You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1346 lines
46KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #ifndef AVCODEC_H264_H
  27. #define AVCODEC_H264_H
  28. #include "libavutil/intreadwrite.h"
  29. #include "dsputil.h"
  30. #include "cabac.h"
  31. #include "mpegvideo.h"
  32. #include "h264dsp.h"
  33. #include "h264pred.h"
  34. #include "rectangle.h"
  35. #define interlaced_dct interlaced_dct_is_a_bad_name
  36. #define mb_intra mb_intra_is_not_initialized_see_mb_type
  37. #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
  38. #define COEFF_TOKEN_VLC_BITS 8
  39. #define TOTAL_ZEROS_VLC_BITS 9
  40. #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
  41. #define RUN_VLC_BITS 3
  42. #define RUN7_VLC_BITS 6
  43. #define MAX_SPS_COUNT 32
  44. #define MAX_PPS_COUNT 256
  45. #define MAX_MMCO_COUNT 66
  46. #define MAX_DELAYED_PIC_COUNT 16
  47. /* Compiling in interlaced support reduces the speed
  48. * of progressive decoding by about 2%. */
  49. #define ALLOW_INTERLACE
  50. #define FMO 0
  51. /**
  52. * The maximum number of slices supported by the decoder.
  53. * must be a power of 2
  54. */
  55. #define MAX_SLICES 16
  56. #ifdef ALLOW_INTERLACE
  57. #define MB_MBAFF h->mb_mbaff
  58. #define MB_FIELD h->mb_field_decoding_flag
  59. #define FRAME_MBAFF h->mb_aff_frame
  60. #define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
  61. #define LEFT_MBS 2
  62. #define LTOP 0
  63. #define LBOT 1
  64. #define LEFT(i) (i)
  65. #else
  66. #define MB_MBAFF 0
  67. #define MB_FIELD 0
  68. #define FRAME_MBAFF 0
  69. #define FIELD_PICTURE 0
  70. #undef IS_INTERLACED
  71. #define IS_INTERLACED(mb_type) 0
  72. #define LEFT_MBS 1
  73. #define LTOP 0
  74. #define LBOT 0
  75. #define LEFT(i) 0
  76. #endif
  77. #define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
  78. #ifndef CABAC
  79. #define CABAC h->pps.cabac
  80. #endif
  81. #define CHROMA444 (h->sps.chroma_format_idc == 3)
  82. #define EXTENDED_SAR 255
  83. #define MB_TYPE_REF0 MB_TYPE_ACPRED //dirty but it fits in 16 bit
  84. #define MB_TYPE_8x8DCT 0x01000000
  85. #define IS_REF0(a) ((a) & MB_TYPE_REF0)
  86. #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
  87. /**
  88. * Value of Picture.reference when Picture is not a reference picture, but
  89. * is held for delayed output.
  90. */
  91. #define DELAYED_PIC_REF 4
  92. #define QP_MAX_NUM (51 + 2*6) // The maximum supported qp
  93. /* NAL unit types */
  94. enum {
  95. NAL_SLICE=1,
  96. NAL_DPA,
  97. NAL_DPB,
  98. NAL_DPC,
  99. NAL_IDR_SLICE,
  100. NAL_SEI,
  101. NAL_SPS,
  102. NAL_PPS,
  103. NAL_AUD,
  104. NAL_END_SEQUENCE,
  105. NAL_END_STREAM,
  106. NAL_FILLER_DATA,
  107. NAL_SPS_EXT,
  108. NAL_AUXILIARY_SLICE=19
  109. };
  110. /**
  111. * SEI message types
  112. */
  113. typedef enum {
  114. SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
  115. SEI_TYPE_PIC_TIMING = 1, ///< picture timing
  116. SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
  117. SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync)
  118. } SEI_Type;
  119. /**
  120. * pic_struct in picture timing SEI message
  121. */
  122. typedef enum {
  123. SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
  124. SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
  125. SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
  126. SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
  127. SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
  128. SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
  129. SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
  130. SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
  131. SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
  132. } SEI_PicStructType;
  133. /**
  134. * Sequence parameter set
  135. */
  136. typedef struct SPS{
  137. int profile_idc;
  138. int level_idc;
  139. int chroma_format_idc;
  140. int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
  141. int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
  142. int poc_type; ///< pic_order_cnt_type
  143. int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
  144. int delta_pic_order_always_zero_flag;
  145. int offset_for_non_ref_pic;
  146. int offset_for_top_to_bottom_field;
  147. int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
  148. int ref_frame_count; ///< num_ref_frames
  149. int gaps_in_frame_num_allowed_flag;
  150. int mb_width; ///< pic_width_in_mbs_minus1 + 1
  151. int mb_height; ///< pic_height_in_map_units_minus1 + 1
  152. int frame_mbs_only_flag;
  153. int mb_aff; ///<mb_adaptive_frame_field_flag
  154. int direct_8x8_inference_flag;
  155. int crop; ///< frame_cropping_flag
  156. unsigned int crop_left; ///< frame_cropping_rect_left_offset
  157. unsigned int crop_right; ///< frame_cropping_rect_right_offset
  158. unsigned int crop_top; ///< frame_cropping_rect_top_offset
  159. unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
  160. int vui_parameters_present_flag;
  161. AVRational sar;
  162. int video_signal_type_present_flag;
  163. int full_range;
  164. int colour_description_present_flag;
  165. enum AVColorPrimaries color_primaries;
  166. enum AVColorTransferCharacteristic color_trc;
  167. enum AVColorSpace colorspace;
  168. int timing_info_present_flag;
  169. uint32_t num_units_in_tick;
  170. uint32_t time_scale;
  171. int fixed_frame_rate_flag;
  172. short offset_for_ref_frame[256]; //FIXME dyn aloc?
  173. int bitstream_restriction_flag;
  174. int num_reorder_frames;
  175. int scaling_matrix_present;
  176. uint8_t scaling_matrix4[6][16];
  177. uint8_t scaling_matrix8[6][64];
  178. int nal_hrd_parameters_present_flag;
  179. int vcl_hrd_parameters_present_flag;
  180. int pic_struct_present_flag;
  181. int time_offset_length;
  182. int cpb_cnt; ///< See H.264 E.1.2
  183. int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
  184. int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
  185. int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
  186. int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
  187. int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
  188. int residual_color_transform_flag; ///< residual_colour_transform_flag
  189. int constraint_set_flags; ///< constraint_set[0-3]_flag
  190. }SPS;
  191. /**
  192. * Picture parameter set
  193. */
  194. typedef struct PPS{
  195. unsigned int sps_id;
  196. int cabac; ///< entropy_coding_mode_flag
  197. int pic_order_present; ///< pic_order_present_flag
  198. int slice_group_count; ///< num_slice_groups_minus1 + 1
  199. int mb_slice_group_map_type;
  200. unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
  201. int weighted_pred; ///< weighted_pred_flag
  202. int weighted_bipred_idc;
  203. int init_qp; ///< pic_init_qp_minus26 + 26
  204. int init_qs; ///< pic_init_qs_minus26 + 26
  205. int chroma_qp_index_offset[2];
  206. int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
  207. int constrained_intra_pred; ///< constrained_intra_pred_flag
  208. int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
  209. int transform_8x8_mode; ///< transform_8x8_mode_flag
  210. uint8_t scaling_matrix4[6][16];
  211. uint8_t scaling_matrix8[6][64];
  212. uint8_t chroma_qp_table[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
  213. int chroma_qp_diff;
  214. }PPS;
  215. /**
  216. * Memory management control operation opcode.
  217. */
  218. typedef enum MMCOOpcode{
  219. MMCO_END=0,
  220. MMCO_SHORT2UNUSED,
  221. MMCO_LONG2UNUSED,
  222. MMCO_SHORT2LONG,
  223. MMCO_SET_MAX_LONG,
  224. MMCO_RESET,
  225. MMCO_LONG,
  226. } MMCOOpcode;
  227. /**
  228. * Memory management control operation.
  229. */
  230. typedef struct MMCO{
  231. MMCOOpcode opcode;
  232. int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
  233. int long_arg; ///< index, pic_num, or num long refs depending on opcode
  234. } MMCO;
  235. /**
  236. * H264Context
  237. */
  238. typedef struct H264Context{
  239. MpegEncContext s;
  240. H264DSPContext h264dsp;
  241. int pixel_shift; ///< 0 for 8-bit H264, 1 for high-bit-depth H264
  242. int chroma_qp[2]; //QPc
  243. int qp_thresh; ///< QP threshold to skip loopfilter
  244. int prev_mb_skipped;
  245. int next_mb_skipped;
  246. //prediction stuff
  247. int chroma_pred_mode;
  248. int intra16x16_pred_mode;
  249. int topleft_mb_xy;
  250. int top_mb_xy;
  251. int topright_mb_xy;
  252. int left_mb_xy[LEFT_MBS];
  253. int topleft_type;
  254. int top_type;
  255. int topright_type;
  256. int left_type[LEFT_MBS];
  257. const uint8_t * left_block;
  258. int topleft_partition;
  259. int8_t intra4x4_pred_mode_cache[5*8];
  260. int8_t (*intra4x4_pred_mode);
  261. H264PredContext hpc;
  262. unsigned int topleft_samples_available;
  263. unsigned int top_samples_available;
  264. unsigned int topright_samples_available;
  265. unsigned int left_samples_available;
  266. uint8_t (*top_borders[2])[(16*3)*2];
  267. /**
  268. * non zero coeff count cache.
  269. * is 64 if not available.
  270. */
  271. DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15*8];
  272. uint8_t (*non_zero_count)[48];
  273. /**
  274. * Motion vector cache.
  275. */
  276. DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5*8][2];
  277. DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5*8];
  278. #define LIST_NOT_USED -1 //FIXME rename?
  279. #define PART_NOT_AVAILABLE -2
  280. /**
  281. * number of neighbors (top and/or left) that used 8x8 dct
  282. */
  283. int neighbor_transform_size;
  284. /**
  285. * block_offset[ 0..23] for frame macroblocks
  286. * block_offset[24..47] for field macroblocks
  287. */
  288. int block_offset[2*(16*3)];
  289. uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
  290. uint32_t *mb2br_xy;
  291. int b_stride; //FIXME use s->b4_stride
  292. int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff
  293. int mb_uvlinesize;
  294. int emu_edge_width;
  295. int emu_edge_height;
  296. SPS sps; ///< current sps
  297. /**
  298. * current pps
  299. */
  300. PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
  301. uint32_t dequant4_buffer[6][QP_MAX_NUM+1][16]; //FIXME should these be moved down?
  302. uint32_t dequant8_buffer[6][QP_MAX_NUM+1][64];
  303. uint32_t (*dequant4_coeff[6])[16];
  304. uint32_t (*dequant8_coeff[6])[64];
  305. int slice_num;
  306. uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
  307. int slice_type;
  308. int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
  309. int slice_type_fixed;
  310. //interlacing specific flags
  311. int mb_aff_frame;
  312. int mb_field_decoding_flag;
  313. int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
  314. DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
  315. //Weighted pred stuff
  316. int use_weight;
  317. int use_weight_chroma;
  318. int luma_log2_weight_denom;
  319. int chroma_log2_weight_denom;
  320. //The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
  321. int luma_weight[48][2][2];
  322. int chroma_weight[48][2][2][2];
  323. int implicit_weight[48][48][2];
  324. int direct_spatial_mv_pred;
  325. int col_parity;
  326. int col_fieldoff;
  327. int dist_scale_factor[16];
  328. int dist_scale_factor_field[2][32];
  329. int map_col_to_list0[2][16+32];
  330. int map_col_to_list0_field[2][2][16+32];
  331. /**
  332. * num_ref_idx_l0/1_active_minus1 + 1
  333. */
  334. uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
  335. unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
  336. unsigned int list_count;
  337. Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
  338. Reordered version of default_ref_list
  339. according to picture reordering in slice header */
  340. int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
  341. //data partitioning
  342. GetBitContext intra_gb;
  343. GetBitContext inter_gb;
  344. GetBitContext *intra_gb_ptr;
  345. GetBitContext *inter_gb_ptr;
  346. DECLARE_ALIGNED(16, DCTELEM, mb)[16*48*2]; ///< as a dct coeffecient is int32_t in high depth, we need to reserve twice the space.
  347. DECLARE_ALIGNED(16, DCTELEM, mb_luma_dc)[3][16*2];
  348. DCTELEM mb_padding[256*2]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
  349. /**
  350. * Cabac
  351. */
  352. CABACContext cabac;
  353. uint8_t cabac_state[1024];
  354. /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
  355. uint16_t *cbp_table;
  356. int cbp;
  357. int top_cbp;
  358. int left_cbp;
  359. /* chroma_pred_mode for i4x4 or i16x16, else 0 */
  360. uint8_t *chroma_pred_mode_table;
  361. int last_qscale_diff;
  362. uint8_t (*mvd_table[2])[2];
  363. DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5*8][2];
  364. uint8_t *direct_table;
  365. uint8_t direct_cache[5*8];
  366. uint8_t zigzag_scan[16];
  367. uint8_t zigzag_scan8x8[64];
  368. uint8_t zigzag_scan8x8_cavlc[64];
  369. uint8_t field_scan[16];
  370. uint8_t field_scan8x8[64];
  371. uint8_t field_scan8x8_cavlc[64];
  372. const uint8_t *zigzag_scan_q0;
  373. const uint8_t *zigzag_scan8x8_q0;
  374. const uint8_t *zigzag_scan8x8_cavlc_q0;
  375. const uint8_t *field_scan_q0;
  376. const uint8_t *field_scan8x8_q0;
  377. const uint8_t *field_scan8x8_cavlc_q0;
  378. int x264_build;
  379. int mb_xy;
  380. int is_complex;
  381. //deblock
  382. int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
  383. int slice_alpha_c0_offset;
  384. int slice_beta_offset;
  385. //=============================================================
  386. //Things below are not used in the MB or more inner code
  387. int nal_ref_idc;
  388. int nal_unit_type;
  389. uint8_t *rbsp_buffer[2];
  390. unsigned int rbsp_buffer_size[2];
  391. /**
  392. * Used to parse AVC variant of h264
  393. */
  394. int is_avc; ///< this flag is != 0 if codec is avc1
  395. int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
  396. int got_first; ///< this flag is != 0 if we've parsed a frame
  397. SPS *sps_buffers[MAX_SPS_COUNT];
  398. PPS *pps_buffers[MAX_PPS_COUNT];
  399. int dequant_coeff_pps; ///< reinit tables when pps changes
  400. uint16_t *slice_table_base;
  401. //POC stuff
  402. int poc_lsb;
  403. int poc_msb;
  404. int delta_poc_bottom;
  405. int delta_poc[2];
  406. int frame_num;
  407. int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
  408. int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
  409. int frame_num_offset; ///< for POC type 2
  410. int prev_frame_num_offset; ///< for POC type 2
  411. int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
  412. /**
  413. * frame_num for frames or 2*frame_num+1 for field pics.
  414. */
  415. int curr_pic_num;
  416. /**
  417. * max_frame_num or 2*max_frame_num for field pics.
  418. */
  419. int max_pic_num;
  420. int redundant_pic_count;
  421. Picture *short_ref[32];
  422. Picture *long_ref[32];
  423. Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
  424. Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
  425. Picture *next_output_pic;
  426. int outputed_poc;
  427. int next_outputed_poc;
  428. /**
  429. * memory management control operations buffer.
  430. */
  431. MMCO mmco[MAX_MMCO_COUNT];
  432. int mmco_index;
  433. int long_ref_count; ///< number of actual long term references
  434. int short_ref_count; ///< number of actual short term references
  435. int cabac_init_idc;
  436. /**
  437. * @name Members for slice based multithreading
  438. * @{
  439. */
  440. struct H264Context *thread_context[MAX_THREADS];
  441. /**
  442. * current slice number, used to initalize slice_num of each thread/context
  443. */
  444. int current_slice;
  445. /**
  446. * Max number of threads / contexts.
  447. * This is equal to AVCodecContext.thread_count unless
  448. * multithreaded decoding is impossible, in which case it is
  449. * reduced to 1.
  450. */
  451. int max_contexts;
  452. /**
  453. * 1 if the single thread fallback warning has already been
  454. * displayed, 0 otherwise.
  455. */
  456. int single_decode_warning;
  457. int last_slice_type;
  458. /** @} */
  459. /**
  460. * pic_struct in picture timing SEI message
  461. */
  462. SEI_PicStructType sei_pic_struct;
  463. /**
  464. * Complement sei_pic_struct
  465. * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
  466. * However, soft telecined frames may have these values.
  467. * This is used in an attempt to flag soft telecine progressive.
  468. */
  469. int prev_interlaced_frame;
  470. /**
  471. * Bit set of clock types for fields/frames in picture timing SEI message.
  472. * For each found ct_type, appropriate bit is set (e.g., bit 1 for
  473. * interlaced).
  474. */
  475. int sei_ct_type;
  476. /**
  477. * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
  478. */
  479. int sei_dpb_output_delay;
  480. /**
  481. * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
  482. */
  483. int sei_cpb_removal_delay;
  484. /**
  485. * recovery_frame_cnt from SEI message
  486. *
  487. * Set to -1 if no recovery point SEI message found or to number of frames
  488. * before playback synchronizes. Frames having recovery point are key
  489. * frames.
  490. */
  491. int sei_recovery_frame_cnt;
  492. int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
  493. int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
  494. // Timestamp stuff
  495. int sei_buffering_period_present; ///< Buffering period SEI flag
  496. int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
  497. }H264Context;
  498. extern const uint8_t ff_h264_chroma_qp[3][QP_MAX_NUM+1]; ///< One chroma qp table for each supported bit depth (8, 9, 10).
  499. /**
  500. * Decode SEI
  501. */
  502. int ff_h264_decode_sei(H264Context *h);
  503. /**
  504. * Decode SPS
  505. */
  506. int ff_h264_decode_seq_parameter_set(H264Context *h);
  507. /**
  508. * compute profile from sps
  509. */
  510. int ff_h264_get_profile(SPS *sps);
  511. /**
  512. * Decode PPS
  513. */
  514. int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
  515. /**
  516. * Decode a network abstraction layer unit.
  517. * @param consumed is the number of bytes used as input
  518. * @param length is the length of the array
  519. * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
  520. * @return decoded bytes, might be src+1 if no escapes
  521. */
  522. const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
  523. /**
  524. * Free any data that may have been allocated in the H264 context like SPS, PPS etc.
  525. */
  526. av_cold void ff_h264_free_context(H264Context *h);
  527. /**
  528. * Reconstruct bitstream slice_type.
  529. */
  530. int ff_h264_get_slice_type(const H264Context *h);
  531. /**
  532. * Allocate tables.
  533. * needs width/height
  534. */
  535. int ff_h264_alloc_tables(H264Context *h);
  536. /**
  537. * Fill the default_ref_list.
  538. */
  539. int ff_h264_fill_default_ref_list(H264Context *h);
  540. int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
  541. void ff_h264_fill_mbaff_ref_list(H264Context *h);
  542. void ff_h264_remove_all_refs(H264Context *h);
  543. /**
  544. * Execute the reference picture marking (memory management control operations).
  545. */
  546. int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
  547. int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
  548. void ff_generate_sliding_window_mmcos(H264Context *h);
  549. /**
  550. * Check if the top & left blocks are available if needed & change the dc mode so it only uses the available blocks.
  551. */
  552. int ff_h264_check_intra4x4_pred_mode(H264Context *h);
  553. /**
  554. * Check if the top & left blocks are available if needed & change the dc mode so it only uses the available blocks.
  555. */
  556. int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
  557. void ff_h264_hl_decode_mb(H264Context *h);
  558. int ff_h264_frame_start(H264Context *h);
  559. int ff_h264_decode_extradata(H264Context *h);
  560. av_cold int ff_h264_decode_init(AVCodecContext *avctx);
  561. av_cold int ff_h264_decode_end(AVCodecContext *avctx);
  562. av_cold void ff_h264_decode_init_vlc(void);
  563. /**
  564. * Decode a macroblock
  565. * @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  566. */
  567. int ff_h264_decode_mb_cavlc(H264Context *h);
  568. /**
  569. * Decode a CABAC coded macroblock
  570. * @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  571. */
  572. int ff_h264_decode_mb_cabac(H264Context *h);
  573. void ff_h264_init_cabac_states(H264Context *h);
  574. void ff_h264_direct_dist_scale_factor(H264Context * const h);
  575. void ff_h264_direct_ref_list_init(H264Context * const h);
  576. void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
  577. void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  578. void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  579. /**
  580. * Reset SEI values at the beginning of the frame.
  581. *
  582. * @param h H.264 context.
  583. */
  584. void ff_h264_reset_sei(H264Context *h);
  585. /*
  586. o-o o-o
  587. / / /
  588. o-o o-o
  589. ,---'
  590. o-o o-o
  591. / / /
  592. o-o o-o
  593. */
  594. /* Scan8 organization:
  595. * 0 1 2 3 4 5 6 7
  596. * 0 DY y y y y y
  597. * 1 y Y Y Y Y
  598. * 2 y Y Y Y Y
  599. * 3 y Y Y Y Y
  600. * 4 y Y Y Y Y
  601. * 5 DU u u u u u
  602. * 6 u U U U U
  603. * 7 u U U U U
  604. * 8 u U U U U
  605. * 9 u U U U U
  606. * 10 DV v v v v v
  607. * 11 v V V V V
  608. * 12 v V V V V
  609. * 13 v V V V V
  610. * 14 v V V V V
  611. * DY/DU/DV are for luma/chroma DC.
  612. */
  613. #define LUMA_DC_BLOCK_INDEX 48
  614. #define CHROMA_DC_BLOCK_INDEX 49
  615. //This table must be here because scan8[constant] must be known at compiletime
  616. static const uint8_t scan8[16*3 + 3]={
  617. 4+ 1*8, 5+ 1*8, 4+ 2*8, 5+ 2*8,
  618. 6+ 1*8, 7+ 1*8, 6+ 2*8, 7+ 2*8,
  619. 4+ 3*8, 5+ 3*8, 4+ 4*8, 5+ 4*8,
  620. 6+ 3*8, 7+ 3*8, 6+ 4*8, 7+ 4*8,
  621. 4+ 6*8, 5+ 6*8, 4+ 7*8, 5+ 7*8,
  622. 6+ 6*8, 7+ 6*8, 6+ 7*8, 7+ 7*8,
  623. 4+ 8*8, 5+ 8*8, 4+ 9*8, 5+ 9*8,
  624. 6+ 8*8, 7+ 8*8, 6+ 9*8, 7+ 9*8,
  625. 4+11*8, 5+11*8, 4+12*8, 5+12*8,
  626. 6+11*8, 7+11*8, 6+12*8, 7+12*8,
  627. 4+13*8, 5+13*8, 4+14*8, 5+14*8,
  628. 6+13*8, 7+13*8, 6+14*8, 7+14*8,
  629. 0+ 0*8, 0+ 5*8, 0+10*8
  630. };
  631. static av_always_inline uint32_t pack16to32(int a, int b){
  632. #if HAVE_BIGENDIAN
  633. return (b&0xFFFF) + (a<<16);
  634. #else
  635. return (a&0xFFFF) + (b<<16);
  636. #endif
  637. }
  638. static av_always_inline uint16_t pack8to16(int a, int b){
  639. #if HAVE_BIGENDIAN
  640. return (b&0xFF) + (a<<8);
  641. #else
  642. return (a&0xFF) + (b<<8);
  643. #endif
  644. }
  645. /**
  646. * gets the chroma qp.
  647. */
  648. static av_always_inline int get_chroma_qp(H264Context *h, int t, int qscale){
  649. return h->pps.chroma_qp_table[t][qscale];
  650. }
  651. static av_always_inline void pred_pskip_motion(H264Context * const h);
  652. static void fill_decode_neighbors(H264Context *h, int mb_type){
  653. MpegEncContext * const s = &h->s;
  654. const int mb_xy= h->mb_xy;
  655. int topleft_xy, top_xy, topright_xy, left_xy[LEFT_MBS];
  656. static const uint8_t left_block_options[4][32]={
  657. {0,1,2,3,7,10,8,11,3+0*4, 3+1*4, 3+2*4, 3+3*4, 1+4*4, 1+8*4, 1+5*4, 1+9*4},
  658. {2,2,3,3,8,11,8,11,3+2*4, 3+2*4, 3+3*4, 3+3*4, 1+5*4, 1+9*4, 1+5*4, 1+9*4},
  659. {0,0,1,1,7,10,7,10,3+0*4, 3+0*4, 3+1*4, 3+1*4, 1+4*4, 1+8*4, 1+4*4, 1+8*4},
  660. {0,2,0,2,7,10,7,10,3+0*4, 3+2*4, 3+0*4, 3+2*4, 1+4*4, 1+8*4, 1+4*4, 1+8*4}
  661. };
  662. h->topleft_partition= -1;
  663. top_xy = mb_xy - (s->mb_stride << MB_FIELD);
  664. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  665. * stuff, I can't imagine that these complex rules are worth it. */
  666. topleft_xy = top_xy - 1;
  667. topright_xy= top_xy + 1;
  668. left_xy[LBOT] = left_xy[LTOP] = mb_xy-1;
  669. h->left_block = left_block_options[0];
  670. if(FRAME_MBAFF){
  671. const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
  672. const int curr_mb_field_flag = IS_INTERLACED(mb_type);
  673. if(s->mb_y&1){
  674. if (left_mb_field_flag != curr_mb_field_flag) {
  675. left_xy[LBOT] = left_xy[LTOP] = mb_xy - s->mb_stride - 1;
  676. if (curr_mb_field_flag) {
  677. left_xy[LBOT] += s->mb_stride;
  678. h->left_block = left_block_options[3];
  679. } else {
  680. topleft_xy += s->mb_stride;
  681. // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
  682. h->topleft_partition = 0;
  683. h->left_block = left_block_options[1];
  684. }
  685. }
  686. }else{
  687. if(curr_mb_field_flag){
  688. topleft_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1);
  689. topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1);
  690. top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1);
  691. }
  692. if (left_mb_field_flag != curr_mb_field_flag) {
  693. if (curr_mb_field_flag) {
  694. left_xy[LBOT] += s->mb_stride;
  695. h->left_block = left_block_options[3];
  696. } else {
  697. h->left_block = left_block_options[2];
  698. }
  699. }
  700. }
  701. }
  702. h->topleft_mb_xy = topleft_xy;
  703. h->top_mb_xy = top_xy;
  704. h->topright_mb_xy= topright_xy;
  705. h->left_mb_xy[LTOP] = left_xy[LTOP];
  706. h->left_mb_xy[LBOT] = left_xy[LBOT];
  707. //FIXME do we need all in the context?
  708. h->topleft_type = s->current_picture.mb_type[topleft_xy] ;
  709. h->top_type = s->current_picture.mb_type[top_xy] ;
  710. h->topright_type= s->current_picture.mb_type[topright_xy];
  711. h->left_type[LTOP] = s->current_picture.mb_type[left_xy[LTOP]] ;
  712. h->left_type[LBOT] = s->current_picture.mb_type[left_xy[LBOT]] ;
  713. if(FMO){
  714. if(h->slice_table[topleft_xy ] != h->slice_num) h->topleft_type = 0;
  715. if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0;
  716. if(h->slice_table[left_xy[LTOP] ] != h->slice_num) h->left_type[LTOP] = h->left_type[LBOT] = 0;
  717. }else{
  718. if(h->slice_table[topleft_xy ] != h->slice_num){
  719. h->topleft_type = 0;
  720. if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0;
  721. if(h->slice_table[left_xy[LTOP] ] != h->slice_num) h->left_type[LTOP] = h->left_type[LBOT] = 0;
  722. }
  723. }
  724. if(h->slice_table[topright_xy] != h->slice_num) h->topright_type= 0;
  725. }
  726. static void fill_decode_caches(H264Context *h, int mb_type){
  727. MpegEncContext * const s = &h->s;
  728. int topleft_xy, top_xy, topright_xy, left_xy[LEFT_MBS];
  729. int topleft_type, top_type, topright_type, left_type[LEFT_MBS];
  730. const uint8_t * left_block= h->left_block;
  731. int i;
  732. uint8_t *nnz;
  733. uint8_t *nnz_cache;
  734. topleft_xy = h->topleft_mb_xy;
  735. top_xy = h->top_mb_xy;
  736. topright_xy = h->topright_mb_xy;
  737. left_xy[LTOP] = h->left_mb_xy[LTOP];
  738. left_xy[LBOT] = h->left_mb_xy[LBOT];
  739. topleft_type = h->topleft_type;
  740. top_type = h->top_type;
  741. topright_type = h->topright_type;
  742. left_type[LTOP]= h->left_type[LTOP];
  743. left_type[LBOT]= h->left_type[LBOT];
  744. if(!IS_SKIP(mb_type)){
  745. if(IS_INTRA(mb_type)){
  746. int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
  747. h->topleft_samples_available=
  748. h->top_samples_available=
  749. h->left_samples_available= 0xFFFF;
  750. h->topright_samples_available= 0xEEEA;
  751. if(!(top_type & type_mask)){
  752. h->topleft_samples_available= 0xB3FF;
  753. h->top_samples_available= 0x33FF;
  754. h->topright_samples_available= 0x26EA;
  755. }
  756. if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[LTOP])){
  757. if(IS_INTERLACED(mb_type)){
  758. if(!(left_type[LTOP] & type_mask)){
  759. h->topleft_samples_available&= 0xDFFF;
  760. h->left_samples_available&= 0x5FFF;
  761. }
  762. if(!(left_type[LBOT] & type_mask)){
  763. h->topleft_samples_available&= 0xFF5F;
  764. h->left_samples_available&= 0xFF5F;
  765. }
  766. }else{
  767. int left_typei = s->current_picture.mb_type[left_xy[LTOP] + s->mb_stride];
  768. assert(left_xy[LTOP] == left_xy[LBOT]);
  769. if(!((left_typei & type_mask) && (left_type[LTOP] & type_mask))){
  770. h->topleft_samples_available&= 0xDF5F;
  771. h->left_samples_available&= 0x5F5F;
  772. }
  773. }
  774. }else{
  775. if(!(left_type[LTOP] & type_mask)){
  776. h->topleft_samples_available&= 0xDF5F;
  777. h->left_samples_available&= 0x5F5F;
  778. }
  779. }
  780. if(!(topleft_type & type_mask))
  781. h->topleft_samples_available&= 0x7FFF;
  782. if(!(topright_type & type_mask))
  783. h->topright_samples_available&= 0xFBFF;
  784. if(IS_INTRA4x4(mb_type)){
  785. if(IS_INTRA4x4(top_type)){
  786. AV_COPY32(h->intra4x4_pred_mode_cache+4+8*0, h->intra4x4_pred_mode + h->mb2br_xy[top_xy]);
  787. }else{
  788. h->intra4x4_pred_mode_cache[4+8*0]=
  789. h->intra4x4_pred_mode_cache[5+8*0]=
  790. h->intra4x4_pred_mode_cache[6+8*0]=
  791. h->intra4x4_pred_mode_cache[7+8*0]= 2 - 3*!(top_type & type_mask);
  792. }
  793. for(i=0; i<2; i++){
  794. if(IS_INTRA4x4(left_type[LEFT(i)])){
  795. int8_t *mode= h->intra4x4_pred_mode + h->mb2br_xy[left_xy[LEFT(i)]];
  796. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= mode[6-left_block[0+2*i]];
  797. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= mode[6-left_block[1+2*i]];
  798. }else{
  799. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
  800. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= 2 - 3*!(left_type[LEFT(i)] & type_mask);
  801. }
  802. }
  803. }
  804. }
  805. /*
  806. 0 . T T. T T T T
  807. 1 L . .L . . . .
  808. 2 L . .L . . . .
  809. 3 . T TL . . . .
  810. 4 L . .L . . . .
  811. 5 L . .. . . . .
  812. */
  813. //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
  814. nnz_cache = h->non_zero_count_cache;
  815. if(top_type){
  816. nnz = h->non_zero_count[top_xy];
  817. AV_COPY32(&nnz_cache[4+8* 0], &nnz[4*3]);
  818. if(CHROMA444){
  819. AV_COPY32(&nnz_cache[4+8* 5], &nnz[4* 7]);
  820. AV_COPY32(&nnz_cache[4+8*10], &nnz[4*11]);
  821. }else{
  822. AV_COPY32(&nnz_cache[4+8* 5], &nnz[4* 5]);
  823. AV_COPY32(&nnz_cache[4+8*10], &nnz[4* 9]);
  824. }
  825. }else{
  826. uint32_t top_empty = CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040;
  827. AV_WN32A(&nnz_cache[4+8* 0], top_empty);
  828. AV_WN32A(&nnz_cache[4+8* 5], top_empty);
  829. AV_WN32A(&nnz_cache[4+8*10], top_empty);
  830. }
  831. for (i=0; i<2; i++) {
  832. if(left_type[LEFT(i)]){
  833. nnz = h->non_zero_count[left_xy[LEFT(i)]];
  834. nnz_cache[3+8* 1 + 2*8*i]= nnz[left_block[8+0+2*i]];
  835. nnz_cache[3+8* 2 + 2*8*i]= nnz[left_block[8+1+2*i]];
  836. if(CHROMA444){
  837. nnz_cache[3+8* 6 + 2*8*i]= nnz[left_block[8+0+2*i]+4*4];
  838. nnz_cache[3+8* 7 + 2*8*i]= nnz[left_block[8+1+2*i]+4*4];
  839. nnz_cache[3+8*11 + 2*8*i]= nnz[left_block[8+0+2*i]+8*4];
  840. nnz_cache[3+8*12 + 2*8*i]= nnz[left_block[8+1+2*i]+8*4];
  841. }else{
  842. nnz_cache[3+8* 6 + 8*i]= nnz[left_block[8+4+2*i]];
  843. nnz_cache[3+8*11 + 8*i]= nnz[left_block[8+5+2*i]];
  844. }
  845. }else{
  846. nnz_cache[3+8* 1 + 2*8*i]=
  847. nnz_cache[3+8* 2 + 2*8*i]=
  848. nnz_cache[3+8* 6 + 2*8*i]=
  849. nnz_cache[3+8* 7 + 2*8*i]=
  850. nnz_cache[3+8*11 + 2*8*i]=
  851. nnz_cache[3+8*12 + 2*8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
  852. }
  853. }
  854. if( CABAC ) {
  855. // top_cbp
  856. if(top_type) {
  857. h->top_cbp = h->cbp_table[top_xy];
  858. } else {
  859. h->top_cbp = IS_INTRA(mb_type) ? 0x7CF : 0x00F;
  860. }
  861. // left_cbp
  862. if (left_type[LTOP]) {
  863. h->left_cbp = (h->cbp_table[left_xy[LTOP]] & 0x7F0)
  864. | ((h->cbp_table[left_xy[LTOP]]>>(left_block[0]&(~1)))&2)
  865. | (((h->cbp_table[left_xy[LBOT]]>>(left_block[2]&(~1)))&2) << 2);
  866. } else {
  867. h->left_cbp = IS_INTRA(mb_type) ? 0x7CF : 0x00F;
  868. }
  869. }
  870. }
  871. if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){
  872. int list;
  873. int b_stride = h->b_stride;
  874. for(list=0; list<h->list_count; list++){
  875. int8_t *ref_cache = &h->ref_cache[list][scan8[0]];
  876. int8_t *ref = s->current_picture.ref_index[list];
  877. int16_t (*mv_cache)[2] = &h->mv_cache[list][scan8[0]];
  878. int16_t (*mv)[2] = s->current_picture.motion_val[list];
  879. if(!USES_LIST(mb_type, list)){
  880. continue;
  881. }
  882. assert(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred));
  883. if(USES_LIST(top_type, list)){
  884. const int b_xy= h->mb2b_xy[top_xy] + 3*b_stride;
  885. AV_COPY128(mv_cache[0 - 1*8], mv[b_xy + 0]);
  886. ref_cache[0 - 1*8]=
  887. ref_cache[1 - 1*8]= ref[4*top_xy + 2];
  888. ref_cache[2 - 1*8]=
  889. ref_cache[3 - 1*8]= ref[4*top_xy + 3];
  890. }else{
  891. AV_ZERO128(mv_cache[0 - 1*8]);
  892. AV_WN32A(&ref_cache[0 - 1*8], ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101);
  893. }
  894. if(mb_type & (MB_TYPE_16x8|MB_TYPE_8x8)){
  895. for(i=0; i<2; i++){
  896. int cache_idx = -1 + i*2*8;
  897. if(USES_LIST(left_type[LEFT(i)], list)){
  898. const int b_xy= h->mb2b_xy[left_xy[LEFT(i)]] + 3;
  899. const int b8_xy= 4*left_xy[LEFT(i)] + 1;
  900. AV_COPY32(mv_cache[cache_idx ], mv[b_xy + b_stride*left_block[0+i*2]]);
  901. AV_COPY32(mv_cache[cache_idx+8], mv[b_xy + b_stride*left_block[1+i*2]]);
  902. ref_cache[cache_idx ]= ref[b8_xy + (left_block[0+i*2]&~1)];
  903. ref_cache[cache_idx+8]= ref[b8_xy + (left_block[1+i*2]&~1)];
  904. }else{
  905. AV_ZERO32(mv_cache[cache_idx ]);
  906. AV_ZERO32(mv_cache[cache_idx+8]);
  907. ref_cache[cache_idx ]=
  908. ref_cache[cache_idx+8]= (left_type[LEFT(i)]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  909. }
  910. }
  911. }else{
  912. if(USES_LIST(left_type[LTOP], list)){
  913. const int b_xy= h->mb2b_xy[left_xy[LTOP]] + 3;
  914. const int b8_xy= 4*left_xy[LTOP] + 1;
  915. AV_COPY32(mv_cache[-1], mv[b_xy + b_stride*left_block[0]]);
  916. ref_cache[-1]= ref[b8_xy + (left_block[0]&~1)];
  917. }else{
  918. AV_ZERO32(mv_cache[-1]);
  919. ref_cache[-1]= left_type[LTOP] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  920. }
  921. }
  922. if(USES_LIST(topright_type, list)){
  923. const int b_xy= h->mb2b_xy[topright_xy] + 3*b_stride;
  924. AV_COPY32(mv_cache[4 - 1*8], mv[b_xy]);
  925. ref_cache[4 - 1*8]= ref[4*topright_xy + 2];
  926. }else{
  927. AV_ZERO32(mv_cache[4 - 1*8]);
  928. ref_cache[4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  929. }
  930. if(ref_cache[4 - 1*8] < 0){
  931. if(USES_LIST(topleft_type, list)){
  932. const int b_xy = h->mb2b_xy[topleft_xy] + 3 + b_stride + (h->topleft_partition & 2*b_stride);
  933. const int b8_xy= 4*topleft_xy + 1 + (h->topleft_partition & 2);
  934. AV_COPY32(mv_cache[-1 - 1*8], mv[b_xy]);
  935. ref_cache[-1 - 1*8]= ref[b8_xy];
  936. }else{
  937. AV_ZERO32(mv_cache[-1 - 1*8]);
  938. ref_cache[-1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  939. }
  940. }
  941. if((mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2)) && !FRAME_MBAFF)
  942. continue;
  943. if(!(mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2))){
  944. uint8_t (*mvd_cache)[2] = &h->mvd_cache[list][scan8[0]];
  945. uint8_t (*mvd)[2] = h->mvd_table[list];
  946. ref_cache[2+8*0] =
  947. ref_cache[2+8*2] = PART_NOT_AVAILABLE;
  948. AV_ZERO32(mv_cache[2+8*0]);
  949. AV_ZERO32(mv_cache[2+8*2]);
  950. if( CABAC ) {
  951. if(USES_LIST(top_type, list)){
  952. const int b_xy= h->mb2br_xy[top_xy];
  953. AV_COPY64(mvd_cache[0 - 1*8], mvd[b_xy + 0]);
  954. }else{
  955. AV_ZERO64(mvd_cache[0 - 1*8]);
  956. }
  957. if(USES_LIST(left_type[LTOP], list)){
  958. const int b_xy= h->mb2br_xy[left_xy[LTOP]] + 6;
  959. AV_COPY16(mvd_cache[-1 + 0*8], mvd[b_xy - left_block[0]]);
  960. AV_COPY16(mvd_cache[-1 + 1*8], mvd[b_xy - left_block[1]]);
  961. }else{
  962. AV_ZERO16(mvd_cache[-1 + 0*8]);
  963. AV_ZERO16(mvd_cache[-1 + 1*8]);
  964. }
  965. if(USES_LIST(left_type[LBOT], list)){
  966. const int b_xy= h->mb2br_xy[left_xy[LBOT]] + 6;
  967. AV_COPY16(mvd_cache[-1 + 2*8], mvd[b_xy - left_block[2]]);
  968. AV_COPY16(mvd_cache[-1 + 3*8], mvd[b_xy - left_block[3]]);
  969. }else{
  970. AV_ZERO16(mvd_cache[-1 + 2*8]);
  971. AV_ZERO16(mvd_cache[-1 + 3*8]);
  972. }
  973. AV_ZERO16(mvd_cache[2+8*0]);
  974. AV_ZERO16(mvd_cache[2+8*2]);
  975. if(h->slice_type_nos == AV_PICTURE_TYPE_B){
  976. uint8_t *direct_cache = &h->direct_cache[scan8[0]];
  977. uint8_t *direct_table = h->direct_table;
  978. fill_rectangle(direct_cache, 4, 4, 8, MB_TYPE_16x16>>1, 1);
  979. if(IS_DIRECT(top_type)){
  980. AV_WN32A(&direct_cache[-1*8], 0x01010101u*(MB_TYPE_DIRECT2>>1));
  981. }else if(IS_8X8(top_type)){
  982. int b8_xy = 4*top_xy;
  983. direct_cache[0 - 1*8]= direct_table[b8_xy + 2];
  984. direct_cache[2 - 1*8]= direct_table[b8_xy + 3];
  985. }else{
  986. AV_WN32A(&direct_cache[-1*8], 0x01010101*(MB_TYPE_16x16>>1));
  987. }
  988. if(IS_DIRECT(left_type[LTOP]))
  989. direct_cache[-1 + 0*8]= MB_TYPE_DIRECT2>>1;
  990. else if(IS_8X8(left_type[LTOP]))
  991. direct_cache[-1 + 0*8]= direct_table[4*left_xy[LTOP] + 1 + (left_block[0]&~1)];
  992. else
  993. direct_cache[-1 + 0*8]= MB_TYPE_16x16>>1;
  994. if(IS_DIRECT(left_type[LBOT]))
  995. direct_cache[-1 + 2*8]= MB_TYPE_DIRECT2>>1;
  996. else if(IS_8X8(left_type[LBOT]))
  997. direct_cache[-1 + 2*8]= direct_table[4*left_xy[LBOT] + 1 + (left_block[2]&~1)];
  998. else
  999. direct_cache[-1 + 2*8]= MB_TYPE_16x16>>1;
  1000. }
  1001. }
  1002. }
  1003. if(FRAME_MBAFF){
  1004. #define MAP_MVS\
  1005. MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
  1006. MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
  1007. MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
  1008. MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
  1009. MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
  1010. MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
  1011. MAP_F2F(scan8[0] - 1 + 0*8, left_type[LTOP])\
  1012. MAP_F2F(scan8[0] - 1 + 1*8, left_type[LTOP])\
  1013. MAP_F2F(scan8[0] - 1 + 2*8, left_type[LBOT])\
  1014. MAP_F2F(scan8[0] - 1 + 3*8, left_type[LBOT])
  1015. if(MB_FIELD){
  1016. #define MAP_F2F(idx, mb_type)\
  1017. if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  1018. h->ref_cache[list][idx] <<= 1;\
  1019. h->mv_cache[list][idx][1] /= 2;\
  1020. h->mvd_cache[list][idx][1] >>=1;\
  1021. }
  1022. MAP_MVS
  1023. #undef MAP_F2F
  1024. }else{
  1025. #define MAP_F2F(idx, mb_type)\
  1026. if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  1027. h->ref_cache[list][idx] >>= 1;\
  1028. h->mv_cache[list][idx][1] <<= 1;\
  1029. h->mvd_cache[list][idx][1] <<= 1;\
  1030. }
  1031. MAP_MVS
  1032. #undef MAP_F2F
  1033. }
  1034. }
  1035. }
  1036. }
  1037. h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[LTOP]);
  1038. }
  1039. /**
  1040. * gets the predicted intra4x4 prediction mode.
  1041. */
  1042. static av_always_inline int pred_intra_mode(H264Context *h, int n){
  1043. const int index8= scan8[n];
  1044. const int left= h->intra4x4_pred_mode_cache[index8 - 1];
  1045. const int top = h->intra4x4_pred_mode_cache[index8 - 8];
  1046. const int min= FFMIN(left, top);
  1047. tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
  1048. if(min<0) return DC_PRED;
  1049. else return min;
  1050. }
  1051. static av_always_inline void write_back_intra_pred_mode(H264Context *h){
  1052. int8_t *i4x4= h->intra4x4_pred_mode + h->mb2br_xy[h->mb_xy];
  1053. int8_t *i4x4_cache= h->intra4x4_pred_mode_cache;
  1054. AV_COPY32(i4x4, i4x4_cache + 4 + 8*4);
  1055. i4x4[4]= i4x4_cache[7+8*3];
  1056. i4x4[5]= i4x4_cache[7+8*2];
  1057. i4x4[6]= i4x4_cache[7+8*1];
  1058. }
  1059. static av_always_inline void write_back_non_zero_count(H264Context *h){
  1060. const int mb_xy= h->mb_xy;
  1061. uint8_t *nnz = h->non_zero_count[mb_xy];
  1062. uint8_t *nnz_cache = h->non_zero_count_cache;
  1063. AV_COPY32(&nnz[ 0], &nnz_cache[4+8* 1]);
  1064. AV_COPY32(&nnz[ 4], &nnz_cache[4+8* 2]);
  1065. AV_COPY32(&nnz[ 8], &nnz_cache[4+8* 3]);
  1066. AV_COPY32(&nnz[12], &nnz_cache[4+8* 4]);
  1067. AV_COPY32(&nnz[16], &nnz_cache[4+8* 6]);
  1068. AV_COPY32(&nnz[20], &nnz_cache[4+8* 7]);
  1069. AV_COPY32(&nnz[32], &nnz_cache[4+8*11]);
  1070. AV_COPY32(&nnz[36], &nnz_cache[4+8*12]);
  1071. if(CHROMA444){
  1072. AV_COPY32(&nnz[24], &nnz_cache[4+8* 8]);
  1073. AV_COPY32(&nnz[28], &nnz_cache[4+8* 9]);
  1074. AV_COPY32(&nnz[40], &nnz_cache[4+8*13]);
  1075. AV_COPY32(&nnz[44], &nnz_cache[4+8*14]);
  1076. }
  1077. }
  1078. static av_always_inline void write_back_motion_list(H264Context *h, MpegEncContext * const s, int b_stride,
  1079. int b_xy, int b8_xy, int mb_type, int list )
  1080. {
  1081. int16_t (*mv_dst)[2] = &s->current_picture.motion_val[list][b_xy];
  1082. int16_t (*mv_src)[2] = &h->mv_cache[list][scan8[0]];
  1083. AV_COPY128(mv_dst + 0*b_stride, mv_src + 8*0);
  1084. AV_COPY128(mv_dst + 1*b_stride, mv_src + 8*1);
  1085. AV_COPY128(mv_dst + 2*b_stride, mv_src + 8*2);
  1086. AV_COPY128(mv_dst + 3*b_stride, mv_src + 8*3);
  1087. if( CABAC ) {
  1088. uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8*h->mb_xy : h->mb2br_xy[h->mb_xy]];
  1089. uint8_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
  1090. if(IS_SKIP(mb_type))
  1091. AV_ZERO128(mvd_dst);
  1092. else{
  1093. AV_COPY64(mvd_dst, mvd_src + 8*3);
  1094. AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8*0);
  1095. AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8*1);
  1096. AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8*2);
  1097. }
  1098. }
  1099. {
  1100. int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
  1101. int8_t *ref_cache = h->ref_cache[list];
  1102. ref_index[0+0*2]= ref_cache[scan8[0]];
  1103. ref_index[1+0*2]= ref_cache[scan8[4]];
  1104. ref_index[0+1*2]= ref_cache[scan8[8]];
  1105. ref_index[1+1*2]= ref_cache[scan8[12]];
  1106. }
  1107. }
  1108. static av_always_inline void write_back_motion(H264Context *h, int mb_type){
  1109. MpegEncContext * const s = &h->s;
  1110. const int b_stride = h->b_stride;
  1111. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; //try mb2b(8)_xy
  1112. const int b8_xy= 4*h->mb_xy;
  1113. if(USES_LIST(mb_type, 0)){
  1114. write_back_motion_list(h, s, b_stride, b_xy, b8_xy, mb_type, 0);
  1115. }else{
  1116. fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
  1117. }
  1118. if(USES_LIST(mb_type, 1)){
  1119. write_back_motion_list(h, s, b_stride, b_xy, b8_xy, mb_type, 1);
  1120. }
  1121. if(h->slice_type_nos == AV_PICTURE_TYPE_B && CABAC){
  1122. if(IS_8X8(mb_type)){
  1123. uint8_t *direct_table = &h->direct_table[4*h->mb_xy];
  1124. direct_table[1] = h->sub_mb_type[1]>>1;
  1125. direct_table[2] = h->sub_mb_type[2]>>1;
  1126. direct_table[3] = h->sub_mb_type[3]>>1;
  1127. }
  1128. }
  1129. }
  1130. static av_always_inline int get_dct8x8_allowed(H264Context *h){
  1131. if(h->sps.direct_8x8_inference_flag)
  1132. return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8 )*0x0001000100010001ULL));
  1133. else
  1134. return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
  1135. }
  1136. /**
  1137. * decodes a P_SKIP or B_SKIP macroblock
  1138. */
  1139. static void av_unused decode_mb_skip(H264Context *h){
  1140. MpegEncContext * const s = &h->s;
  1141. const int mb_xy= h->mb_xy;
  1142. int mb_type=0;
  1143. memset(h->non_zero_count[mb_xy], 0, 48);
  1144. if(MB_FIELD)
  1145. mb_type|= MB_TYPE_INTERLACED;
  1146. if( h->slice_type_nos == AV_PICTURE_TYPE_B )
  1147. {
  1148. // just for fill_caches. pred_direct_motion will set the real mb_type
  1149. mb_type|= MB_TYPE_L0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
  1150. if(h->direct_spatial_mv_pred){
  1151. fill_decode_neighbors(h, mb_type);
  1152. fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
  1153. }
  1154. ff_h264_pred_direct_motion(h, &mb_type);
  1155. mb_type|= MB_TYPE_SKIP;
  1156. }
  1157. else
  1158. {
  1159. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
  1160. fill_decode_neighbors(h, mb_type);
  1161. pred_pskip_motion(h);
  1162. }
  1163. write_back_motion(h, mb_type);
  1164. s->current_picture.mb_type[mb_xy]= mb_type;
  1165. s->current_picture.qscale_table[mb_xy]= s->qscale;
  1166. h->slice_table[ mb_xy ]= h->slice_num;
  1167. h->prev_mb_skipped= 1;
  1168. }
  1169. #include "h264_mvpred.h" //For pred_pskip_motion()
  1170. #endif /* AVCODEC_H264_H */