You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1050 lines
35KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Rate control for video encoders.
  25. */
  26. #include "libavutil/attributes.h"
  27. #include "avcodec.h"
  28. #include "internal.h"
  29. #include "ratecontrol.h"
  30. #include "mpegutils.h"
  31. #include "mpegvideo.h"
  32. #include "libavutil/eval.h"
  33. #undef NDEBUG // Always check asserts, the speed effect is far too small to disable them.
  34. #include <assert.h>
  35. #ifndef M_E
  36. #define M_E 2.718281828
  37. #endif
  38. static int init_pass2(MpegEncContext *s);
  39. static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
  40. double rate_factor, int frame_num);
  41. void ff_write_pass1_stats(MpegEncContext *s)
  42. {
  43. snprintf(s->avctx->stats_out, 256,
  44. "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d "
  45. "fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n",
  46. s->current_picture_ptr->f->display_picture_number,
  47. s->current_picture_ptr->f->coded_picture_number,
  48. s->pict_type,
  49. s->current_picture.f->quality,
  50. s->i_tex_bits,
  51. s->p_tex_bits,
  52. s->mv_bits,
  53. s->misc_bits,
  54. s->f_code,
  55. s->b_code,
  56. s->current_picture.mc_mb_var_sum,
  57. s->current_picture.mb_var_sum,
  58. s->i_count, s->skip_count,
  59. s->header_bits);
  60. }
  61. static inline double qp2bits(RateControlEntry *rce, double qp)
  62. {
  63. if (qp <= 0.0) {
  64. av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
  65. }
  66. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / qp;
  67. }
  68. static inline double bits2qp(RateControlEntry *rce, double bits)
  69. {
  70. if (bits < 0.9) {
  71. av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
  72. }
  73. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / bits;
  74. }
  75. av_cold int ff_rate_control_init(MpegEncContext *s)
  76. {
  77. RateControlContext *rcc = &s->rc_context;
  78. int i, res;
  79. static const char * const const_names[] = {
  80. "PI",
  81. "E",
  82. "iTex",
  83. "pTex",
  84. "tex",
  85. "mv",
  86. "fCode",
  87. "iCount",
  88. "mcVar",
  89. "var",
  90. "isI",
  91. "isP",
  92. "isB",
  93. "avgQP",
  94. "qComp",
  95. #if 0
  96. "lastIQP",
  97. "lastPQP",
  98. "lastBQP",
  99. "nextNonBQP",
  100. #endif
  101. "avgIITex",
  102. "avgPITex",
  103. "avgPPTex",
  104. "avgBPTex",
  105. "avgTex",
  106. NULL
  107. };
  108. static double (* const func1[])(void *, double) = {
  109. (void *)bits2qp,
  110. (void *)qp2bits,
  111. NULL
  112. };
  113. static const char * const func1_names[] = {
  114. "bits2qp",
  115. "qp2bits",
  116. NULL
  117. };
  118. emms_c();
  119. res = av_expr_parse(&rcc->rc_eq_eval,
  120. s->rc_eq ? s->rc_eq : "tex^qComp",
  121. const_names, func1_names, func1,
  122. NULL, NULL, 0, s->avctx);
  123. if (res < 0) {
  124. av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\"\n", s->rc_eq);
  125. return res;
  126. }
  127. for (i = 0; i < 5; i++) {
  128. rcc->pred[i].coeff = FF_QP2LAMBDA * 7.0;
  129. rcc->pred[i].count = 1.0;
  130. rcc->pred[i].decay = 0.4;
  131. rcc->i_cplx_sum [i] =
  132. rcc->p_cplx_sum [i] =
  133. rcc->mv_bits_sum[i] =
  134. rcc->qscale_sum [i] =
  135. rcc->frame_count[i] = 1; // 1 is better because of 1/0 and such
  136. rcc->last_qscale_for[i] = FF_QP2LAMBDA * 5;
  137. }
  138. rcc->buffer_index = s->avctx->rc_initial_buffer_occupancy;
  139. if (s->avctx->flags & CODEC_FLAG_PASS2) {
  140. int i;
  141. char *p;
  142. /* find number of pics */
  143. p = s->avctx->stats_in;
  144. for (i = -1; p; i++)
  145. p = strchr(p + 1, ';');
  146. i += s->max_b_frames;
  147. if (i <= 0 || i >= INT_MAX / sizeof(RateControlEntry))
  148. return -1;
  149. rcc->entry = av_mallocz(i * sizeof(RateControlEntry));
  150. rcc->num_entries = i;
  151. if (!rcc->entry)
  152. return AVERROR(ENOMEM);
  153. /* init all to skipped p frames
  154. * (with b frames we might have a not encoded frame at the end FIXME) */
  155. for (i = 0; i < rcc->num_entries; i++) {
  156. RateControlEntry *rce = &rcc->entry[i];
  157. rce->pict_type = rce->new_pict_type = AV_PICTURE_TYPE_P;
  158. rce->qscale = rce->new_qscale = FF_QP2LAMBDA * 2;
  159. rce->misc_bits = s->mb_num + 10;
  160. rce->mb_var_sum = s->mb_num * 100;
  161. }
  162. /* read stats */
  163. p = s->avctx->stats_in;
  164. for (i = 0; i < rcc->num_entries - s->max_b_frames; i++) {
  165. RateControlEntry *rce;
  166. int picture_number;
  167. int e;
  168. char *next;
  169. next = strchr(p, ';');
  170. if (next) {
  171. (*next) = 0; // sscanf in unbelievably slow on looong strings // FIXME copy / do not write
  172. next++;
  173. }
  174. e = sscanf(p, " in:%d ", &picture_number);
  175. assert(picture_number >= 0);
  176. assert(picture_number < rcc->num_entries);
  177. rce = &rcc->entry[picture_number];
  178. e += sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
  179. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits,
  180. &rce->mv_bits, &rce->misc_bits,
  181. &rce->f_code, &rce->b_code,
  182. &rce->mc_mb_var_sum, &rce->mb_var_sum,
  183. &rce->i_count, &rce->skip_count, &rce->header_bits);
  184. if (e != 14) {
  185. av_log(s->avctx, AV_LOG_ERROR,
  186. "statistics are damaged at line %d, parser out=%d\n",
  187. i, e);
  188. return -1;
  189. }
  190. p = next;
  191. }
  192. if (init_pass2(s) < 0) {
  193. ff_rate_control_uninit(s);
  194. return -1;
  195. }
  196. // FIXME maybe move to end
  197. if ((s->avctx->flags & CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) {
  198. #if CONFIG_LIBXVID
  199. return ff_xvid_rate_control_init(s);
  200. #else
  201. av_log(s->avctx, AV_LOG_ERROR,
  202. "Xvid ratecontrol requires libavcodec compiled with Xvid support.\n");
  203. return -1;
  204. #endif
  205. }
  206. }
  207. if (!(s->avctx->flags & CODEC_FLAG_PASS2)) {
  208. rcc->short_term_qsum = 0.001;
  209. rcc->short_term_qcount = 0.001;
  210. rcc->pass1_rc_eq_output_sum = 0.001;
  211. rcc->pass1_wanted_bits = 0.001;
  212. if (s->avctx->qblur > 1.0) {
  213. av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
  214. return -1;
  215. }
  216. /* init stuff with the user specified complexity */
  217. if (s->rc_initial_cplx) {
  218. for (i = 0; i < 60 * 30; i++) {
  219. double bits = s->rc_initial_cplx * (i / 10000.0 + 1.0) * s->mb_num;
  220. RateControlEntry rce;
  221. if (i % ((s->gop_size + 3) / 4) == 0)
  222. rce.pict_type = AV_PICTURE_TYPE_I;
  223. else if (i % (s->max_b_frames + 1))
  224. rce.pict_type = AV_PICTURE_TYPE_B;
  225. else
  226. rce.pict_type = AV_PICTURE_TYPE_P;
  227. rce.new_pict_type = rce.pict_type;
  228. rce.mc_mb_var_sum = bits * s->mb_num / 100000;
  229. rce.mb_var_sum = s->mb_num;
  230. rce.qscale = FF_QP2LAMBDA * 2;
  231. rce.f_code = 2;
  232. rce.b_code = 1;
  233. rce.misc_bits = 1;
  234. if (s->pict_type == AV_PICTURE_TYPE_I) {
  235. rce.i_count = s->mb_num;
  236. rce.i_tex_bits = bits;
  237. rce.p_tex_bits = 0;
  238. rce.mv_bits = 0;
  239. } else {
  240. rce.i_count = 0; // FIXME we do know this approx
  241. rce.i_tex_bits = 0;
  242. rce.p_tex_bits = bits * 0.9;
  243. rce.mv_bits = bits * 0.1;
  244. }
  245. rcc->i_cplx_sum[rce.pict_type] += rce.i_tex_bits * rce.qscale;
  246. rcc->p_cplx_sum[rce.pict_type] += rce.p_tex_bits * rce.qscale;
  247. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  248. rcc->frame_count[rce.pict_type]++;
  249. get_qscale(s, &rce, rcc->pass1_wanted_bits / rcc->pass1_rc_eq_output_sum, i);
  250. // FIXME misbehaves a little for variable fps
  251. rcc->pass1_wanted_bits += s->bit_rate / (1 / av_q2d(s->avctx->time_base));
  252. }
  253. }
  254. }
  255. return 0;
  256. }
  257. av_cold void ff_rate_control_uninit(MpegEncContext *s)
  258. {
  259. RateControlContext *rcc = &s->rc_context;
  260. emms_c();
  261. av_expr_free(rcc->rc_eq_eval);
  262. av_freep(&rcc->entry);
  263. #if CONFIG_LIBXVID
  264. if ((s->avctx->flags & CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  265. ff_xvid_rate_control_uninit(s);
  266. #endif
  267. }
  268. int ff_vbv_update(MpegEncContext *s, int frame_size)
  269. {
  270. RateControlContext *rcc = &s->rc_context;
  271. const double fps = 1 / av_q2d(s->avctx->time_base);
  272. const int buffer_size = s->avctx->rc_buffer_size;
  273. const double min_rate = s->avctx->rc_min_rate / fps;
  274. const double max_rate = s->avctx->rc_max_rate / fps;
  275. ff_dlog(s, "%d %f %d %f %f\n",
  276. buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
  277. if (buffer_size) {
  278. int left;
  279. rcc->buffer_index -= frame_size;
  280. if (rcc->buffer_index < 0) {
  281. av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
  282. rcc->buffer_index = 0;
  283. }
  284. left = buffer_size - rcc->buffer_index - 1;
  285. rcc->buffer_index += av_clip(left, min_rate, max_rate);
  286. if (rcc->buffer_index > buffer_size) {
  287. int stuffing = ceil((rcc->buffer_index - buffer_size) / 8);
  288. if (stuffing < 4 && s->codec_id == AV_CODEC_ID_MPEG4)
  289. stuffing = 4;
  290. rcc->buffer_index -= 8 * stuffing;
  291. if (s->avctx->debug & FF_DEBUG_RC)
  292. av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
  293. return stuffing;
  294. }
  295. }
  296. return 0;
  297. }
  298. /**
  299. * Modify the bitrate curve from pass1 for one frame.
  300. */
  301. static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
  302. double rate_factor, int frame_num)
  303. {
  304. RateControlContext *rcc = &s->rc_context;
  305. AVCodecContext *a = s->avctx;
  306. const int pict_type = rce->new_pict_type;
  307. const double mb_num = s->mb_num;
  308. double q, bits;
  309. int i;
  310. double const_values[] = {
  311. M_PI,
  312. M_E,
  313. rce->i_tex_bits * rce->qscale,
  314. rce->p_tex_bits * rce->qscale,
  315. (rce->i_tex_bits + rce->p_tex_bits) * (double)rce->qscale,
  316. rce->mv_bits / mb_num,
  317. rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code) * 0.5 : rce->f_code,
  318. rce->i_count / mb_num,
  319. rce->mc_mb_var_sum / mb_num,
  320. rce->mb_var_sum / mb_num,
  321. rce->pict_type == AV_PICTURE_TYPE_I,
  322. rce->pict_type == AV_PICTURE_TYPE_P,
  323. rce->pict_type == AV_PICTURE_TYPE_B,
  324. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  325. a->qcompress,
  326. #if 0
  327. rcc->last_qscale_for[AV_PICTURE_TYPE_I],
  328. rcc->last_qscale_for[AV_PICTURE_TYPE_P],
  329. rcc->last_qscale_for[AV_PICTURE_TYPE_B],
  330. rcc->next_non_b_qscale,
  331. #endif
  332. rcc->i_cplx_sum[AV_PICTURE_TYPE_I] / (double)rcc->frame_count[AV_PICTURE_TYPE_I],
  333. rcc->i_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  334. rcc->p_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  335. rcc->p_cplx_sum[AV_PICTURE_TYPE_B] / (double)rcc->frame_count[AV_PICTURE_TYPE_B],
  336. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  337. 0
  338. };
  339. bits = av_expr_eval(rcc->rc_eq_eval, const_values, rce);
  340. if (isnan(bits)) {
  341. av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->rc_eq);
  342. return -1;
  343. }
  344. rcc->pass1_rc_eq_output_sum += bits;
  345. bits *= rate_factor;
  346. if (bits < 0.0)
  347. bits = 0.0;
  348. bits += 1.0; // avoid 1/0 issues
  349. /* user override */
  350. for (i = 0; i < s->avctx->rc_override_count; i++) {
  351. RcOverride *rco = s->avctx->rc_override;
  352. if (rco[i].start_frame > frame_num)
  353. continue;
  354. if (rco[i].end_frame < frame_num)
  355. continue;
  356. if (rco[i].qscale)
  357. bits = qp2bits(rce, rco[i].qscale); // FIXME move at end to really force it?
  358. else
  359. bits *= rco[i].quality_factor;
  360. }
  361. q = bits2qp(rce, bits);
  362. /* I/B difference */
  363. if (pict_type == AV_PICTURE_TYPE_I && s->avctx->i_quant_factor < 0.0)
  364. q = -q * s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  365. else if (pict_type == AV_PICTURE_TYPE_B && s->avctx->b_quant_factor < 0.0)
  366. q = -q * s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  367. if (q < 1)
  368. q = 1;
  369. return q;
  370. }
  371. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q)
  372. {
  373. RateControlContext *rcc = &s->rc_context;
  374. AVCodecContext *a = s->avctx;
  375. const int pict_type = rce->new_pict_type;
  376. const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P];
  377. const double last_non_b_q = rcc->last_qscale_for[rcc->last_non_b_pict_type];
  378. if (pict_type == AV_PICTURE_TYPE_I &&
  379. (a->i_quant_factor > 0.0 || rcc->last_non_b_pict_type == AV_PICTURE_TYPE_P))
  380. q = last_p_q * FFABS(a->i_quant_factor) + a->i_quant_offset;
  381. else if (pict_type == AV_PICTURE_TYPE_B &&
  382. a->b_quant_factor > 0.0)
  383. q = last_non_b_q * a->b_quant_factor + a->b_quant_offset;
  384. if (q < 1)
  385. q = 1;
  386. /* last qscale / qdiff stuff */
  387. if (rcc->last_non_b_pict_type == pict_type || pict_type != AV_PICTURE_TYPE_I) {
  388. double last_q = rcc->last_qscale_for[pict_type];
  389. const int maxdiff = FF_QP2LAMBDA * a->max_qdiff;
  390. if (q > last_q + maxdiff)
  391. q = last_q + maxdiff;
  392. else if (q < last_q - maxdiff)
  393. q = last_q - maxdiff;
  394. }
  395. rcc->last_qscale_for[pict_type] = q; // Note we cannot do that after blurring
  396. if (pict_type != AV_PICTURE_TYPE_B)
  397. rcc->last_non_b_pict_type = pict_type;
  398. return q;
  399. }
  400. /**
  401. * Get the qmin & qmax for pict_type.
  402. */
  403. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type)
  404. {
  405. int qmin = s->lmin;
  406. int qmax = s->lmax;
  407. assert(qmin <= qmax);
  408. switch (pict_type) {
  409. case AV_PICTURE_TYPE_B:
  410. qmin = (int)(qmin * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
  411. qmax = (int)(qmax * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
  412. break;
  413. case AV_PICTURE_TYPE_I:
  414. qmin = (int)(qmin * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
  415. qmax = (int)(qmax * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
  416. break;
  417. }
  418. qmin = av_clip(qmin, 1, FF_LAMBDA_MAX);
  419. qmax = av_clip(qmax, 1, FF_LAMBDA_MAX);
  420. if (qmax < qmin)
  421. qmax = qmin;
  422. *qmin_ret = qmin;
  423. *qmax_ret = qmax;
  424. }
  425. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce,
  426. double q, int frame_num)
  427. {
  428. RateControlContext *rcc = &s->rc_context;
  429. const double buffer_size = s->avctx->rc_buffer_size;
  430. const double fps = 1 / av_q2d(s->avctx->time_base);
  431. const double min_rate = s->avctx->rc_min_rate / fps;
  432. const double max_rate = s->avctx->rc_max_rate / fps;
  433. const int pict_type = rce->new_pict_type;
  434. int qmin, qmax;
  435. get_qminmax(&qmin, &qmax, s, pict_type);
  436. /* modulation */
  437. if (s->rc_qmod_freq &&
  438. frame_num % s->rc_qmod_freq == 0 &&
  439. pict_type == AV_PICTURE_TYPE_P)
  440. q *= s->rc_qmod_amp;
  441. /* buffer overflow/underflow protection */
  442. if (buffer_size) {
  443. double expected_size = rcc->buffer_index;
  444. double q_limit;
  445. if (min_rate) {
  446. double d = 2 * (buffer_size - expected_size) / buffer_size;
  447. if (d > 1.0)
  448. d = 1.0;
  449. else if (d < 0.0001)
  450. d = 0.0001;
  451. q *= pow(d, 1.0 / s->rc_buffer_aggressivity);
  452. q_limit = bits2qp(rce,
  453. FFMAX((min_rate - buffer_size + rcc->buffer_index) *
  454. s->avctx->rc_min_vbv_overflow_use, 1));
  455. if (q > q_limit) {
  456. if (s->avctx->debug & FF_DEBUG_RC)
  457. av_log(s->avctx, AV_LOG_DEBUG,
  458. "limiting QP %f -> %f\n", q, q_limit);
  459. q = q_limit;
  460. }
  461. }
  462. if (max_rate) {
  463. double d = 2 * expected_size / buffer_size;
  464. if (d > 1.0)
  465. d = 1.0;
  466. else if (d < 0.0001)
  467. d = 0.0001;
  468. q /= pow(d, 1.0 / s->rc_buffer_aggressivity);
  469. q_limit = bits2qp(rce,
  470. FFMAX(rcc->buffer_index *
  471. s->avctx->rc_max_available_vbv_use,
  472. 1));
  473. if (q < q_limit) {
  474. if (s->avctx->debug & FF_DEBUG_RC)
  475. av_log(s->avctx, AV_LOG_DEBUG,
  476. "limiting QP %f -> %f\n", q, q_limit);
  477. q = q_limit;
  478. }
  479. }
  480. }
  481. ff_dlog(s, "q:%f max:%f min:%f size:%f index:%f agr:%f\n",
  482. q, max_rate, min_rate, buffer_size, rcc->buffer_index,
  483. s->rc_buffer_aggressivity);
  484. if (s->rc_qsquish == 0.0 || qmin == qmax) {
  485. if (q < qmin)
  486. q = qmin;
  487. else if (q > qmax)
  488. q = qmax;
  489. } else {
  490. double min2 = log(qmin);
  491. double max2 = log(qmax);
  492. q = log(q);
  493. q = (q - min2) / (max2 - min2) - 0.5;
  494. q *= -4.0;
  495. q = 1.0 / (1.0 + exp(q));
  496. q = q * (max2 - min2) + min2;
  497. q = exp(q);
  498. }
  499. return q;
  500. }
  501. // ----------------------------------
  502. // 1 Pass Code
  503. static double predict_size(Predictor *p, double q, double var)
  504. {
  505. return p->coeff * var / (q * p->count);
  506. }
  507. static void update_predictor(Predictor *p, double q, double var, double size)
  508. {
  509. double new_coeff = size * q / (var + 1);
  510. if (var < 10)
  511. return;
  512. p->count *= p->decay;
  513. p->coeff *= p->decay;
  514. p->count++;
  515. p->coeff += new_coeff;
  516. }
  517. static void adaptive_quantization(MpegEncContext *s, double q)
  518. {
  519. int i;
  520. const float lumi_masking = s->avctx->lumi_masking / (128.0 * 128.0);
  521. const float dark_masking = s->avctx->dark_masking / (128.0 * 128.0);
  522. const float temp_cplx_masking = s->avctx->temporal_cplx_masking;
  523. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  524. const float p_masking = s->avctx->p_masking;
  525. const float border_masking = s->border_masking;
  526. float bits_sum = 0.0;
  527. float cplx_sum = 0.0;
  528. float *cplx_tab = s->cplx_tab;
  529. float *bits_tab = s->bits_tab;
  530. const int qmin = s->avctx->mb_lmin;
  531. const int qmax = s->avctx->mb_lmax;
  532. Picture *const pic = &s->current_picture;
  533. const int mb_width = s->mb_width;
  534. const int mb_height = s->mb_height;
  535. for (i = 0; i < s->mb_num; i++) {
  536. const int mb_xy = s->mb_index2xy[i];
  537. float temp_cplx = sqrt(pic->mc_mb_var[mb_xy]); // FIXME merge in pow()
  538. float spat_cplx = sqrt(pic->mb_var[mb_xy]);
  539. const int lumi = pic->mb_mean[mb_xy];
  540. float bits, cplx, factor;
  541. int mb_x = mb_xy % s->mb_stride;
  542. int mb_y = mb_xy / s->mb_stride;
  543. int mb_distance;
  544. float mb_factor = 0.0;
  545. if (spat_cplx < 4)
  546. spat_cplx = 4; // FIXME finetune
  547. if (temp_cplx < 4)
  548. temp_cplx = 4; // FIXME finetune
  549. if ((s->mb_type[mb_xy] & CANDIDATE_MB_TYPE_INTRA)) { // FIXME hq mode
  550. cplx = spat_cplx;
  551. factor = 1.0 + p_masking;
  552. } else {
  553. cplx = temp_cplx;
  554. factor = pow(temp_cplx, -temp_cplx_masking);
  555. }
  556. factor *= pow(spat_cplx, -spatial_cplx_masking);
  557. if (lumi > 127)
  558. factor *= (1.0 - (lumi - 128) * (lumi - 128) * lumi_masking);
  559. else
  560. factor *= (1.0 - (lumi - 128) * (lumi - 128) * dark_masking);
  561. if (mb_x < mb_width / 5) {
  562. mb_distance = mb_width / 5 - mb_x;
  563. mb_factor = (float)mb_distance / (float)(mb_width / 5);
  564. } else if (mb_x > 4 * mb_width / 5) {
  565. mb_distance = mb_x - 4 * mb_width / 5;
  566. mb_factor = (float)mb_distance / (float)(mb_width / 5);
  567. }
  568. if (mb_y < mb_height / 5) {
  569. mb_distance = mb_height / 5 - mb_y;
  570. mb_factor = FFMAX(mb_factor,
  571. (float)mb_distance / (float)(mb_height / 5));
  572. } else if (mb_y > 4 * mb_height / 5) {
  573. mb_distance = mb_y - 4 * mb_height / 5;
  574. mb_factor = FFMAX(mb_factor,
  575. (float)mb_distance / (float)(mb_height / 5));
  576. }
  577. factor *= 1.0 - border_masking * mb_factor;
  578. if (factor < 0.00001)
  579. factor = 0.00001;
  580. bits = cplx * factor;
  581. cplx_sum += cplx;
  582. bits_sum += bits;
  583. cplx_tab[i] = cplx;
  584. bits_tab[i] = bits;
  585. }
  586. /* handle qmin/qmax clipping */
  587. if (s->mpv_flags & FF_MPV_FLAG_NAQ) {
  588. float factor = bits_sum / cplx_sum;
  589. for (i = 0; i < s->mb_num; i++) {
  590. float newq = q * cplx_tab[i] / bits_tab[i];
  591. newq *= factor;
  592. if (newq > qmax) {
  593. bits_sum -= bits_tab[i];
  594. cplx_sum -= cplx_tab[i] * q / qmax;
  595. } else if (newq < qmin) {
  596. bits_sum -= bits_tab[i];
  597. cplx_sum -= cplx_tab[i] * q / qmin;
  598. }
  599. }
  600. if (bits_sum < 0.001)
  601. bits_sum = 0.001;
  602. if (cplx_sum < 0.001)
  603. cplx_sum = 0.001;
  604. }
  605. for (i = 0; i < s->mb_num; i++) {
  606. const int mb_xy = s->mb_index2xy[i];
  607. float newq = q * cplx_tab[i] / bits_tab[i];
  608. int intq;
  609. if (s->mpv_flags & FF_MPV_FLAG_NAQ) {
  610. newq *= bits_sum / cplx_sum;
  611. }
  612. intq = (int)(newq + 0.5);
  613. if (intq > qmax)
  614. intq = qmax;
  615. else if (intq < qmin)
  616. intq = qmin;
  617. s->lambda_table[mb_xy] = intq;
  618. }
  619. }
  620. void ff_get_2pass_fcode(MpegEncContext *s)
  621. {
  622. RateControlContext *rcc = &s->rc_context;
  623. RateControlEntry *rce = &rcc->entry[s->picture_number];
  624. s->f_code = rce->f_code;
  625. s->b_code = rce->b_code;
  626. }
  627. // FIXME rd or at least approx for dquant
  628. float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
  629. {
  630. float q;
  631. int qmin, qmax;
  632. float br_compensation;
  633. double diff;
  634. double short_term_q;
  635. double fps;
  636. int picture_number = s->picture_number;
  637. int64_t wanted_bits;
  638. RateControlContext *rcc = &s->rc_context;
  639. AVCodecContext *a = s->avctx;
  640. RateControlEntry local_rce, *rce;
  641. double bits;
  642. double rate_factor;
  643. int var;
  644. const int pict_type = s->pict_type;
  645. Picture * const pic = &s->current_picture;
  646. emms_c();
  647. #if CONFIG_LIBXVID
  648. if ((s->avctx->flags & CODEC_FLAG_PASS2) &&
  649. s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  650. return ff_xvid_rate_estimate_qscale(s, dry_run);
  651. #endif
  652. get_qminmax(&qmin, &qmax, s, pict_type);
  653. fps = 1 / av_q2d(s->avctx->time_base);
  654. /* update predictors */
  655. if (picture_number > 2 && !dry_run) {
  656. const int last_var = s->last_pict_type == AV_PICTURE_TYPE_I ? rcc->last_mb_var_sum
  657. : rcc->last_mc_mb_var_sum;
  658. update_predictor(&rcc->pred[s->last_pict_type],
  659. rcc->last_qscale,
  660. sqrt(last_var), s->frame_bits);
  661. }
  662. if (s->avctx->flags & CODEC_FLAG_PASS2) {
  663. assert(picture_number >= 0);
  664. assert(picture_number < rcc->num_entries);
  665. rce = &rcc->entry[picture_number];
  666. wanted_bits = rce->expected_bits;
  667. } else {
  668. Picture *dts_pic;
  669. rce = &local_rce;
  670. /* FIXME add a dts field to AVFrame and ensure it is set and use it
  671. * here instead of reordering but the reordering is simpler for now
  672. * until H.264 B-pyramid must be handled. */
  673. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
  674. dts_pic = s->current_picture_ptr;
  675. else
  676. dts_pic = s->last_picture_ptr;
  677. if (!dts_pic || dts_pic->f->pts == AV_NOPTS_VALUE)
  678. wanted_bits = (uint64_t)(s->bit_rate * (double)picture_number / fps);
  679. else
  680. wanted_bits = (uint64_t)(s->bit_rate * (double)dts_pic->f->pts / fps);
  681. }
  682. diff = s->total_bits - wanted_bits;
  683. br_compensation = (a->bit_rate_tolerance - diff) / a->bit_rate_tolerance;
  684. if (br_compensation <= 0.0)
  685. br_compensation = 0.001;
  686. var = pict_type == AV_PICTURE_TYPE_I ? pic->mb_var_sum : pic->mc_mb_var_sum;
  687. short_term_q = 0; /* avoid warning */
  688. if (s->avctx->flags & CODEC_FLAG_PASS2) {
  689. if (pict_type != AV_PICTURE_TYPE_I)
  690. assert(pict_type == rce->new_pict_type);
  691. q = rce->new_qscale / br_compensation;
  692. ff_dlog(s, "%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale,
  693. br_compensation, s->frame_bits, var, pict_type);
  694. } else {
  695. rce->pict_type =
  696. rce->new_pict_type = pict_type;
  697. rce->mc_mb_var_sum = pic->mc_mb_var_sum;
  698. rce->mb_var_sum = pic->mb_var_sum;
  699. rce->qscale = FF_QP2LAMBDA * 2;
  700. rce->f_code = s->f_code;
  701. rce->b_code = s->b_code;
  702. rce->misc_bits = 1;
  703. bits = predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  704. if (pict_type == AV_PICTURE_TYPE_I) {
  705. rce->i_count = s->mb_num;
  706. rce->i_tex_bits = bits;
  707. rce->p_tex_bits = 0;
  708. rce->mv_bits = 0;
  709. } else {
  710. rce->i_count = 0; // FIXME we do know this approx
  711. rce->i_tex_bits = 0;
  712. rce->p_tex_bits = bits * 0.9;
  713. rce->mv_bits = bits * 0.1;
  714. }
  715. rcc->i_cplx_sum[pict_type] += rce->i_tex_bits * rce->qscale;
  716. rcc->p_cplx_sum[pict_type] += rce->p_tex_bits * rce->qscale;
  717. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  718. rcc->frame_count[pict_type]++;
  719. bits = rce->i_tex_bits + rce->p_tex_bits;
  720. rate_factor = rcc->pass1_wanted_bits /
  721. rcc->pass1_rc_eq_output_sum * br_compensation;
  722. q = get_qscale(s, rce, rate_factor, picture_number);
  723. if (q < 0)
  724. return -1;
  725. assert(q > 0.0);
  726. q = get_diff_limited_q(s, rce, q);
  727. assert(q > 0.0);
  728. // FIXME type dependent blur like in 2-pass
  729. if (pict_type == AV_PICTURE_TYPE_P || s->intra_only) {
  730. rcc->short_term_qsum *= a->qblur;
  731. rcc->short_term_qcount *= a->qblur;
  732. rcc->short_term_qsum += q;
  733. rcc->short_term_qcount++;
  734. q = short_term_q = rcc->short_term_qsum / rcc->short_term_qcount;
  735. }
  736. assert(q > 0.0);
  737. q = modify_qscale(s, rce, q, picture_number);
  738. rcc->pass1_wanted_bits += s->bit_rate / fps;
  739. assert(q > 0.0);
  740. }
  741. if (s->avctx->debug & FF_DEBUG_RC) {
  742. av_log(s->avctx, AV_LOG_DEBUG,
  743. "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f "
  744. "size:%d var:%d/%d br:%d fps:%d\n",
  745. av_get_picture_type_char(pict_type),
  746. qmin, q, qmax, picture_number,
  747. (int)wanted_bits / 1000, (int)s->total_bits / 1000,
  748. br_compensation, short_term_q, s->frame_bits,
  749. pic->mb_var_sum, pic->mc_mb_var_sum,
  750. s->bit_rate / 1000, (int)fps);
  751. }
  752. if (q < qmin)
  753. q = qmin;
  754. else if (q > qmax)
  755. q = qmax;
  756. if (s->adaptive_quant)
  757. adaptive_quantization(s, q);
  758. else
  759. q = (int)(q + 0.5);
  760. if (!dry_run) {
  761. rcc->last_qscale = q;
  762. rcc->last_mc_mb_var_sum = pic->mc_mb_var_sum;
  763. rcc->last_mb_var_sum = pic->mb_var_sum;
  764. }
  765. return q;
  766. }
  767. // ----------------------------------------------
  768. // 2-Pass code
  769. static int init_pass2(MpegEncContext *s)
  770. {
  771. RateControlContext *rcc = &s->rc_context;
  772. AVCodecContext *a = s->avctx;
  773. int i, toobig;
  774. double fps = 1 / av_q2d(s->avctx->time_base);
  775. double complexity[5] = { 0 }; // approximate bits at quant=1
  776. uint64_t const_bits[5] = { 0 }; // quantizer independent bits
  777. uint64_t all_const_bits;
  778. uint64_t all_available_bits = (uint64_t)(s->bit_rate *
  779. (double)rcc->num_entries / fps);
  780. double rate_factor = 0;
  781. double step;
  782. const int filter_size = (int)(a->qblur * 4) | 1;
  783. double expected_bits;
  784. double *qscale, *blurred_qscale, qscale_sum;
  785. /* find complexity & const_bits & decide the pict_types */
  786. for (i = 0; i < rcc->num_entries; i++) {
  787. RateControlEntry *rce = &rcc->entry[i];
  788. rce->new_pict_type = rce->pict_type;
  789. rcc->i_cplx_sum[rce->pict_type] += rce->i_tex_bits * rce->qscale;
  790. rcc->p_cplx_sum[rce->pict_type] += rce->p_tex_bits * rce->qscale;
  791. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  792. rcc->frame_count[rce->pict_type]++;
  793. complexity[rce->new_pict_type] += (rce->i_tex_bits + rce->p_tex_bits) *
  794. (double)rce->qscale;
  795. const_bits[rce->new_pict_type] += rce->mv_bits + rce->misc_bits;
  796. }
  797. all_const_bits = const_bits[AV_PICTURE_TYPE_I] +
  798. const_bits[AV_PICTURE_TYPE_P] +
  799. const_bits[AV_PICTURE_TYPE_B];
  800. if (all_available_bits < all_const_bits) {
  801. av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
  802. return -1;
  803. }
  804. qscale = av_malloc(sizeof(double) * rcc->num_entries);
  805. blurred_qscale = av_malloc(sizeof(double) * rcc->num_entries);
  806. if (!qscale || !blurred_qscale) {
  807. av_free(qscale);
  808. av_free(blurred_qscale);
  809. return AVERROR(ENOMEM);
  810. }
  811. toobig = 0;
  812. for (step = 256 * 256; step > 0.0000001; step *= 0.5) {
  813. expected_bits = 0;
  814. rate_factor += step;
  815. rcc->buffer_index = s->avctx->rc_buffer_size / 2;
  816. /* find qscale */
  817. for (i = 0; i < rcc->num_entries; i++) {
  818. RateControlEntry *rce = &rcc->entry[i];
  819. qscale[i] = get_qscale(s, &rcc->entry[i], rate_factor, i);
  820. rcc->last_qscale_for[rce->pict_type] = qscale[i];
  821. }
  822. assert(filter_size % 2 == 1);
  823. /* fixed I/B QP relative to P mode */
  824. for (i = rcc->num_entries - 1; i >= 0; i--) {
  825. RateControlEntry *rce = &rcc->entry[i];
  826. qscale[i] = get_diff_limited_q(s, rce, qscale[i]);
  827. }
  828. /* smooth curve */
  829. for (i = 0; i < rcc->num_entries; i++) {
  830. RateControlEntry *rce = &rcc->entry[i];
  831. const int pict_type = rce->new_pict_type;
  832. int j;
  833. double q = 0.0, sum = 0.0;
  834. for (j = 0; j < filter_size; j++) {
  835. int index = i + j - filter_size / 2;
  836. double d = index - i;
  837. double coeff = a->qblur == 0 ? 1.0 : exp(-d * d / (a->qblur * a->qblur));
  838. if (index < 0 || index >= rcc->num_entries)
  839. continue;
  840. if (pict_type != rcc->entry[index].new_pict_type)
  841. continue;
  842. q += qscale[index] * coeff;
  843. sum += coeff;
  844. }
  845. blurred_qscale[i] = q / sum;
  846. }
  847. /* find expected bits */
  848. for (i = 0; i < rcc->num_entries; i++) {
  849. RateControlEntry *rce = &rcc->entry[i];
  850. double bits;
  851. rce->new_qscale = modify_qscale(s, rce, blurred_qscale[i], i);
  852. bits = qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  853. bits += 8 * ff_vbv_update(s, bits);
  854. rce->expected_bits = expected_bits;
  855. expected_bits += bits;
  856. }
  857. ff_dlog(s->avctx,
  858. "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
  859. expected_bits, (int)all_available_bits, rate_factor);
  860. if (expected_bits > all_available_bits) {
  861. rate_factor -= step;
  862. ++toobig;
  863. }
  864. }
  865. av_free(qscale);
  866. av_free(blurred_qscale);
  867. /* check bitrate calculations and print info */
  868. qscale_sum = 0.0;
  869. for (i = 0; i < rcc->num_entries; i++) {
  870. ff_dlog(s, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
  871. i,
  872. rcc->entry[i].new_qscale,
  873. rcc->entry[i].new_qscale / FF_QP2LAMBDA);
  874. qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA,
  875. s->avctx->qmin, s->avctx->qmax);
  876. }
  877. assert(toobig <= 40);
  878. av_log(s->avctx, AV_LOG_DEBUG,
  879. "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
  880. s->bit_rate,
  881. (int)(expected_bits / ((double)all_available_bits / s->bit_rate)));
  882. av_log(s->avctx, AV_LOG_DEBUG,
  883. "[lavc rc] estimated target average qp: %.3f\n",
  884. (float)qscale_sum / rcc->num_entries);
  885. if (toobig == 0) {
  886. av_log(s->avctx, AV_LOG_INFO,
  887. "[lavc rc] Using all of requested bitrate is not "
  888. "necessary for this video with these parameters.\n");
  889. } else if (toobig == 40) {
  890. av_log(s->avctx, AV_LOG_ERROR,
  891. "[lavc rc] Error: bitrate too low for this video "
  892. "with these parameters.\n");
  893. return -1;
  894. } else if (fabs(expected_bits / all_available_bits - 1.0) > 0.01) {
  895. av_log(s->avctx, AV_LOG_ERROR,
  896. "[lavc rc] Error: 2pass curve failed to converge\n");
  897. return -1;
  898. }
  899. return 0;
  900. }