You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2046 lines
73KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  22. #define _DARWIN_C_SOURCE // needed for MAP_ANON
  23. #include <inttypes.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include <string.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "libavutil/attributes.h"
  38. #include "libavutil/avassert.h"
  39. #include "libavutil/avutil.h"
  40. #include "libavutil/bswap.h"
  41. #include "libavutil/cpu.h"
  42. #include "libavutil/imgutils.h"
  43. #include "libavutil/intreadwrite.h"
  44. #include "libavutil/mathematics.h"
  45. #include "libavutil/opt.h"
  46. #include "libavutil/pixdesc.h"
  47. #include "libavutil/ppc/cpu.h"
  48. #include "libavutil/x86/asm.h"
  49. #include "libavutil/x86/cpu.h"
  50. #include "rgb2rgb.h"
  51. #include "swscale.h"
  52. #include "swscale_internal.h"
  53. static void handle_formats(SwsContext *c);
  54. unsigned swscale_version(void)
  55. {
  56. av_assert0(LIBSWSCALE_VERSION_MICRO >= 100);
  57. return LIBSWSCALE_VERSION_INT;
  58. }
  59. const char *swscale_configuration(void)
  60. {
  61. return FFMPEG_CONFIGURATION;
  62. }
  63. const char *swscale_license(void)
  64. {
  65. #define LICENSE_PREFIX "libswscale license: "
  66. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  67. }
  68. typedef struct FormatEntry {
  69. uint8_t is_supported_in :1;
  70. uint8_t is_supported_out :1;
  71. uint8_t is_supported_endianness :1;
  72. } FormatEntry;
  73. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  74. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  75. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  76. [AV_PIX_FMT_RGB24] = { 1, 1 },
  77. [AV_PIX_FMT_BGR24] = { 1, 1 },
  78. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  79. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  80. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  81. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  82. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  83. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  84. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  85. [AV_PIX_FMT_PAL8] = { 1, 0 },
  86. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  87. [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
  88. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  89. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  90. [AV_PIX_FMT_YVYU422] = { 1, 1 },
  91. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  92. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  93. [AV_PIX_FMT_BGR8] = { 1, 1 },
  94. [AV_PIX_FMT_BGR4] = { 0, 1 },
  95. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  96. [AV_PIX_FMT_RGB8] = { 1, 1 },
  97. [AV_PIX_FMT_RGB4] = { 0, 1 },
  98. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  99. [AV_PIX_FMT_NV12] = { 1, 1 },
  100. [AV_PIX_FMT_NV21] = { 1, 1 },
  101. [AV_PIX_FMT_ARGB] = { 1, 1 },
  102. [AV_PIX_FMT_RGBA] = { 1, 1 },
  103. [AV_PIX_FMT_ABGR] = { 1, 1 },
  104. [AV_PIX_FMT_BGRA] = { 1, 1 },
  105. [AV_PIX_FMT_0RGB] = { 1, 1 },
  106. [AV_PIX_FMT_RGB0] = { 1, 1 },
  107. [AV_PIX_FMT_0BGR] = { 1, 1 },
  108. [AV_PIX_FMT_BGR0] = { 1, 1 },
  109. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  110. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  111. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  112. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  113. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  114. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  115. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  116. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  117. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  118. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  119. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  120. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  121. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  122. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  123. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  124. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  125. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  126. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  127. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  128. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  129. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  130. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  131. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  132. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  133. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  134. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  135. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  136. [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
  137. [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
  138. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  139. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  140. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  141. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  142. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  143. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  144. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  145. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  146. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  147. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  148. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  149. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  150. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  151. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  152. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  153. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  154. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  155. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  156. [AV_PIX_FMT_YA8] = { 1, 0 },
  157. [AV_PIX_FMT_YA16BE] = { 1, 0 },
  158. [AV_PIX_FMT_YA16LE] = { 1, 0 },
  159. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  160. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  161. [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
  162. [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
  163. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  164. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  165. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  166. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  167. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  168. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  169. [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
  170. [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
  171. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  172. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  173. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  174. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  175. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  176. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  177. [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
  178. [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
  179. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  180. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  181. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  182. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  183. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  184. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  185. [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
  186. [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
  187. [AV_PIX_FMT_GBRP] = { 1, 1 },
  188. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  189. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  190. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  191. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  192. [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
  193. [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
  194. [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
  195. [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
  196. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  197. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  198. [AV_PIX_FMT_GBRAP] = { 1, 1 },
  199. [AV_PIX_FMT_GBRAP16LE] = { 1, 0 },
  200. [AV_PIX_FMT_GBRAP16BE] = { 1, 0 },
  201. [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
  202. [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
  203. [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
  204. [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
  205. [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
  206. [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
  207. [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
  208. [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
  209. [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
  210. [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
  211. [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
  212. [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
  213. [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
  214. [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
  215. };
  216. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  217. {
  218. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  219. format_entries[pix_fmt].is_supported_in : 0;
  220. }
  221. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  222. {
  223. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  224. format_entries[pix_fmt].is_supported_out : 0;
  225. }
  226. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  227. {
  228. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  229. format_entries[pix_fmt].is_supported_endianness : 0;
  230. }
  231. static double getSplineCoeff(double a, double b, double c, double d,
  232. double dist)
  233. {
  234. if (dist <= 1.0)
  235. return ((d * dist + c) * dist + b) * dist + a;
  236. else
  237. return getSplineCoeff(0.0,
  238. b + 2.0 * c + 3.0 * d,
  239. c + 3.0 * d,
  240. -b - 3.0 * c - 6.0 * d,
  241. dist - 1.0);
  242. }
  243. static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
  244. {
  245. if (pos == -1 || pos <= -513) {
  246. pos = (128 << chr_subsample) - 128;
  247. }
  248. pos += 128; // relative to ideal left edge
  249. return pos >> chr_subsample;
  250. }
  251. typedef struct {
  252. int flag; ///< flag associated to the algorithm
  253. const char *description; ///< human-readable description
  254. int size_factor; ///< size factor used when initing the filters
  255. } ScaleAlgorithm;
  256. static const ScaleAlgorithm scale_algorithms[] = {
  257. { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
  258. { SWS_BICUBIC, "bicubic", 4 },
  259. { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
  260. { SWS_BILINEAR, "bilinear", 2 },
  261. { SWS_FAST_BILINEAR, "fast bilinear", -1 },
  262. { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
  263. { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
  264. { SWS_POINT, "nearest neighbor / point", -1 },
  265. { SWS_SINC, "sinc", 20 /* infinite ;) */ },
  266. { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
  267. { SWS_X, "experimental", 8 },
  268. };
  269. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  270. int *outFilterSize, int xInc, int srcW,
  271. int dstW, int filterAlign, int one,
  272. int flags, int cpu_flags,
  273. SwsVector *srcFilter, SwsVector *dstFilter,
  274. double param[2], int srcPos, int dstPos)
  275. {
  276. int i;
  277. int filterSize;
  278. int filter2Size;
  279. int minFilterSize;
  280. int64_t *filter = NULL;
  281. int64_t *filter2 = NULL;
  282. const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
  283. int ret = -1;
  284. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  285. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  286. FF_ALLOC_ARRAY_OR_GOTO(NULL, *filterPos, (dstW + 3), sizeof(**filterPos), fail);
  287. if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
  288. int i;
  289. filterSize = 1;
  290. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter,
  291. dstW, sizeof(*filter) * filterSize, fail);
  292. for (i = 0; i < dstW; i++) {
  293. filter[i * filterSize] = fone;
  294. (*filterPos)[i] = i;
  295. }
  296. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  297. int i;
  298. int64_t xDstInSrc;
  299. filterSize = 1;
  300. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  301. dstW, sizeof(*filter) * filterSize, fail);
  302. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  303. for (i = 0; i < dstW; i++) {
  304. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  305. (*filterPos)[i] = xx;
  306. filter[i] = fone;
  307. xDstInSrc += xInc;
  308. }
  309. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  310. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  311. int i;
  312. int64_t xDstInSrc;
  313. filterSize = 2;
  314. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  315. dstW, sizeof(*filter) * filterSize, fail);
  316. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  317. for (i = 0; i < dstW; i++) {
  318. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  319. int j;
  320. (*filterPos)[i] = xx;
  321. // bilinear upscale / linear interpolate / area averaging
  322. for (j = 0; j < filterSize; j++) {
  323. int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
  324. if (coeff < 0)
  325. coeff = 0;
  326. filter[i * filterSize + j] = coeff;
  327. xx++;
  328. }
  329. xDstInSrc += xInc;
  330. }
  331. } else {
  332. int64_t xDstInSrc;
  333. int sizeFactor = -1;
  334. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  335. if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
  336. sizeFactor = scale_algorithms[i].size_factor;
  337. break;
  338. }
  339. }
  340. if (flags & SWS_LANCZOS)
  341. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  342. av_assert0(sizeFactor > 0);
  343. if (xInc <= 1 << 16)
  344. filterSize = 1 + sizeFactor; // upscale
  345. else
  346. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  347. filterSize = FFMIN(filterSize, srcW - 2);
  348. filterSize = FFMAX(filterSize, 1);
  349. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  350. dstW, sizeof(*filter) * filterSize, fail);
  351. xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
  352. for (i = 0; i < dstW; i++) {
  353. int xx = (xDstInSrc - ((int64_t)(filterSize - 2) << 16)) / (1 << 17);
  354. int j;
  355. (*filterPos)[i] = xx;
  356. for (j = 0; j < filterSize; j++) {
  357. int64_t d = (FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
  358. double floatd;
  359. int64_t coeff;
  360. if (xInc > 1 << 16)
  361. d = d * dstW / srcW;
  362. floatd = d * (1.0 / (1 << 30));
  363. if (flags & SWS_BICUBIC) {
  364. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  365. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  366. if (d >= 1LL << 31) {
  367. coeff = 0.0;
  368. } else {
  369. int64_t dd = (d * d) >> 30;
  370. int64_t ddd = (dd * d) >> 30;
  371. if (d < 1LL << 30)
  372. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  373. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  374. (6 * (1 << 24) - 2 * B) * (1 << 30);
  375. else
  376. coeff = (-B - 6 * C) * ddd +
  377. (6 * B + 30 * C) * dd +
  378. (-12 * B - 48 * C) * d +
  379. (8 * B + 24 * C) * (1 << 30);
  380. }
  381. coeff /= (1LL<<54)/fone;
  382. }
  383. #if 0
  384. else if (flags & SWS_X) {
  385. double p = param ? param * 0.01 : 0.3;
  386. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  387. coeff *= pow(2.0, -p * d * d);
  388. }
  389. #endif
  390. else if (flags & SWS_X) {
  391. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  392. double c;
  393. if (floatd < 1.0)
  394. c = cos(floatd * M_PI);
  395. else
  396. c = -1.0;
  397. if (c < 0.0)
  398. c = -pow(-c, A);
  399. else
  400. c = pow(c, A);
  401. coeff = (c * 0.5 + 0.5) * fone;
  402. } else if (flags & SWS_AREA) {
  403. int64_t d2 = d - (1 << 29);
  404. if (d2 * xInc < -(1LL << (29 + 16)))
  405. coeff = 1.0 * (1LL << (30 + 16));
  406. else if (d2 * xInc < (1LL << (29 + 16)))
  407. coeff = -d2 * xInc + (1LL << (29 + 16));
  408. else
  409. coeff = 0.0;
  410. coeff *= fone >> (30 + 16);
  411. } else if (flags & SWS_GAUSS) {
  412. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  413. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  414. } else if (flags & SWS_SINC) {
  415. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  416. } else if (flags & SWS_LANCZOS) {
  417. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  418. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  419. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  420. if (floatd > p)
  421. coeff = 0;
  422. } else if (flags & SWS_BILINEAR) {
  423. coeff = (1 << 30) - d;
  424. if (coeff < 0)
  425. coeff = 0;
  426. coeff *= fone >> 30;
  427. } else if (flags & SWS_SPLINE) {
  428. double p = -2.196152422706632;
  429. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  430. } else {
  431. av_assert0(0);
  432. }
  433. filter[i * filterSize + j] = coeff;
  434. xx++;
  435. }
  436. xDstInSrc += 2 * xInc;
  437. }
  438. }
  439. /* apply src & dst Filter to filter -> filter2
  440. * av_free(filter);
  441. */
  442. av_assert0(filterSize > 0);
  443. filter2Size = filterSize;
  444. if (srcFilter)
  445. filter2Size += srcFilter->length - 1;
  446. if (dstFilter)
  447. filter2Size += dstFilter->length - 1;
  448. av_assert0(filter2Size > 0);
  449. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter2, dstW, filter2Size * sizeof(*filter2), fail);
  450. for (i = 0; i < dstW; i++) {
  451. int j, k;
  452. if (srcFilter) {
  453. for (k = 0; k < srcFilter->length; k++) {
  454. for (j = 0; j < filterSize; j++)
  455. filter2[i * filter2Size + k + j] +=
  456. srcFilter->coeff[k] * filter[i * filterSize + j];
  457. }
  458. } else {
  459. for (j = 0; j < filterSize; j++)
  460. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  461. }
  462. // FIXME dstFilter
  463. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  464. }
  465. av_freep(&filter);
  466. /* try to reduce the filter-size (step1 find size and shift left) */
  467. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  468. minFilterSize = 0;
  469. for (i = dstW - 1; i >= 0; i--) {
  470. int min = filter2Size;
  471. int j;
  472. int64_t cutOff = 0.0;
  473. /* get rid of near zero elements on the left by shifting left */
  474. for (j = 0; j < filter2Size; j++) {
  475. int k;
  476. cutOff += FFABS(filter2[i * filter2Size]);
  477. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  478. break;
  479. /* preserve monotonicity because the core can't handle the
  480. * filter otherwise */
  481. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  482. break;
  483. // move filter coefficients left
  484. for (k = 1; k < filter2Size; k++)
  485. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  486. filter2[i * filter2Size + k - 1] = 0;
  487. (*filterPos)[i]++;
  488. }
  489. cutOff = 0;
  490. /* count near zeros on the right */
  491. for (j = filter2Size - 1; j > 0; j--) {
  492. cutOff += FFABS(filter2[i * filter2Size + j]);
  493. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  494. break;
  495. min--;
  496. }
  497. if (min > minFilterSize)
  498. minFilterSize = min;
  499. }
  500. if (PPC_ALTIVEC(cpu_flags)) {
  501. // we can handle the special case 4, so we don't want to go the full 8
  502. if (minFilterSize < 5)
  503. filterAlign = 4;
  504. /* We really don't want to waste our time doing useless computation, so
  505. * fall back on the scalar C code for very small filters.
  506. * Vectorizing is worth it only if you have a decent-sized vector. */
  507. if (minFilterSize < 3)
  508. filterAlign = 1;
  509. }
  510. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  511. // special case for unscaled vertical filtering
  512. if (minFilterSize == 1 && filterAlign == 2)
  513. filterAlign = 1;
  514. }
  515. av_assert0(minFilterSize > 0);
  516. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  517. av_assert0(filterSize > 0);
  518. filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
  519. if (!filter)
  520. goto fail;
  521. if (filterSize >= MAX_FILTER_SIZE * 16 /
  522. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
  523. ret = RETCODE_USE_CASCADE;
  524. goto fail;
  525. }
  526. *outFilterSize = filterSize;
  527. if (flags & SWS_PRINT_INFO)
  528. av_log(NULL, AV_LOG_VERBOSE,
  529. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  530. filter2Size, filterSize);
  531. /* try to reduce the filter-size (step2 reduce it) */
  532. for (i = 0; i < dstW; i++) {
  533. int j;
  534. for (j = 0; j < filterSize; j++) {
  535. if (j >= filter2Size)
  536. filter[i * filterSize + j] = 0;
  537. else
  538. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  539. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  540. filter[i * filterSize + j] = 0;
  541. }
  542. }
  543. // FIXME try to align filterPos if possible
  544. // fix borders
  545. for (i = 0; i < dstW; i++) {
  546. int j;
  547. if ((*filterPos)[i] < 0) {
  548. // move filter coefficients left to compensate for filterPos
  549. for (j = 1; j < filterSize; j++) {
  550. int left = FFMAX(j + (*filterPos)[i], 0);
  551. filter[i * filterSize + left] += filter[i * filterSize + j];
  552. filter[i * filterSize + j] = 0;
  553. }
  554. (*filterPos)[i]= 0;
  555. }
  556. if ((*filterPos)[i] + filterSize > srcW) {
  557. int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
  558. int64_t acc = 0;
  559. for (j = filterSize - 1; j >= 0; j--) {
  560. if ((*filterPos)[i] + j >= srcW) {
  561. acc += filter[i * filterSize + j];
  562. filter[i * filterSize + j] = 0;
  563. }
  564. }
  565. for (j = filterSize - 1; j >= 0; j--) {
  566. if (j < shift) {
  567. filter[i * filterSize + j] = 0;
  568. } else {
  569. filter[i * filterSize + j] = filter[i * filterSize + j - shift];
  570. }
  571. }
  572. (*filterPos)[i]-= shift;
  573. filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
  574. }
  575. av_assert0((*filterPos)[i] >= 0);
  576. av_assert0((*filterPos)[i] < srcW);
  577. if ((*filterPos)[i] + filterSize > srcW) {
  578. for (j = 0; j < filterSize; j++) {
  579. av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
  580. }
  581. }
  582. }
  583. // Note the +1 is for the MMX scaler which reads over the end
  584. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  585. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, *outFilter,
  586. (dstW + 3), *outFilterSize * sizeof(int16_t), fail);
  587. /* normalize & store in outFilter */
  588. for (i = 0; i < dstW; i++) {
  589. int j;
  590. int64_t error = 0;
  591. int64_t sum = 0;
  592. for (j = 0; j < filterSize; j++) {
  593. sum += filter[i * filterSize + j];
  594. }
  595. sum = (sum + one / 2) / one;
  596. if (!sum) {
  597. av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
  598. sum = 1;
  599. }
  600. for (j = 0; j < *outFilterSize; j++) {
  601. int64_t v = filter[i * filterSize + j] + error;
  602. int intV = ROUNDED_DIV(v, sum);
  603. (*outFilter)[i * (*outFilterSize) + j] = intV;
  604. error = v - intV * sum;
  605. }
  606. }
  607. (*filterPos)[dstW + 0] =
  608. (*filterPos)[dstW + 1] =
  609. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  610. * read over the end */
  611. for (i = 0; i < *outFilterSize; i++) {
  612. int k = (dstW - 1) * (*outFilterSize) + i;
  613. (*outFilter)[k + 1 * (*outFilterSize)] =
  614. (*outFilter)[k + 2 * (*outFilterSize)] =
  615. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  616. }
  617. ret = 0;
  618. fail:
  619. if(ret < 0)
  620. av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
  621. av_free(filter);
  622. av_free(filter2);
  623. return ret;
  624. }
  625. static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
  626. {
  627. int64_t W, V, Z, Cy, Cu, Cv;
  628. int64_t vr = table[0];
  629. int64_t ub = table[1];
  630. int64_t ug = -table[2];
  631. int64_t vg = -table[3];
  632. int64_t ONE = 65536;
  633. int64_t cy = ONE;
  634. uint8_t *p = (uint8_t*)c->input_rgb2yuv_table;
  635. int i;
  636. static const int8_t map[] = {
  637. BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
  638. RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
  639. RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
  640. BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
  641. BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
  642. RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
  643. RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
  644. BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
  645. BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
  646. RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
  647. RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
  648. BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
  649. RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX,
  650. BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX,
  651. GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
  652. -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
  653. RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX,
  654. BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX,
  655. GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
  656. -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
  657. RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX,
  658. BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX,
  659. GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
  660. -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
  661. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
  662. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
  663. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
  664. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
  665. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
  666. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
  667. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
  668. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
  669. BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
  670. BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
  671. BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
  672. };
  673. dstRange = 0; //FIXME range = 1 is handled elsewhere
  674. if (!dstRange) {
  675. cy = cy * 255 / 219;
  676. } else {
  677. vr = vr * 224 / 255;
  678. ub = ub * 224 / 255;
  679. ug = ug * 224 / 255;
  680. vg = vg * 224 / 255;
  681. }
  682. W = ROUNDED_DIV(ONE*ONE*ug, ub);
  683. V = ROUNDED_DIV(ONE*ONE*vg, vr);
  684. Z = ONE*ONE-W-V;
  685. Cy = ROUNDED_DIV(cy*Z, ONE);
  686. Cu = ROUNDED_DIV(ub*Z, ONE);
  687. Cv = ROUNDED_DIV(vr*Z, ONE);
  688. c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
  689. c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
  690. c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
  691. c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
  692. c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
  693. c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
  694. c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
  695. c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
  696. c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
  697. if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
  698. c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  699. c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  700. c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  701. c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  702. c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  703. c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  704. c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  705. c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  706. c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  707. }
  708. for(i=0; i<FF_ARRAY_ELEMS(map); i++)
  709. AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
  710. }
  711. static void fill_xyztables(struct SwsContext *c)
  712. {
  713. int i;
  714. double xyzgamma = XYZ_GAMMA;
  715. double rgbgamma = 1.0 / RGB_GAMMA;
  716. double xyzgammainv = 1.0 / XYZ_GAMMA;
  717. double rgbgammainv = RGB_GAMMA;
  718. static const int16_t xyz2rgb_matrix[3][4] = {
  719. {13270, -6295, -2041},
  720. {-3969, 7682, 170},
  721. { 228, -835, 4329} };
  722. static const int16_t rgb2xyz_matrix[3][4] = {
  723. {1689, 1464, 739},
  724. { 871, 2929, 296},
  725. { 79, 488, 3891} };
  726. static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
  727. memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
  728. memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
  729. c->xyzgamma = xyzgamma_tab;
  730. c->rgbgamma = rgbgamma_tab;
  731. c->xyzgammainv = xyzgammainv_tab;
  732. c->rgbgammainv = rgbgammainv_tab;
  733. if (rgbgamma_tab[4095])
  734. return;
  735. /* set gamma vectors */
  736. for (i = 0; i < 4096; i++) {
  737. xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
  738. rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
  739. xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
  740. rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
  741. }
  742. }
  743. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  744. int srcRange, const int table[4], int dstRange,
  745. int brightness, int contrast, int saturation)
  746. {
  747. const AVPixFmtDescriptor *desc_dst;
  748. const AVPixFmtDescriptor *desc_src;
  749. int need_reinit = 0;
  750. memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  751. memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
  752. handle_formats(c);
  753. desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  754. desc_src = av_pix_fmt_desc_get(c->srcFormat);
  755. if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
  756. dstRange = 0;
  757. if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
  758. srcRange = 0;
  759. c->brightness = brightness;
  760. c->contrast = contrast;
  761. c->saturation = saturation;
  762. if (c->srcRange != srcRange || c->dstRange != dstRange)
  763. need_reinit = 1;
  764. c->srcRange = srcRange;
  765. c->dstRange = dstRange;
  766. //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
  767. //and what we have in ticket 2939 looks better with this check
  768. if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
  769. ff_sws_init_range_convert(c);
  770. if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat)))
  771. return -1;
  772. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  773. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  774. if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
  775. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  776. contrast, saturation);
  777. // FIXME factorize
  778. if (ARCH_PPC)
  779. ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
  780. contrast, saturation);
  781. }
  782. fill_rgb2yuv_table(c, table, dstRange);
  783. return 0;
  784. }
  785. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  786. int *srcRange, int **table, int *dstRange,
  787. int *brightness, int *contrast, int *saturation)
  788. {
  789. if (!c )
  790. return -1;
  791. *inv_table = c->srcColorspaceTable;
  792. *table = c->dstColorspaceTable;
  793. *srcRange = c->srcRange;
  794. *dstRange = c->dstRange;
  795. *brightness = c->brightness;
  796. *contrast = c->contrast;
  797. *saturation = c->saturation;
  798. return 0;
  799. }
  800. static int handle_jpeg(enum AVPixelFormat *format)
  801. {
  802. switch (*format) {
  803. case AV_PIX_FMT_YUVJ420P:
  804. *format = AV_PIX_FMT_YUV420P;
  805. return 1;
  806. case AV_PIX_FMT_YUVJ411P:
  807. *format = AV_PIX_FMT_YUV411P;
  808. return 1;
  809. case AV_PIX_FMT_YUVJ422P:
  810. *format = AV_PIX_FMT_YUV422P;
  811. return 1;
  812. case AV_PIX_FMT_YUVJ444P:
  813. *format = AV_PIX_FMT_YUV444P;
  814. return 1;
  815. case AV_PIX_FMT_YUVJ440P:
  816. *format = AV_PIX_FMT_YUV440P;
  817. return 1;
  818. case AV_PIX_FMT_GRAY8:
  819. case AV_PIX_FMT_GRAY16LE:
  820. case AV_PIX_FMT_GRAY16BE:
  821. return 1;
  822. default:
  823. return 0;
  824. }
  825. }
  826. static int handle_0alpha(enum AVPixelFormat *format)
  827. {
  828. switch (*format) {
  829. case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
  830. case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
  831. case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
  832. case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
  833. default: return 0;
  834. }
  835. }
  836. static int handle_xyz(enum AVPixelFormat *format)
  837. {
  838. switch (*format) {
  839. case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
  840. case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
  841. default: return 0;
  842. }
  843. }
  844. static void handle_formats(SwsContext *c)
  845. {
  846. c->src0Alpha |= handle_0alpha(&c->srcFormat);
  847. c->dst0Alpha |= handle_0alpha(&c->dstFormat);
  848. c->srcXYZ |= handle_xyz(&c->srcFormat);
  849. c->dstXYZ |= handle_xyz(&c->dstFormat);
  850. if (c->srcXYZ || c->dstXYZ)
  851. fill_xyztables(c);
  852. }
  853. SwsContext *sws_alloc_context(void)
  854. {
  855. SwsContext *c = av_mallocz(sizeof(SwsContext));
  856. av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
  857. if (c) {
  858. c->av_class = &sws_context_class;
  859. av_opt_set_defaults(c);
  860. }
  861. return c;
  862. }
  863. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  864. SwsFilter *dstFilter)
  865. {
  866. int i, j;
  867. int usesVFilter, usesHFilter;
  868. int unscaled;
  869. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  870. int srcW = c->srcW;
  871. int srcH = c->srcH;
  872. int dstW = c->dstW;
  873. int dstH = c->dstH;
  874. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
  875. int flags, cpu_flags;
  876. enum AVPixelFormat srcFormat = c->srcFormat;
  877. enum AVPixelFormat dstFormat = c->dstFormat;
  878. const AVPixFmtDescriptor *desc_src;
  879. const AVPixFmtDescriptor *desc_dst;
  880. int ret = 0;
  881. cpu_flags = av_get_cpu_flags();
  882. flags = c->flags;
  883. emms_c();
  884. if (!rgb15to16)
  885. sws_rgb2rgb_init();
  886. unscaled = (srcW == dstW && srcH == dstH);
  887. c->srcRange |= handle_jpeg(&c->srcFormat);
  888. c->dstRange |= handle_jpeg(&c->dstFormat);
  889. if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
  890. av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
  891. if (!c->contrast && !c->saturation && !c->dstFormatBpp)
  892. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  893. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  894. c->dstRange, 0, 1 << 16, 1 << 16);
  895. handle_formats(c);
  896. srcFormat = c->srcFormat;
  897. dstFormat = c->dstFormat;
  898. desc_src = av_pix_fmt_desc_get(srcFormat);
  899. desc_dst = av_pix_fmt_desc_get(dstFormat);
  900. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  901. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  902. if (!sws_isSupportedInput(srcFormat)) {
  903. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  904. av_get_pix_fmt_name(srcFormat));
  905. return AVERROR(EINVAL);
  906. }
  907. if (!sws_isSupportedOutput(dstFormat)) {
  908. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  909. av_get_pix_fmt_name(dstFormat));
  910. return AVERROR(EINVAL);
  911. }
  912. }
  913. i = flags & (SWS_POINT |
  914. SWS_AREA |
  915. SWS_BILINEAR |
  916. SWS_FAST_BILINEAR |
  917. SWS_BICUBIC |
  918. SWS_X |
  919. SWS_GAUSS |
  920. SWS_LANCZOS |
  921. SWS_SINC |
  922. SWS_SPLINE |
  923. SWS_BICUBLIN);
  924. /* provide a default scaler if not set by caller */
  925. if (!i) {
  926. if (dstW < srcW && dstH < srcH)
  927. flags |= SWS_BICUBIC;
  928. else if (dstW > srcW && dstH > srcH)
  929. flags |= SWS_BICUBIC;
  930. else
  931. flags |= SWS_BICUBIC;
  932. c->flags = flags;
  933. } else if (i & (i - 1)) {
  934. av_log(c, AV_LOG_ERROR,
  935. "Exactly one scaler algorithm must be chosen, got %X\n", i);
  936. return AVERROR(EINVAL);
  937. }
  938. /* sanity check */
  939. if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
  940. /* FIXME check if these are enough and try to lower them after
  941. * fixing the relevant parts of the code */
  942. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  943. srcW, srcH, dstW, dstH);
  944. return AVERROR(EINVAL);
  945. }
  946. if (!dstFilter)
  947. dstFilter = &dummyFilter;
  948. if (!srcFilter)
  949. srcFilter = &dummyFilter;
  950. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  951. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  952. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  953. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  954. c->vRounder = 4 * 0x0001000100010001ULL;
  955. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  956. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  957. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  958. (dstFilter->chrV && dstFilter->chrV->length > 1);
  959. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  960. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  961. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  962. (dstFilter->chrH && dstFilter->chrH->length > 1);
  963. av_pix_fmt_get_chroma_sub_sample(srcFormat, &c->chrSrcHSubSample, &c->chrSrcVSubSample);
  964. av_pix_fmt_get_chroma_sub_sample(dstFormat, &c->chrDstHSubSample, &c->chrDstVSubSample);
  965. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
  966. if (dstW&1) {
  967. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
  968. flags |= SWS_FULL_CHR_H_INT;
  969. c->flags = flags;
  970. }
  971. if ( c->chrSrcHSubSample == 0
  972. && c->chrSrcVSubSample == 0
  973. && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
  974. && !(c->flags & SWS_FAST_BILINEAR)
  975. ) {
  976. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
  977. flags |= SWS_FULL_CHR_H_INT;
  978. c->flags = flags;
  979. }
  980. }
  981. if (c->dither == SWS_DITHER_AUTO) {
  982. if (flags & SWS_ERROR_DIFFUSION)
  983. c->dither = SWS_DITHER_ED;
  984. }
  985. if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
  986. dstFormat == AV_PIX_FMT_RGB4_BYTE ||
  987. dstFormat == AV_PIX_FMT_BGR8 ||
  988. dstFormat == AV_PIX_FMT_RGB8) {
  989. if (c->dither == SWS_DITHER_AUTO)
  990. c->dither = (flags & SWS_FULL_CHR_H_INT) ? SWS_DITHER_ED : SWS_DITHER_BAYER;
  991. if (!(flags & SWS_FULL_CHR_H_INT)) {
  992. if (c->dither == SWS_DITHER_ED || c->dither == SWS_DITHER_A_DITHER || c->dither == SWS_DITHER_X_DITHER) {
  993. av_log(c, AV_LOG_DEBUG,
  994. "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
  995. av_get_pix_fmt_name(dstFormat));
  996. flags |= SWS_FULL_CHR_H_INT;
  997. c->flags = flags;
  998. }
  999. }
  1000. if (flags & SWS_FULL_CHR_H_INT) {
  1001. if (c->dither == SWS_DITHER_BAYER) {
  1002. av_log(c, AV_LOG_DEBUG,
  1003. "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
  1004. av_get_pix_fmt_name(dstFormat));
  1005. c->dither = SWS_DITHER_ED;
  1006. }
  1007. }
  1008. }
  1009. if (isPlanarRGB(dstFormat)) {
  1010. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1011. av_log(c, AV_LOG_DEBUG,
  1012. "%s output is not supported with half chroma resolution, switching to full\n",
  1013. av_get_pix_fmt_name(dstFormat));
  1014. flags |= SWS_FULL_CHR_H_INT;
  1015. c->flags = flags;
  1016. }
  1017. }
  1018. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  1019. * chroma interpolation */
  1020. if (flags & SWS_FULL_CHR_H_INT &&
  1021. isAnyRGB(dstFormat) &&
  1022. !isPlanarRGB(dstFormat) &&
  1023. dstFormat != AV_PIX_FMT_RGBA &&
  1024. dstFormat != AV_PIX_FMT_ARGB &&
  1025. dstFormat != AV_PIX_FMT_BGRA &&
  1026. dstFormat != AV_PIX_FMT_ABGR &&
  1027. dstFormat != AV_PIX_FMT_RGB24 &&
  1028. dstFormat != AV_PIX_FMT_BGR24 &&
  1029. dstFormat != AV_PIX_FMT_BGR4_BYTE &&
  1030. dstFormat != AV_PIX_FMT_RGB4_BYTE &&
  1031. dstFormat != AV_PIX_FMT_BGR8 &&
  1032. dstFormat != AV_PIX_FMT_RGB8
  1033. ) {
  1034. av_log(c, AV_LOG_WARNING,
  1035. "full chroma interpolation for destination format '%s' not yet implemented\n",
  1036. av_get_pix_fmt_name(dstFormat));
  1037. flags &= ~SWS_FULL_CHR_H_INT;
  1038. c->flags = flags;
  1039. }
  1040. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  1041. c->chrDstHSubSample = 1;
  1042. // drop some chroma lines if the user wants it
  1043. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  1044. SWS_SRC_V_CHR_DROP_SHIFT;
  1045. c->chrSrcVSubSample += c->vChrDrop;
  1046. /* drop every other pixel for chroma calculation unless user
  1047. * wants full chroma */
  1048. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  1049. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  1050. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  1051. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  1052. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  1053. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  1054. srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
  1055. srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
  1056. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  1057. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  1058. (flags & SWS_FAST_BILINEAR)))
  1059. c->chrSrcHSubSample = 1;
  1060. // Note the FF_CEIL_RSHIFT is so that we always round toward +inf.
  1061. c->chrSrcW = FF_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
  1062. c->chrSrcH = FF_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
  1063. c->chrDstW = FF_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
  1064. c->chrDstH = FF_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
  1065. FF_ALLOCZ_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
  1066. c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
  1067. if (c->srcBpc < 8)
  1068. c->srcBpc = 8;
  1069. c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
  1070. if (c->dstBpc < 8)
  1071. c->dstBpc = 8;
  1072. if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
  1073. c->srcBpc = 16;
  1074. if (c->dstBpc == 16)
  1075. dst_stride <<= 1;
  1076. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
  1077. c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
  1078. c->chrDstW >= c->chrSrcW &&
  1079. (srcW & 15) == 0;
  1080. if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
  1081. && (flags & SWS_FAST_BILINEAR)) {
  1082. if (flags & SWS_PRINT_INFO)
  1083. av_log(c, AV_LOG_INFO,
  1084. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  1085. }
  1086. if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
  1087. c->canMMXEXTBeUsed = 0;
  1088. } else
  1089. c->canMMXEXTBeUsed = 0;
  1090. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  1091. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  1092. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  1093. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  1094. * correct scaling.
  1095. * n-2 is the last chrominance sample available.
  1096. * This is not perfect, but no one should notice the difference, the more
  1097. * correct variant would be like the vertical one, but that would require
  1098. * some special code for the first and last pixel */
  1099. if (flags & SWS_FAST_BILINEAR) {
  1100. if (c->canMMXEXTBeUsed) {
  1101. c->lumXInc += 20;
  1102. c->chrXInc += 20;
  1103. }
  1104. // we don't use the x86 asm scaler if MMX is available
  1105. else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
  1106. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  1107. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  1108. }
  1109. }
  1110. if (isBayer(srcFormat)) {
  1111. if (!unscaled ||
  1112. (dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P)) {
  1113. enum AVPixelFormat tmpFormat = AV_PIX_FMT_RGB24;
  1114. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1115. srcW, srcH, tmpFormat, 64);
  1116. if (ret < 0)
  1117. return ret;
  1118. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1119. srcW, srcH, tmpFormat,
  1120. flags, srcFilter, NULL, c->param);
  1121. if (!c->cascaded_context[0])
  1122. return -1;
  1123. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
  1124. dstW, dstH, dstFormat,
  1125. flags, NULL, dstFilter, c->param);
  1126. if (!c->cascaded_context[1])
  1127. return -1;
  1128. return 0;
  1129. }
  1130. }
  1131. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  1132. /* precalculate horizontal scaler filter coefficients */
  1133. {
  1134. #if HAVE_MMXEXT_INLINE
  1135. // can't downscale !!!
  1136. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  1137. c->lumMmxextFilterCodeSize = ff_init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  1138. NULL, NULL, 8);
  1139. c->chrMmxextFilterCodeSize = ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  1140. NULL, NULL, NULL, 4);
  1141. #if USE_MMAP
  1142. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  1143. PROT_READ | PROT_WRITE,
  1144. MAP_PRIVATE | MAP_ANONYMOUS,
  1145. -1, 0);
  1146. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  1147. PROT_READ | PROT_WRITE,
  1148. MAP_PRIVATE | MAP_ANONYMOUS,
  1149. -1, 0);
  1150. #elif HAVE_VIRTUALALLOC
  1151. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  1152. c->lumMmxextFilterCodeSize,
  1153. MEM_COMMIT,
  1154. PAGE_EXECUTE_READWRITE);
  1155. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  1156. c->chrMmxextFilterCodeSize,
  1157. MEM_COMMIT,
  1158. PAGE_EXECUTE_READWRITE);
  1159. #else
  1160. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  1161. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1162. #endif
  1163. #ifdef MAP_ANONYMOUS
  1164. if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
  1165. #else
  1166. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1167. #endif
  1168. {
  1169. av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
  1170. return AVERROR(ENOMEM);
  1171. }
  1172. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1173. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1174. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1175. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1176. ff_init_hscaler_mmxext( dstW, c->lumXInc, c->lumMmxextFilterCode,
  1177. c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
  1178. ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1179. c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
  1180. #if USE_MMAP
  1181. if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
  1182. || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
  1183. av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
  1184. goto fail;
  1185. }
  1186. #endif
  1187. } else
  1188. #endif /* HAVE_MMXEXT_INLINE */
  1189. {
  1190. const int filterAlign = X86_MMX(cpu_flags) ? 4 :
  1191. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1192. if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1193. &c->hLumFilterSize, c->lumXInc,
  1194. srcW, dstW, filterAlign, 1 << 14,
  1195. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1196. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1197. c->param,
  1198. get_local_pos(c, 0, 0, 0),
  1199. get_local_pos(c, 0, 0, 0))) < 0)
  1200. goto fail;
  1201. if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1202. &c->hChrFilterSize, c->chrXInc,
  1203. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1204. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1205. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1206. c->param,
  1207. get_local_pos(c, c->chrSrcHSubSample, c->src_h_chr_pos, 0),
  1208. get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
  1209. goto fail;
  1210. }
  1211. } // initialize horizontal stuff
  1212. /* precalculate vertical scaler filter coefficients */
  1213. {
  1214. const int filterAlign = X86_MMX(cpu_flags) ? 2 :
  1215. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1216. if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1217. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1218. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1219. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1220. c->param,
  1221. get_local_pos(c, 0, 0, 1),
  1222. get_local_pos(c, 0, 0, 1))) < 0)
  1223. goto fail;
  1224. if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1225. c->chrYInc, c->chrSrcH, c->chrDstH,
  1226. filterAlign, (1 << 12),
  1227. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1228. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1229. c->param,
  1230. get_local_pos(c, c->chrSrcVSubSample, c->src_v_chr_pos, 1),
  1231. get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
  1232. goto fail;
  1233. #if HAVE_ALTIVEC
  1234. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1235. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1236. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1237. int j;
  1238. short *p = (short *)&c->vYCoeffsBank[i];
  1239. for (j = 0; j < 8; j++)
  1240. p[j] = c->vLumFilter[i];
  1241. }
  1242. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1243. int j;
  1244. short *p = (short *)&c->vCCoeffsBank[i];
  1245. for (j = 0; j < 8; j++)
  1246. p[j] = c->vChrFilter[i];
  1247. }
  1248. #endif
  1249. }
  1250. // calculate buffer sizes so that they won't run out while handling these damn slices
  1251. c->vLumBufSize = c->vLumFilterSize;
  1252. c->vChrBufSize = c->vChrFilterSize;
  1253. for (i = 0; i < dstH; i++) {
  1254. int chrI = (int64_t)i * c->chrDstH / dstH;
  1255. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1256. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1257. << c->chrSrcVSubSample));
  1258. nextSlice >>= c->chrSrcVSubSample;
  1259. nextSlice <<= c->chrSrcVSubSample;
  1260. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1261. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1262. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1263. (nextSlice >> c->chrSrcVSubSample))
  1264. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1265. c->vChrFilterPos[chrI];
  1266. }
  1267. for (i = 0; i < 4; i++)
  1268. FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
  1269. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1270. * need to allocate several megabytes to handle all possible cases) */
  1271. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1272. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1273. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1274. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1275. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1276. /* Note we need at least one pixel more at the end because of the MMX code
  1277. * (just in case someone wants to replace the 4000/8000). */
  1278. /* align at 16 bytes for AltiVec */
  1279. for (i = 0; i < c->vLumBufSize; i++) {
  1280. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1281. dst_stride + 16, fail);
  1282. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1283. }
  1284. // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
  1285. c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
  1286. c->uv_offx2 = dst_stride + 16;
  1287. for (i = 0; i < c->vChrBufSize; i++) {
  1288. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1289. dst_stride * 2 + 32, fail);
  1290. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1291. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1292. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1293. }
  1294. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1295. for (i = 0; i < c->vLumBufSize; i++) {
  1296. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1297. dst_stride + 16, fail);
  1298. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1299. }
  1300. // try to avoid drawing green stuff between the right end and the stride end
  1301. for (i = 0; i < c->vChrBufSize; i++)
  1302. if(desc_dst->comp[0].depth_minus1 == 15){
  1303. av_assert0(c->dstBpc > 14);
  1304. for(j=0; j<dst_stride/2+1; j++)
  1305. ((int32_t*)(c->chrUPixBuf[i]))[j] = 1<<18;
  1306. } else
  1307. for(j=0; j<dst_stride+1; j++)
  1308. ((int16_t*)(c->chrUPixBuf[i]))[j] = 1<<14;
  1309. av_assert0(c->chrDstH <= dstH);
  1310. if (flags & SWS_PRINT_INFO) {
  1311. const char *scaler = NULL, *cpucaps;
  1312. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  1313. if (flags & scale_algorithms[i].flag) {
  1314. scaler = scale_algorithms[i].description;
  1315. break;
  1316. }
  1317. }
  1318. if (!scaler)
  1319. scaler = "ehh flags invalid?!";
  1320. av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
  1321. scaler,
  1322. av_get_pix_fmt_name(srcFormat),
  1323. #ifdef DITHER1XBPP
  1324. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1325. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1326. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1327. "dithered " : "",
  1328. #else
  1329. "",
  1330. #endif
  1331. av_get_pix_fmt_name(dstFormat));
  1332. if (INLINE_MMXEXT(cpu_flags))
  1333. cpucaps = "MMXEXT";
  1334. else if (INLINE_AMD3DNOW(cpu_flags))
  1335. cpucaps = "3DNOW";
  1336. else if (INLINE_MMX(cpu_flags))
  1337. cpucaps = "MMX";
  1338. else if (PPC_ALTIVEC(cpu_flags))
  1339. cpucaps = "AltiVec";
  1340. else
  1341. cpucaps = "C";
  1342. av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
  1343. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1344. av_log(c, AV_LOG_DEBUG,
  1345. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1346. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1347. av_log(c, AV_LOG_DEBUG,
  1348. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1349. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1350. c->chrXInc, c->chrYInc);
  1351. }
  1352. /* unscaled special cases */
  1353. if (unscaled && !usesHFilter && !usesVFilter &&
  1354. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  1355. ff_get_unscaled_swscale(c);
  1356. if (c->swscale) {
  1357. if (flags & SWS_PRINT_INFO)
  1358. av_log(c, AV_LOG_INFO,
  1359. "using unscaled %s -> %s special converter\n",
  1360. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1361. return 0;
  1362. }
  1363. }
  1364. c->swscale = ff_getSwsFunc(c);
  1365. return 0;
  1366. fail: // FIXME replace things by appropriate error codes
  1367. if (ret == RETCODE_USE_CASCADE) {
  1368. int tmpW = sqrt(srcW * (int64_t)dstW);
  1369. int tmpH = sqrt(srcH * (int64_t)dstH);
  1370. enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
  1371. if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
  1372. return AVERROR(EINVAL);
  1373. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1374. tmpW, tmpH, tmpFormat, 64);
  1375. if (ret < 0)
  1376. return ret;
  1377. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1378. tmpW, tmpH, tmpFormat,
  1379. flags, srcFilter, NULL, c->param);
  1380. if (!c->cascaded_context[0])
  1381. return -1;
  1382. c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
  1383. dstW, dstH, dstFormat,
  1384. flags, NULL, dstFilter, c->param);
  1385. if (!c->cascaded_context[1])
  1386. return -1;
  1387. return 0;
  1388. }
  1389. return -1;
  1390. }
  1391. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1392. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1393. int flags, SwsFilter *srcFilter,
  1394. SwsFilter *dstFilter, const double *param)
  1395. {
  1396. SwsContext *c;
  1397. if (!(c = sws_alloc_context()))
  1398. return NULL;
  1399. c->flags = flags;
  1400. c->srcW = srcW;
  1401. c->srcH = srcH;
  1402. c->dstW = dstW;
  1403. c->dstH = dstH;
  1404. c->srcFormat = srcFormat;
  1405. c->dstFormat = dstFormat;
  1406. if (param) {
  1407. c->param[0] = param[0];
  1408. c->param[1] = param[1];
  1409. }
  1410. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1411. sws_freeContext(c);
  1412. return NULL;
  1413. }
  1414. return c;
  1415. }
  1416. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1417. float lumaSharpen, float chromaSharpen,
  1418. float chromaHShift, float chromaVShift,
  1419. int verbose)
  1420. {
  1421. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1422. if (!filter)
  1423. return NULL;
  1424. if (lumaGBlur != 0.0) {
  1425. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1426. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1427. } else {
  1428. filter->lumH = sws_getIdentityVec();
  1429. filter->lumV = sws_getIdentityVec();
  1430. }
  1431. if (chromaGBlur != 0.0) {
  1432. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1433. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1434. } else {
  1435. filter->chrH = sws_getIdentityVec();
  1436. filter->chrV = sws_getIdentityVec();
  1437. }
  1438. if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
  1439. goto fail;
  1440. if (chromaSharpen != 0.0) {
  1441. SwsVector *id = sws_getIdentityVec();
  1442. if (!id)
  1443. goto fail;
  1444. sws_scaleVec(filter->chrH, -chromaSharpen);
  1445. sws_scaleVec(filter->chrV, -chromaSharpen);
  1446. sws_addVec(filter->chrH, id);
  1447. sws_addVec(filter->chrV, id);
  1448. sws_freeVec(id);
  1449. }
  1450. if (lumaSharpen != 0.0) {
  1451. SwsVector *id = sws_getIdentityVec();
  1452. if (!id)
  1453. goto fail;
  1454. sws_scaleVec(filter->lumH, -lumaSharpen);
  1455. sws_scaleVec(filter->lumV, -lumaSharpen);
  1456. sws_addVec(filter->lumH, id);
  1457. sws_addVec(filter->lumV, id);
  1458. sws_freeVec(id);
  1459. }
  1460. if (chromaHShift != 0.0)
  1461. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1462. if (chromaVShift != 0.0)
  1463. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1464. sws_normalizeVec(filter->chrH, 1.0);
  1465. sws_normalizeVec(filter->chrV, 1.0);
  1466. sws_normalizeVec(filter->lumH, 1.0);
  1467. sws_normalizeVec(filter->lumV, 1.0);
  1468. if (verbose)
  1469. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1470. if (verbose)
  1471. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1472. return filter;
  1473. fail:
  1474. sws_freeVec(filter->lumH);
  1475. sws_freeVec(filter->lumV);
  1476. sws_freeVec(filter->chrH);
  1477. sws_freeVec(filter->chrV);
  1478. av_freep(&filter);
  1479. return NULL;
  1480. }
  1481. SwsVector *sws_allocVec(int length)
  1482. {
  1483. SwsVector *vec;
  1484. if(length <= 0 || length > INT_MAX/ sizeof(double))
  1485. return NULL;
  1486. vec = av_malloc(sizeof(SwsVector));
  1487. if (!vec)
  1488. return NULL;
  1489. vec->length = length;
  1490. vec->coeff = av_malloc(sizeof(double) * length);
  1491. if (!vec->coeff)
  1492. av_freep(&vec);
  1493. return vec;
  1494. }
  1495. SwsVector *sws_getGaussianVec(double variance, double quality)
  1496. {
  1497. const int length = (int)(variance * quality + 0.5) | 1;
  1498. int i;
  1499. double middle = (length - 1) * 0.5;
  1500. SwsVector *vec;
  1501. if(variance < 0 || quality < 0)
  1502. return NULL;
  1503. vec = sws_allocVec(length);
  1504. if (!vec)
  1505. return NULL;
  1506. for (i = 0; i < length; i++) {
  1507. double dist = i - middle;
  1508. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1509. sqrt(2 * variance * M_PI);
  1510. }
  1511. sws_normalizeVec(vec, 1.0);
  1512. return vec;
  1513. }
  1514. SwsVector *sws_getConstVec(double c, int length)
  1515. {
  1516. int i;
  1517. SwsVector *vec = sws_allocVec(length);
  1518. if (!vec)
  1519. return NULL;
  1520. for (i = 0; i < length; i++)
  1521. vec->coeff[i] = c;
  1522. return vec;
  1523. }
  1524. SwsVector *sws_getIdentityVec(void)
  1525. {
  1526. return sws_getConstVec(1.0, 1);
  1527. }
  1528. static double sws_dcVec(SwsVector *a)
  1529. {
  1530. int i;
  1531. double sum = 0;
  1532. for (i = 0; i < a->length; i++)
  1533. sum += a->coeff[i];
  1534. return sum;
  1535. }
  1536. void sws_scaleVec(SwsVector *a, double scalar)
  1537. {
  1538. int i;
  1539. for (i = 0; i < a->length; i++)
  1540. a->coeff[i] *= scalar;
  1541. }
  1542. void sws_normalizeVec(SwsVector *a, double height)
  1543. {
  1544. sws_scaleVec(a, height / sws_dcVec(a));
  1545. }
  1546. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1547. {
  1548. int length = a->length + b->length - 1;
  1549. int i, j;
  1550. SwsVector *vec = sws_getConstVec(0.0, length);
  1551. if (!vec)
  1552. return NULL;
  1553. for (i = 0; i < a->length; i++) {
  1554. for (j = 0; j < b->length; j++) {
  1555. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1556. }
  1557. }
  1558. return vec;
  1559. }
  1560. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1561. {
  1562. int length = FFMAX(a->length, b->length);
  1563. int i;
  1564. SwsVector *vec = sws_getConstVec(0.0, length);
  1565. if (!vec)
  1566. return NULL;
  1567. for (i = 0; i < a->length; i++)
  1568. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1569. for (i = 0; i < b->length; i++)
  1570. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1571. return vec;
  1572. }
  1573. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1574. {
  1575. int length = FFMAX(a->length, b->length);
  1576. int i;
  1577. SwsVector *vec = sws_getConstVec(0.0, length);
  1578. if (!vec)
  1579. return NULL;
  1580. for (i = 0; i < a->length; i++)
  1581. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1582. for (i = 0; i < b->length; i++)
  1583. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1584. return vec;
  1585. }
  1586. /* shift left / or right if "shift" is negative */
  1587. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1588. {
  1589. int length = a->length + FFABS(shift) * 2;
  1590. int i;
  1591. SwsVector *vec = sws_getConstVec(0.0, length);
  1592. if (!vec)
  1593. return NULL;
  1594. for (i = 0; i < a->length; i++) {
  1595. vec->coeff[i + (length - 1) / 2 -
  1596. (a->length - 1) / 2 - shift] = a->coeff[i];
  1597. }
  1598. return vec;
  1599. }
  1600. void sws_shiftVec(SwsVector *a, int shift)
  1601. {
  1602. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1603. av_free(a->coeff);
  1604. a->coeff = shifted->coeff;
  1605. a->length = shifted->length;
  1606. av_free(shifted);
  1607. }
  1608. void sws_addVec(SwsVector *a, SwsVector *b)
  1609. {
  1610. SwsVector *sum = sws_sumVec(a, b);
  1611. av_free(a->coeff);
  1612. a->coeff = sum->coeff;
  1613. a->length = sum->length;
  1614. av_free(sum);
  1615. }
  1616. void sws_subVec(SwsVector *a, SwsVector *b)
  1617. {
  1618. SwsVector *diff = sws_diffVec(a, b);
  1619. av_free(a->coeff);
  1620. a->coeff = diff->coeff;
  1621. a->length = diff->length;
  1622. av_free(diff);
  1623. }
  1624. void sws_convVec(SwsVector *a, SwsVector *b)
  1625. {
  1626. SwsVector *conv = sws_getConvVec(a, b);
  1627. av_free(a->coeff);
  1628. a->coeff = conv->coeff;
  1629. a->length = conv->length;
  1630. av_free(conv);
  1631. }
  1632. SwsVector *sws_cloneVec(SwsVector *a)
  1633. {
  1634. SwsVector *vec = sws_allocVec(a->length);
  1635. if (!vec)
  1636. return NULL;
  1637. memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
  1638. return vec;
  1639. }
  1640. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1641. {
  1642. int i;
  1643. double max = 0;
  1644. double min = 0;
  1645. double range;
  1646. for (i = 0; i < a->length; i++)
  1647. if (a->coeff[i] > max)
  1648. max = a->coeff[i];
  1649. for (i = 0; i < a->length; i++)
  1650. if (a->coeff[i] < min)
  1651. min = a->coeff[i];
  1652. range = max - min;
  1653. for (i = 0; i < a->length; i++) {
  1654. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1655. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1656. for (; x > 0; x--)
  1657. av_log(log_ctx, log_level, " ");
  1658. av_log(log_ctx, log_level, "|\n");
  1659. }
  1660. }
  1661. void sws_freeVec(SwsVector *a)
  1662. {
  1663. if (!a)
  1664. return;
  1665. av_freep(&a->coeff);
  1666. a->length = 0;
  1667. av_free(a);
  1668. }
  1669. void sws_freeFilter(SwsFilter *filter)
  1670. {
  1671. if (!filter)
  1672. return;
  1673. sws_freeVec(filter->lumH);
  1674. sws_freeVec(filter->lumV);
  1675. sws_freeVec(filter->chrH);
  1676. sws_freeVec(filter->chrV);
  1677. av_free(filter);
  1678. }
  1679. void sws_freeContext(SwsContext *c)
  1680. {
  1681. int i;
  1682. if (!c)
  1683. return;
  1684. if (c->lumPixBuf) {
  1685. for (i = 0; i < c->vLumBufSize; i++)
  1686. av_freep(&c->lumPixBuf[i]);
  1687. av_freep(&c->lumPixBuf);
  1688. }
  1689. if (c->chrUPixBuf) {
  1690. for (i = 0; i < c->vChrBufSize; i++)
  1691. av_freep(&c->chrUPixBuf[i]);
  1692. av_freep(&c->chrUPixBuf);
  1693. av_freep(&c->chrVPixBuf);
  1694. }
  1695. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1696. for (i = 0; i < c->vLumBufSize; i++)
  1697. av_freep(&c->alpPixBuf[i]);
  1698. av_freep(&c->alpPixBuf);
  1699. }
  1700. for (i = 0; i < 4; i++)
  1701. av_freep(&c->dither_error[i]);
  1702. av_freep(&c->vLumFilter);
  1703. av_freep(&c->vChrFilter);
  1704. av_freep(&c->hLumFilter);
  1705. av_freep(&c->hChrFilter);
  1706. #if HAVE_ALTIVEC
  1707. av_freep(&c->vYCoeffsBank);
  1708. av_freep(&c->vCCoeffsBank);
  1709. #endif
  1710. av_freep(&c->vLumFilterPos);
  1711. av_freep(&c->vChrFilterPos);
  1712. av_freep(&c->hLumFilterPos);
  1713. av_freep(&c->hChrFilterPos);
  1714. #if HAVE_MMX_INLINE
  1715. #if USE_MMAP
  1716. if (c->lumMmxextFilterCode)
  1717. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  1718. if (c->chrMmxextFilterCode)
  1719. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  1720. #elif HAVE_VIRTUALALLOC
  1721. if (c->lumMmxextFilterCode)
  1722. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  1723. if (c->chrMmxextFilterCode)
  1724. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  1725. #else
  1726. av_free(c->lumMmxextFilterCode);
  1727. av_free(c->chrMmxextFilterCode);
  1728. #endif
  1729. c->lumMmxextFilterCode = NULL;
  1730. c->chrMmxextFilterCode = NULL;
  1731. #endif /* HAVE_MMX_INLINE */
  1732. av_freep(&c->yuvTable);
  1733. av_freep(&c->formatConvBuffer);
  1734. sws_freeContext(c->cascaded_context[0]);
  1735. sws_freeContext(c->cascaded_context[1]);
  1736. memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
  1737. av_freep(&c->cascaded_tmp[0]);
  1738. av_free(c);
  1739. }
  1740. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1741. int srcH, enum AVPixelFormat srcFormat,
  1742. int dstW, int dstH,
  1743. enum AVPixelFormat dstFormat, int flags,
  1744. SwsFilter *srcFilter,
  1745. SwsFilter *dstFilter,
  1746. const double *param)
  1747. {
  1748. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1749. SWS_PARAM_DEFAULT };
  1750. int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
  1751. src_v_chr_pos = -513, dst_v_chr_pos = -513;
  1752. if (!param)
  1753. param = default_param;
  1754. if (context &&
  1755. (context->srcW != srcW ||
  1756. context->srcH != srcH ||
  1757. context->srcFormat != srcFormat ||
  1758. context->dstW != dstW ||
  1759. context->dstH != dstH ||
  1760. context->dstFormat != dstFormat ||
  1761. context->flags != flags ||
  1762. context->param[0] != param[0] ||
  1763. context->param[1] != param[1])) {
  1764. av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
  1765. av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
  1766. av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
  1767. av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
  1768. sws_freeContext(context);
  1769. context = NULL;
  1770. }
  1771. if (!context) {
  1772. if (!(context = sws_alloc_context()))
  1773. return NULL;
  1774. context->srcW = srcW;
  1775. context->srcH = srcH;
  1776. context->srcFormat = srcFormat;
  1777. context->dstW = dstW;
  1778. context->dstH = dstH;
  1779. context->dstFormat = dstFormat;
  1780. context->flags = flags;
  1781. context->param[0] = param[0];
  1782. context->param[1] = param[1];
  1783. av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
  1784. av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
  1785. av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
  1786. av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
  1787. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1788. sws_freeContext(context);
  1789. return NULL;
  1790. }
  1791. }
  1792. return context;
  1793. }