frames = 1 - get_bits1(gb); // 'closed entry' also signalize possible B-frames
  1236. v->panscanflag = get_bits1(gb);
  1237. refdist = get_bits1(gb); // refdist flag
  1238. v->s.loop_filter = get_bits1(gb);
  1239. v->fastuvmc = get_bits1(gb);
  1240. v->extended_mv = get_bits1(gb);
  1241. v->dquant = get_bits(gb, 2);
  1242. v->vstransform = get_bits1(gb);
  1243. v->overlap = get_bits1(gb);
  1244. v->quantizer_mode = get_bits(gb, 2);
  1245. if(v->hrd_param_flag){
  1246. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  1247. get_bits(gb, 8); //hrd_full[n]
  1248. }
  1249. }
  1250. if(get_bits1(gb)){
  1251. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  1252. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  1253. }
  1254. if(v->extended_mv)
  1255. v->extended_dmv = get_bits1(gb);
  1256. if(get_bits1(gb)) {
  1257. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  1258. skip_bits(gb, 3); // Y range, ignored for now
  1259. }
  1260. if(get_bits1(gb)) {
  1261. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  1262. skip_bits(gb, 3); // UV range, ignored for now
  1263. }
  1264. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  1265. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  1266. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  1267. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  1268. blink, 1 - avctx->max_b_frames, v->panscanflag, refdist, v->s.loop_filter,
  1269. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  1270. return 0;
  1271. }
  1272. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1273. {
  1274. int pqindex, lowquant, status;
  1275. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1276. skip_bits(gb, 2); //framecnt unused
  1277. v->rangeredfrm = 0;
  1278. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  1279. v->s.pict_type = get_bits(gb, 1);
  1280. if (v->s.avctx->max_b_frames) {
  1281. if (!v->s.pict_type) {
  1282. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  1283. else v->s.pict_type = B_TYPE;
  1284. } else v->s.pict_type = P_TYPE;
  1285. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  1286. v->bi_type = 0;
  1287. if(v->s.pict_type == B_TYPE) {
  1288. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1289. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1290. if(v->bfraction == 0) {
  1291. v->s.pict_type = BI_TYPE;
  1292. }
  1293. }
  1294. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1295. get_bits(gb, 7); // skip buffer fullness
  1296. /* calculate RND */
  1297. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1298. v->rnd = 1;
  1299. if(v->s.pict_type == P_TYPE)
  1300. v->rnd ^= 1;
  1301. /* Quantizer stuff */
  1302. pqindex = get_bits(gb, 5);
  1303. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1304. v->pq = pquant_table[0][pqindex];
  1305. else
  1306. v->pq = pquant_table[1][pqindex];
  1307. v->pquantizer = 1;
  1308. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1309. v->pquantizer = pqindex < 9;
  1310. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1311. v->pquantizer = 0;
  1312. v->pqindex = pqindex;
  1313. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1314. else v->halfpq = 0;
  1315. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1316. v->pquantizer = get_bits(gb, 1);
  1317. v->dquantfrm = 0;
  1318. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1319. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1320. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1321. v->range_x = 1 << (v->k_x - 1);
  1322. v->range_y = 1 << (v->k_y - 1);
  1323. if (v->profile == PROFILE_ADVANCED)
  1324. {
  1325. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1326. }
  1327. else
  1328. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  1329. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1330. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1331. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1332. switch(v->s.pict_type) {
  1333. case P_TYPE:
  1334. if (v->pq < 5) v->tt_index = 0;
  1335. else if(v->pq < 13) v->tt_index = 1;
  1336. else v->tt_index = 2;
  1337. lowquant = (v->pq > 12) ? 0 : 1;
  1338. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1339. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1340. {
  1341. int scale, shift, i;
  1342. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1343. v->lumscale = get_bits(gb, 6);
  1344. v->lumshift = get_bits(gb, 6);
  1345. v->use_ic = 1;
  1346. /* fill lookup tables for intensity compensation */
  1347. if(!v->lumscale) {
  1348. scale = -64;
  1349. shift = (255 - v->lumshift * 2) << 6;
  1350. if(v->lumshift > 31)
  1351. shift += 128 << 6;
  1352. } else {
  1353. scale = v->lumscale + 32;
  1354. if(v->lumshift > 31)
  1355. shift = (v->lumshift - 64) << 6;
  1356. else
  1357. shift = v->lumshift << 6;
  1358. }
  1359. for(i = 0; i < 256; i++) {
  1360. v->luty[i] = clip_uint8((scale * i + shift + 32) >> 6);
  1361. v->lutuv[i] = clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1362. }
  1363. }
  1364. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1365. v->s.quarter_sample = 0;
  1366. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1367. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1368. v->s.quarter_sample = 0;
  1369. else
  1370. v->s.quarter_sample = 1;
  1371. } else
  1372. v->s.quarter_sample = 1;
  1373. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1374. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1375. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1376. || v->mv_mode == MV_PMODE_MIXED_MV)
  1377. {
  1378. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1379. if (status < 0) return -1;
  1380. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1381. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1382. } else {
  1383. v->mv_type_is_raw = 0;
  1384. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1385. }
  1386. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1387. if (status < 0) return -1;
  1388. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1389. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1390. /* Hopefully this is correct for P frames */
  1391. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1392. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1393. if (v->dquant)
  1394. {
  1395. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1396. vop_dquant_decoding(v);
  1397. }
  1398. v->ttfrm = 0; //FIXME Is that so ?
  1399. if (v->vstransform)
  1400. {
  1401. v->ttmbf = get_bits(gb, 1);
  1402. if (v->ttmbf)
  1403. {
  1404. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1405. }
  1406. } else {
  1407. v->ttmbf = 1;
  1408. v->ttfrm = TT_8X8;
  1409. }
  1410. break;
  1411. case B_TYPE:
  1412. if (v->pq < 5) v->tt_index = 0;
  1413. else if(v->pq < 13) v->tt_index = 1;
  1414. else v->tt_index = 2;
  1415. lowquant = (v->pq > 12) ? 0 : 1;
  1416. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1417. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1418. v->s.mspel = v->s.quarter_sample;
  1419. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1420. if (status < 0) return -1;
  1421. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1422. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1423. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1424. if (status < 0) return -1;
  1425. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1426. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1427. v->s.mv_table_index = get_bits(gb, 2);
  1428. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1429. if (v->dquant)
  1430. {
  1431. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1432. vop_dquant_decoding(v);
  1433. }
  1434. v->ttfrm = 0;
  1435. if (v->vstransform)
  1436. {
  1437. v->ttmbf = get_bits(gb, 1);
  1438. if (v->ttmbf)
  1439. {
  1440. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1441. }
  1442. } else {
  1443. v->ttmbf = 1;
  1444. v->ttfrm = TT_8X8;
  1445. }
  1446. break;
  1447. }
  1448. /* AC Syntax */
  1449. v->c_ac_table_index = decode012(gb);
  1450. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1451. {
  1452. v->y_ac_table_index = decode012(gb);
  1453. }
  1454. /* DC Syntax */
  1455. v->s.dc_table_index = get_bits(gb, 1);
  1456. if(v->s.pict_type == BI_TYPE) {
  1457. v->s.pict_type = B_TYPE;
  1458. v->bi_type = 1;
  1459. }
  1460. return 0;
  1461. }
  1462. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1463. {
  1464. int fcm;
  1465. int pqindex, lowquant;
  1466. int status;
  1467. v->p_frame_skipped = 0;
  1468. if(v->interlace)
  1469. fcm = decode012(gb);
  1470. switch(get_prefix(gb, 0, 4)) {
  1471. case 0:
  1472. v->s.pict_type = P_TYPE;
  1473. break;
  1474. case 1:
  1475. v->s.pict_type = B_TYPE;
  1476. break;
  1477. case 2:
  1478. v->s.pict_type = I_TYPE;
  1479. break;
  1480. case 3:
  1481. v->s.pict_type = BI_TYPE;
  1482. break;
  1483. case 4:
  1484. v->s.pict_type = P_TYPE; // skipped pic
  1485. v->p_frame_skipped = 1;
  1486. return 0;
  1487. }
  1488. if(v->tfcntrflag)
  1489. get_bits(gb, 8);
  1490. if(v->broadcast) {
  1491. if(!v->interlace || v->panscanflag) {
  1492. get_bits(gb, 2);
  1493. } else {
  1494. get_bits1(gb);
  1495. get_bits1(gb);
  1496. }
  1497. }
  1498. if(v->panscanflag) {
  1499. //...
  1500. }
  1501. v->rnd = get_bits1(gb);
  1502. if(v->interlace)
  1503. v->uvsamp = get_bits1(gb);
  1504. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1505. if(v->s.pict_type == B_TYPE) {
  1506. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1507. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1508. if(v->bfraction == 0) {
  1509. v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
  1510. }
  1511. }
  1512. pqindex = get_bits(gb, 5);
  1513. v->pqindex = pqindex;
  1514. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1515. v->pq = pquant_table[0][pqindex];
  1516. else
  1517. v->pq = pquant_table[1][pqindex];
  1518. v->pquantizer = 1;
  1519. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1520. v->pquantizer = pqindex < 9;
  1521. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1522. v->pquantizer = 0;
  1523. v->pqindex = pqindex;
  1524. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1525. else v->halfpq = 0;
  1526. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1527. v->pquantizer = get_bits(gb, 1);
  1528. switch(v->s.pict_type) {
  1529. case I_TYPE:
  1530. case BI_TYPE:
  1531. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1532. if (status < 0) return -1;
  1533. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1534. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1535. v->condover = CONDOVER_NONE;
  1536. if(v->overlap && v->pq <= 8) {
  1537. v->condover = decode012(gb);
  1538. if(v->condover == CONDOVER_SELECT) {
  1539. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1540. if (status < 0) return -1;
  1541. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1542. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1543. }
  1544. }
  1545. break;
  1546. case P_TYPE:
  1547. if(v->postprocflag)
  1548. v->postproc = get_bits1(gb);
  1549. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1550. else v->mvrange = 0;
  1551. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1552. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1553. v->range_x = 1 << (v->k_x - 1);
  1554. v->range_y = 1 << (v->k_y - 1);
  1555. if (v->pq < 5) v->tt_index = 0;
  1556. else if(v->pq < 13) v->tt_index = 1;
  1557. else v->tt_index = 2;
  1558. lowquant = (v->pq > 12) ? 0 : 1;
  1559. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1560. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1561. {
  1562. int scale, shift, i;
  1563. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1564. v->lumscale = get_bits(gb, 6);
  1565. v->lumshift = get_bits(gb, 6);
  1566. /* fill lookup tables for intensity compensation */
  1567. if(!v->lumscale) {
  1568. scale = -64;
  1569. shift = (255 - v->lumshift * 2) << 6;
  1570. if(v->lumshift > 31)
  1571. shift += 128 << 6;
  1572. } else {
  1573. scale = v->lumscale + 32;
  1574. if(v->lumshift > 31)
  1575. shift = (v->lumshift - 64) << 6;
  1576. else
  1577. shift = v->lumshift << 6;
  1578. }
  1579. for(i = 0; i < 256; i++) {
  1580. v->luty[i] = clip_uint8((scale * i + shift + 32) >> 6);
  1581. v->lutuv[i] = clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1582. }
  1583. }
  1584. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1585. v->s.quarter_sample = 0;
  1586. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1587. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1588. v->s.quarter_sample = 0;
  1589. else
  1590. v->s.quarter_sample = 1;
  1591. } else
  1592. v->s.quarter_sample = 1;
  1593. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1594. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1595. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1596. || v->mv_mode == MV_PMODE_MIXED_MV)
  1597. {
  1598. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1599. if (status < 0) return -1;
  1600. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1601. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1602. } else {
  1603. v->mv_type_is_raw = 0;
  1604. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1605. }
  1606. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1607. if (status < 0) return -1;
  1608. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1609. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1610. /* Hopefully this is correct for P frames */
  1611. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1612. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1613. if (v->dquant)
  1614. {
  1615. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1616. vop_dquant_decoding(v);
  1617. }
  1618. v->ttfrm = 0; //FIXME Is that so ?
  1619. if (v->vstransform)
  1620. {
  1621. v->ttmbf = get_bits(gb, 1);
  1622. if (v->ttmbf)
  1623. {
  1624. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1625. }
  1626. } else {
  1627. v->ttmbf = 1;
  1628. v->ttfrm = TT_8X8;
  1629. }
  1630. break;
  1631. case B_TYPE:
  1632. if(v->postprocflag)
  1633. v->postproc = get_bits1(gb);
  1634. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1635. else v->mvrange = 0;
  1636. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1637. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1638. v->range_x = 1 << (v->k_x - 1);
  1639. v->range_y = 1 << (v->k_y - 1);
  1640. if (v->pq < 5) v->tt_index = 0;
  1641. else if(v->pq < 13) v->tt_index = 1;
  1642. else v->tt_index = 2;
  1643. lowquant = (v->pq > 12) ? 0 : 1;
  1644. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1645. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1646. v->s.mspel = v->s.quarter_sample;
  1647. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1648. if (status < 0) return -1;
  1649. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1650. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1651. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1652. if (status < 0) return -1;
  1653. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1654. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1655. v->s.mv_table_index = get_bits(gb, 2);
  1656. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1657. if (v->dquant)
  1658. {
  1659. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1660. vop_dquant_decoding(v);
  1661. }
  1662. v->ttfrm = 0;
  1663. if (v->vstransform)
  1664. {
  1665. v->ttmbf = get_bits(gb, 1);
  1666. if (v->ttmbf)
  1667. {
  1668. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1669. }
  1670. } else {
  1671. v->ttmbf = 1;
  1672. v->ttfrm = TT_8X8;
  1673. }
  1674. break;
  1675. }
  1676. /* AC Syntax */
  1677. v->c_ac_table_index = decode012(gb);
  1678. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1679. {
  1680. v->y_ac_table_index = decode012(gb);
  1681. }
  1682. /* DC Syntax */
  1683. v->s.dc_table_index = get_bits(gb, 1);
  1684. if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) {
  1685. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1686. vop_dquant_decoding(v);
  1687. }
  1688. v->bi_type = 0;
  1689. if(v->s.pict_type == BI_TYPE) {
  1690. v->s.pict_type = B_TYPE;
  1691. v->bi_type = 1;
  1692. }
  1693. return 0;
  1694. }
  1695. /***********************************************************************/
  1696. /**
  1697. * @defgroup block VC-1 Block-level functions
  1698. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1699. * @{
  1700. */
  1701. /**
  1702. * @def GET_MQUANT
  1703. * @brief Get macroblock-level quantizer scale
  1704. */
  1705. #define GET_MQUANT() \
  1706. if (v->dquantfrm) \
  1707. { \
  1708. int edges = 0; \
  1709. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1710. { \
  1711. if (v->dqbilevel) \
  1712. { \
  1713. mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \
  1714. } \
  1715. else \
  1716. { \
  1717. mqdiff = get_bits(gb, 3); \
  1718. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1719. else mquant = get_bits(gb, 5); \
  1720. } \
  1721. } \
  1722. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1723. edges = 1 << v->dqsbedge; \
  1724. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1725. edges = (3 << v->dqsbedge) % 15; \
  1726. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1727. edges = 15; \
  1728. if((edges&1) && !s->mb_x) \
  1729. mquant = v->altpq; \
  1730. if((edges&2) && s->first_slice_line) \
  1731. mquant = v->altpq; \
  1732. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1733. mquant = v->altpq; \
  1734. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1735. mquant = v->altpq; \
  1736. }
  1737. /**
  1738. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1739. * @brief Get MV differentials
  1740. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1741. * @param _dmv_x Horizontal differential for decoded MV
  1742. * @param _dmv_y Vertical differential for decoded MV
  1743. */
  1744. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1745. index = 1 + get_vlc2(gb, vc1_mv_diff_vlc[s->mv_table_index].table,\
  1746. VC1_MV_DIFF_VLC_BITS, 2); \
  1747. if (index > 36) \
  1748. { \
  1749. mb_has_coeffs = 1; \
  1750. index -= 37; \
  1751. } \
  1752. else mb_has_coeffs = 0; \
  1753. s->mb_intra = 0; \
  1754. if (!index) { _dmv_x = _dmv_y = 0; } \
  1755. else if (index == 35) \
  1756. { \
  1757. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1758. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1759. } \
  1760. else if (index == 36) \
  1761. { \
  1762. _dmv_x = 0; \
  1763. _dmv_y = 0; \
  1764. s->mb_intra = 1; \
  1765. } \
  1766. else \
  1767. { \
  1768. index1 = index%6; \
  1769. if (!s->quarter_sample && index1 == 5) val = 1; \
  1770. else val = 0; \
  1771. if(size_table[index1] - val > 0) \
  1772. val = get_bits(gb, size_table[index1] - val); \
  1773. else val = 0; \
  1774. sign = 0 - (val&1); \
  1775. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1776. \
  1777. index1 = index/6; \
  1778. if (!s->quarter_sample && index1 == 5) val = 1; \
  1779. else val = 0; \
  1780. if(size_table[index1] - val > 0) \
  1781. val = get_bits(gb, size_table[index1] - val); \
  1782. else val = 0; \
  1783. sign = 0 - (val&1); \
  1784. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1785. }
  1786. /** Predict and set motion vector
  1787. */
  1788. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1789. {
  1790. int xy, wrap, off = 0;
  1791. int16_t *A, *B, *C;
  1792. int px, py;
  1793. int sum;
  1794. /* scale MV difference to be quad-pel */
  1795. dmv_x <<= 1 - s->quarter_sample;
  1796. dmv_y <<= 1 - s->quarter_sample;
  1797. wrap = s->b8_stride;
  1798. xy = s->block_index[n];
  1799. if(s->mb_intra){
  1800. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1801. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1802. if(mv1) { /* duplicate motion data for 1-MV block */
  1803. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1804. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1805. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1806. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1807. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1808. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1809. }
  1810. return;
  1811. }
  1812. C = s->current_picture.motion_val[0][xy - 1];
  1813. A = s->current_picture.motion_val[0][xy - wrap];
  1814. if(mv1)
  1815. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1816. else {
  1817. //in 4-MV mode different blocks have different B predictor position
  1818. switch(n){
  1819. case 0:
  1820. off = (s->mb_x > 0) ? -1 : 1;
  1821. break;
  1822. case 1:
  1823. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1824. break;
  1825. case 2:
  1826. off = 1;
  1827. break;
  1828. case 3:
  1829. off = -1;
  1830. }
  1831. }
  1832. B = s->current_picture.motion_val[0][xy - wrap + off];
  1833. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1834. if(s->mb_width == 1) {
  1835. px = A[0];
  1836. py = A[1];
  1837. } else {
  1838. px = mid_pred(A[0], B[0], C[0]);
  1839. py = mid_pred(A[1], B[1], C[1]);
  1840. }
  1841. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1842. px = C[0];
  1843. py = C[1];
  1844. } else {
  1845. px = py = 0;
  1846. }
  1847. /* Pullback MV as specified in 8.3.5.3.4 */
  1848. {
  1849. int qx, qy, X, Y;
  1850. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1851. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1852. X = (s->mb_width << 6) - 4;
  1853. Y = (s->mb_height << 6) - 4;
  1854. if(mv1) {
  1855. if(qx + px < -60) px = -60 - qx;
  1856. if(qy + py < -60) py = -60 - qy;
  1857. } else {
  1858. if(qx + px < -28) px = -28 - qx;
  1859. if(qy + py < -28) py = -28 - qy;
  1860. }
  1861. if(qx + px > X) px = X - qx;
  1862. if(qy + py > Y) py = Y - qy;
  1863. }
  1864. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1865. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1866. if(is_intra[xy - wrap])
  1867. sum = FFABS(px) + FFABS(py);
  1868. else
  1869. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1870. if(sum > 32) {
  1871. if(get_bits1(&s->gb)) {
  1872. px = A[0];
  1873. py = A[1];
  1874. } else {
  1875. px = C[0];
  1876. py = C[1];
  1877. }
  1878. } else {
  1879. if(is_intra[xy - 1])
  1880. sum = FFABS(px) + FFABS(py);
  1881. else
  1882. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1883. if(sum > 32) {
  1884. if(get_bits1(&s->gb)) {
  1885. px = A[0];
  1886. py = A[1];
  1887. } else {
  1888. px = C[0];
  1889. py = C[1];
  1890. }
  1891. }
  1892. }
  1893. }
  1894. /* store MV using signed modulus of MV range defined in 4.11 */
  1895. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1896. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1897. if(mv1) { /* duplicate motion data for 1-MV block */
  1898. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1899. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1900. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1901. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1902. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1903. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1904. }
  1905. }
  1906. /** Motion compensation for direct or interpolated blocks in B-frames
  1907. */
  1908. static void vc1_interp_mc(VC1Context *v)
  1909. {
  1910. MpegEncContext *s = &v->s;
  1911. DSPContext *dsp = &v->s.dsp;
  1912. uint8_t *srcY, *srcU, *srcV;
  1913. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1914. if(!v->s.next_picture.data[0])return;
  1915. mx = s->mv[1][0][0];
  1916. my = s->mv[1][0][1];
  1917. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1918. uvmy = (my + ((my & 3) == 3)) >> 1;
  1919. if(v->fastuvmc) {
  1920. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1921. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1922. }
  1923. srcY = s->next_picture.data[0];
  1924. srcU = s->next_picture.data[1];
  1925. srcV = s->next_picture.data[2];
  1926. src_x = s->mb_x * 16 + (mx >> 2);
  1927. src_y = s->mb_y * 16 + (my >> 2);
  1928. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1929. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1930. src_x = clip( src_x, -16, s->mb_width * 16);
  1931. src_y = clip( src_y, -16, s->mb_height * 16);
  1932. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  1933. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  1934. srcY += src_y * s->linesize + src_x;
  1935. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1936. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1937. /* for grayscale we should not try to read from unknown area */
  1938. if(s->flags & CODEC_FLAG_GRAY) {
  1939. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1940. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1941. }
  1942. if(v->rangeredfrm
  1943. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1944. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1945. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1946. srcY -= s->mspel * (1 + s->linesize);
  1947. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1948. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1949. srcY = s->edge_emu_buffer;
  1950. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1951. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1952. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1953. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1954. srcU = uvbuf;
  1955. srcV = uvbuf + 16;
  1956. /* if we deal with range reduction we need to scale source blocks */
  1957. if(v->rangeredfrm) {
  1958. int i, j;
  1959. uint8_t *src, *src2;
  1960. src = srcY;
  1961. for(j = 0; j < 17 + s->mspel*2; j++) {
  1962. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1963. src += s->linesize;
  1964. }
  1965. src = srcU; src2 = srcV;
  1966. for(j = 0; j < 9; j++) {
  1967. for(i = 0; i < 9; i++) {
  1968. src[i] = ((src[i] - 128) >> 1) + 128;
  1969. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1970. }
  1971. src += s->uvlinesize;
  1972. src2 += s->uvlinesize;
  1973. }
  1974. }
  1975. srcY += s->mspel * (1 + s->linesize);
  1976. }
  1977. mx >>= 1;
  1978. my >>= 1;
  1979. dxy = ((my & 1) << 1) | (mx & 1);
  1980. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1981. if(s->flags & CODEC_FLAG_GRAY) return;
  1982. /* Chroma MC always uses qpel blilinear */
  1983. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1984. uvmx = (uvmx&3)<<1;
  1985. uvmy = (uvmy&3)<<1;
  1986. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1987. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1988. }
  1989. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1990. {
  1991. int n = bfrac;
  1992. #if B_FRACTION_DEN==256
  1993. if(inv)
  1994. n -= 256;
  1995. if(!qs)
  1996. return 2 * ((value * n + 255) >> 9);
  1997. return (value * n + 128) >> 8;
  1998. #else
  1999. if(inv)
  2000. n -= B_FRACTION_DEN;
  2001. if(!qs)
  2002. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  2003. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  2004. #endif
  2005. }
  2006. /** Reconstruct motion vector for B-frame and do motion compensation
  2007. */
  2008. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  2009. {
  2010. if(v->use_ic) {
  2011. v->mv_mode2 = v->mv_mode;
  2012. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  2013. }
  2014. if(direct) {
  2015. vc1_mc_1mv(v, 0);
  2016. vc1_interp_mc(v);
  2017. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2018. return;
  2019. }
  2020. if(mode == BMV_TYPE_INTERPOLATED) {
  2021. vc1_mc_1mv(v, 0);
  2022. vc1_interp_mc(v);
  2023. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2024. return;
  2025. }
  2026. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  2027. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  2028. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2029. }
  2030. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  2031. {
  2032. MpegEncContext *s = &v->s;
  2033. int xy, wrap, off = 0;
  2034. int16_t *A, *B, *C;
  2035. int px, py;
  2036. int sum;
  2037. int r_x, r_y;
  2038. const uint8_t *is_intra = v->mb_type[0];
  2039. r_x = v->range_x;
  2040. r_y = v->range_y;
  2041. /* scale MV difference to be quad-pel */
  2042. dmv_x[0] <<= 1 - s->quarter_sample;
  2043. dmv_y[0] <<= 1 - s->quarter_sample;
  2044. dmv_x[1] <<= 1 - s->quarter_sample;
  2045. dmv_y[1] <<= 1 - s->quarter_sample;
  2046. wrap = s->b8_stride;
  2047. xy = s->block_index[0];
  2048. if(s->mb_intra) {
  2049. s->current_picture.motion_val[0][xy][0] =
  2050. s->current_picture.motion_val[0][xy][1] =
  2051. s->current_picture.motion_val[1][xy][0] =
  2052. s->current_picture.motion_val[1][xy][1] = 0;
  2053. return;
  2054. }
  2055. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  2056. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  2057. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  2058. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  2059. if(direct) {
  2060. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  2061. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  2062. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  2063. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2064. return;
  2065. }
  2066. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2067. C = s->current_picture.motion_val[0][xy - 2];
  2068. A = s->current_picture.motion_val[0][xy - wrap*2];
  2069. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2070. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  2071. if(!s->first_slice_line) { // predictor A is not out of bounds
  2072. if(s->mb_width == 1) {
  2073. px = A[0];
  2074. py = A[1];
  2075. } else {
  2076. px = mid_pred(A[0], B[0], C[0]);
  2077. py = mid_pred(A[1], B[1], C[1]);
  2078. }
  2079. } else if(s->mb_x) { // predictor C is not out of bounds
  2080. px = C[0];
  2081. py = C[1];
  2082. } else {
  2083. px = py = 0;
  2084. }
  2085. /* Pullback MV as specified in 8.3.5.3.4 */
  2086. {
  2087. int qx, qy, X, Y;
  2088. if(v->profile < PROFILE_ADVANCED) {
  2089. qx = (s->mb_x << 5);
  2090. qy = (s->mb_y << 5);
  2091. X = (s->mb_width << 5) - 4;
  2092. Y = (s->mb_height << 5) - 4;
  2093. if(qx + px < -28) px = -28 - qx;
  2094. if(qy + py < -28) py = -28 - qy;
  2095. if(qx + px > X) px = X - qx;
  2096. if(qy + py > Y) py = Y - qy;
  2097. } else {
  2098. qx = (s->mb_x << 6);
  2099. qy = (s->mb_y << 6);
  2100. X = (s->mb_width << 6) - 4;
  2101. Y = (s->mb_height << 6) - 4;
  2102. if(qx + px < -60) px = -60 - qx;
  2103. if(qy + py < -60) py = -60 - qy;
  2104. if(qx + px > X) px = X - qx;
  2105. if(qy + py > Y) py = Y - qy;
  2106. }
  2107. }
  2108. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2109. if(0 && !s->first_slice_line && s->mb_x) {
  2110. if(is_intra[xy - wrap])
  2111. sum = FFABS(px) + FFABS(py);
  2112. else
  2113. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2114. if(sum > 32) {
  2115. if(get_bits1(&s->gb)) {
  2116. px = A[0];
  2117. py = A[1];
  2118. } else {
  2119. px = C[0];
  2120. py = C[1];
  2121. }
  2122. } else {
  2123. if(is_intra[xy - 2])
  2124. sum = FFABS(px) + FFABS(py);
  2125. else
  2126. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2127. if(sum > 32) {
  2128. if(get_bits1(&s->gb)) {
  2129. px = A[0];
  2130. py = A[1];
  2131. } else {
  2132. px = C[0];
  2133. py = C[1];
  2134. }
  2135. }
  2136. }
  2137. }
  2138. /* store MV using signed modulus of MV range defined in 4.11 */
  2139. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  2140. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  2141. }
  2142. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2143. C = s->current_picture.motion_val[1][xy - 2];
  2144. A = s->current_picture.motion_val[1][xy - wrap*2];
  2145. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2146. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  2147. if(!s->first_slice_line) { // predictor A is not out of bounds
  2148. if(s->mb_width == 1) {
  2149. px = A[0];
  2150. py = A[1];
  2151. } else {
  2152. px = mid_pred(A[0], B[0], C[0]);
  2153. py = mid_pred(A[1], B[1], C[1]);
  2154. }
  2155. } else if(s->mb_x) { // predictor C is not out of bounds
  2156. px = C[0];
  2157. py = C[1];
  2158. } else {
  2159. px = py = 0;
  2160. }
  2161. /* Pullback MV as specified in 8.3.5.3.4 */
  2162. {
  2163. int qx, qy, X, Y;
  2164. if(v->profile < PROFILE_ADVANCED) {
  2165. qx = (s->mb_x << 5);
  2166. qy = (s->mb_y << 5);
  2167. X = (s->mb_width << 5) - 4;
  2168. Y = (s->mb_height << 5) - 4;
  2169. if(qx + px < -28) px = -28 - qx;
  2170. if(qy + py < -28) py = -28 - qy;
  2171. if(qx + px > X) px = X - qx;
  2172. if(qy + py > Y) py = Y - qy;
  2173. } else {
  2174. qx = (s->mb_x << 6);
  2175. qy = (s->mb_y << 6);
  2176. X = (s->mb_width << 6) - 4;
  2177. Y = (s->mb_height << 6) - 4;
  2178. if(qx + px < -60) px = -60 - qx;
  2179. if(qy + py < -60) py = -60 - qy;
  2180. if(qx + px > X) px = X - qx;
  2181. if(qy + py > Y) py = Y - qy;
  2182. }
  2183. }
  2184. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2185. if(0 && !s->first_slice_line && s->mb_x) {
  2186. if(is_intra[xy - wrap])
  2187. sum = FFABS(px) + FFABS(py);
  2188. else
  2189. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2190. if(sum > 32) {
  2191. if(get_bits1(&s->gb)) {
  2192. px = A[0];
  2193. py = A[1];
  2194. } else {
  2195. px = C[0];
  2196. py = C[1];
  2197. }
  2198. } else {
  2199. if(is_intra[xy - 2])
  2200. sum = FFABS(px) + FFABS(py);
  2201. else
  2202. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2203. if(sum > 32) {
  2204. if(get_bits1(&s->gb)) {
  2205. px = A[0];
  2206. py = A[1];
  2207. } else {
  2208. px = C[0];
  2209. py = C[1];
  2210. }
  2211. }
  2212. }
  2213. }
  2214. /* store MV using signed modulus of MV range defined in 4.11 */
  2215. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  2216. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  2217. }
  2218. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  2219. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  2220. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  2221. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2222. }
  2223. /** Get predicted DC value for I-frames only
  2224. * prediction dir: left=0, top=1
  2225. * @param s MpegEncContext
  2226. * @param[in] n block index in the current MB
  2227. * @param dc_val_ptr Pointer to DC predictor
  2228. * @param dir_ptr Prediction direction for use in AC prediction
  2229. */
  2230. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2231. int16_t **dc_val_ptr, int *dir_ptr)
  2232. {
  2233. int a, b, c, wrap, pred, scale;
  2234. int16_t *dc_val;
  2235. static const uint16_t dcpred[32] = {
  2236. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  2237. 114, 102, 93, 85, 79, 73, 68, 64,
  2238. 60, 57, 54, 51, 49, 47, 45, 43,
  2239. 41, 39, 38, 37, 35, 34, 33
  2240. };
  2241. /* find prediction - wmv3_dc_scale always used here in fact */
  2242. if (n < 4) scale = s->y_dc_scale;
  2243. else scale = s->c_dc_scale;
  2244. wrap = s->block_wrap[n];
  2245. dc_val= s->dc_val[0] + s->block_index[n];
  2246. /* B A
  2247. * C X
  2248. */
  2249. c = dc_val[ - 1];
  2250. b = dc_val[ - 1 - wrap];
  2251. a = dc_val[ - wrap];
  2252. if (pq < 9 || !overlap)
  2253. {
  2254. /* Set outer values */
  2255. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  2256. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  2257. }
  2258. else
  2259. {
  2260. /* Set outer values */
  2261. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  2262. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  2263. }
  2264. if (abs(a - b) <= abs(b - c)) {
  2265. pred = c;
  2266. *dir_ptr = 1;//left
  2267. } else {
  2268. pred = a;
  2269. *dir_ptr = 0;//top
  2270. }
  2271. /* update predictor */
  2272. *dc_val_ptr = &dc_val[0];
  2273. return pred;
  2274. }
  2275. /** Get predicted DC value
  2276. * prediction dir: left=0, top=1
  2277. * @param s MpegEncContext
  2278. * @param[in] n block index in the current MB
  2279. * @param dc_val_ptr Pointer to DC predictor
  2280. * @param dir_ptr Prediction direction for use in AC prediction
  2281. */
  2282. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2283. int a_avail, int c_avail,
  2284. int16_t **dc_val_ptr, int *dir_ptr)
  2285. {
  2286. int a, b, c, wrap, pred, scale;
  2287. int16_t *dc_val;
  2288. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2289. int q1, q2 = 0;
  2290. /* find prediction - wmv3_dc_scale always used here in fact */
  2291. if (n < 4) scale = s->y_dc_scale;
  2292. else scale = s->c_dc_scale;
  2293. wrap = s->block_wrap[n];
  2294. dc_val= s->dc_val[0] + s->block_index[n];
  2295. /* B A
  2296. * C X
  2297. */
  2298. c = dc_val[ - 1];
  2299. b = dc_val[ - 1 - wrap];
  2300. a = dc_val[ - wrap];
  2301. /* scale predictors if needed */
  2302. q1 = s->current_picture.qscale_table[mb_pos];
  2303. if(c_avail && (n!= 1 && n!=3)) {
  2304. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2305. if(q2 && q2 != q1)
  2306. c = (c * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2307. }
  2308. if(a_avail && (n!= 2 && n!=3)) {
  2309. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2310. if(q2 && q2 != q1)
  2311. a = (a * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2312. }
  2313. if(a_avail && c_avail && (n!=3)) {
  2314. int off = mb_pos;
  2315. if(n != 1) off--;
  2316. if(n != 2) off -= s->mb_stride;
  2317. q2 = s->current_picture.qscale_table[off];
  2318. if(q2 && q2 != q1)
  2319. b = (b * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2320. }
  2321. if(a_avail && c_avail) {
  2322. if(abs(a - b) <= abs(b - c)) {
  2323. pred = c;
  2324. *dir_ptr = 1;//left
  2325. } else {
  2326. pred = a;
  2327. *dir_ptr = 0;//top
  2328. }
  2329. } else if(a_avail) {
  2330. pred = a;
  2331. *dir_ptr = 0;//top
  2332. } else if(c_avail) {
  2333. pred = c;
  2334. *dir_ptr = 1;//left
  2335. } else {
  2336. pred = 0;
  2337. *dir_ptr = 1;//left
  2338. }
  2339. /* update predictor */
  2340. *dc_val_ptr = &dc_val[0];
  2341. return pred;
  2342. }
  2343. /**
  2344. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2345. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2346. * @{
  2347. */
  2348. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2349. {
  2350. int xy, wrap, pred, a, b, c;
  2351. xy = s->block_index[n];
  2352. wrap = s->b8_stride;
  2353. /* B C
  2354. * A X
  2355. */
  2356. a = s->coded_block[xy - 1 ];
  2357. b = s->coded_block[xy - 1 - wrap];
  2358. c = s->coded_block[xy - wrap];
  2359. if (b == c) {
  2360. pred = a;
  2361. } else {
  2362. pred = c;
  2363. }
  2364. /* store value */
  2365. *coded_block_ptr = &s->coded_block[xy];
  2366. return pred;
  2367. }
  2368. /**
  2369. * Decode one AC coefficient
  2370. * @param v The VC1 context
  2371. * @param last Last coefficient
  2372. * @param skip How much zero coefficients to skip
  2373. * @param value Decoded AC coefficient value
  2374. * @see 8.1.3.4
  2375. */
  2376. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2377. {
  2378. GetBitContext *gb = &v->s.gb;
  2379. int index, escape, run = 0, level = 0, lst = 0;
  2380. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2381. if (index != vc1_ac_sizes[codingset] - 1) {
  2382. run = vc1_index_decode_table[codingset][index][0];
  2383. level = vc1_index_decode_table[codingset][index][1];
  2384. lst = index >= vc1_last_decode_table[codingset];
  2385. if(get_bits(gb, 1))
  2386. level = -level;
  2387. } else {
  2388. escape = decode210(gb);
  2389. if (escape != 2) {
  2390. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2391. run = vc1_index_decode_table[codingset][index][0];
  2392. level = vc1_index_decode_table[codingset][index][1];
  2393. lst = index >= vc1_last_decode_table[codingset];
  2394. if(escape == 0) {
  2395. if(lst)
  2396. level += vc1_last_delta_level_table[codingset][run];
  2397. else
  2398. level += vc1_delta_level_table[codingset][run];
  2399. } else {
  2400. if(lst)
  2401. run += vc1_last_delta_run_table[codingset][level] + 1;
  2402. else
  2403. run += vc1_delta_run_table[codingset][level] + 1;
  2404. }
  2405. if(get_bits(gb, 1))
  2406. level = -level;
  2407. } else {
  2408. int sign;
  2409. lst = get_bits(gb, 1);
  2410. if(v->s.esc3_level_length == 0) {
  2411. if(v->pq < 8 || v->dquantfrm) { // table 59
  2412. v->s.esc3_level_length = get_bits(gb, 3);
  2413. if(!v->s.esc3_level_length)
  2414. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2415. } else { //table 60
  2416. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  2417. }
  2418. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2419. }
  2420. run = get_bits(gb, v->s.esc3_run_length);
  2421. sign = get_bits(gb, 1);
  2422. level = get_bits(gb, v->s.esc3_level_length);
  2423. if(sign)
  2424. level = -level;
  2425. }
  2426. }
  2427. *last = lst;
  2428. *skip = run;
  2429. *value = level;
  2430. }
  2431. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2432. * @param v VC1Context
  2433. * @param block block to decode
  2434. * @param coded are AC coeffs present or not
  2435. * @param codingset set of VLC to decode data
  2436. */
  2437. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2438. {
  2439. GetBitContext *gb = &v->s.gb;
  2440. MpegEncContext *s = &v->s;
  2441. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2442. int run_diff, i;
  2443. int16_t *dc_val;
  2444. int16_t *ac_val, *ac_val2;
  2445. int dcdiff;
  2446. /* Get DC differential */
  2447. if (n < 4) {
  2448. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2449. } else {
  2450. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2451. }
  2452. if (dcdiff < 0){
  2453. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2454. return -1;
  2455. }
  2456. if (dcdiff)
  2457. {
  2458. if (dcdiff == 119 /* ESC index value */)
  2459. {
  2460. /* TODO: Optimize */
  2461. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2462. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2463. else dcdiff = get_bits(gb, 8);
  2464. }
  2465. else
  2466. {
  2467. if (v->pq == 1)
  2468. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2469. else if (v->pq == 2)
  2470. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2471. }
  2472. if (get_bits(gb, 1))
  2473. dcdiff = -dcdiff;
  2474. }
  2475. /* Prediction */
  2476. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2477. *dc_val = dcdiff;
  2478. /* Store the quantized DC coeff, used for prediction */
  2479. if (n < 4) {
  2480. block[0] = dcdiff * s->y_dc_scale;
  2481. } else {
  2482. block[0] = dcdiff * s->c_dc_scale;
  2483. }
  2484. /* Skip ? */
  2485. run_diff = 0;
  2486. i = 0;
  2487. if (!coded) {
  2488. goto not_coded;
  2489. }
  2490. //AC Decoding
  2491. i = 1;
  2492. {
  2493. int last = 0, skip, value;
  2494. const int8_t *zz_table;
  2495. int scale;
  2496. int k;
  2497. scale = v->pq * 2 + v->halfpq;
  2498. if(v->s.ac_pred) {
  2499. if(!dc_pred_dir)
  2500. zz_table = vc1_horizontal_zz;
  2501. else
  2502. zz_table = vc1_vertical_zz;
  2503. } else
  2504. zz_table = vc1_normal_zz;
  2505. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2506. ac_val2 = ac_val;
  2507. if(dc_pred_dir) //left
  2508. ac_val -= 16;
  2509. else //top
  2510. ac_val -= 16 * s->block_wrap[n];
  2511. while (!last) {
  2512. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2513. i += skip;
  2514. if(i > 63)
  2515. break;
  2516. block[zz_table[i++]] = value;
  2517. }
  2518. /* apply AC prediction if needed */
  2519. if(s->ac_pred) {
  2520. if(dc_pred_dir) { //left
  2521. for(k = 1; k < 8; k++)
  2522. block[k << 3] += ac_val[k];
  2523. } else { //top
  2524. for(k = 1; k < 8; k++)
  2525. block[k] += ac_val[k + 8];
  2526. }
  2527. }
  2528. /* save AC coeffs for further prediction */
  2529. for(k = 1; k < 8; k++) {
  2530. ac_val2[k] = block[k << 3];
  2531. ac_val2[k + 8] = block[k];
  2532. }
  2533. /* scale AC coeffs */
  2534. for(k = 1; k < 64; k++)
  2535. if(block[k]) {
  2536. block[k] *= scale;
  2537. if(!v->pquantizer)
  2538. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2539. }
  2540. if(s->ac_pred) i = 63;
  2541. }
  2542. not_coded:
  2543. if(!coded) {
  2544. int k, scale;
  2545. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2546. ac_val2 = ac_val;
  2547. scale = v->pq * 2 + v->halfpq;
  2548. memset(ac_val2, 0, 16 * 2);
  2549. if(dc_pred_dir) {//left
  2550. ac_val -= 16;
  2551. if(s->ac_pred)
  2552. memcpy(ac_val2, ac_val, 8 * 2);
  2553. } else {//top
  2554. ac_val -= 16 * s->block_wrap[n];
  2555. if(s->ac_pred)
  2556. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2557. }
  2558. /* apply AC prediction if needed */
  2559. if(s->ac_pred) {
  2560. if(dc_pred_dir) { //left
  2561. for(k = 1; k < 8; k++) {
  2562. block[k << 3] = ac_val[k] * scale;
  2563. if(!v->pquantizer && block[k << 3])
  2564. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2565. }
  2566. } else { //top
  2567. for(k = 1; k < 8; k++) {
  2568. block[k] = ac_val[k + 8] * scale;
  2569. if(!v->pquantizer && block[k])
  2570. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2571. }
  2572. }
  2573. i = 63;
  2574. }
  2575. }
  2576. s->block_last_index[n] = i;
  2577. return 0;
  2578. }
  2579. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2580. * @param v VC1Context
  2581. * @param block block to decode
  2582. * @param coded are AC coeffs present or not
  2583. * @param codingset set of VLC to decode data
  2584. */
  2585. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2586. {
  2587. GetBitContext *gb = &v->s.gb;
  2588. MpegEncContext *s = &v->s;
  2589. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2590. int run_diff, i;
  2591. int16_t *dc_val;
  2592. int16_t *ac_val, *ac_val2;
  2593. int dcdiff;
  2594. int a_avail = v->a_avail, c_avail = v->c_avail;
  2595. int use_pred = s->ac_pred;
  2596. int scale;
  2597. int q1, q2 = 0;
  2598. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2599. /* Get DC differential */
  2600. if (n < 4) {
  2601. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2602. } else {
  2603. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2604. }
  2605. if (dcdiff < 0){
  2606. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2607. return -1;
  2608. }
  2609. if (dcdiff)
  2610. {
  2611. if (dcdiff == 119 /* ESC index value */)
  2612. {
  2613. /* TODO: Optimize */
  2614. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2615. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2616. else dcdiff = get_bits(gb, 8);
  2617. }
  2618. else
  2619. {
  2620. if (mquant == 1)
  2621. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2622. else if (mquant == 2)
  2623. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2624. }
  2625. if (get_bits(gb, 1))
  2626. dcdiff = -dcdiff;
  2627. }
  2628. /* Prediction */
  2629. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2630. *dc_val = dcdiff;
  2631. /* Store the quantized DC coeff, used for prediction */
  2632. if (n < 4) {
  2633. block[0] = dcdiff * s->y_dc_scale;
  2634. } else {
  2635. block[0] = dcdiff * s->c_dc_scale;
  2636. }
  2637. /* Skip ? */
  2638. run_diff = 0;
  2639. i = 0;
  2640. //AC Decoding
  2641. i = 1;
  2642. /* check if AC is needed at all and adjust direction if needed */
  2643. if(!a_avail) dc_pred_dir = 1;
  2644. if(!c_avail) dc_pred_dir = 0;
  2645. if(!a_avail && !c_avail) use_pred = 0;
  2646. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2647. ac_val2 = ac_val;
  2648. scale = mquant * 2 + v->halfpq;
  2649. if(dc_pred_dir) //left
  2650. ac_val -= 16;
  2651. else //top
  2652. ac_val -= 16 * s->block_wrap[n];
  2653. q1 = s->current_picture.qscale_table[mb_pos];
  2654. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2655. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2656. if(n && n<4) q2 = q1;
  2657. if(coded) {
  2658. int last = 0, skip, value;
  2659. const int8_t *zz_table;
  2660. int k;
  2661. if(v->s.ac_pred) {
  2662. if(!dc_pred_dir)
  2663. zz_table = vc1_horizontal_zz;
  2664. else
  2665. zz_table = vc1_vertical_zz;
  2666. } else
  2667. zz_table = vc1_normal_zz;
  2668. while (!last) {
  2669. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2670. i += skip;
  2671. if(i > 63)
  2672. break;
  2673. block[zz_table[i++]] = value;
  2674. }
  2675. /* apply AC prediction if needed */
  2676. if(use_pred) {
  2677. /* scale predictors if needed*/
  2678. if(q2 && q1!=q2) {
  2679. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2680. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2681. if(dc_pred_dir) { //left
  2682. for(k = 1; k < 8; k++)
  2683. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2684. } else { //top
  2685. for(k = 1; k < 8; k++)
  2686. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2687. }
  2688. } else {
  2689. if(dc_pred_dir) { //left
  2690. for(k = 1; k < 8; k++)
  2691. block[k << 3] += ac_val[k];
  2692. } else { //top
  2693. for(k = 1; k < 8; k++)
  2694. block[k] += ac_val[k + 8];
  2695. }
  2696. }
  2697. }
  2698. /* save AC coeffs for further prediction */
  2699. for(k = 1; k < 8; k++) {
  2700. ac_val2[k] = block[k << 3];
  2701. ac_val2[k + 8] = block[k];
  2702. }
  2703. /* scale AC coeffs */
  2704. for(k = 1; k < 64; k++)
  2705. if(block[k]) {
  2706. block[k] *= scale;
  2707. if(!v->pquantizer)
  2708. block[k] += (block[k] < 0) ? -mquant : mquant;
  2709. }
  2710. if(use_pred) i = 63;
  2711. } else { // no AC coeffs
  2712. int k;
  2713. memset(ac_val2, 0, 16 * 2);
  2714. if(dc_pred_dir) {//left
  2715. if(use_pred) {
  2716. memcpy(ac_val2, ac_val, 8 * 2);
  2717. if(q2 && q1!=q2) {
  2718. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2719. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2720. for(k = 1; k < 8; k++)
  2721. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2722. }
  2723. }
  2724. } else {//top
  2725. if(use_pred) {
  2726. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2727. if(q2 && q1!=q2) {
  2728. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2729. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2730. for(k = 1; k < 8; k++)
  2731. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2732. }
  2733. }
  2734. }
  2735. /* apply AC prediction if needed */
  2736. if(use_pred) {
  2737. if(dc_pred_dir) { //left
  2738. for(k = 1; k < 8; k++) {
  2739. block[k << 3] = ac_val2[k] * scale;
  2740. if(!v->pquantizer && block[k << 3])
  2741. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2742. }
  2743. } else { //top
  2744. for(k = 1; k < 8; k++) {
  2745. block[k] = ac_val2[k + 8] * scale;
  2746. if(!v->pquantizer && block[k])
  2747. block[k] += (block[k] < 0) ? -mquant : mquant;
  2748. }
  2749. }
  2750. i = 63;
  2751. }
  2752. }
  2753. s->block_last_index[n] = i;
  2754. return 0;
  2755. }
  2756. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2757. * @param v VC1Context
  2758. * @param block block to decode
  2759. * @param coded are AC coeffs present or not
  2760. * @param mquant block quantizer
  2761. * @param codingset set of VLC to decode data
  2762. */
  2763. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2764. {
  2765. GetBitContext *gb = &v->s.gb;
  2766. MpegEncContext *s = &v->s;
  2767. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2768. int run_diff, i;
  2769. int16_t *dc_val;
  2770. int16_t *ac_val, *ac_val2;
  2771. int dcdiff;
  2772. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2773. int a_avail = v->a_avail, c_avail = v->c_avail;
  2774. int use_pred = s->ac_pred;
  2775. int scale;
  2776. int q1, q2 = 0;
  2777. /* XXX: Guard against dumb values of mquant */
  2778. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2779. /* Set DC scale - y and c use the same */
  2780. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2781. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2782. /* Get DC differential */
  2783. if (n < 4) {
  2784. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2785. } else {
  2786. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2787. }
  2788. if (dcdiff < 0){
  2789. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2790. return -1;
  2791. }
  2792. if (dcdiff)
  2793. {
  2794. if (dcdiff == 119 /* ESC index value */)
  2795. {
  2796. /* TODO: Optimize */
  2797. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2798. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2799. else dcdiff = get_bits(gb, 8);
  2800. }
  2801. else
  2802. {
  2803. if (mquant == 1)
  2804. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2805. else if (mquant == 2)
  2806. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2807. }
  2808. if (get_bits(gb, 1))
  2809. dcdiff = -dcdiff;
  2810. }
  2811. /* Prediction */
  2812. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2813. *dc_val = dcdiff;
  2814. /* Store the quantized DC coeff, used for prediction */
  2815. if (n < 4) {
  2816. block[0] = dcdiff * s->y_dc_scale;
  2817. } else {
  2818. block[0] = dcdiff * s->c_dc_scale;
  2819. }
  2820. /* Skip ? */
  2821. run_diff = 0;
  2822. i = 0;
  2823. //AC Decoding
  2824. i = 1;
  2825. /* check if AC is needed at all and adjust direction if needed */
  2826. if(!a_avail) dc_pred_dir = 1;
  2827. if(!c_avail) dc_pred_dir = 0;
  2828. if(!a_avail && !c_avail) use_pred = 0;
  2829. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2830. ac_val2 = ac_val;
  2831. scale = mquant * 2 + v->halfpq;
  2832. if(dc_pred_dir) //left
  2833. ac_val -= 16;
  2834. else //top
  2835. ac_val -= 16 * s->block_wrap[n];
  2836. q1 = s->current_picture.qscale_table[mb_pos];
  2837. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2838. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2839. if(n && n<4) q2 = q1;
  2840. if(coded) {
  2841. int last = 0, skip, value;
  2842. const int8_t *zz_table;
  2843. int k;
  2844. zz_table = vc1_simple_progressive_8x8_zz;
  2845. while (!last) {
  2846. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2847. i += skip;
  2848. if(i > 63)
  2849. break;
  2850. block[zz_table[i++]] = value;
  2851. }
  2852. /* apply AC prediction if needed */
  2853. if(use_pred) {
  2854. /* scale predictors if needed*/
  2855. if(q2 && q1!=q2) {
  2856. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2857. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2858. if(dc_pred_dir) { //left
  2859. for(k = 1; k < 8; k++)
  2860. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2861. } else { //top
  2862. for(k = 1; k < 8; k++)
  2863. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2864. }
  2865. } else {
  2866. if(dc_pred_dir) { //left
  2867. for(k = 1; k < 8; k++)
  2868. block[k << 3] += ac_val[k];
  2869. } else { //top
  2870. for(k = 1; k < 8; k++)
  2871. block[k] += ac_val[k + 8];
  2872. }
  2873. }
  2874. }
  2875. /* save AC coeffs for further prediction */
  2876. for(k = 1; k < 8; k++) {
  2877. ac_val2[k] = block[k << 3];
  2878. ac_val2[k + 8] = block[k];
  2879. }
  2880. /* scale AC coeffs */
  2881. for(k = 1; k < 64; k++)
  2882. if(block[k]) {
  2883. block[k] *= scale;
  2884. if(!v->pquantizer)
  2885. block[k] += (block[k] < 0) ? -mquant : mquant;
  2886. }
  2887. if(use_pred) i = 63;
  2888. } else { // no AC coeffs
  2889. int k;
  2890. memset(ac_val2, 0, 16 * 2);
  2891. if(dc_pred_dir) {//left
  2892. if(use_pred) {
  2893. memcpy(ac_val2, ac_val, 8 * 2);
  2894. if(q2 && q1!=q2) {
  2895. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2896. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2897. for(k = 1; k < 8; k++)
  2898. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2899. }
  2900. }
  2901. } else {//top
  2902. if(use_pred) {
  2903. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2904. if(q2 && q1!=q2) {
  2905. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2906. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2907. for(k = 1; k < 8; k++)
  2908. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2909. }
  2910. }
  2911. }
  2912. /* apply AC prediction if needed */
  2913. if(use_pred) {
  2914. if(dc_pred_dir) { //left
  2915. for(k = 1; k < 8; k++) {
  2916. block[k << 3] = ac_val2[k] * scale;
  2917. if(!v->pquantizer && block[k << 3])
  2918. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2919. }
  2920. } else { //top
  2921. for(k = 1; k < 8; k++) {
  2922. block[k] = ac_val2[k + 8] * scale;
  2923. if(!v->pquantizer && block[k])
  2924. block[k] += (block[k] < 0) ? -mquant : mquant;
  2925. }
  2926. }
  2927. i = 63;
  2928. }
  2929. }
  2930. s->block_last_index[n] = i;
  2931. return 0;
  2932. }
  2933. /** Decode P block
  2934. */
  2935. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2936. {
  2937. MpegEncContext *s = &v->s;
  2938. GetBitContext *gb = &s->gb;
  2939. int i, j;
  2940. int subblkpat = 0;
  2941. int scale, off, idx, last, skip, value;
  2942. int ttblk = ttmb & 7;
  2943. if(ttmb == -1) {
  2944. ttblk = ttblk_to_tt[v->tt_index][get_vlc2(gb, vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2945. }
  2946. if(ttblk == TT_4X4) {
  2947. subblkpat = ~(get_vlc2(gb, vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2948. }
  2949. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2950. subblkpat = decode012(gb);
  2951. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2952. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2953. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2954. }
  2955. scale = 2 * mquant + v->halfpq;
  2956. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2957. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2958. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2959. ttblk = TT_8X4;
  2960. }
  2961. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2962. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2963. ttblk = TT_4X8;
  2964. }
  2965. switch(ttblk) {
  2966. case TT_8X8:
  2967. i = 0;
  2968. last = 0;
  2969. while (!last) {
  2970. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2971. i += skip;
  2972. if(i > 63)
  2973. break;
  2974. idx = vc1_simple_progressive_8x8_zz[i++];
  2975. block[idx] = value * scale;
  2976. if(!v->pquantizer)
  2977. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2978. }
  2979. s->dsp.vc1_inv_trans_8x8(block);
  2980. break;
  2981. case TT_4X4:
  2982. for(j = 0; j < 4; j++) {
  2983. last = subblkpat & (1 << (3 - j));
  2984. i = 0;
  2985. off = (j & 1) * 4 + (j & 2) * 16;
  2986. while (!last) {
  2987. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2988. i += skip;
  2989. if(i > 15)
  2990. break;
  2991. idx = vc1_simple_progressive_4x4_zz[i++];
  2992. block[idx + off] = value * scale;
  2993. if(!v->pquantizer)
  2994. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2995. }
  2996. if(!(subblkpat & (1 << (3 - j))))
  2997. s->dsp.vc1_inv_trans_4x4(block, j);
  2998. }
  2999. break;
  3000. case TT_8X4:
  3001. for(j = 0; j < 2; j++) {
  3002. last = subblkpat & (1 << (1 - j));
  3003. i = 0;
  3004. off = j * 32;
  3005. while (!last) {
  3006. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3007. i += skip;
  3008. if(i > 31)
  3009. break;
  3010. if(v->profile < PROFILE_ADVANCED)
  3011. idx = vc1_simple_progressive_8x4_zz[i++];
  3012. else
  3013. idx = vc1_adv_progressive_8x4_zz[i++];
  3014. block[idx + off] = value * scale;
  3015. if(!v->pquantizer)
  3016. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3017. }
  3018. if(!(subblkpat & (1 << (1 - j))))
  3019. s->dsp.vc1_inv_trans_8x4(block, j);
  3020. }
  3021. break;
  3022. case TT_4X8:
  3023. for(j = 0; j < 2; j++) {
  3024. last = subblkpat & (1 << (1 - j));
  3025. i = 0;
  3026. off = j * 4;
  3027. while (!last) {
  3028. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3029. i += skip;
  3030. if(i > 31)
  3031. break;
  3032. if(v->profile < PROFILE_ADVANCED)
  3033. idx = vc1_simple_progressive_4x8_zz[i++];
  3034. else
  3035. idx = vc1_adv_progressive_4x8_zz[i++];
  3036. block[idx + off] = value * scale;
  3037. if(!v->pquantizer)
  3038. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3039. }
  3040. if(!(subblkpat & (1 << (1 - j))))
  3041. s->dsp.vc1_inv_trans_4x8(block, j);
  3042. }
  3043. break;
  3044. }
  3045. return 0;
  3046. }
  3047. /** Decode one P-frame MB (in Simple/Main profile)
  3048. */
  3049. static int vc1_decode_p_mb(VC1Context *v)
  3050. {
  3051. MpegEncContext *s = &v->s;
  3052. GetBitContext *gb = &s->gb;
  3053. int i, j;
  3054. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3055. int cbp; /* cbp decoding stuff */
  3056. int mqdiff, mquant; /* MB quantization */
  3057. int ttmb = v->ttfrm; /* MB Transform type */
  3058. int status;
  3059. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3060. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3061. int mb_has_coeffs = 1; /* last_flag */
  3062. int dmv_x, dmv_y; /* Differential MV components */
  3063. int index, index1; /* LUT indices */
  3064. int val, sign; /* temp values */
  3065. int first_block = 1;
  3066. int dst_idx, off;
  3067. int skipped, fourmv;
  3068. mquant = v->pq; /* Loosy initialization */
  3069. if (v->mv_type_is_raw)
  3070. fourmv = get_bits1(gb);
  3071. else
  3072. fourmv = v->mv_type_mb_plane[mb_pos];
  3073. if (v->skip_is_raw)
  3074. skipped = get_bits1(gb);
  3075. else
  3076. skipped = v->s.mbskip_table[mb_pos];
  3077. s->dsp.clear_blocks(s->block[0]);
  3078. if (!fourmv) /* 1MV mode */
  3079. {
  3080. if (!skipped)
  3081. {
  3082. GET_MVDATA(dmv_x, dmv_y);
  3083. if (s->mb_intra) {
  3084. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3085. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3086. }
  3087. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  3088. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  3089. /* FIXME Set DC val for inter block ? */
  3090. if (s->mb_intra && !mb_has_coeffs)
  3091. {
  3092. GET_MQUANT();
  3093. s->ac_pred = get_bits(gb, 1);
  3094. cbp = 0;
  3095. }
  3096. else if (mb_has_coeffs)
  3097. {
  3098. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  3099. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3100. GET_MQUANT();
  3101. }
  3102. else
  3103. {
  3104. mquant = v->pq;
  3105. cbp = 0;
  3106. }
  3107. s->current_picture.qscale_table[mb_pos] = mquant;
  3108. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3109. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
  3110. VC1_TTMB_VLC_BITS, 2);
  3111. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  3112. dst_idx = 0;
  3113. for (i=0; i<6; i++)
  3114. {
  3115. s->dc_val[0][s->block_index[i]] = 0;
  3116. dst_idx += i >> 2;
  3117. val = ((cbp >> (5 - i)) & 1);
  3118. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3119. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3120. if(s->mb_intra) {
  3121. /* check if prediction blocks A and C are available */
  3122. v->a_avail = v->c_avail = 0;
  3123. if(i == 2 || i == 3 || !s->first_slice_line)
  3124. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3125. if(i == 1 || i == 3 || s->mb_x)
  3126. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3127. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3128. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3129. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3130. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3131. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3132. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3133. if(v->pq >= 9 && v->overlap) {
  3134. if(v->c_avail)
  3135. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3136. if(v->a_avail)
  3137. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3138. }
  3139. } else if(val) {
  3140. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3141. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3142. first_block = 0;
  3143. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3144. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3145. }
  3146. }
  3147. }
  3148. else //Skipped
  3149. {
  3150. s->mb_intra = 0;
  3151. for(i = 0; i < 6; i++) {
  3152. v->mb_type[0][s->block_index[i]] = 0;
  3153. s->dc_val[0][s->block_index[i]] = 0;
  3154. }
  3155. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  3156. s->current_picture.qscale_table[mb_pos] = 0;
  3157. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  3158. vc1_mc_1mv(v, 0);
  3159. return 0;
  3160. }
  3161. } //1MV mode
  3162. else //4MV mode
  3163. {
  3164. if (!skipped /* unskipped MB */)
  3165. {
  3166. int intra_count = 0, coded_inter = 0;
  3167. int is_intra[6], is_coded[6];
  3168. /* Get CBPCY */
  3169. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3170. for (i=0; i<6; i++)
  3171. {
  3172. val = ((cbp >> (5 - i)) & 1);
  3173. s->dc_val[0][s->block_index[i]] = 0;
  3174. s->mb_intra = 0;
  3175. if(i < 4) {
  3176. dmv_x = dmv_y = 0;
  3177. s->mb_intra = 0;
  3178. mb_has_coeffs = 0;
  3179. if(val) {
  3180. GET_MVDATA(dmv_x, dmv_y);
  3181. }
  3182. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  3183. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  3184. intra_count += s->mb_intra;
  3185. is_intra[i] = s->mb_intra;
  3186. is_coded[i] = mb_has_coeffs;
  3187. }
  3188. if(i&4){
  3189. is_intra[i] = (intra_count >= 3);
  3190. is_coded[i] = val;
  3191. }
  3192. if(i == 4) vc1_mc_4mv_chroma(v);
  3193. v->mb_type[0][s->block_index[i]] = is_intra[i];
  3194. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  3195. }
  3196. // if there are no coded blocks then don't do anything more
  3197. if(!intra_count && !coded_inter) return 0;
  3198. dst_idx = 0;
  3199. GET_MQUANT();
  3200. s->current_picture.qscale_table[mb_pos] = mquant;
  3201. /* test if block is intra and has pred */
  3202. {
  3203. int intrapred = 0;
  3204. for(i=0; i<6; i++)
  3205. if(is_intra[i]) {
  3206. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3207. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3208. intrapred = 1;
  3209. break;
  3210. }
  3211. }
  3212. if(intrapred)s->ac_pred = get_bits(gb, 1);
  3213. else s->ac_pred = 0;
  3214. }
  3215. if (!v->ttmbf && coded_inter)
  3216. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3217. for (i=0; i<6; i++)
  3218. {
  3219. dst_idx += i >> 2;
  3220. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3221. s->mb_intra = is_intra[i];
  3222. if (is_intra[i]) {
  3223. /* check if prediction blocks A and C are available */
  3224. v->a_avail = v->c_avail = 0;
  3225. if(i == 2 || i == 3 || !s->first_slice_line)
  3226. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3227. if(i == 1 || i == 3 || s->mb_x)
  3228. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3229. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  3230. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3231. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3232. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3233. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3234. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3235. if(v->pq >= 9 && v->overlap) {
  3236. if(v->c_avail)
  3237. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3238. if(v->a_avail)
  3239. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3240. }
  3241. } else if(is_coded[i]) {
  3242. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3243. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3244. first_block = 0;
  3245. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3246. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3247. }
  3248. }
  3249. return status;
  3250. }
  3251. else //Skipped MB
  3252. {
  3253. s->mb_intra = 0;
  3254. s->current_picture.qscale_table[mb_pos] = 0;
  3255. for (i=0; i<6; i++) {
  3256. v->mb_type[0][s->block_index[i]] = 0;
  3257. s->dc_val[0][s->block_index[i]] = 0;
  3258. }
  3259. for (i=0; i<4; i++)
  3260. {
  3261. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3262. vc1_mc_4mv_luma(v, i);
  3263. }
  3264. vc1_mc_4mv_chroma(v);
  3265. s->current_picture.qscale_table[mb_pos] = 0;
  3266. return 0;
  3267. }
  3268. }
  3269. /* Should never happen */
  3270. return -1;
  3271. }
  3272. /** Decode one B-frame MB (in Main profile)
  3273. */
  3274. static void vc1_decode_b_mb(VC1Context *v)
  3275. {
  3276. MpegEncContext *s = &v->s;
  3277. GetBitContext *gb = &s->gb;
  3278. int i, j;
  3279. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3280. int cbp = 0; /* cbp decoding stuff */
  3281. int mqdiff, mquant; /* MB quantization */
  3282. int ttmb = v->ttfrm; /* MB Transform type */
  3283. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3284. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3285. int mb_has_coeffs = 0; /* last_flag */
  3286. int index, index1; /* LUT indices */
  3287. int val, sign; /* temp values */
  3288. int first_block = 1;
  3289. int dst_idx, off;
  3290. int skipped, direct;
  3291. int dmv_x[2], dmv_y[2];
  3292. int bmvtype = BMV_TYPE_BACKWARD;
  3293. mquant = v->pq; /* Loosy initialization */
  3294. s->mb_intra = 0;
  3295. if (v->dmb_is_raw)
  3296. direct = get_bits1(gb);
  3297. else
  3298. direct = v->direct_mb_plane[mb_pos];
  3299. if (v->skip_is_raw)
  3300. skipped = get_bits1(gb);
  3301. else
  3302. skipped = v->s.mbskip_table[mb_pos];
  3303. s->dsp.clear_blocks(s->block[0]);
  3304. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3305. for(i = 0; i < 6; i++) {
  3306. v->mb_type[0][s->block_index[i]] = 0;
  3307. s->dc_val[0][s->block_index[i]] = 0;
  3308. }
  3309. s->current_picture.qscale_table[mb_pos] = 0;
  3310. if (!direct) {
  3311. if (!skipped) {
  3312. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3313. dmv_x[1] = dmv_x[0];
  3314. dmv_y[1] = dmv_y[0];
  3315. }
  3316. if(skipped || !s->mb_intra) {
  3317. bmvtype = decode012(gb);
  3318. switch(bmvtype) {
  3319. case 0:
  3320. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3321. break;
  3322. case 1:
  3323. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3324. break;
  3325. case 2:
  3326. bmvtype = BMV_TYPE_INTERPOLATED;
  3327. dmv_x[0] = dmv_y[0] = 0;
  3328. }
  3329. }
  3330. }
  3331. for(i = 0; i < 6; i++)
  3332. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3333. if (skipped) {
  3334. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3335. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3336. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3337. return;
  3338. }
  3339. if (direct) {
  3340. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3341. GET_MQUANT();
  3342. s->mb_intra = 0;
  3343. mb_has_coeffs = 0;
  3344. s->current_picture.qscale_table[mb_pos] = mquant;
  3345. if(!v->ttmbf)
  3346. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3347. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3348. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3349. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3350. } else {
  3351. if(!mb_has_coeffs && !s->mb_intra) {
  3352. /* no coded blocks - effectively skipped */
  3353. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3354. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3355. return;
  3356. }
  3357. if(s->mb_intra && !mb_has_coeffs) {
  3358. GET_MQUANT();
  3359. s->current_picture.qscale_table[mb_pos] = mquant;
  3360. s->ac_pred = get_bits1(gb);
  3361. cbp = 0;
  3362. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3363. } else {
  3364. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3365. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3366. if(!mb_has_coeffs) {
  3367. /* interpolated skipped block */
  3368. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3369. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3370. return;
  3371. }
  3372. }
  3373. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3374. if(!s->mb_intra) {
  3375. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3376. }
  3377. if(s->mb_intra)
  3378. s->ac_pred = get_bits1(gb);
  3379. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3380. GET_MQUANT();
  3381. s->current_picture.qscale_table[mb_pos] = mquant;
  3382. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3383. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3384. }
  3385. }
  3386. dst_idx = 0;
  3387. for (i=0; i<6; i++)
  3388. {
  3389. s->dc_val[0][s->block_index[i]] = 0;
  3390. dst_idx += i >> 2;
  3391. val = ((cbp >> (5 - i)) & 1);
  3392. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3393. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3394. if(s->mb_intra) {
  3395. /* check if prediction blocks A and C are available */
  3396. v->a_avail = v->c_avail = 0;
  3397. if(i == 2 || i == 3 || !s->first_slice_line)
  3398. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3399. if(i == 1 || i == 3 || s->mb_x)
  3400. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3401. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3402. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3403. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3404. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3405. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3406. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3407. } else if(val) {
  3408. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3409. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3410. first_block = 0;
  3411. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3412. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3413. }
  3414. }
  3415. }
  3416. /** Decode blocks of I-frame
  3417. */
  3418. static void vc1_decode_i_blocks(VC1Context *v)
  3419. {
  3420. int k, j;
  3421. MpegEncContext *s = &v->s;
  3422. int cbp, val;
  3423. uint8_t *coded_val;
  3424. int mb_pos;
  3425. /* select codingmode used for VLC tables selection */
  3426. switch(v->y_ac_table_index){
  3427. case 0:
  3428. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3429. break;
  3430. case 1:
  3431. v->codingset = CS_HIGH_MOT_INTRA;
  3432. break;
  3433. case 2:
  3434. v->codingset = CS_MID_RATE_INTRA;
  3435. break;
  3436. }
  3437. switch(v->c_ac_table_index){
  3438. case 0:
  3439. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3440. break;
  3441. case 1:
  3442. v->codingset2 = CS_HIGH_MOT_INTER;
  3443. break;
  3444. case 2:
  3445. v->codingset2 = CS_MID_RATE_INTER;
  3446. break;
  3447. }
  3448. /* Set DC scale - y and c use the same */
  3449. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3450. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3451. //do frame decode
  3452. s->mb_x = s->mb_y = 0;
  3453. s->mb_intra = 1;
  3454. s->first_slice_line = 1;
  3455. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3456. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3457. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3458. ff_init_block_index(s);
  3459. ff_update_block_index(s);
  3460. s->dsp.clear_blocks(s->block[0]);
  3461. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3462. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3463. s->current_picture.qscale_table[mb_pos] = v->pq;
  3464. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3465. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3466. // do actual MB decoding and displaying
  3467. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3468. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3469. for(k = 0; k < 6; k++) {
  3470. val = ((cbp >> (5 - k)) & 1);
  3471. if (k < 4) {
  3472. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3473. val = val ^ pred;
  3474. *coded_val = val;
  3475. }
  3476. cbp |= val << (5 - k);
  3477. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3478. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3479. if(v->pq >= 9 && v->overlap) {
  3480. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3481. }
  3482. }
  3483. vc1_put_block(v, s->block);
  3484. if(v->pq >= 9 && v->overlap) {
  3485. if(s->mb_x) {
  3486. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3487. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3488. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3489. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3490. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3491. }
  3492. }
  3493. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3494. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3495. if(!s->first_slice_line) {
  3496. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3497. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3498. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3499. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3500. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3501. }
  3502. }
  3503. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3504. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3505. }
  3506. if(get_bits_count(&s->gb) > v->bits) {
  3507. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3508. return;
  3509. }
  3510. }
  3511. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3512. s->first_slice_line = 0;
  3513. }
  3514. }
  3515. /** Decode blocks of I-frame for advanced profile
  3516. */
  3517. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3518. {
  3519. int k, j;
  3520. MpegEncContext *s = &v->s;
  3521. int cbp, val;
  3522. uint8_t *coded_val;
  3523. int mb_pos;
  3524. int mquant = v->pq;
  3525. int mqdiff;
  3526. int overlap;
  3527. GetBitContext *gb = &s->gb;
  3528. /* select codingmode used for VLC tables selection */
  3529. switch(v->y_ac_table_index){
  3530. case 0:
  3531. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3532. break;
  3533. case 1:
  3534. v->codingset = CS_HIGH_MOT_INTRA;
  3535. break;
  3536. case 2:
  3537. v->codingset = CS_MID_RATE_INTRA;
  3538. break;
  3539. }
  3540. switch(v->c_ac_table_index){
  3541. case 0:
  3542. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3543. break;
  3544. case 1:
  3545. v->codingset2 = CS_HIGH_MOT_INTER;
  3546. break;
  3547. case 2:
  3548. v->codingset2 = CS_MID_RATE_INTER;
  3549. break;
  3550. }
  3551. //do frame decode
  3552. s->mb_x = s->mb_y = 0;
  3553. s->mb_intra = 1;
  3554. s->first_slice_line = 1;
  3555. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3556. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3557. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3558. ff_init_block_index(s);
  3559. ff_update_block_index(s);
  3560. s->dsp.clear_blocks(s->block[0]);
  3561. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3562. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3563. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3564. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3565. // do actual MB decoding and displaying
  3566. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3567. if(v->acpred_is_raw)
  3568. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3569. else
  3570. v->s.ac_pred = v->acpred_plane[mb_pos];
  3571. if(v->condover == CONDOVER_SELECT) {
  3572. if(v->overflg_is_raw)
  3573. overlap = get_bits(&v->s.gb, 1);
  3574. else
  3575. overlap = v->over_flags_plane[mb_pos];
  3576. } else
  3577. overlap = (v->condover == CONDOVER_ALL);
  3578. GET_MQUANT();
  3579. s->current_picture.qscale_table[mb_pos] = mquant;
  3580. /* Set DC scale - y and c use the same */
  3581. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3582. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3583. for(k = 0; k < 6; k++) {
  3584. val = ((cbp >> (5 - k)) & 1);
  3585. if (k < 4) {
  3586. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3587. val = val ^ pred;
  3588. *coded_val = val;
  3589. }
  3590. cbp |= val << (5 - k);
  3591. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3592. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3593. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3594. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3595. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3596. }
  3597. vc1_put_block(v, s->block);
  3598. if(overlap) {
  3599. if(s->mb_x) {
  3600. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3601. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3602. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3603. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3604. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3605. }
  3606. }
  3607. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3608. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3609. if(!s->first_slice_line) {
  3610. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3611. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3612. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3613. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3614. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3615. }
  3616. }
  3617. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3618. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3619. }
  3620. if(get_bits_count(&s->gb) > v->bits) {
  3621. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3622. return;
  3623. }
  3624. }
  3625. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3626. s->first_slice_line = 0;
  3627. }
  3628. }
  3629. static void vc1_decode_p_blocks(VC1Context *v)
  3630. {
  3631. MpegEncContext *s = &v->s;
  3632. /* select codingmode used for VLC tables selection */
  3633. switch(v->c_ac_table_index){
  3634. case 0:
  3635. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3636. break;
  3637. case 1:
  3638. v->codingset = CS_HIGH_MOT_INTRA;
  3639. break;
  3640. case 2:
  3641. v->codingset = CS_MID_RATE_INTRA;
  3642. break;
  3643. }
  3644. switch(v->c_ac_table_index){
  3645. case 0:
  3646. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3647. break;
  3648. case 1:
  3649. v->codingset2 = CS_HIGH_MOT_INTER;
  3650. break;
  3651. case 2:
  3652. v->codingset2 = CS_MID_RATE_INTER;
  3653. break;
  3654. }
  3655. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3656. s->first_slice_line = 1;
  3657. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3658. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3659. ff_init_block_index(s);
  3660. ff_update_block_index(s);
  3661. s->dsp.clear_blocks(s->block[0]);
  3662. vc1_decode_p_mb(v);
  3663. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3664. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3665. return;
  3666. }
  3667. }
  3668. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3669. s->first_slice_line = 0;
  3670. }
  3671. }
  3672. static void vc1_decode_b_blocks(VC1Context *v)
  3673. {
  3674. MpegEncContext *s = &v->s;
  3675. /* select codingmode used for VLC tables selection */
  3676. switch(v->c_ac_table_index){
  3677. case 0:
  3678. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3679. break;
  3680. case 1:
  3681. v->codingset = CS_HIGH_MOT_INTRA;
  3682. break;
  3683. case 2:
  3684. v->codingset = CS_MID_RATE_INTRA;
  3685. break;
  3686. }
  3687. switch(v->c_ac_table_index){
  3688. case 0:
  3689. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3690. break;
  3691. case 1:
  3692. v->codingset2 = CS_HIGH_MOT_INTER;
  3693. break;
  3694. case 2:
  3695. v->codingset2 = CS_MID_RATE_INTER;
  3696. break;
  3697. }
  3698. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3699. s->first_slice_line = 1;
  3700. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3701. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3702. ff_init_block_index(s);
  3703. ff_update_block_index(s);
  3704. s->dsp.clear_blocks(s->block[0]);
  3705. vc1_decode_b_mb(v);
  3706. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3707. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3708. return;
  3709. }
  3710. }
  3711. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3712. s->first_slice_line = 0;
  3713. }
  3714. }
  3715. static void vc1_decode_skip_blocks(VC1Context *v)
  3716. {
  3717. MpegEncContext *s = &v->s;
  3718. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3719. s->first_slice_line = 1;
  3720. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3721. s->mb_x = 0;
  3722. ff_init_block_index(s);
  3723. ff_update_block_index(s);
  3724. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3725. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3726. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3727. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3728. s->first_slice_line = 0;
  3729. }
  3730. s->pict_type = P_TYPE;
  3731. }
  3732. static void vc1_decode_blocks(VC1Context *v)
  3733. {
  3734. v->s.esc3_level_length = 0;
  3735. switch(v->s.pict_type) {
  3736. case I_TYPE:
  3737. if(v->profile == PROFILE_ADVANCED)
  3738. vc1_decode_i_blocks_adv(v);
  3739. else
  3740. vc1_decode_i_blocks(v);
  3741. break;
  3742. case P_TYPE:
  3743. if(v->p_frame_skipped)
  3744. vc1_decode_skip_blocks(v);
  3745. else
  3746. vc1_decode_p_blocks(v);
  3747. break;
  3748. case B_TYPE:
  3749. if(v->bi_type){
  3750. if(v->profile == PROFILE_ADVANCED)
  3751. vc1_decode_i_blocks_adv(v);
  3752. else
  3753. vc1_decode_i_blocks(v);
  3754. }else
  3755. vc1_decode_b_blocks(v);
  3756. break;
  3757. }
  3758. }
  3759. #define IS_MARKER(x) ((((x) & ~0xFF) == VC1_CODE_RES0) && ((x) != VC1_CODE_ESCAPE))
  3760. /** Find VC-1 marker in buffer
  3761. * @return position where next marker starts or end of buffer if no marker found
  3762. */
  3763. static av_always_inline uint8_t* find_next_marker(uint8_t *src, uint8_t *end)
  3764. {
  3765. uint32_t mrk = 0xFFFFFFFF;
  3766. if(end-src < 4) return end;
  3767. while(src < end){
  3768. mrk = (mrk << 8) | *src++;
  3769. if(IS_MARKER(mrk))
  3770. return src-4;
  3771. }
  3772. return end;
  3773. }
  3774. static av_always_inline int vc1_unescape_buffer(uint8_t *src, int size, uint8_t *dst)
  3775. {
  3776. int dsize = 0, i;
  3777. if(size < 4){
  3778. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3779. return size;
  3780. }
  3781. for(i = 0; i < size; i++, src++) {
  3782. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3783. dst[dsize++] = src[1];
  3784. src++;
  3785. i++;
  3786. } else
  3787. dst[dsize++] = *src;
  3788. }
  3789. return dsize;
  3790. }
  3791. /** Initialize a VC1/WMV3 decoder
  3792. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3793. * @todo TODO: Decypher remaining bits in extra_data
  3794. */
  3795. static int vc1_decode_init(AVCodecContext *avctx)
  3796. {
  3797. VC1Context *v = avctx->priv_data;
  3798. MpegEncContext *s = &v->s;
  3799. GetBitContext gb;
  3800. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3801. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3802. avctx->pix_fmt = PIX_FMT_YUV420P;
  3803. else
  3804. avctx->pix_fmt = PIX_FMT_GRAY8;
  3805. v->s.avctx = avctx;
  3806. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3807. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3808. if(ff_h263_decode_init(avctx) < 0)
  3809. return -1;
  3810. if (vc1_init_common(v) < 0) return -1;
  3811. avctx->coded_width = avctx->width;
  3812. avctx->coded_height = avctx->height;
  3813. if (avctx->codec_id == CODEC_ID_WMV3)
  3814. {
  3815. int count = 0;
  3816. // looks like WMV3 has a sequence header stored in the extradata
  3817. // advanced sequence header may be before the first frame
  3818. // the last byte of the extradata is a version number, 1 for the
  3819. // samples we can decode
  3820. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3821. if (decode_sequence_header(avctx, &gb) < 0)
  3822. return -1;
  3823. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3824. if (count>0)
  3825. {
  3826. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3827. count, get_bits(&gb, count));
  3828. }
  3829. else if (count < 0)
  3830. {
  3831. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3832. }
  3833. } else { // VC1/WVC1
  3834. uint8_t *start = avctx->extradata, *end = avctx->extradata + avctx->extradata_size;
  3835. uint8_t *next; int size, buf2_size;
  3836. uint8_t *buf2 = NULL;
  3837. int seq_inited = 0, ep_inited = 0;
  3838. if(avctx->extradata_size < 16) {
  3839. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3840. return -1;
  3841. }
  3842. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3843. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3844. next = start;
  3845. for(; next < end; start = next){
  3846. next = find_next_marker(start + 4, end);
  3847. size = next - start - 4;
  3848. if(size <= 0) continue;
  3849. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3850. init_get_bits(&gb, buf2, buf2_size * 8);
  3851. switch(AV_RB32(start)){
  3852. case VC1_CODE_SEQHDR:
  3853. if(decode_sequence_header(avctx, &gb) < 0){
  3854. av_free(buf2);
  3855. return -1;
  3856. }
  3857. seq_inited = 1;
  3858. break;
  3859. case VC1_CODE_ENTRYPOINT:
  3860. if(decode_entry_point(avctx, &gb) < 0){
  3861. av_free(buf2);
  3862. return -1;
  3863. }
  3864. ep_inited = 1;
  3865. break;
  3866. }
  3867. }
  3868. av_free(buf2);
  3869. if(!seq_inited || !ep_inited){
  3870. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3871. return -1;
  3872. }
  3873. }
  3874. avctx->has_b_frames= !!(avctx->max_b_frames);
  3875. s->low_delay = !avctx->has_b_frames;
  3876. s->mb_width = (avctx->coded_width+15)>>4;
  3877. s->mb_height = (avctx->coded_height+15)>>4;
  3878. /* Allocate mb bitplanes */
  3879. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3880. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3881. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3882. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3883. /* allocate block type info in that way so it could be used with s->block_index[] */
  3884. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3885. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3886. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3887. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3888. /* Init coded blocks info */
  3889. if (v->profile == PROFILE_ADVANCED)
  3890. {
  3891. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3892. // return -1;
  3893. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3894. // return -1;
  3895. }
  3896. return 0;
  3897. }
  3898. /** Decode a VC1/WMV3 frame
  3899. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3900. */
  3901. static int vc1_decode_frame(AVCodecContext *avctx,
  3902. void *data, int *data_size,
  3903. uint8_t *buf, int buf_size)
  3904. {
  3905. VC1Context *v = avctx->priv_data;
  3906. MpegEncContext *s = &v->s;
  3907. AVFrame *pict = data;
  3908. uint8_t *buf2 = NULL;
  3909. /* no supplementary picture */
  3910. if (buf_size == 0) {
  3911. /* special case for last picture */
  3912. if (s->low_delay==0 && s->next_picture_ptr) {
  3913. *pict= *(AVFrame*)s->next_picture_ptr;
  3914. s->next_picture_ptr= NULL;
  3915. *data_size = sizeof(AVFrame);
  3916. }
  3917. return 0;
  3918. }
  3919. //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
  3920. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3921. int i= ff_find_unused_picture(s, 0);
  3922. s->current_picture_ptr= &s->picture[i];
  3923. }
  3924. //for advanced profile we may need to parse and unescape data
  3925. if (avctx->codec_id == CODEC_ID_VC1) {
  3926. int buf_size2 = 0;
  3927. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3928. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3929. uint8_t *dst = buf2, *start, *end, *next;
  3930. int size;
  3931. next = buf;
  3932. for(start = buf, end = buf + buf_size; next < end; start = next){
  3933. next = find_next_marker(start + 4, end);
  3934. size = next - start - 4;
  3935. if(size <= 0) continue;
  3936. switch(AV_RB32(start)){
  3937. case VC1_CODE_FRAME:
  3938. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3939. break;
  3940. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3941. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3942. init_get_bits(&s->gb, buf2, buf_size2*8);
  3943. decode_entry_point(avctx, &s->gb);
  3944. break;
  3945. case VC1_CODE_SLICE:
  3946. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3947. av_free(buf2);
  3948. return -1;
  3949. }
  3950. }
  3951. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3952. uint8_t *divider;
  3953. divider = find_next_marker(buf, buf + buf_size);
  3954. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3955. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3956. return -1;
  3957. }
  3958. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3959. // TODO
  3960. av_free(buf2);return -1;
  3961. }else{
  3962. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3963. }
  3964. init_get_bits(&s->gb, buf2, buf_size2*8);
  3965. } else
  3966. init_get_bits(&s->gb, buf, buf_size*8);
  3967. // do parse frame header
  3968. if(v->profile < PROFILE_ADVANCED) {
  3969. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3970. av_free(buf2);
  3971. return -1;
  3972. }
  3973. } else {
  3974. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3975. av_free(buf2);
  3976. return -1;
  3977. }
  3978. }
  3979. if(s->pict_type != I_TYPE && !v->res_rtm_flag){
  3980. av_free(buf2);
  3981. return -1;
  3982. }
  3983. // for hurry_up==5
  3984. s->current_picture.pict_type= s->pict_type;
  3985. s->current_picture.key_frame= s->pict_type == I_TYPE;
  3986. /* skip B-frames if we don't have reference frames */
  3987. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
  3988. av_free(buf2);
  3989. return -1;//buf_size;
  3990. }
  3991. /* skip b frames if we are in a hurry */
  3992. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  3993. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  3994. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  3995. || avctx->skip_frame >= AVDISCARD_ALL) {
  3996. av_free(buf2);
  3997. return buf_size;
  3998. }
  3999. /* skip everything if we are in a hurry>=5 */
  4000. if(avctx->hurry_up>=5) {
  4001. av_free(buf2);
  4002. return -1;//buf_size;
  4003. }
  4004. if(s->next_p_frame_damaged){
  4005. if(s->pict_type==B_TYPE)
  4006. return buf_size;
  4007. else
  4008. s->next_p_frame_damaged=0;
  4009. }
  4010. if(MPV_frame_start(s, avctx) < 0) {
  4011. av_free(buf2);
  4012. return -1;
  4013. }
  4014. ff_er_frame_start(s);
  4015. v->bits = buf_size * 8;
  4016. vc1_decode_blocks(v);
  4017. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  4018. // if(get_bits_count(&s->gb) > buf_size * 8)
  4019. // return -1;
  4020. ff_er_frame_end(s);
  4021. MPV_frame_end(s);
  4022. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  4023. assert(s->current_picture.pict_type == s->pict_type);
  4024. if (s->pict_type == B_TYPE || s->low_delay) {
  4025. *pict= *(AVFrame*)s->current_picture_ptr;
  4026. } else if (s->last_picture_ptr != NULL) {
  4027. *pict= *(AVFrame*)s->last_picture_ptr;
  4028. }
  4029. if(s->last_picture_ptr || s->low_delay){
  4030. *data_size = sizeof(AVFrame);
  4031. ff_print_debug_info(s, pict);
  4032. }
  4033. /* Return the Picture timestamp as the frame number */
  4034. /* we substract 1 because it is added on utils.c */
  4035. avctx->frame_number = s->picture_number - 1;
  4036. av_free(buf2);
  4037. return buf_size;
  4038. }
  4039. /** Close a VC1/WMV3 decoder
  4040. * @warning Initial try at using MpegEncContext stuff
  4041. */
  4042. static int vc1_decode_end(AVCodecContext *avctx)
  4043. {
  4044. VC1Context *v = avctx->priv_data;
  4045. av_freep(&v->hrd_rate);
  4046. av_freep(&v->hrd_buffer);
  4047. MPV_common_end(&v->s);
  4048. av_freep(&v->mv_type_mb_plane);
  4049. av_freep(&v->direct_mb_plane);
  4050. av_freep(&v->acpred_plane);
  4051. av_freep(&v->over_flags_plane);
  4052. av_freep(&v->mb_type_base);
  4053. return 0;
  4054. }
  4055. AVCodec vc1_decoder = {
  4056. "vc1",
  4057. CODEC_TYPE_VIDEO,
  4058. CODEC_ID_VC1,
  4059. sizeof(VC1Context),
  4060. vc1_decode_init,
  4061. NULL,
  4062. vc1_decode_end,
  4063. vc1_decode_frame,
  4064. CODEC_CAP_DELAY,
  4065. NULL
  4066. };
  4067. AVCodec wmv3_decoder = {
  4068. "wmv3",
  4069. CODEC_TYPE_VIDEO,
  4070. CODEC_ID_WMV3,
  4071. sizeof(VC1Context),
  4072. vc1_decode_init,
  4073. NULL,
  4074. vc1_decode_end,
  4075. vc1_decode_frame,
  4076. CODEC_CAP_DELAY,
  4077. NULL
  4078. };