You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3008 lines
117KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2011 Mashiat Sarker Shakkhar
  4. * Copyright (c) 2006-2007 Konstantin Shishkov
  5. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * VC-1 and WMV3 block decoding routines
  26. */
  27. #include "avcodec.h"
  28. #include "mpegutils.h"
  29. #include "mpegvideo.h"
  30. #include "msmpeg4data.h"
  31. #include "unary.h"
  32. #include "vc1.h"
  33. #include "vc1_pred.h"
  34. #include "vc1acdata.h"
  35. #include "vc1data.h"
  36. #define MB_INTRA_VLC_BITS 9
  37. #define DC_VLC_BITS 9
  38. // offset tables for interlaced picture MVDATA decoding
  39. static const uint8_t offset_table[2][9] = {
  40. { 0, 1, 2, 4, 8, 16, 32, 64, 128 },
  41. { 0, 1, 3, 7, 15, 31, 63, 127, 255 },
  42. };
  43. // mapping table for internal block representation
  44. static const int block_map[6] = {0, 2, 1, 3, 4, 5};
  45. /***********************************************************************/
  46. /**
  47. * @name VC-1 Bitplane decoding
  48. * @see 8.7, p56
  49. * @{
  50. */
  51. static inline void init_block_index(VC1Context *v)
  52. {
  53. MpegEncContext *s = &v->s;
  54. ff_init_block_index(s);
  55. if (v->field_mode && !(v->second_field ^ v->tff)) {
  56. s->dest[0] += s->current_picture_ptr->f->linesize[0];
  57. s->dest[1] += s->current_picture_ptr->f->linesize[1];
  58. s->dest[2] += s->current_picture_ptr->f->linesize[2];
  59. }
  60. }
  61. /** @} */ //Bitplane group
  62. static void vc1_put_blocks_clamped(VC1Context *v, int put_signed)
  63. {
  64. MpegEncContext *s = &v->s;
  65. uint8_t *dest;
  66. int block_count = CONFIG_GRAY && (s->avctx->flags & AV_CODEC_FLAG_GRAY) ? 4 : 6;
  67. int fieldtx = 0;
  68. int i;
  69. /* The put pixels loop is one MB row and one MB column behind the decoding
  70. * loop because we can only put pixels when overlap filtering is done. For
  71. * interlaced frame pictures, however, the put pixels loop is only one
  72. * column behind the decoding loop as interlaced frame pictures only need
  73. * horizontal overlap filtering. */
  74. if (!s->first_slice_line && v->fcm != ILACE_FRAME) {
  75. if (s->mb_x) {
  76. for (i = 0; i < block_count; i++) {
  77. if (i > 3 ? v->mb_type[0][s->block_index[i] - s->block_wrap[i] - 1] :
  78. v->mb_type[0][s->block_index[i] - 2 * s->block_wrap[i] - 2]) {
  79. dest = s->dest[0] + ((i & 2) - 4) * 4 * s->linesize + ((i & 1) - 2) * 8;
  80. if (put_signed)
  81. s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][block_map[i]],
  82. i > 3 ? s->dest[i - 3] - 8 * s->uvlinesize - 8 : dest,
  83. i > 3 ? s->uvlinesize : s->linesize);
  84. else
  85. s->idsp.put_pixels_clamped(v->block[v->topleft_blk_idx][block_map[i]],
  86. i > 3 ? s->dest[i - 3] - 8 * s->uvlinesize - 8 : dest,
  87. i > 3 ? s->uvlinesize : s->linesize);
  88. }
  89. }
  90. }
  91. if (s->mb_x == v->end_mb_x - 1) {
  92. for (i = 0; i < block_count; i++) {
  93. if (i > 3 ? v->mb_type[0][s->block_index[i] - s->block_wrap[i]] :
  94. v->mb_type[0][s->block_index[i] - 2 * s->block_wrap[i]]) {
  95. dest = s->dest[0] + ((i & 2) - 4) * 4 * s->linesize + (i & 1) * 8;
  96. if (put_signed)
  97. s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][block_map[i]],
  98. i > 3 ? s->dest[i - 3] - 8 * s->uvlinesize : dest,
  99. i > 3 ? s->uvlinesize : s->linesize);
  100. else
  101. s->idsp.put_pixels_clamped(v->block[v->top_blk_idx][block_map[i]],
  102. i > 3 ? s->dest[i - 3] - 8 * s->uvlinesize : dest,
  103. i > 3 ? s->uvlinesize : s->linesize);
  104. }
  105. }
  106. }
  107. }
  108. if (s->mb_y == s->end_mb_y - 1 || v->fcm == ILACE_FRAME) {
  109. if (s->mb_x) {
  110. if (v->fcm == ILACE_FRAME)
  111. fieldtx = v->fieldtx_plane[s->mb_y * s->mb_stride + s->mb_x - 1];
  112. for (i = 0; i < block_count; i++) {
  113. if (i > 3 ? v->mb_type[0][s->block_index[i] - 1] :
  114. v->mb_type[0][s->block_index[i] - 2]) {
  115. if (fieldtx)
  116. dest = s->dest[0] + ((i & 2) >> 1) * s->linesize + ((i & 1) - 2) * 8;
  117. else
  118. dest = s->dest[0] + (i & 2) * 4 * s->linesize + ((i & 1) - 2) * 8;
  119. if (put_signed)
  120. s->idsp.put_signed_pixels_clamped(v->block[v->left_blk_idx][block_map[i]],
  121. i > 3 ? s->dest[i - 3] - 8 : dest,
  122. i > 3 ? s->uvlinesize : s->linesize << fieldtx);
  123. else
  124. s->idsp.put_pixels_clamped(v->block[v->left_blk_idx][block_map[i]],
  125. i > 3 ? s->dest[i - 3] - 8 : dest,
  126. i > 3 ? s->uvlinesize : s->linesize << fieldtx);
  127. }
  128. }
  129. }
  130. if (s->mb_x == v->end_mb_x - 1) {
  131. if (v->fcm == ILACE_FRAME)
  132. fieldtx = v->fieldtx_plane[s->mb_y * s->mb_stride + s->mb_x];
  133. for (i = 0; i < block_count; i++) {
  134. if (v->mb_type[0][s->block_index[i]]) {
  135. if (fieldtx)
  136. dest = s->dest[0] + ((i & 2) >> 1) * s->linesize + (i & 1) * 8;
  137. else
  138. dest = s->dest[0] + (i & 2) * 4 * s->linesize + (i & 1) * 8;
  139. if (put_signed)
  140. s->idsp.put_signed_pixels_clamped(v->block[v->cur_blk_idx][block_map[i]],
  141. i > 3 ? s->dest[i - 3] : dest,
  142. i > 3 ? s->uvlinesize : s->linesize << fieldtx);
  143. else
  144. s->idsp.put_pixels_clamped(v->block[v->cur_blk_idx][block_map[i]],
  145. i > 3 ? s->dest[i - 3] : dest,
  146. i > 3 ? s->uvlinesize : s->linesize << fieldtx);
  147. }
  148. }
  149. }
  150. }
  151. }
  152. #define inc_blk_idx(idx) do { \
  153. idx++; \
  154. if (idx >= v->n_allocated_blks) \
  155. idx = 0; \
  156. } while (0)
  157. /***********************************************************************/
  158. /**
  159. * @name VC-1 Block-level functions
  160. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  161. * @{
  162. */
  163. /**
  164. * @def GET_MQUANT
  165. * @brief Get macroblock-level quantizer scale
  166. */
  167. #define GET_MQUANT() \
  168. if (v->dquantfrm) { \
  169. int edges = 0; \
  170. if (v->dqprofile == DQPROFILE_ALL_MBS) { \
  171. if (v->dqbilevel) { \
  172. mquant = (get_bits1(gb)) ? -v->altpq : v->pq; \
  173. } else { \
  174. mqdiff = get_bits(gb, 3); \
  175. if (mqdiff != 7) \
  176. mquant = -v->pq - mqdiff; \
  177. else \
  178. mquant = -get_bits(gb, 5); \
  179. } \
  180. } \
  181. if (v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  182. edges = 1 << v->dqsbedge; \
  183. else if (v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  184. edges = (3 << v->dqsbedge) % 15; \
  185. else if (v->dqprofile == DQPROFILE_FOUR_EDGES) \
  186. edges = 15; \
  187. if ((edges&1) && !s->mb_x) \
  188. mquant = -v->altpq; \
  189. if ((edges&2) && !s->mb_y) \
  190. mquant = -v->altpq; \
  191. if ((edges&4) && s->mb_x == (s->mb_width - 1)) \
  192. mquant = -v->altpq; \
  193. if ((edges&8) && \
  194. s->mb_y == ((s->mb_height >> v->field_mode) - 1)) \
  195. mquant = -v->altpq; \
  196. if (!mquant || mquant > 31 || mquant < -31) { \
  197. av_log(v->s.avctx, AV_LOG_ERROR, \
  198. "Overriding invalid mquant %d\n", mquant); \
  199. mquant = 1; \
  200. } \
  201. }
  202. /**
  203. * @def GET_MVDATA(_dmv_x, _dmv_y)
  204. * @brief Get MV differentials
  205. * @see MVDATA decoding from 8.3.5.2, p(1)20
  206. * @param _dmv_x Horizontal differential for decoded MV
  207. * @param _dmv_y Vertical differential for decoded MV
  208. */
  209. #define GET_MVDATA(_dmv_x, _dmv_y) \
  210. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table, \
  211. VC1_MV_DIFF_VLC_BITS, 2); \
  212. if (index > 36) { \
  213. mb_has_coeffs = 1; \
  214. index -= 37; \
  215. } else \
  216. mb_has_coeffs = 0; \
  217. s->mb_intra = 0; \
  218. if (!index) { \
  219. _dmv_x = _dmv_y = 0; \
  220. } else if (index == 35) { \
  221. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  222. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  223. } else if (index == 36) { \
  224. _dmv_x = 0; \
  225. _dmv_y = 0; \
  226. s->mb_intra = 1; \
  227. } else { \
  228. index1 = index % 6; \
  229. _dmv_x = offset_table[1][index1]; \
  230. val = size_table[index1] - (!s->quarter_sample && index1 == 5); \
  231. if (val > 0) { \
  232. val = get_bits(gb, val); \
  233. sign = 0 - (val & 1); \
  234. _dmv_x = (sign ^ ((val >> 1) + _dmv_x)) - sign; \
  235. } \
  236. \
  237. index1 = index / 6; \
  238. _dmv_y = offset_table[1][index1]; \
  239. val = size_table[index1] - (!s->quarter_sample && index1 == 5); \
  240. if (val > 0) { \
  241. val = get_bits(gb, val); \
  242. sign = 0 - (val & 1); \
  243. _dmv_y = (sign ^ ((val >> 1) + _dmv_y)) - sign; \
  244. } \
  245. }
  246. static av_always_inline void get_mvdata_interlaced(VC1Context *v, int *dmv_x,
  247. int *dmv_y, int *pred_flag)
  248. {
  249. int index, index1;
  250. int extend_x, extend_y;
  251. GetBitContext *gb = &v->s.gb;
  252. int bits, esc;
  253. int val, sign;
  254. if (v->numref) {
  255. bits = VC1_2REF_MVDATA_VLC_BITS;
  256. esc = 125;
  257. } else {
  258. bits = VC1_1REF_MVDATA_VLC_BITS;
  259. esc = 71;
  260. }
  261. extend_x = v->dmvrange & 1;
  262. extend_y = (v->dmvrange >> 1) & 1;
  263. index = get_vlc2(gb, v->imv_vlc->table, bits, 3);
  264. if (index == esc) {
  265. *dmv_x = get_bits(gb, v->k_x);
  266. *dmv_y = get_bits(gb, v->k_y);
  267. if (v->numref) {
  268. if (pred_flag)
  269. *pred_flag = *dmv_y & 1;
  270. *dmv_y = (*dmv_y + (*dmv_y & 1)) >> 1;
  271. }
  272. }
  273. else {
  274. av_assert0(index < esc);
  275. index1 = (index + 1) % 9;
  276. if (index1 != 0) {
  277. val = get_bits(gb, index1 + extend_x);
  278. sign = 0 - (val & 1);
  279. *dmv_x = (sign ^ ((val >> 1) + offset_table[extend_x][index1])) - sign;
  280. } else
  281. *dmv_x = 0;
  282. index1 = (index + 1) / 9;
  283. if (index1 > v->numref) {
  284. val = get_bits(gb, (index1 >> v->numref) + extend_y);
  285. sign = 0 - (val & 1);
  286. *dmv_y = (sign ^ ((val >> 1) + offset_table[extend_y][index1 >> v->numref])) - sign;
  287. } else
  288. *dmv_y = 0;
  289. if (v->numref && pred_flag)
  290. *pred_flag = index1 & 1;
  291. }
  292. }
  293. /** Reconstruct motion vector for B-frame and do motion compensation
  294. */
  295. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2],
  296. int direct, int mode)
  297. {
  298. if (direct) {
  299. ff_vc1_mc_1mv(v, 0);
  300. ff_vc1_interp_mc(v);
  301. return;
  302. }
  303. if (mode == BMV_TYPE_INTERPOLATED) {
  304. ff_vc1_mc_1mv(v, 0);
  305. ff_vc1_interp_mc(v);
  306. return;
  307. }
  308. ff_vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  309. }
  310. /** Get predicted DC value for I-frames only
  311. * prediction dir: left=0, top=1
  312. * @param s MpegEncContext
  313. * @param overlap flag indicating that overlap filtering is used
  314. * @param pq integer part of picture quantizer
  315. * @param[in] n block index in the current MB
  316. * @param dc_val_ptr Pointer to DC predictor
  317. * @param dir_ptr Prediction direction for use in AC prediction
  318. */
  319. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  320. int16_t **dc_val_ptr, int *dir_ptr)
  321. {
  322. int a, b, c, wrap, pred, scale;
  323. int16_t *dc_val;
  324. static const uint16_t dcpred[32] = {
  325. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  326. 114, 102, 93, 85, 79, 73, 68, 64,
  327. 60, 57, 54, 51, 49, 47, 45, 43,
  328. 41, 39, 38, 37, 35, 34, 33
  329. };
  330. /* find prediction - wmv3_dc_scale always used here in fact */
  331. if (n < 4) scale = s->y_dc_scale;
  332. else scale = s->c_dc_scale;
  333. wrap = s->block_wrap[n];
  334. dc_val = s->dc_val[0] + s->block_index[n];
  335. /* B A
  336. * C X
  337. */
  338. c = dc_val[ - 1];
  339. b = dc_val[ - 1 - wrap];
  340. a = dc_val[ - wrap];
  341. if (pq < 9 || !overlap) {
  342. /* Set outer values */
  343. if (s->first_slice_line && (n != 2 && n != 3))
  344. b = a = dcpred[scale];
  345. if (s->mb_x == 0 && (n != 1 && n != 3))
  346. b = c = dcpred[scale];
  347. } else {
  348. /* Set outer values */
  349. if (s->first_slice_line && (n != 2 && n != 3))
  350. b = a = 0;
  351. if (s->mb_x == 0 && (n != 1 && n != 3))
  352. b = c = 0;
  353. }
  354. if (abs(a - b) <= abs(b - c)) {
  355. pred = c;
  356. *dir_ptr = 1; // left
  357. } else {
  358. pred = a;
  359. *dir_ptr = 0; // top
  360. }
  361. /* update predictor */
  362. *dc_val_ptr = &dc_val[0];
  363. return pred;
  364. }
  365. /** Get predicted DC value
  366. * prediction dir: left=0, top=1
  367. * @param s MpegEncContext
  368. * @param overlap flag indicating that overlap filtering is used
  369. * @param pq integer part of picture quantizer
  370. * @param[in] n block index in the current MB
  371. * @param a_avail flag indicating top block availability
  372. * @param c_avail flag indicating left block availability
  373. * @param dc_val_ptr Pointer to DC predictor
  374. * @param dir_ptr Prediction direction for use in AC prediction
  375. */
  376. static inline int ff_vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  377. int a_avail, int c_avail,
  378. int16_t **dc_val_ptr, int *dir_ptr)
  379. {
  380. int a, b, c, wrap, pred;
  381. int16_t *dc_val;
  382. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  383. int q1, q2 = 0;
  384. int dqscale_index;
  385. /* scale predictors if needed */
  386. q1 = FFABS(s->current_picture.qscale_table[mb_pos]);
  387. dqscale_index = s->y_dc_scale_table[q1] - 1;
  388. if (dqscale_index < 0)
  389. return 0;
  390. wrap = s->block_wrap[n];
  391. dc_val = s->dc_val[0] + s->block_index[n];
  392. /* B A
  393. * C X
  394. */
  395. c = dc_val[ - 1];
  396. b = dc_val[ - 1 - wrap];
  397. a = dc_val[ - wrap];
  398. if (c_avail && (n != 1 && n != 3)) {
  399. q2 = FFABS(s->current_picture.qscale_table[mb_pos - 1]);
  400. if (q2 && q2 != q1)
  401. c = (int)((unsigned)c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  402. }
  403. if (a_avail && (n != 2 && n != 3)) {
  404. q2 = FFABS(s->current_picture.qscale_table[mb_pos - s->mb_stride]);
  405. if (q2 && q2 != q1)
  406. a = (int)((unsigned)a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  407. }
  408. if (a_avail && c_avail && (n != 3)) {
  409. int off = mb_pos;
  410. if (n != 1)
  411. off--;
  412. if (n != 2)
  413. off -= s->mb_stride;
  414. q2 = FFABS(s->current_picture.qscale_table[off]);
  415. if (q2 && q2 != q1)
  416. b = (int)((unsigned)b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  417. }
  418. if (c_avail && (!a_avail || abs(a - b) <= abs(b - c))) {
  419. pred = c;
  420. *dir_ptr = 1; // left
  421. } else if (a_avail) {
  422. pred = a;
  423. *dir_ptr = 0; // top
  424. } else {
  425. pred = 0;
  426. *dir_ptr = 1; // left
  427. }
  428. /* update predictor */
  429. *dc_val_ptr = &dc_val[0];
  430. return pred;
  431. }
  432. /** @} */ // Block group
  433. /**
  434. * @name VC1 Macroblock-level functions in Simple/Main Profiles
  435. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  436. * @{
  437. */
  438. static inline int vc1_coded_block_pred(MpegEncContext * s, int n,
  439. uint8_t **coded_block_ptr)
  440. {
  441. int xy, wrap, pred, a, b, c;
  442. xy = s->block_index[n];
  443. wrap = s->b8_stride;
  444. /* B C
  445. * A X
  446. */
  447. a = s->coded_block[xy - 1 ];
  448. b = s->coded_block[xy - 1 - wrap];
  449. c = s->coded_block[xy - wrap];
  450. if (b == c) {
  451. pred = a;
  452. } else {
  453. pred = c;
  454. }
  455. /* store value */
  456. *coded_block_ptr = &s->coded_block[xy];
  457. return pred;
  458. }
  459. /**
  460. * Decode one AC coefficient
  461. * @param v The VC1 context
  462. * @param last Last coefficient
  463. * @param skip How much zero coefficients to skip
  464. * @param value Decoded AC coefficient value
  465. * @param codingset set of VLC to decode data
  466. * @see 8.1.3.4
  467. */
  468. static int vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip,
  469. int *value, int codingset)
  470. {
  471. GetBitContext *gb = &v->s.gb;
  472. int index, run, level, lst, sign;
  473. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  474. if (index < 0)
  475. return index;
  476. if (index != ff_vc1_ac_sizes[codingset] - 1) {
  477. run = vc1_index_decode_table[codingset][index][0];
  478. level = vc1_index_decode_table[codingset][index][1];
  479. lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
  480. sign = get_bits1(gb);
  481. } else {
  482. int escape = decode210(gb);
  483. if (escape != 2) {
  484. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  485. run = vc1_index_decode_table[codingset][index][0];
  486. level = vc1_index_decode_table[codingset][index][1];
  487. lst = index >= vc1_last_decode_table[codingset];
  488. if (escape == 0) {
  489. if (lst)
  490. level += vc1_last_delta_level_table[codingset][run];
  491. else
  492. level += vc1_delta_level_table[codingset][run];
  493. } else {
  494. if (lst)
  495. run += vc1_last_delta_run_table[codingset][level] + 1;
  496. else
  497. run += vc1_delta_run_table[codingset][level] + 1;
  498. }
  499. sign = get_bits1(gb);
  500. } else {
  501. lst = get_bits1(gb);
  502. if (v->s.esc3_level_length == 0) {
  503. if (v->pq < 8 || v->dquantfrm) { // table 59
  504. v->s.esc3_level_length = get_bits(gb, 3);
  505. if (!v->s.esc3_level_length)
  506. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  507. } else { // table 60
  508. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  509. }
  510. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  511. }
  512. run = get_bits(gb, v->s.esc3_run_length);
  513. sign = get_bits1(gb);
  514. level = get_bits(gb, v->s.esc3_level_length);
  515. }
  516. }
  517. *last = lst;
  518. *skip = run;
  519. *value = (level ^ -sign) + sign;
  520. return 0;
  521. }
  522. /** Decode intra block in intra frames - should be faster than decode_intra_block
  523. * @param v VC1Context
  524. * @param block block to decode
  525. * @param[in] n subblock index
  526. * @param coded are AC coeffs present or not
  527. * @param codingset set of VLC to decode data
  528. */
  529. static int vc1_decode_i_block(VC1Context *v, int16_t block[64], int n,
  530. int coded, int codingset)
  531. {
  532. GetBitContext *gb = &v->s.gb;
  533. MpegEncContext *s = &v->s;
  534. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  535. int i;
  536. int16_t *dc_val;
  537. int16_t *ac_val, *ac_val2;
  538. int dcdiff, scale;
  539. /* Get DC differential */
  540. if (n < 4) {
  541. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  542. } else {
  543. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  544. }
  545. if (dcdiff < 0) {
  546. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  547. return -1;
  548. }
  549. if (dcdiff) {
  550. const int m = (v->pq == 1 || v->pq == 2) ? 3 - v->pq : 0;
  551. if (dcdiff == 119 /* ESC index value */) {
  552. dcdiff = get_bits(gb, 8 + m);
  553. } else {
  554. if (m)
  555. dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
  556. }
  557. if (get_bits1(gb))
  558. dcdiff = -dcdiff;
  559. }
  560. /* Prediction */
  561. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  562. *dc_val = dcdiff;
  563. /* Store the quantized DC coeff, used for prediction */
  564. if (n < 4)
  565. scale = s->y_dc_scale;
  566. else
  567. scale = s->c_dc_scale;
  568. block[0] = dcdiff * scale;
  569. ac_val = s->ac_val[0][s->block_index[n]];
  570. ac_val2 = ac_val;
  571. if (dc_pred_dir) // left
  572. ac_val -= 16;
  573. else // top
  574. ac_val -= 16 * s->block_wrap[n];
  575. scale = v->pq * 2 + v->halfpq;
  576. //AC Decoding
  577. i = !!coded;
  578. if (coded) {
  579. int last = 0, skip, value;
  580. const uint8_t *zz_table;
  581. int k;
  582. if (v->s.ac_pred) {
  583. if (!dc_pred_dir)
  584. zz_table = v->zz_8x8[2];
  585. else
  586. zz_table = v->zz_8x8[3];
  587. } else
  588. zz_table = v->zz_8x8[1];
  589. while (!last) {
  590. int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  591. if (ret < 0)
  592. return ret;
  593. i += skip;
  594. if (i > 63)
  595. break;
  596. block[zz_table[i++]] = value;
  597. }
  598. /* apply AC prediction if needed */
  599. if (s->ac_pred) {
  600. int sh;
  601. if (dc_pred_dir) { // left
  602. sh = v->left_blk_sh;
  603. } else { // top
  604. sh = v->top_blk_sh;
  605. ac_val += 8;
  606. }
  607. for (k = 1; k < 8; k++)
  608. block[k << sh] += ac_val[k];
  609. }
  610. /* save AC coeffs for further prediction */
  611. for (k = 1; k < 8; k++) {
  612. ac_val2[k] = block[k << v->left_blk_sh];
  613. ac_val2[k + 8] = block[k << v->top_blk_sh];
  614. }
  615. /* scale AC coeffs */
  616. for (k = 1; k < 64; k++)
  617. if (block[k]) {
  618. block[k] *= scale;
  619. if (!v->pquantizer)
  620. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  621. }
  622. } else {
  623. int k;
  624. memset(ac_val2, 0, 16 * 2);
  625. /* apply AC prediction if needed */
  626. if (s->ac_pred) {
  627. int sh;
  628. if (dc_pred_dir) { //left
  629. sh = v->left_blk_sh;
  630. } else { // top
  631. sh = v->top_blk_sh;
  632. ac_val += 8;
  633. ac_val2 += 8;
  634. }
  635. memcpy(ac_val2, ac_val, 8 * 2);
  636. for (k = 1; k < 8; k++) {
  637. block[k << sh] = ac_val[k] * scale;
  638. if (!v->pquantizer && block[k << sh])
  639. block[k << sh] += (block[k << sh] < 0) ? -v->pq : v->pq;
  640. }
  641. }
  642. }
  643. if (s->ac_pred) i = 63;
  644. s->block_last_index[n] = i;
  645. return 0;
  646. }
  647. /** Decode intra block in intra frames - should be faster than decode_intra_block
  648. * @param v VC1Context
  649. * @param block block to decode
  650. * @param[in] n subblock number
  651. * @param coded are AC coeffs present or not
  652. * @param codingset set of VLC to decode data
  653. * @param mquant quantizer value for this macroblock
  654. */
  655. static int vc1_decode_i_block_adv(VC1Context *v, int16_t block[64], int n,
  656. int coded, int codingset, int mquant)
  657. {
  658. GetBitContext *gb = &v->s.gb;
  659. MpegEncContext *s = &v->s;
  660. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  661. int i;
  662. int16_t *dc_val = NULL;
  663. int16_t *ac_val, *ac_val2;
  664. int dcdiff;
  665. int a_avail = v->a_avail, c_avail = v->c_avail;
  666. int use_pred = s->ac_pred;
  667. int scale;
  668. int q1, q2 = 0;
  669. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  670. int quant = FFABS(mquant);
  671. /* Get DC differential */
  672. if (n < 4) {
  673. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  674. } else {
  675. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  676. }
  677. if (dcdiff < 0) {
  678. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  679. return -1;
  680. }
  681. if (dcdiff) {
  682. const int m = (quant == 1 || quant == 2) ? 3 - quant : 0;
  683. if (dcdiff == 119 /* ESC index value */) {
  684. dcdiff = get_bits(gb, 8 + m);
  685. } else {
  686. if (m)
  687. dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
  688. }
  689. if (get_bits1(gb))
  690. dcdiff = -dcdiff;
  691. }
  692. /* Prediction */
  693. dcdiff += ff_vc1_pred_dc(&v->s, v->overlap, quant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  694. *dc_val = dcdiff;
  695. /* Store the quantized DC coeff, used for prediction */
  696. if (n < 4)
  697. scale = s->y_dc_scale;
  698. else
  699. scale = s->c_dc_scale;
  700. block[0] = dcdiff * scale;
  701. /* check if AC is needed at all */
  702. if (!a_avail && !c_avail)
  703. use_pred = 0;
  704. scale = quant * 2 + ((mquant < 0) ? 0 : v->halfpq);
  705. ac_val = s->ac_val[0][s->block_index[n]];
  706. ac_val2 = ac_val;
  707. if (dc_pred_dir) // left
  708. ac_val -= 16;
  709. else // top
  710. ac_val -= 16 * s->block_wrap[n];
  711. q1 = s->current_picture.qscale_table[mb_pos];
  712. if (n == 3)
  713. q2 = q1;
  714. else if (dc_pred_dir) {
  715. if (n == 1)
  716. q2 = q1;
  717. else if (c_avail && mb_pos)
  718. q2 = s->current_picture.qscale_table[mb_pos - 1];
  719. } else {
  720. if (n == 2)
  721. q2 = q1;
  722. else if (a_avail && mb_pos >= s->mb_stride)
  723. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  724. }
  725. //AC Decoding
  726. i = 1;
  727. if (coded) {
  728. int last = 0, skip, value;
  729. const uint8_t *zz_table;
  730. int k;
  731. if (v->s.ac_pred) {
  732. if (!use_pred && v->fcm == ILACE_FRAME) {
  733. zz_table = v->zzi_8x8;
  734. } else {
  735. if (!dc_pred_dir) // top
  736. zz_table = v->zz_8x8[2];
  737. else // left
  738. zz_table = v->zz_8x8[3];
  739. }
  740. } else {
  741. if (v->fcm != ILACE_FRAME)
  742. zz_table = v->zz_8x8[1];
  743. else
  744. zz_table = v->zzi_8x8;
  745. }
  746. while (!last) {
  747. int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  748. if (ret < 0)
  749. return ret;
  750. i += skip;
  751. if (i > 63)
  752. break;
  753. block[zz_table[i++]] = value;
  754. }
  755. /* apply AC prediction if needed */
  756. if (use_pred) {
  757. int sh;
  758. if (dc_pred_dir) { // left
  759. sh = v->left_blk_sh;
  760. } else { // top
  761. sh = v->top_blk_sh;
  762. ac_val += 8;
  763. }
  764. /* scale predictors if needed*/
  765. q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1;
  766. if (q1 < 1)
  767. return AVERROR_INVALIDDATA;
  768. if (q2)
  769. q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1;
  770. if (q2 && q1 != q2) {
  771. for (k = 1; k < 8; k++)
  772. block[k << sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  773. } else {
  774. for (k = 1; k < 8; k++)
  775. block[k << sh] += ac_val[k];
  776. }
  777. }
  778. /* save AC coeffs for further prediction */
  779. for (k = 1; k < 8; k++) {
  780. ac_val2[k ] = block[k << v->left_blk_sh];
  781. ac_val2[k + 8] = block[k << v->top_blk_sh];
  782. }
  783. /* scale AC coeffs */
  784. for (k = 1; k < 64; k++)
  785. if (block[k]) {
  786. block[k] *= scale;
  787. if (!v->pquantizer)
  788. block[k] += (block[k] < 0) ? -quant : quant;
  789. }
  790. } else { // no AC coeffs
  791. int k;
  792. memset(ac_val2, 0, 16 * 2);
  793. /* apply AC prediction if needed */
  794. if (use_pred) {
  795. int sh;
  796. if (dc_pred_dir) { // left
  797. sh = v->left_blk_sh;
  798. } else { // top
  799. sh = v->top_blk_sh;
  800. ac_val += 8;
  801. ac_val2 += 8;
  802. }
  803. memcpy(ac_val2, ac_val, 8 * 2);
  804. q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1;
  805. if (q1 < 1)
  806. return AVERROR_INVALIDDATA;
  807. if (q2)
  808. q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1;
  809. if (q2 && q1 != q2) {
  810. for (k = 1; k < 8; k++)
  811. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  812. }
  813. for (k = 1; k < 8; k++) {
  814. block[k << sh] = ac_val2[k] * scale;
  815. if (!v->pquantizer && block[k << sh])
  816. block[k << sh] += (block[k << sh] < 0) ? -quant : quant;
  817. }
  818. }
  819. }
  820. if (use_pred) i = 63;
  821. s->block_last_index[n] = i;
  822. return 0;
  823. }
  824. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  825. * @param v VC1Context
  826. * @param block block to decode
  827. * @param[in] n subblock index
  828. * @param coded are AC coeffs present or not
  829. * @param mquant block quantizer
  830. * @param codingset set of VLC to decode data
  831. */
  832. static int vc1_decode_intra_block(VC1Context *v, int16_t block[64], int n,
  833. int coded, int mquant, int codingset)
  834. {
  835. GetBitContext *gb = &v->s.gb;
  836. MpegEncContext *s = &v->s;
  837. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  838. int i;
  839. int16_t *dc_val = NULL;
  840. int16_t *ac_val, *ac_val2;
  841. int dcdiff;
  842. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  843. int a_avail = v->a_avail, c_avail = v->c_avail;
  844. int use_pred = s->ac_pred;
  845. int scale;
  846. int q1, q2 = 0;
  847. int quant = FFABS(mquant);
  848. s->bdsp.clear_block(block);
  849. /* XXX: Guard against dumb values of mquant */
  850. quant = av_clip_uintp2(quant, 5);
  851. /* Set DC scale - y and c use the same */
  852. s->y_dc_scale = s->y_dc_scale_table[quant];
  853. s->c_dc_scale = s->c_dc_scale_table[quant];
  854. /* Get DC differential */
  855. if (n < 4) {
  856. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  857. } else {
  858. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  859. }
  860. if (dcdiff < 0) {
  861. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  862. return -1;
  863. }
  864. if (dcdiff) {
  865. const int m = (quant == 1 || quant == 2) ? 3 - quant : 0;
  866. if (dcdiff == 119 /* ESC index value */) {
  867. dcdiff = get_bits(gb, 8 + m);
  868. } else {
  869. if (m)
  870. dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
  871. }
  872. if (get_bits1(gb))
  873. dcdiff = -dcdiff;
  874. }
  875. /* Prediction */
  876. dcdiff += ff_vc1_pred_dc(&v->s, v->overlap, quant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  877. *dc_val = dcdiff;
  878. /* Store the quantized DC coeff, used for prediction */
  879. if (n < 4) {
  880. block[0] = dcdiff * s->y_dc_scale;
  881. } else {
  882. block[0] = dcdiff * s->c_dc_scale;
  883. }
  884. //AC Decoding
  885. i = 1;
  886. /* check if AC is needed at all and adjust direction if needed */
  887. if (!a_avail) dc_pred_dir = 1;
  888. if (!c_avail) dc_pred_dir = 0;
  889. if (!a_avail && !c_avail) use_pred = 0;
  890. ac_val = s->ac_val[0][s->block_index[n]];
  891. ac_val2 = ac_val;
  892. scale = quant * 2 + ((mquant < 0) ? 0 : v->halfpq);
  893. if (dc_pred_dir) //left
  894. ac_val -= 16;
  895. else //top
  896. ac_val -= 16 * s->block_wrap[n];
  897. q1 = s->current_picture.qscale_table[mb_pos];
  898. if (dc_pred_dir && c_avail && mb_pos)
  899. q2 = s->current_picture.qscale_table[mb_pos - 1];
  900. if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
  901. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  902. if (dc_pred_dir && n == 1)
  903. q2 = q1;
  904. if (!dc_pred_dir && n == 2)
  905. q2 = q1;
  906. if (n == 3) q2 = q1;
  907. if (coded) {
  908. int last = 0, skip, value;
  909. int k;
  910. while (!last) {
  911. int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  912. if (ret < 0)
  913. return ret;
  914. i += skip;
  915. if (i > 63)
  916. break;
  917. if (v->fcm == PROGRESSIVE)
  918. block[v->zz_8x8[0][i++]] = value;
  919. else {
  920. if (use_pred && (v->fcm == ILACE_FRAME)) {
  921. if (!dc_pred_dir) // top
  922. block[v->zz_8x8[2][i++]] = value;
  923. else // left
  924. block[v->zz_8x8[3][i++]] = value;
  925. } else {
  926. block[v->zzi_8x8[i++]] = value;
  927. }
  928. }
  929. }
  930. /* apply AC prediction if needed */
  931. if (use_pred) {
  932. /* scale predictors if needed*/
  933. q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1;
  934. if (q1 < 1)
  935. return AVERROR_INVALIDDATA;
  936. if (q2)
  937. q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1;
  938. if (q2 && q1 != q2) {
  939. if (dc_pred_dir) { // left
  940. for (k = 1; k < 8; k++)
  941. block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  942. } else { //top
  943. for (k = 1; k < 8; k++)
  944. block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  945. }
  946. } else {
  947. if (dc_pred_dir) { // left
  948. for (k = 1; k < 8; k++)
  949. block[k << v->left_blk_sh] += ac_val[k];
  950. } else { // top
  951. for (k = 1; k < 8; k++)
  952. block[k << v->top_blk_sh] += ac_val[k + 8];
  953. }
  954. }
  955. }
  956. /* save AC coeffs for further prediction */
  957. for (k = 1; k < 8; k++) {
  958. ac_val2[k ] = block[k << v->left_blk_sh];
  959. ac_val2[k + 8] = block[k << v->top_blk_sh];
  960. }
  961. /* scale AC coeffs */
  962. for (k = 1; k < 64; k++)
  963. if (block[k]) {
  964. block[k] *= scale;
  965. if (!v->pquantizer)
  966. block[k] += (block[k] < 0) ? -quant : quant;
  967. }
  968. if (use_pred) i = 63;
  969. } else { // no AC coeffs
  970. int k;
  971. memset(ac_val2, 0, 16 * 2);
  972. if (dc_pred_dir) { // left
  973. if (use_pred) {
  974. memcpy(ac_val2, ac_val, 8 * 2);
  975. q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1;
  976. if (q1 < 1)
  977. return AVERROR_INVALIDDATA;
  978. if (q2)
  979. q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1;
  980. if (q2 && q1 != q2) {
  981. for (k = 1; k < 8; k++)
  982. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  983. }
  984. }
  985. } else { // top
  986. if (use_pred) {
  987. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  988. q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1;
  989. if (q1 < 1)
  990. return AVERROR_INVALIDDATA;
  991. if (q2)
  992. q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1;
  993. if (q2 && q1 != q2) {
  994. for (k = 1; k < 8; k++)
  995. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  996. }
  997. }
  998. }
  999. /* apply AC prediction if needed */
  1000. if (use_pred) {
  1001. if (dc_pred_dir) { // left
  1002. for (k = 1; k < 8; k++) {
  1003. block[k << v->left_blk_sh] = ac_val2[k] * scale;
  1004. if (!v->pquantizer && block[k << v->left_blk_sh])
  1005. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -quant : quant;
  1006. }
  1007. } else { // top
  1008. for (k = 1; k < 8; k++) {
  1009. block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
  1010. if (!v->pquantizer && block[k << v->top_blk_sh])
  1011. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -quant : quant;
  1012. }
  1013. }
  1014. i = 63;
  1015. }
  1016. }
  1017. s->block_last_index[n] = i;
  1018. return 0;
  1019. }
  1020. /** Decode P block
  1021. */
  1022. static int vc1_decode_p_block(VC1Context *v, int16_t block[64], int n,
  1023. int mquant, int ttmb, int first_block,
  1024. uint8_t *dst, int linesize, int skip_block,
  1025. int *ttmb_out)
  1026. {
  1027. MpegEncContext *s = &v->s;
  1028. GetBitContext *gb = &s->gb;
  1029. int i, j;
  1030. int subblkpat = 0;
  1031. int scale, off, idx, last, skip, value;
  1032. int ttblk = ttmb & 7;
  1033. int pat = 0;
  1034. int quant = FFABS(mquant);
  1035. s->bdsp.clear_block(block);
  1036. if (ttmb == -1) {
  1037. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  1038. }
  1039. if (ttblk == TT_4X4) {
  1040. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  1041. }
  1042. if ((ttblk != TT_8X8 && ttblk != TT_4X4)
  1043. && ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
  1044. || (!v->res_rtm_flag && !first_block))) {
  1045. subblkpat = decode012(gb);
  1046. if (subblkpat)
  1047. subblkpat ^= 3; // swap decoded pattern bits
  1048. if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM)
  1049. ttblk = TT_8X4;
  1050. if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT)
  1051. ttblk = TT_4X8;
  1052. }
  1053. scale = quant * 2 + ((mquant < 0) ? 0 : v->halfpq);
  1054. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  1055. if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  1056. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  1057. ttblk = TT_8X4;
  1058. }
  1059. if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  1060. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  1061. ttblk = TT_4X8;
  1062. }
  1063. switch (ttblk) {
  1064. case TT_8X8:
  1065. pat = 0xF;
  1066. i = 0;
  1067. last = 0;
  1068. while (!last) {
  1069. int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1070. if (ret < 0)
  1071. return ret;
  1072. i += skip;
  1073. if (i > 63)
  1074. break;
  1075. if (!v->fcm)
  1076. idx = v->zz_8x8[0][i++];
  1077. else
  1078. idx = v->zzi_8x8[i++];
  1079. block[idx] = value * scale;
  1080. if (!v->pquantizer)
  1081. block[idx] += (block[idx] < 0) ? -quant : quant;
  1082. }
  1083. if (!skip_block) {
  1084. if (i == 1)
  1085. v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
  1086. else {
  1087. v->vc1dsp.vc1_inv_trans_8x8(block);
  1088. s->idsp.add_pixels_clamped(block, dst, linesize);
  1089. }
  1090. }
  1091. break;
  1092. case TT_4X4:
  1093. pat = ~subblkpat & 0xF;
  1094. for (j = 0; j < 4; j++) {
  1095. last = subblkpat & (1 << (3 - j));
  1096. i = 0;
  1097. off = (j & 1) * 4 + (j & 2) * 16;
  1098. while (!last) {
  1099. int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1100. if (ret < 0)
  1101. return ret;
  1102. i += skip;
  1103. if (i > 15)
  1104. break;
  1105. if (!v->fcm)
  1106. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  1107. else
  1108. idx = ff_vc1_adv_interlaced_4x4_zz[i++];
  1109. block[idx + off] = value * scale;
  1110. if (!v->pquantizer)
  1111. block[idx + off] += (block[idx + off] < 0) ? -quant : quant;
  1112. }
  1113. if (!(subblkpat & (1 << (3 - j))) && !skip_block) {
  1114. if (i == 1)
  1115. v->vc1dsp.vc1_inv_trans_4x4_dc(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
  1116. else
  1117. v->vc1dsp.vc1_inv_trans_4x4(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
  1118. }
  1119. }
  1120. break;
  1121. case TT_8X4:
  1122. pat = ~((subblkpat & 2) * 6 + (subblkpat & 1) * 3) & 0xF;
  1123. for (j = 0; j < 2; j++) {
  1124. last = subblkpat & (1 << (1 - j));
  1125. i = 0;
  1126. off = j * 32;
  1127. while (!last) {
  1128. int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1129. if (ret < 0)
  1130. return ret;
  1131. i += skip;
  1132. if (i > 31)
  1133. break;
  1134. if (!v->fcm)
  1135. idx = v->zz_8x4[i++] + off;
  1136. else
  1137. idx = ff_vc1_adv_interlaced_8x4_zz[i++] + off;
  1138. block[idx] = value * scale;
  1139. if (!v->pquantizer)
  1140. block[idx] += (block[idx] < 0) ? -quant : quant;
  1141. }
  1142. if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
  1143. if (i == 1)
  1144. v->vc1dsp.vc1_inv_trans_8x4_dc(dst + j * 4 * linesize, linesize, block + off);
  1145. else
  1146. v->vc1dsp.vc1_inv_trans_8x4(dst + j * 4 * linesize, linesize, block + off);
  1147. }
  1148. }
  1149. break;
  1150. case TT_4X8:
  1151. pat = ~(subblkpat * 5) & 0xF;
  1152. for (j = 0; j < 2; j++) {
  1153. last = subblkpat & (1 << (1 - j));
  1154. i = 0;
  1155. off = j * 4;
  1156. while (!last) {
  1157. int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1158. if (ret < 0)
  1159. return ret;
  1160. i += skip;
  1161. if (i > 31)
  1162. break;
  1163. if (!v->fcm)
  1164. idx = v->zz_4x8[i++] + off;
  1165. else
  1166. idx = ff_vc1_adv_interlaced_4x8_zz[i++] + off;
  1167. block[idx] = value * scale;
  1168. if (!v->pquantizer)
  1169. block[idx] += (block[idx] < 0) ? -quant : quant;
  1170. }
  1171. if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
  1172. if (i == 1)
  1173. v->vc1dsp.vc1_inv_trans_4x8_dc(dst + j * 4, linesize, block + off);
  1174. else
  1175. v->vc1dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  1176. }
  1177. }
  1178. break;
  1179. }
  1180. if (ttmb_out)
  1181. *ttmb_out |= ttblk << (n * 4);
  1182. return pat;
  1183. }
  1184. /** @} */ // Macroblock group
  1185. static const uint8_t size_table[6] = { 0, 2, 3, 4, 5, 8 };
  1186. /** Decode one P-frame MB
  1187. */
  1188. static int vc1_decode_p_mb(VC1Context *v)
  1189. {
  1190. MpegEncContext *s = &v->s;
  1191. GetBitContext *gb = &s->gb;
  1192. int i, j;
  1193. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1194. int cbp; /* cbp decoding stuff */
  1195. int mqdiff, mquant; /* MB quantization */
  1196. int ttmb = v->ttfrm; /* MB Transform type */
  1197. int mb_has_coeffs = 1; /* last_flag */
  1198. int dmv_x, dmv_y; /* Differential MV components */
  1199. int index, index1; /* LUT indexes */
  1200. int val, sign; /* temp values */
  1201. int first_block = 1;
  1202. int dst_idx, off;
  1203. int skipped, fourmv;
  1204. int block_cbp = 0, pat, block_tt = 0, block_intra = 0;
  1205. mquant = v->pq; /* lossy initialization */
  1206. if (v->mv_type_is_raw)
  1207. fourmv = get_bits1(gb);
  1208. else
  1209. fourmv = v->mv_type_mb_plane[mb_pos];
  1210. if (v->skip_is_raw)
  1211. skipped = get_bits1(gb);
  1212. else
  1213. skipped = v->s.mbskip_table[mb_pos];
  1214. if (!fourmv) { /* 1MV mode */
  1215. if (!skipped) {
  1216. GET_MVDATA(dmv_x, dmv_y);
  1217. if (s->mb_intra) {
  1218. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  1219. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  1220. }
  1221. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  1222. ff_vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  1223. /* FIXME Set DC val for inter block ? */
  1224. if (s->mb_intra && !mb_has_coeffs) {
  1225. GET_MQUANT();
  1226. s->ac_pred = get_bits1(gb);
  1227. cbp = 0;
  1228. } else if (mb_has_coeffs) {
  1229. if (s->mb_intra)
  1230. s->ac_pred = get_bits1(gb);
  1231. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1232. GET_MQUANT();
  1233. } else {
  1234. mquant = v->pq;
  1235. cbp = 0;
  1236. }
  1237. s->current_picture.qscale_table[mb_pos] = mquant;
  1238. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  1239. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  1240. VC1_TTMB_VLC_BITS, 2);
  1241. if (!s->mb_intra) ff_vc1_mc_1mv(v, 0);
  1242. dst_idx = 0;
  1243. for (i = 0; i < 6; i++) {
  1244. s->dc_val[0][s->block_index[i]] = 0;
  1245. dst_idx += i >> 2;
  1246. val = ((cbp >> (5 - i)) & 1);
  1247. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1248. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  1249. if (s->mb_intra) {
  1250. /* check if prediction blocks A and C are available */
  1251. v->a_avail = v->c_avail = 0;
  1252. if (i == 2 || i == 3 || !s->first_slice_line)
  1253. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1254. if (i == 1 || i == 3 || s->mb_x)
  1255. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1256. vc1_decode_intra_block(v, v->block[v->cur_blk_idx][block_map[i]], i, val, mquant,
  1257. (i & 4) ? v->codingset2 : v->codingset);
  1258. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1259. continue;
  1260. v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][block_map[i]]);
  1261. if (v->rangeredfrm)
  1262. for (j = 0; j < 64; j++)
  1263. v->block[v->cur_blk_idx][block_map[i]][j] <<= 1;
  1264. block_cbp |= 0xF << (i << 2);
  1265. block_intra |= 1 << i;
  1266. } else if (val) {
  1267. pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][block_map[i]], i, mquant, ttmb, first_block,
  1268. s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize,
  1269. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
  1270. block_cbp |= pat << (i << 2);
  1271. if (!v->ttmbf && ttmb < 8)
  1272. ttmb = -1;
  1273. first_block = 0;
  1274. }
  1275. }
  1276. } else { // skipped
  1277. s->mb_intra = 0;
  1278. for (i = 0; i < 6; i++) {
  1279. v->mb_type[0][s->block_index[i]] = 0;
  1280. s->dc_val[0][s->block_index[i]] = 0;
  1281. }
  1282. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  1283. s->current_picture.qscale_table[mb_pos] = 0;
  1284. ff_vc1_pred_mv(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  1285. ff_vc1_mc_1mv(v, 0);
  1286. }
  1287. } else { // 4MV mode
  1288. if (!skipped /* unskipped MB */) {
  1289. int intra_count = 0, coded_inter = 0;
  1290. int is_intra[6], is_coded[6];
  1291. /* Get CBPCY */
  1292. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1293. for (i = 0; i < 6; i++) {
  1294. val = ((cbp >> (5 - i)) & 1);
  1295. s->dc_val[0][s->block_index[i]] = 0;
  1296. s->mb_intra = 0;
  1297. if (i < 4) {
  1298. dmv_x = dmv_y = 0;
  1299. s->mb_intra = 0;
  1300. mb_has_coeffs = 0;
  1301. if (val) {
  1302. GET_MVDATA(dmv_x, dmv_y);
  1303. }
  1304. ff_vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  1305. if (!s->mb_intra)
  1306. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  1307. intra_count += s->mb_intra;
  1308. is_intra[i] = s->mb_intra;
  1309. is_coded[i] = mb_has_coeffs;
  1310. }
  1311. if (i & 4) {
  1312. is_intra[i] = (intra_count >= 3);
  1313. is_coded[i] = val;
  1314. }
  1315. if (i == 4)
  1316. ff_vc1_mc_4mv_chroma(v, 0);
  1317. v->mb_type[0][s->block_index[i]] = is_intra[i];
  1318. if (!coded_inter)
  1319. coded_inter = !is_intra[i] & is_coded[i];
  1320. }
  1321. // if there are no coded blocks then don't do anything more
  1322. dst_idx = 0;
  1323. if (!intra_count && !coded_inter)
  1324. goto end;
  1325. GET_MQUANT();
  1326. s->current_picture.qscale_table[mb_pos] = mquant;
  1327. /* test if block is intra and has pred */
  1328. {
  1329. int intrapred = 0;
  1330. for (i = 0; i < 6; i++)
  1331. if (is_intra[i]) {
  1332. if (((!s->first_slice_line || (i == 2 || i == 3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  1333. || ((s->mb_x || (i == 1 || i == 3)) && v->mb_type[0][s->block_index[i] - 1])) {
  1334. intrapred = 1;
  1335. break;
  1336. }
  1337. }
  1338. if (intrapred)
  1339. s->ac_pred = get_bits1(gb);
  1340. else
  1341. s->ac_pred = 0;
  1342. }
  1343. if (!v->ttmbf && coded_inter)
  1344. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1345. for (i = 0; i < 6; i++) {
  1346. dst_idx += i >> 2;
  1347. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1348. s->mb_intra = is_intra[i];
  1349. if (is_intra[i]) {
  1350. /* check if prediction blocks A and C are available */
  1351. v->a_avail = v->c_avail = 0;
  1352. if (i == 2 || i == 3 || !s->first_slice_line)
  1353. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1354. if (i == 1 || i == 3 || s->mb_x)
  1355. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1356. vc1_decode_intra_block(v, v->block[v->cur_blk_idx][block_map[i]], i, is_coded[i], mquant,
  1357. (i & 4) ? v->codingset2 : v->codingset);
  1358. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1359. continue;
  1360. v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][block_map[i]]);
  1361. if (v->rangeredfrm)
  1362. for (j = 0; j < 64; j++)
  1363. v->block[v->cur_blk_idx][block_map[i]][j] <<= 1;
  1364. block_cbp |= 0xF << (i << 2);
  1365. block_intra |= 1 << i;
  1366. } else if (is_coded[i]) {
  1367. pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][block_map[i]], i, mquant, ttmb,
  1368. first_block, s->dest[dst_idx] + off,
  1369. (i & 4) ? s->uvlinesize : s->linesize,
  1370. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY),
  1371. &block_tt);
  1372. block_cbp |= pat << (i << 2);
  1373. if (!v->ttmbf && ttmb < 8)
  1374. ttmb = -1;
  1375. first_block = 0;
  1376. }
  1377. }
  1378. } else { // skipped MB
  1379. s->mb_intra = 0;
  1380. s->current_picture.qscale_table[mb_pos] = 0;
  1381. for (i = 0; i < 6; i++) {
  1382. v->mb_type[0][s->block_index[i]] = 0;
  1383. s->dc_val[0][s->block_index[i]] = 0;
  1384. }
  1385. for (i = 0; i < 4; i++) {
  1386. ff_vc1_pred_mv(v, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  1387. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  1388. }
  1389. ff_vc1_mc_4mv_chroma(v, 0);
  1390. s->current_picture.qscale_table[mb_pos] = 0;
  1391. }
  1392. }
  1393. end:
  1394. if (v->overlap && v->pq >= 9)
  1395. ff_vc1_p_overlap_filter(v);
  1396. vc1_put_blocks_clamped(v, 1);
  1397. v->cbp[s->mb_x] = block_cbp;
  1398. v->ttblk[s->mb_x] = block_tt;
  1399. v->is_intra[s->mb_x] = block_intra;
  1400. return 0;
  1401. }
  1402. /* Decode one macroblock in an interlaced frame p picture */
  1403. static int vc1_decode_p_mb_intfr(VC1Context *v)
  1404. {
  1405. MpegEncContext *s = &v->s;
  1406. GetBitContext *gb = &s->gb;
  1407. int i;
  1408. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1409. int cbp = 0; /* cbp decoding stuff */
  1410. int mqdiff, mquant; /* MB quantization */
  1411. int ttmb = v->ttfrm; /* MB Transform type */
  1412. int mb_has_coeffs = 1; /* last_flag */
  1413. int dmv_x, dmv_y; /* Differential MV components */
  1414. int val; /* temp value */
  1415. int first_block = 1;
  1416. int dst_idx, off;
  1417. int skipped, fourmv = 0, twomv = 0;
  1418. int block_cbp = 0, pat, block_tt = 0;
  1419. int idx_mbmode = 0, mvbp;
  1420. int fieldtx;
  1421. mquant = v->pq; /* Lossy initialization */
  1422. if (v->skip_is_raw)
  1423. skipped = get_bits1(gb);
  1424. else
  1425. skipped = v->s.mbskip_table[mb_pos];
  1426. if (!skipped) {
  1427. if (v->fourmvswitch)
  1428. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_4MV_MBMODE_VLC_BITS, 2); // try getting this done
  1429. else
  1430. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2); // in a single line
  1431. switch (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0]) {
  1432. /* store the motion vector type in a flag (useful later) */
  1433. case MV_PMODE_INTFR_4MV:
  1434. fourmv = 1;
  1435. v->blk_mv_type[s->block_index[0]] = 0;
  1436. v->blk_mv_type[s->block_index[1]] = 0;
  1437. v->blk_mv_type[s->block_index[2]] = 0;
  1438. v->blk_mv_type[s->block_index[3]] = 0;
  1439. break;
  1440. case MV_PMODE_INTFR_4MV_FIELD:
  1441. fourmv = 1;
  1442. v->blk_mv_type[s->block_index[0]] = 1;
  1443. v->blk_mv_type[s->block_index[1]] = 1;
  1444. v->blk_mv_type[s->block_index[2]] = 1;
  1445. v->blk_mv_type[s->block_index[3]] = 1;
  1446. break;
  1447. case MV_PMODE_INTFR_2MV_FIELD:
  1448. twomv = 1;
  1449. v->blk_mv_type[s->block_index[0]] = 1;
  1450. v->blk_mv_type[s->block_index[1]] = 1;
  1451. v->blk_mv_type[s->block_index[2]] = 1;
  1452. v->blk_mv_type[s->block_index[3]] = 1;
  1453. break;
  1454. case MV_PMODE_INTFR_1MV:
  1455. v->blk_mv_type[s->block_index[0]] = 0;
  1456. v->blk_mv_type[s->block_index[1]] = 0;
  1457. v->blk_mv_type[s->block_index[2]] = 0;
  1458. v->blk_mv_type[s->block_index[3]] = 0;
  1459. break;
  1460. }
  1461. if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
  1462. for (i = 0; i < 4; i++) {
  1463. s->current_picture.motion_val[1][s->block_index[i]][0] = 0;
  1464. s->current_picture.motion_val[1][s->block_index[i]][1] = 0;
  1465. }
  1466. v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
  1467. s->mb_intra = 1;
  1468. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  1469. fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
  1470. mb_has_coeffs = get_bits1(gb);
  1471. if (mb_has_coeffs)
  1472. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1473. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  1474. GET_MQUANT();
  1475. s->current_picture.qscale_table[mb_pos] = mquant;
  1476. /* Set DC scale - y and c use the same (not sure if necessary here) */
  1477. s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)];
  1478. s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)];
  1479. dst_idx = 0;
  1480. for (i = 0; i < 6; i++) {
  1481. v->a_avail = v->c_avail = 0;
  1482. v->mb_type[0][s->block_index[i]] = 1;
  1483. s->dc_val[0][s->block_index[i]] = 0;
  1484. dst_idx += i >> 2;
  1485. val = ((cbp >> (5 - i)) & 1);
  1486. if (i == 2 || i == 3 || !s->first_slice_line)
  1487. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1488. if (i == 1 || i == 3 || s->mb_x)
  1489. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1490. vc1_decode_intra_block(v, v->block[v->cur_blk_idx][block_map[i]], i, val, mquant,
  1491. (i & 4) ? v->codingset2 : v->codingset);
  1492. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1493. continue;
  1494. v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][block_map[i]]);
  1495. if (i < 4)
  1496. off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
  1497. else
  1498. off = 0;
  1499. block_cbp |= 0xf << (i << 2);
  1500. }
  1501. } else { // inter MB
  1502. mb_has_coeffs = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][3];
  1503. if (mb_has_coeffs)
  1504. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1505. if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
  1506. v->twomvbp = get_vlc2(gb, v->twomvbp_vlc->table, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1);
  1507. } else {
  1508. if ((ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV)
  1509. || (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV_FIELD)) {
  1510. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  1511. }
  1512. }
  1513. s->mb_intra = v->is_intra[s->mb_x] = 0;
  1514. for (i = 0; i < 6; i++)
  1515. v->mb_type[0][s->block_index[i]] = 0;
  1516. fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][1];
  1517. /* for all motion vector read MVDATA and motion compensate each block */
  1518. dst_idx = 0;
  1519. if (fourmv) {
  1520. mvbp = v->fourmvbp;
  1521. for (i = 0; i < 4; i++) {
  1522. dmv_x = dmv_y = 0;
  1523. if (mvbp & (8 >> i))
  1524. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  1525. ff_vc1_pred_mv_intfr(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0);
  1526. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  1527. }
  1528. ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
  1529. } else if (twomv) {
  1530. mvbp = v->twomvbp;
  1531. dmv_x = dmv_y = 0;
  1532. if (mvbp & 2) {
  1533. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  1534. }
  1535. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], 0);
  1536. ff_vc1_mc_4mv_luma(v, 0, 0, 0);
  1537. ff_vc1_mc_4mv_luma(v, 1, 0, 0);
  1538. dmv_x = dmv_y = 0;
  1539. if (mvbp & 1) {
  1540. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  1541. }
  1542. ff_vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], 0);
  1543. ff_vc1_mc_4mv_luma(v, 2, 0, 0);
  1544. ff_vc1_mc_4mv_luma(v, 3, 0, 0);
  1545. ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
  1546. } else {
  1547. mvbp = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][2];
  1548. dmv_x = dmv_y = 0;
  1549. if (mvbp) {
  1550. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  1551. }
  1552. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  1553. ff_vc1_mc_1mv(v, 0);
  1554. }
  1555. if (cbp)
  1556. GET_MQUANT(); // p. 227
  1557. s->current_picture.qscale_table[mb_pos] = mquant;
  1558. if (!v->ttmbf && cbp)
  1559. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1560. for (i = 0; i < 6; i++) {
  1561. s->dc_val[0][s->block_index[i]] = 0;
  1562. dst_idx += i >> 2;
  1563. val = ((cbp >> (5 - i)) & 1);
  1564. if (!fieldtx)
  1565. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1566. else
  1567. off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
  1568. if (val) {
  1569. pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][block_map[i]], i, mquant, ttmb,
  1570. first_block, s->dest[dst_idx] + off,
  1571. (i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
  1572. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
  1573. block_cbp |= pat << (i << 2);
  1574. if (!v->ttmbf && ttmb < 8)
  1575. ttmb = -1;
  1576. first_block = 0;
  1577. }
  1578. }
  1579. }
  1580. } else { // skipped
  1581. s->mb_intra = v->is_intra[s->mb_x] = 0;
  1582. for (i = 0; i < 6; i++) {
  1583. v->mb_type[0][s->block_index[i]] = 0;
  1584. s->dc_val[0][s->block_index[i]] = 0;
  1585. }
  1586. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  1587. s->current_picture.qscale_table[mb_pos] = 0;
  1588. v->blk_mv_type[s->block_index[0]] = 0;
  1589. v->blk_mv_type[s->block_index[1]] = 0;
  1590. v->blk_mv_type[s->block_index[2]] = 0;
  1591. v->blk_mv_type[s->block_index[3]] = 0;
  1592. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  1593. ff_vc1_mc_1mv(v, 0);
  1594. v->fieldtx_plane[mb_pos] = 0;
  1595. }
  1596. if (v->overlap && v->pq >= 9)
  1597. ff_vc1_p_overlap_filter(v);
  1598. vc1_put_blocks_clamped(v, 1);
  1599. v->cbp[s->mb_x] = block_cbp;
  1600. v->ttblk[s->mb_x] = block_tt;
  1601. return 0;
  1602. }
  1603. static int vc1_decode_p_mb_intfi(VC1Context *v)
  1604. {
  1605. MpegEncContext *s = &v->s;
  1606. GetBitContext *gb = &s->gb;
  1607. int i;
  1608. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1609. int cbp = 0; /* cbp decoding stuff */
  1610. int mqdiff, mquant; /* MB quantization */
  1611. int ttmb = v->ttfrm; /* MB Transform type */
  1612. int mb_has_coeffs = 1; /* last_flag */
  1613. int dmv_x, dmv_y; /* Differential MV components */
  1614. int val; /* temp values */
  1615. int first_block = 1;
  1616. int dst_idx, off;
  1617. int pred_flag = 0;
  1618. int block_cbp = 0, pat, block_tt = 0;
  1619. int idx_mbmode = 0;
  1620. mquant = v->pq; /* Lossy initialization */
  1621. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
  1622. if (idx_mbmode <= 1) { // intra MB
  1623. v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
  1624. s->mb_intra = 1;
  1625. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
  1626. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
  1627. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  1628. GET_MQUANT();
  1629. s->current_picture.qscale_table[mb_pos] = mquant;
  1630. /* Set DC scale - y and c use the same (not sure if necessary here) */
  1631. s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)];
  1632. s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)];
  1633. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  1634. mb_has_coeffs = idx_mbmode & 1;
  1635. if (mb_has_coeffs)
  1636. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
  1637. dst_idx = 0;
  1638. for (i = 0; i < 6; i++) {
  1639. v->a_avail = v->c_avail = 0;
  1640. v->mb_type[0][s->block_index[i]] = 1;
  1641. s->dc_val[0][s->block_index[i]] = 0;
  1642. dst_idx += i >> 2;
  1643. val = ((cbp >> (5 - i)) & 1);
  1644. if (i == 2 || i == 3 || !s->first_slice_line)
  1645. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1646. if (i == 1 || i == 3 || s->mb_x)
  1647. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1648. vc1_decode_intra_block(v, v->block[v->cur_blk_idx][block_map[i]], i, val, mquant,
  1649. (i & 4) ? v->codingset2 : v->codingset);
  1650. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1651. continue;
  1652. v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][block_map[i]]);
  1653. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1654. block_cbp |= 0xf << (i << 2);
  1655. }
  1656. } else {
  1657. s->mb_intra = v->is_intra[s->mb_x] = 0;
  1658. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
  1659. for (i = 0; i < 6; i++)
  1660. v->mb_type[0][s->block_index[i]] = 0;
  1661. if (idx_mbmode <= 5) { // 1-MV
  1662. dmv_x = dmv_y = pred_flag = 0;
  1663. if (idx_mbmode & 1) {
  1664. get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
  1665. }
  1666. ff_vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
  1667. ff_vc1_mc_1mv(v, 0);
  1668. mb_has_coeffs = !(idx_mbmode & 2);
  1669. } else { // 4-MV
  1670. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  1671. for (i = 0; i < 4; i++) {
  1672. dmv_x = dmv_y = pred_flag = 0;
  1673. if (v->fourmvbp & (8 >> i))
  1674. get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
  1675. ff_vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
  1676. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  1677. }
  1678. ff_vc1_mc_4mv_chroma(v, 0);
  1679. mb_has_coeffs = idx_mbmode & 1;
  1680. }
  1681. if (mb_has_coeffs)
  1682. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1683. if (cbp) {
  1684. GET_MQUANT();
  1685. }
  1686. s->current_picture.qscale_table[mb_pos] = mquant;
  1687. if (!v->ttmbf && cbp) {
  1688. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1689. }
  1690. dst_idx = 0;
  1691. for (i = 0; i < 6; i++) {
  1692. s->dc_val[0][s->block_index[i]] = 0;
  1693. dst_idx += i >> 2;
  1694. val = ((cbp >> (5 - i)) & 1);
  1695. off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
  1696. if (val) {
  1697. pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][block_map[i]], i, mquant, ttmb,
  1698. first_block, s->dest[dst_idx] + off,
  1699. (i & 4) ? s->uvlinesize : s->linesize,
  1700. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY),
  1701. &block_tt);
  1702. block_cbp |= pat << (i << 2);
  1703. if (!v->ttmbf && ttmb < 8)
  1704. ttmb = -1;
  1705. first_block = 0;
  1706. }
  1707. }
  1708. }
  1709. if (v->overlap && v->pq >= 9)
  1710. ff_vc1_p_overlap_filter(v);
  1711. vc1_put_blocks_clamped(v, 1);
  1712. v->cbp[s->mb_x] = block_cbp;
  1713. v->ttblk[s->mb_x] = block_tt;
  1714. return 0;
  1715. }
  1716. /** Decode one B-frame MB (in Main profile)
  1717. */
  1718. static void vc1_decode_b_mb(VC1Context *v)
  1719. {
  1720. MpegEncContext *s = &v->s;
  1721. GetBitContext *gb = &s->gb;
  1722. int i, j;
  1723. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1724. int cbp = 0; /* cbp decoding stuff */
  1725. int mqdiff, mquant; /* MB quantization */
  1726. int ttmb = v->ttfrm; /* MB Transform type */
  1727. int mb_has_coeffs = 0; /* last_flag */
  1728. int index, index1; /* LUT indexes */
  1729. int val, sign; /* temp values */
  1730. int first_block = 1;
  1731. int dst_idx, off;
  1732. int skipped, direct;
  1733. int dmv_x[2], dmv_y[2];
  1734. int bmvtype = BMV_TYPE_BACKWARD;
  1735. mquant = v->pq; /* lossy initialization */
  1736. s->mb_intra = 0;
  1737. if (v->dmb_is_raw)
  1738. direct = get_bits1(gb);
  1739. else
  1740. direct = v->direct_mb_plane[mb_pos];
  1741. if (v->skip_is_raw)
  1742. skipped = get_bits1(gb);
  1743. else
  1744. skipped = v->s.mbskip_table[mb_pos];
  1745. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  1746. for (i = 0; i < 6; i++) {
  1747. v->mb_type[0][s->block_index[i]] = 0;
  1748. s->dc_val[0][s->block_index[i]] = 0;
  1749. }
  1750. s->current_picture.qscale_table[mb_pos] = 0;
  1751. if (!direct) {
  1752. if (!skipped) {
  1753. GET_MVDATA(dmv_x[0], dmv_y[0]);
  1754. dmv_x[1] = dmv_x[0];
  1755. dmv_y[1] = dmv_y[0];
  1756. }
  1757. if (skipped || !s->mb_intra) {
  1758. bmvtype = decode012(gb);
  1759. switch (bmvtype) {
  1760. case 0:
  1761. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  1762. break;
  1763. case 1:
  1764. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  1765. break;
  1766. case 2:
  1767. bmvtype = BMV_TYPE_INTERPOLATED;
  1768. dmv_x[0] = dmv_y[0] = 0;
  1769. }
  1770. }
  1771. }
  1772. for (i = 0; i < 6; i++)
  1773. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  1774. if (skipped) {
  1775. if (direct)
  1776. bmvtype = BMV_TYPE_INTERPOLATED;
  1777. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1778. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1779. return;
  1780. }
  1781. if (direct) {
  1782. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1783. GET_MQUANT();
  1784. s->mb_intra = 0;
  1785. s->current_picture.qscale_table[mb_pos] = mquant;
  1786. if (!v->ttmbf)
  1787. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1788. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  1789. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1790. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1791. } else {
  1792. if (!mb_has_coeffs && !s->mb_intra) {
  1793. /* no coded blocks - effectively skipped */
  1794. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1795. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1796. return;
  1797. }
  1798. if (s->mb_intra && !mb_has_coeffs) {
  1799. GET_MQUANT();
  1800. s->current_picture.qscale_table[mb_pos] = mquant;
  1801. s->ac_pred = get_bits1(gb);
  1802. cbp = 0;
  1803. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1804. } else {
  1805. if (bmvtype == BMV_TYPE_INTERPOLATED) {
  1806. GET_MVDATA(dmv_x[0], dmv_y[0]);
  1807. if (!mb_has_coeffs) {
  1808. /* interpolated skipped block */
  1809. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1810. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1811. return;
  1812. }
  1813. }
  1814. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1815. if (!s->mb_intra) {
  1816. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1817. }
  1818. if (s->mb_intra)
  1819. s->ac_pred = get_bits1(gb);
  1820. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1821. GET_MQUANT();
  1822. s->current_picture.qscale_table[mb_pos] = mquant;
  1823. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  1824. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1825. }
  1826. }
  1827. dst_idx = 0;
  1828. for (i = 0; i < 6; i++) {
  1829. s->dc_val[0][s->block_index[i]] = 0;
  1830. dst_idx += i >> 2;
  1831. val = ((cbp >> (5 - i)) & 1);
  1832. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1833. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  1834. if (s->mb_intra) {
  1835. /* check if prediction blocks A and C are available */
  1836. v->a_avail = v->c_avail = 0;
  1837. if (i == 2 || i == 3 || !s->first_slice_line)
  1838. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1839. if (i == 1 || i == 3 || s->mb_x)
  1840. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1841. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  1842. (i & 4) ? v->codingset2 : v->codingset);
  1843. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1844. continue;
  1845. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  1846. if (v->rangeredfrm)
  1847. for (j = 0; j < 64; j++)
  1848. s->block[i][j] <<= 1;
  1849. s->idsp.put_signed_pixels_clamped(s->block[i],
  1850. s->dest[dst_idx] + off,
  1851. i & 4 ? s->uvlinesize
  1852. : s->linesize);
  1853. } else if (val) {
  1854. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  1855. first_block, s->dest[dst_idx] + off,
  1856. (i & 4) ? s->uvlinesize : s->linesize,
  1857. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), NULL);
  1858. if (!v->ttmbf && ttmb < 8)
  1859. ttmb = -1;
  1860. first_block = 0;
  1861. }
  1862. }
  1863. }
  1864. /** Decode one B-frame MB (in interlaced field B picture)
  1865. */
  1866. static void vc1_decode_b_mb_intfi(VC1Context *v)
  1867. {
  1868. MpegEncContext *s = &v->s;
  1869. GetBitContext *gb = &s->gb;
  1870. int i, j;
  1871. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1872. int cbp = 0; /* cbp decoding stuff */
  1873. int mqdiff, mquant; /* MB quantization */
  1874. int ttmb = v->ttfrm; /* MB Transform type */
  1875. int mb_has_coeffs = 0; /* last_flag */
  1876. int val; /* temp value */
  1877. int first_block = 1;
  1878. int dst_idx, off;
  1879. int fwd;
  1880. int dmv_x[2], dmv_y[2], pred_flag[2];
  1881. int bmvtype = BMV_TYPE_BACKWARD;
  1882. int block_cbp = 0, pat, block_tt = 0;
  1883. int idx_mbmode;
  1884. mquant = v->pq; /* Lossy initialization */
  1885. s->mb_intra = 0;
  1886. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
  1887. if (idx_mbmode <= 1) { // intra MB
  1888. v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
  1889. s->mb_intra = 1;
  1890. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  1891. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  1892. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  1893. GET_MQUANT();
  1894. s->current_picture.qscale_table[mb_pos] = mquant;
  1895. /* Set DC scale - y and c use the same (not sure if necessary here) */
  1896. s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)];
  1897. s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)];
  1898. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  1899. mb_has_coeffs = idx_mbmode & 1;
  1900. if (mb_has_coeffs)
  1901. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
  1902. dst_idx = 0;
  1903. for (i = 0; i < 6; i++) {
  1904. v->a_avail = v->c_avail = 0;
  1905. v->mb_type[0][s->block_index[i]] = 1;
  1906. s->dc_val[0][s->block_index[i]] = 0;
  1907. dst_idx += i >> 2;
  1908. val = ((cbp >> (5 - i)) & 1);
  1909. if (i == 2 || i == 3 || !s->first_slice_line)
  1910. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1911. if (i == 1 || i == 3 || s->mb_x)
  1912. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1913. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  1914. (i & 4) ? v->codingset2 : v->codingset);
  1915. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1916. continue;
  1917. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  1918. if (v->rangeredfrm)
  1919. for (j = 0; j < 64; j++)
  1920. s->block[i][j] <<= 1;
  1921. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1922. s->idsp.put_signed_pixels_clamped(s->block[i],
  1923. s->dest[dst_idx] + off,
  1924. (i & 4) ? s->uvlinesize
  1925. : s->linesize);
  1926. }
  1927. } else {
  1928. s->mb_intra = v->is_intra[s->mb_x] = 0;
  1929. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
  1930. for (i = 0; i < 6; i++)
  1931. v->mb_type[0][s->block_index[i]] = 0;
  1932. if (v->fmb_is_raw)
  1933. fwd = v->forward_mb_plane[mb_pos] = get_bits1(gb);
  1934. else
  1935. fwd = v->forward_mb_plane[mb_pos];
  1936. if (idx_mbmode <= 5) { // 1-MV
  1937. int interpmvp = 0;
  1938. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  1939. pred_flag[0] = pred_flag[1] = 0;
  1940. if (fwd)
  1941. bmvtype = BMV_TYPE_FORWARD;
  1942. else {
  1943. bmvtype = decode012(gb);
  1944. switch (bmvtype) {
  1945. case 0:
  1946. bmvtype = BMV_TYPE_BACKWARD;
  1947. break;
  1948. case 1:
  1949. bmvtype = BMV_TYPE_DIRECT;
  1950. break;
  1951. case 2:
  1952. bmvtype = BMV_TYPE_INTERPOLATED;
  1953. interpmvp = get_bits1(gb);
  1954. }
  1955. }
  1956. v->bmvtype = bmvtype;
  1957. if (bmvtype != BMV_TYPE_DIRECT && idx_mbmode & 1) {
  1958. get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD], &dmv_y[bmvtype == BMV_TYPE_BACKWARD], &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
  1959. }
  1960. if (interpmvp) {
  1961. get_mvdata_interlaced(v, &dmv_x[1], &dmv_y[1], &pred_flag[1]);
  1962. }
  1963. if (bmvtype == BMV_TYPE_DIRECT) {
  1964. dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
  1965. dmv_x[1] = dmv_y[1] = pred_flag[0] = 0;
  1966. if (!s->next_picture_ptr->field_picture) {
  1967. av_log(s->avctx, AV_LOG_ERROR, "Mixed field/frame direct mode not supported\n");
  1968. return;
  1969. }
  1970. }
  1971. ff_vc1_pred_b_mv_intfi(v, 0, dmv_x, dmv_y, 1, pred_flag);
  1972. vc1_b_mc(v, dmv_x, dmv_y, (bmvtype == BMV_TYPE_DIRECT), bmvtype);
  1973. mb_has_coeffs = !(idx_mbmode & 2);
  1974. } else { // 4-MV
  1975. if (fwd)
  1976. bmvtype = BMV_TYPE_FORWARD;
  1977. v->bmvtype = bmvtype;
  1978. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  1979. for (i = 0; i < 4; i++) {
  1980. dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
  1981. dmv_x[1] = dmv_y[1] = pred_flag[1] = 0;
  1982. if (v->fourmvbp & (8 >> i)) {
  1983. get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD],
  1984. &dmv_y[bmvtype == BMV_TYPE_BACKWARD],
  1985. &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
  1986. }
  1987. ff_vc1_pred_b_mv_intfi(v, i, dmv_x, dmv_y, 0, pred_flag);
  1988. ff_vc1_mc_4mv_luma(v, i, bmvtype == BMV_TYPE_BACKWARD, 0);
  1989. }
  1990. ff_vc1_mc_4mv_chroma(v, bmvtype == BMV_TYPE_BACKWARD);
  1991. mb_has_coeffs = idx_mbmode & 1;
  1992. }
  1993. if (mb_has_coeffs)
  1994. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1995. if (cbp) {
  1996. GET_MQUANT();
  1997. }
  1998. s->current_picture.qscale_table[mb_pos] = mquant;
  1999. if (!v->ttmbf && cbp) {
  2000. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2001. }
  2002. dst_idx = 0;
  2003. for (i = 0; i < 6; i++) {
  2004. s->dc_val[0][s->block_index[i]] = 0;
  2005. dst_idx += i >> 2;
  2006. val = ((cbp >> (5 - i)) & 1);
  2007. off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
  2008. if (val) {
  2009. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  2010. first_block, s->dest[dst_idx] + off,
  2011. (i & 4) ? s->uvlinesize : s->linesize,
  2012. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
  2013. block_cbp |= pat << (i << 2);
  2014. if (!v->ttmbf && ttmb < 8)
  2015. ttmb = -1;
  2016. first_block = 0;
  2017. }
  2018. }
  2019. }
  2020. v->cbp[s->mb_x] = block_cbp;
  2021. v->ttblk[s->mb_x] = block_tt;
  2022. }
  2023. /** Decode one B-frame MB (in interlaced frame B picture)
  2024. */
  2025. static int vc1_decode_b_mb_intfr(VC1Context *v)
  2026. {
  2027. MpegEncContext *s = &v->s;
  2028. GetBitContext *gb = &s->gb;
  2029. int i, j;
  2030. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2031. int cbp = 0; /* cbp decoding stuff */
  2032. int mqdiff, mquant; /* MB quantization */
  2033. int ttmb = v->ttfrm; /* MB Transform type */
  2034. int mvsw = 0; /* motion vector switch */
  2035. int mb_has_coeffs = 1; /* last_flag */
  2036. int dmv_x, dmv_y; /* Differential MV components */
  2037. int val; /* temp value */
  2038. int first_block = 1;
  2039. int dst_idx, off;
  2040. int skipped, direct, twomv = 0;
  2041. int block_cbp = 0, pat, block_tt = 0;
  2042. int idx_mbmode = 0, mvbp;
  2043. int stride_y, fieldtx;
  2044. int bmvtype = BMV_TYPE_BACKWARD;
  2045. int dir, dir2;
  2046. mquant = v->pq; /* Lossy initialization */
  2047. s->mb_intra = 0;
  2048. if (v->skip_is_raw)
  2049. skipped = get_bits1(gb);
  2050. else
  2051. skipped = v->s.mbskip_table[mb_pos];
  2052. if (!skipped) {
  2053. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2);
  2054. if (ff_vc1_mbmode_intfrp[0][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
  2055. twomv = 1;
  2056. v->blk_mv_type[s->block_index[0]] = 1;
  2057. v->blk_mv_type[s->block_index[1]] = 1;
  2058. v->blk_mv_type[s->block_index[2]] = 1;
  2059. v->blk_mv_type[s->block_index[3]] = 1;
  2060. } else {
  2061. v->blk_mv_type[s->block_index[0]] = 0;
  2062. v->blk_mv_type[s->block_index[1]] = 0;
  2063. v->blk_mv_type[s->block_index[2]] = 0;
  2064. v->blk_mv_type[s->block_index[3]] = 0;
  2065. }
  2066. }
  2067. if (ff_vc1_mbmode_intfrp[0][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
  2068. for (i = 0; i < 4; i++) {
  2069. s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = 0;
  2070. s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = 0;
  2071. s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = 0;
  2072. s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = 0;
  2073. }
  2074. v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
  2075. s->mb_intra = 1;
  2076. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2077. fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
  2078. mb_has_coeffs = get_bits1(gb);
  2079. if (mb_has_coeffs)
  2080. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2081. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  2082. GET_MQUANT();
  2083. s->current_picture.qscale_table[mb_pos] = mquant;
  2084. /* Set DC scale - y and c use the same (not sure if necessary here) */
  2085. s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)];
  2086. s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)];
  2087. dst_idx = 0;
  2088. for (i = 0; i < 6; i++) {
  2089. v->a_avail = v->c_avail = 0;
  2090. v->mb_type[0][s->block_index[i]] = 1;
  2091. s->dc_val[0][s->block_index[i]] = 0;
  2092. dst_idx += i >> 2;
  2093. val = ((cbp >> (5 - i)) & 1);
  2094. if (i == 2 || i == 3 || !s->first_slice_line)
  2095. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2096. if (i == 1 || i == 3 || s->mb_x)
  2097. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2098. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  2099. (i & 4) ? v->codingset2 : v->codingset);
  2100. if (CONFIG_GRAY && i > 3 && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  2101. continue;
  2102. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  2103. if (i < 4) {
  2104. stride_y = s->linesize << fieldtx;
  2105. off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
  2106. } else {
  2107. stride_y = s->uvlinesize;
  2108. off = 0;
  2109. }
  2110. s->idsp.put_signed_pixels_clamped(s->block[i],
  2111. s->dest[dst_idx] + off,
  2112. stride_y);
  2113. }
  2114. } else {
  2115. s->mb_intra = v->is_intra[s->mb_x] = 0;
  2116. if (v->dmb_is_raw)
  2117. direct = get_bits1(gb);
  2118. else
  2119. direct = v->direct_mb_plane[mb_pos];
  2120. if (direct) {
  2121. if (s->next_picture_ptr->field_picture)
  2122. av_log(s->avctx, AV_LOG_WARNING, "Mixed frame/field direct mode not supported\n");
  2123. s->mv[0][0][0] = s->current_picture.motion_val[0][s->block_index[0]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][0], v->bfraction, 0, s->quarter_sample);
  2124. s->mv[0][0][1] = s->current_picture.motion_val[0][s->block_index[0]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][1], v->bfraction, 0, s->quarter_sample);
  2125. s->mv[1][0][0] = s->current_picture.motion_val[1][s->block_index[0]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][0], v->bfraction, 1, s->quarter_sample);
  2126. s->mv[1][0][1] = s->current_picture.motion_val[1][s->block_index[0]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][1], v->bfraction, 1, s->quarter_sample);
  2127. if (twomv) {
  2128. s->mv[0][2][0] = s->current_picture.motion_val[0][s->block_index[2]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][0], v->bfraction, 0, s->quarter_sample);
  2129. s->mv[0][2][1] = s->current_picture.motion_val[0][s->block_index[2]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][1], v->bfraction, 0, s->quarter_sample);
  2130. s->mv[1][2][0] = s->current_picture.motion_val[1][s->block_index[2]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][0], v->bfraction, 1, s->quarter_sample);
  2131. s->mv[1][2][1] = s->current_picture.motion_val[1][s->block_index[2]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][1], v->bfraction, 1, s->quarter_sample);
  2132. for (i = 1; i < 4; i += 2) {
  2133. s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = s->mv[0][i-1][0];
  2134. s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = s->mv[0][i-1][1];
  2135. s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = s->mv[1][i-1][0];
  2136. s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = s->mv[1][i-1][1];
  2137. }
  2138. } else {
  2139. for (i = 1; i < 4; i++) {
  2140. s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = s->mv[0][0][0];
  2141. s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = s->mv[0][0][1];
  2142. s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = s->mv[1][0][0];
  2143. s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = s->mv[1][0][1];
  2144. }
  2145. }
  2146. }
  2147. if (!direct) {
  2148. if (skipped || !s->mb_intra) {
  2149. bmvtype = decode012(gb);
  2150. switch (bmvtype) {
  2151. case 0:
  2152. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  2153. break;
  2154. case 1:
  2155. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  2156. break;
  2157. case 2:
  2158. bmvtype = BMV_TYPE_INTERPOLATED;
  2159. }
  2160. }
  2161. if (twomv && bmvtype != BMV_TYPE_INTERPOLATED)
  2162. mvsw = get_bits1(gb);
  2163. }
  2164. if (!skipped) { // inter MB
  2165. mb_has_coeffs = ff_vc1_mbmode_intfrp[0][idx_mbmode][3];
  2166. if (mb_has_coeffs)
  2167. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2168. if (!direct) {
  2169. if (bmvtype == BMV_TYPE_INTERPOLATED && twomv) {
  2170. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  2171. } else if (bmvtype == BMV_TYPE_INTERPOLATED || twomv) {
  2172. v->twomvbp = get_vlc2(gb, v->twomvbp_vlc->table, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1);
  2173. }
  2174. }
  2175. for (i = 0; i < 6; i++)
  2176. v->mb_type[0][s->block_index[i]] = 0;
  2177. fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[0][idx_mbmode][1];
  2178. /* for all motion vector read MVDATA and motion compensate each block */
  2179. dst_idx = 0;
  2180. if (direct) {
  2181. if (twomv) {
  2182. for (i = 0; i < 4; i++) {
  2183. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  2184. ff_vc1_mc_4mv_luma(v, i, 1, 1);
  2185. }
  2186. ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
  2187. ff_vc1_mc_4mv_chroma4(v, 1, 1, 1);
  2188. } else {
  2189. ff_vc1_mc_1mv(v, 0);
  2190. ff_vc1_interp_mc(v);
  2191. }
  2192. } else if (twomv && bmvtype == BMV_TYPE_INTERPOLATED) {
  2193. mvbp = v->fourmvbp;
  2194. for (i = 0; i < 4; i++) {
  2195. dir = i==1 || i==3;
  2196. dmv_x = dmv_y = 0;
  2197. val = ((mvbp >> (3 - i)) & 1);
  2198. if (val)
  2199. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2200. j = i > 1 ? 2 : 0;
  2201. ff_vc1_pred_mv_intfr(v, j, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir);
  2202. ff_vc1_mc_4mv_luma(v, j, dir, dir);
  2203. ff_vc1_mc_4mv_luma(v, j+1, dir, dir);
  2204. }
  2205. ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
  2206. ff_vc1_mc_4mv_chroma4(v, 1, 1, 1);
  2207. } else if (bmvtype == BMV_TYPE_INTERPOLATED) {
  2208. mvbp = v->twomvbp;
  2209. dmv_x = dmv_y = 0;
  2210. if (mvbp & 2)
  2211. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2212. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  2213. ff_vc1_mc_1mv(v, 0);
  2214. dmv_x = dmv_y = 0;
  2215. if (mvbp & 1)
  2216. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2217. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 1);
  2218. ff_vc1_interp_mc(v);
  2219. } else if (twomv) {
  2220. dir = bmvtype == BMV_TYPE_BACKWARD;
  2221. dir2 = dir;
  2222. if (mvsw)
  2223. dir2 = !dir;
  2224. mvbp = v->twomvbp;
  2225. dmv_x = dmv_y = 0;
  2226. if (mvbp & 2)
  2227. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2228. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir);
  2229. dmv_x = dmv_y = 0;
  2230. if (mvbp & 1)
  2231. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2232. ff_vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir2);
  2233. if (mvsw) {
  2234. for (i = 0; i < 2; i++) {
  2235. s->mv[dir][i+2][0] = s->mv[dir][i][0] = s->current_picture.motion_val[dir][s->block_index[i+2]][0] = s->current_picture.motion_val[dir][s->block_index[i]][0];
  2236. s->mv[dir][i+2][1] = s->mv[dir][i][1] = s->current_picture.motion_val[dir][s->block_index[i+2]][1] = s->current_picture.motion_val[dir][s->block_index[i]][1];
  2237. s->mv[dir2][i+2][0] = s->mv[dir2][i][0] = s->current_picture.motion_val[dir2][s->block_index[i]][0] = s->current_picture.motion_val[dir2][s->block_index[i+2]][0];
  2238. s->mv[dir2][i+2][1] = s->mv[dir2][i][1] = s->current_picture.motion_val[dir2][s->block_index[i]][1] = s->current_picture.motion_val[dir2][s->block_index[i+2]][1];
  2239. }
  2240. } else {
  2241. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, v->mb_type[0], !dir);
  2242. ff_vc1_pred_mv_intfr(v, 2, 0, 0, 2, v->range_x, v->range_y, v->mb_type[0], !dir);
  2243. }
  2244. ff_vc1_mc_4mv_luma(v, 0, dir, 0);
  2245. ff_vc1_mc_4mv_luma(v, 1, dir, 0);
  2246. ff_vc1_mc_4mv_luma(v, 2, dir2, 0);
  2247. ff_vc1_mc_4mv_luma(v, 3, dir2, 0);
  2248. ff_vc1_mc_4mv_chroma4(v, dir, dir2, 0);
  2249. } else {
  2250. dir = bmvtype == BMV_TYPE_BACKWARD;
  2251. mvbp = ff_vc1_mbmode_intfrp[0][idx_mbmode][2];
  2252. dmv_x = dmv_y = 0;
  2253. if (mvbp)
  2254. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2255. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], dir);
  2256. v->blk_mv_type[s->block_index[0]] = 1;
  2257. v->blk_mv_type[s->block_index[1]] = 1;
  2258. v->blk_mv_type[s->block_index[2]] = 1;
  2259. v->blk_mv_type[s->block_index[3]] = 1;
  2260. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, 0, !dir);
  2261. for (i = 0; i < 2; i++) {
  2262. s->mv[!dir][i+2][0] = s->mv[!dir][i][0] = s->current_picture.motion_val[!dir][s->block_index[i+2]][0] = s->current_picture.motion_val[!dir][s->block_index[i]][0];
  2263. s->mv[!dir][i+2][1] = s->mv[!dir][i][1] = s->current_picture.motion_val[!dir][s->block_index[i+2]][1] = s->current_picture.motion_val[!dir][s->block_index[i]][1];
  2264. }
  2265. ff_vc1_mc_1mv(v, dir);
  2266. }
  2267. if (cbp)
  2268. GET_MQUANT(); // p. 227
  2269. s->current_picture.qscale_table[mb_pos] = mquant;
  2270. if (!v->ttmbf && cbp)
  2271. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2272. for (i = 0; i < 6; i++) {
  2273. s->dc_val[0][s->block_index[i]] = 0;
  2274. dst_idx += i >> 2;
  2275. val = ((cbp >> (5 - i)) & 1);
  2276. if (!fieldtx)
  2277. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2278. else
  2279. off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
  2280. if (val) {
  2281. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  2282. first_block, s->dest[dst_idx] + off,
  2283. (i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
  2284. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
  2285. block_cbp |= pat << (i << 2);
  2286. if (!v->ttmbf && ttmb < 8)
  2287. ttmb = -1;
  2288. first_block = 0;
  2289. }
  2290. }
  2291. } else { // skipped
  2292. dir = 0;
  2293. for (i = 0; i < 6; i++) {
  2294. v->mb_type[0][s->block_index[i]] = 0;
  2295. s->dc_val[0][s->block_index[i]] = 0;
  2296. }
  2297. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2298. s->current_picture.qscale_table[mb_pos] = 0;
  2299. v->blk_mv_type[s->block_index[0]] = 0;
  2300. v->blk_mv_type[s->block_index[1]] = 0;
  2301. v->blk_mv_type[s->block_index[2]] = 0;
  2302. v->blk_mv_type[s->block_index[3]] = 0;
  2303. if (!direct) {
  2304. if (bmvtype == BMV_TYPE_INTERPOLATED) {
  2305. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  2306. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 1);
  2307. } else {
  2308. dir = bmvtype == BMV_TYPE_BACKWARD;
  2309. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], dir);
  2310. if (mvsw) {
  2311. int dir2 = dir;
  2312. if (mvsw)
  2313. dir2 = !dir;
  2314. for (i = 0; i < 2; i++) {
  2315. s->mv[dir][i+2][0] = s->mv[dir][i][0] = s->current_picture.motion_val[dir][s->block_index[i+2]][0] = s->current_picture.motion_val[dir][s->block_index[i]][0];
  2316. s->mv[dir][i+2][1] = s->mv[dir][i][1] = s->current_picture.motion_val[dir][s->block_index[i+2]][1] = s->current_picture.motion_val[dir][s->block_index[i]][1];
  2317. s->mv[dir2][i+2][0] = s->mv[dir2][i][0] = s->current_picture.motion_val[dir2][s->block_index[i]][0] = s->current_picture.motion_val[dir2][s->block_index[i+2]][0];
  2318. s->mv[dir2][i+2][1] = s->mv[dir2][i][1] = s->current_picture.motion_val[dir2][s->block_index[i]][1] = s->current_picture.motion_val[dir2][s->block_index[i+2]][1];
  2319. }
  2320. } else {
  2321. v->blk_mv_type[s->block_index[0]] = 1;
  2322. v->blk_mv_type[s->block_index[1]] = 1;
  2323. v->blk_mv_type[s->block_index[2]] = 1;
  2324. v->blk_mv_type[s->block_index[3]] = 1;
  2325. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, 0, !dir);
  2326. for (i = 0; i < 2; i++) {
  2327. s->mv[!dir][i+2][0] = s->mv[!dir][i][0] = s->current_picture.motion_val[!dir][s->block_index[i+2]][0] = s->current_picture.motion_val[!dir][s->block_index[i]][0];
  2328. s->mv[!dir][i+2][1] = s->mv[!dir][i][1] = s->current_picture.motion_val[!dir][s->block_index[i+2]][1] = s->current_picture.motion_val[!dir][s->block_index[i]][1];
  2329. }
  2330. }
  2331. }
  2332. }
  2333. ff_vc1_mc_1mv(v, dir);
  2334. if (direct || bmvtype == BMV_TYPE_INTERPOLATED) {
  2335. ff_vc1_interp_mc(v);
  2336. }
  2337. v->fieldtx_plane[mb_pos] = 0;
  2338. }
  2339. }
  2340. v->cbp[s->mb_x] = block_cbp;
  2341. v->ttblk[s->mb_x] = block_tt;
  2342. return 0;
  2343. }
  2344. /** Decode blocks of I-frame
  2345. */
  2346. static void vc1_decode_i_blocks(VC1Context *v)
  2347. {
  2348. int k, j;
  2349. MpegEncContext *s = &v->s;
  2350. int cbp, val;
  2351. uint8_t *coded_val;
  2352. int mb_pos;
  2353. /* select coding mode used for VLC tables selection */
  2354. switch (v->y_ac_table_index) {
  2355. case 0:
  2356. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2357. break;
  2358. case 1:
  2359. v->codingset = CS_HIGH_MOT_INTRA;
  2360. break;
  2361. case 2:
  2362. v->codingset = CS_MID_RATE_INTRA;
  2363. break;
  2364. }
  2365. switch (v->c_ac_table_index) {
  2366. case 0:
  2367. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2368. break;
  2369. case 1:
  2370. v->codingset2 = CS_HIGH_MOT_INTER;
  2371. break;
  2372. case 2:
  2373. v->codingset2 = CS_MID_RATE_INTER;
  2374. break;
  2375. }
  2376. /* Set DC scale - y and c use the same */
  2377. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  2378. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  2379. //do frame decode
  2380. s->mb_x = s->mb_y = 0;
  2381. s->mb_intra = 1;
  2382. s->first_slice_line = 1;
  2383. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  2384. s->mb_x = 0;
  2385. init_block_index(v);
  2386. for (; s->mb_x < v->end_mb_x; s->mb_x++) {
  2387. ff_update_block_index(s);
  2388. s->bdsp.clear_blocks(v->block[v->cur_blk_idx][0]);
  2389. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  2390. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2391. s->current_picture.qscale_table[mb_pos] = v->pq;
  2392. for (int i = 0; i < 4; i++) {
  2393. s->current_picture.motion_val[1][s->block_index[i]][0] = 0;
  2394. s->current_picture.motion_val[1][s->block_index[i]][1] = 0;
  2395. }
  2396. // do actual MB decoding and displaying
  2397. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2398. v->s.ac_pred = get_bits1(&v->s.gb);
  2399. for (k = 0; k < 6; k++) {
  2400. v->mb_type[0][s->block_index[k]] = 1;
  2401. val = ((cbp >> (5 - k)) & 1);
  2402. if (k < 4) {
  2403. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2404. val = val ^ pred;
  2405. *coded_val = val;
  2406. }
  2407. cbp |= val << (5 - k);
  2408. vc1_decode_i_block(v, v->block[v->cur_blk_idx][block_map[k]], k, val, (k < 4) ? v->codingset : v->codingset2);
  2409. if (CONFIG_GRAY && k > 3 && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  2410. continue;
  2411. v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][block_map[k]]);
  2412. }
  2413. if (v->overlap && v->pq >= 9) {
  2414. ff_vc1_i_overlap_filter(v);
  2415. if (v->rangeredfrm)
  2416. for (k = 0; k < 6; k++)
  2417. for (j = 0; j < 64; j++)
  2418. v->block[v->cur_blk_idx][block_map[k]][j] <<= 1;
  2419. vc1_put_blocks_clamped(v, 1);
  2420. } else {
  2421. if (v->rangeredfrm)
  2422. for (k = 0; k < 6; k++)
  2423. for (j = 0; j < 64; j++)
  2424. v->block[v->cur_blk_idx][block_map[k]][j] = (v->block[v->cur_blk_idx][block_map[k]][j] - 64) << 1;
  2425. vc1_put_blocks_clamped(v, 0);
  2426. }
  2427. if (v->s.loop_filter)
  2428. ff_vc1_i_loop_filter(v);
  2429. if (get_bits_count(&s->gb) > v->bits) {
  2430. ff_er_add_slice(&s->er, 0, 0, s->mb_x, s->mb_y, ER_MB_ERROR);
  2431. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
  2432. get_bits_count(&s->gb), v->bits);
  2433. return;
  2434. }
  2435. v->topleft_blk_idx = (v->topleft_blk_idx + 1) % (v->end_mb_x + 2);
  2436. v->top_blk_idx = (v->top_blk_idx + 1) % (v->end_mb_x + 2);
  2437. v->left_blk_idx = (v->left_blk_idx + 1) % (v->end_mb_x + 2);
  2438. v->cur_blk_idx = (v->cur_blk_idx + 1) % (v->end_mb_x + 2);
  2439. }
  2440. if (!v->s.loop_filter)
  2441. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  2442. else if (s->mb_y)
  2443. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  2444. s->first_slice_line = 0;
  2445. }
  2446. if (v->s.loop_filter)
  2447. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  2448. /* This is intentionally mb_height and not end_mb_y - unlike in advanced
  2449. * profile, these only differ are when decoding MSS2 rectangles. */
  2450. ff_er_add_slice(&s->er, 0, 0, s->mb_width - 1, s->mb_height - 1, ER_MB_END);
  2451. }
  2452. /** Decode blocks of I-frame for advanced profile
  2453. */
  2454. static void vc1_decode_i_blocks_adv(VC1Context *v)
  2455. {
  2456. int k;
  2457. MpegEncContext *s = &v->s;
  2458. int cbp, val;
  2459. uint8_t *coded_val;
  2460. int mb_pos;
  2461. int mquant;
  2462. int mqdiff;
  2463. GetBitContext *gb = &s->gb;
  2464. /* select coding mode used for VLC tables selection */
  2465. switch (v->y_ac_table_index) {
  2466. case 0:
  2467. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2468. break;
  2469. case 1:
  2470. v->codingset = CS_HIGH_MOT_INTRA;
  2471. break;
  2472. case 2:
  2473. v->codingset = CS_MID_RATE_INTRA;
  2474. break;
  2475. }
  2476. switch (v->c_ac_table_index) {
  2477. case 0:
  2478. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2479. break;
  2480. case 1:
  2481. v->codingset2 = CS_HIGH_MOT_INTER;
  2482. break;
  2483. case 2:
  2484. v->codingset2 = CS_MID_RATE_INTER;
  2485. break;
  2486. }
  2487. // do frame decode
  2488. s->mb_x = s->mb_y = 0;
  2489. s->mb_intra = 1;
  2490. s->first_slice_line = 1;
  2491. s->mb_y = s->start_mb_y;
  2492. if (s->start_mb_y) {
  2493. s->mb_x = 0;
  2494. init_block_index(v);
  2495. memset(&s->coded_block[s->block_index[0] - s->b8_stride], 0,
  2496. (1 + s->b8_stride) * sizeof(*s->coded_block));
  2497. }
  2498. for (; s->mb_y < s->end_mb_y; s->mb_y++) {
  2499. s->mb_x = 0;
  2500. init_block_index(v);
  2501. for (;s->mb_x < s->mb_width; s->mb_x++) {
  2502. mquant = v->pq;
  2503. ff_update_block_index(s);
  2504. s->bdsp.clear_blocks(v->block[v->cur_blk_idx][0]);
  2505. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2506. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  2507. for (int i = 0; i < 4; i++) {
  2508. s->current_picture.motion_val[1][s->block_index[i] + v->blocks_off][0] = 0;
  2509. s->current_picture.motion_val[1][s->block_index[i] + v->blocks_off][1] = 0;
  2510. }
  2511. // do actual MB decoding and displaying
  2512. if (v->fieldtx_is_raw)
  2513. v->fieldtx_plane[mb_pos] = get_bits1(&v->s.gb);
  2514. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2515. if (v->acpred_is_raw)
  2516. v->s.ac_pred = get_bits1(&v->s.gb);
  2517. else
  2518. v->s.ac_pred = v->acpred_plane[mb_pos];
  2519. if (v->condover == CONDOVER_SELECT && v->overflg_is_raw)
  2520. v->over_flags_plane[mb_pos] = get_bits1(&v->s.gb);
  2521. GET_MQUANT();
  2522. s->current_picture.qscale_table[mb_pos] = mquant;
  2523. /* Set DC scale - y and c use the same */
  2524. s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)];
  2525. s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)];
  2526. for (k = 0; k < 6; k++) {
  2527. v->mb_type[0][s->block_index[k]] = 1;
  2528. val = ((cbp >> (5 - k)) & 1);
  2529. if (k < 4) {
  2530. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2531. val = val ^ pred;
  2532. *coded_val = val;
  2533. }
  2534. cbp |= val << (5 - k);
  2535. v->a_avail = !s->first_slice_line || (k == 2 || k == 3);
  2536. v->c_avail = !!s->mb_x || (k == 1 || k == 3);
  2537. vc1_decode_i_block_adv(v, v->block[v->cur_blk_idx][block_map[k]], k, val,
  2538. (k < 4) ? v->codingset : v->codingset2, mquant);
  2539. if (CONFIG_GRAY && k > 3 && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  2540. continue;
  2541. v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][block_map[k]]);
  2542. }
  2543. if (v->overlap && (v->pq >= 9 || v->condover != CONDOVER_NONE))
  2544. ff_vc1_i_overlap_filter(v);
  2545. vc1_put_blocks_clamped(v, 1);
  2546. if (v->s.loop_filter)
  2547. ff_vc1_i_loop_filter(v);
  2548. if (get_bits_count(&s->gb) > v->bits) {
  2549. // TODO: may need modification to handle slice coding
  2550. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  2551. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
  2552. get_bits_count(&s->gb), v->bits);
  2553. return;
  2554. }
  2555. inc_blk_idx(v->topleft_blk_idx);
  2556. inc_blk_idx(v->top_blk_idx);
  2557. inc_blk_idx(v->left_blk_idx);
  2558. inc_blk_idx(v->cur_blk_idx);
  2559. }
  2560. if (!v->s.loop_filter)
  2561. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  2562. else if (s->mb_y)
  2563. ff_mpeg_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2564. s->first_slice_line = 0;
  2565. }
  2566. if (v->s.loop_filter)
  2567. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  2568. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  2569. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  2570. }
  2571. static void vc1_decode_p_blocks(VC1Context *v)
  2572. {
  2573. MpegEncContext *s = &v->s;
  2574. int apply_loop_filter;
  2575. /* select coding mode used for VLC tables selection */
  2576. switch (v->c_ac_table_index) {
  2577. case 0:
  2578. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2579. break;
  2580. case 1:
  2581. v->codingset = CS_HIGH_MOT_INTRA;
  2582. break;
  2583. case 2:
  2584. v->codingset = CS_MID_RATE_INTRA;
  2585. break;
  2586. }
  2587. switch (v->c_ac_table_index) {
  2588. case 0:
  2589. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2590. break;
  2591. case 1:
  2592. v->codingset2 = CS_HIGH_MOT_INTER;
  2593. break;
  2594. case 2:
  2595. v->codingset2 = CS_MID_RATE_INTER;
  2596. break;
  2597. }
  2598. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
  2599. s->first_slice_line = 1;
  2600. memset(v->cbp_base, 0, sizeof(v->cbp_base[0]) * 3 * s->mb_stride);
  2601. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  2602. s->mb_x = 0;
  2603. init_block_index(v);
  2604. for (; s->mb_x < s->mb_width; s->mb_x++) {
  2605. ff_update_block_index(s);
  2606. if (v->fcm == ILACE_FIELD) {
  2607. vc1_decode_p_mb_intfi(v);
  2608. if (apply_loop_filter)
  2609. ff_vc1_p_loop_filter(v);
  2610. } else if (v->fcm == ILACE_FRAME) {
  2611. vc1_decode_p_mb_intfr(v);
  2612. if (apply_loop_filter)
  2613. ff_vc1_p_intfr_loop_filter(v);
  2614. } else {
  2615. vc1_decode_p_mb(v);
  2616. if (apply_loop_filter)
  2617. ff_vc1_p_loop_filter(v);
  2618. }
  2619. if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2620. // TODO: may need modification to handle slice coding
  2621. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  2622. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
  2623. get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y);
  2624. return;
  2625. }
  2626. inc_blk_idx(v->topleft_blk_idx);
  2627. inc_blk_idx(v->top_blk_idx);
  2628. inc_blk_idx(v->left_blk_idx);
  2629. inc_blk_idx(v->cur_blk_idx);
  2630. }
  2631. memmove(v->cbp_base,
  2632. v->cbp - s->mb_stride,
  2633. sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  2634. memmove(v->ttblk_base,
  2635. v->ttblk - s->mb_stride,
  2636. sizeof(v->ttblk_base[0]) * 2 * s->mb_stride);
  2637. memmove(v->is_intra_base,
  2638. v->is_intra - s->mb_stride,
  2639. sizeof(v->is_intra_base[0]) * 2 * s->mb_stride);
  2640. memmove(v->luma_mv_base,
  2641. v->luma_mv - s->mb_stride,
  2642. sizeof(v->luma_mv_base[0]) * 2 * s->mb_stride);
  2643. if (s->mb_y != s->start_mb_y)
  2644. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  2645. s->first_slice_line = 0;
  2646. }
  2647. if (s->end_mb_y >= s->start_mb_y)
  2648. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  2649. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  2650. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  2651. }
  2652. static void vc1_decode_b_blocks(VC1Context *v)
  2653. {
  2654. MpegEncContext *s = &v->s;
  2655. /* select coding mode used for VLC tables selection */
  2656. switch (v->c_ac_table_index) {
  2657. case 0:
  2658. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2659. break;
  2660. case 1:
  2661. v->codingset = CS_HIGH_MOT_INTRA;
  2662. break;
  2663. case 2:
  2664. v->codingset = CS_MID_RATE_INTRA;
  2665. break;
  2666. }
  2667. switch (v->c_ac_table_index) {
  2668. case 0:
  2669. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2670. break;
  2671. case 1:
  2672. v->codingset2 = CS_HIGH_MOT_INTER;
  2673. break;
  2674. case 2:
  2675. v->codingset2 = CS_MID_RATE_INTER;
  2676. break;
  2677. }
  2678. s->first_slice_line = 1;
  2679. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  2680. s->mb_x = 0;
  2681. init_block_index(v);
  2682. for (; s->mb_x < s->mb_width; s->mb_x++) {
  2683. ff_update_block_index(s);
  2684. if (v->fcm == ILACE_FIELD) {
  2685. vc1_decode_b_mb_intfi(v);
  2686. if (v->s.loop_filter)
  2687. ff_vc1_b_intfi_loop_filter(v);
  2688. } else if (v->fcm == ILACE_FRAME) {
  2689. vc1_decode_b_mb_intfr(v);
  2690. if (v->s.loop_filter)
  2691. ff_vc1_p_intfr_loop_filter(v);
  2692. } else {
  2693. vc1_decode_b_mb(v);
  2694. if (v->s.loop_filter)
  2695. ff_vc1_i_loop_filter(v);
  2696. }
  2697. if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2698. // TODO: may need modification to handle slice coding
  2699. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  2700. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
  2701. get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y);
  2702. return;
  2703. }
  2704. }
  2705. memmove(v->cbp_base,
  2706. v->cbp - s->mb_stride,
  2707. sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  2708. memmove(v->ttblk_base,
  2709. v->ttblk - s->mb_stride,
  2710. sizeof(v->ttblk_base[0]) * 2 * s->mb_stride);
  2711. memmove(v->is_intra_base,
  2712. v->is_intra - s->mb_stride,
  2713. sizeof(v->is_intra_base[0]) * 2 * s->mb_stride);
  2714. if (!v->s.loop_filter)
  2715. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  2716. else if (s->mb_y)
  2717. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  2718. s->first_slice_line = 0;
  2719. }
  2720. if (v->s.loop_filter)
  2721. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  2722. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  2723. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  2724. }
  2725. static void vc1_decode_skip_blocks(VC1Context *v)
  2726. {
  2727. MpegEncContext *s = &v->s;
  2728. if (!v->s.last_picture.f->data[0])
  2729. return;
  2730. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_width - 1, s->end_mb_y - 1, ER_MB_END);
  2731. s->first_slice_line = 1;
  2732. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  2733. s->mb_x = 0;
  2734. init_block_index(v);
  2735. ff_update_block_index(s);
  2736. memcpy(s->dest[0], s->last_picture.f->data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  2737. memcpy(s->dest[1], s->last_picture.f->data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2738. memcpy(s->dest[2], s->last_picture.f->data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2739. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  2740. s->first_slice_line = 0;
  2741. }
  2742. s->pict_type = AV_PICTURE_TYPE_P;
  2743. }
  2744. void ff_vc1_decode_blocks(VC1Context *v)
  2745. {
  2746. v->s.esc3_level_length = 0;
  2747. if (v->x8_type) {
  2748. ff_intrax8_decode_picture(&v->x8, &v->s.current_picture,
  2749. &v->s.gb, &v->s.mb_x, &v->s.mb_y,
  2750. 2 * v->pq + v->halfpq, v->pq * !v->pquantizer,
  2751. v->s.loop_filter, v->s.low_delay);
  2752. ff_er_add_slice(&v->s.er, 0, 0,
  2753. (v->s.mb_x >> 1) - 1, (v->s.mb_y >> 1) - 1,
  2754. ER_MB_END);
  2755. } else {
  2756. v->cur_blk_idx = 0;
  2757. v->left_blk_idx = -1;
  2758. v->topleft_blk_idx = 1;
  2759. v->top_blk_idx = 2;
  2760. switch (v->s.pict_type) {
  2761. case AV_PICTURE_TYPE_I:
  2762. if (v->profile == PROFILE_ADVANCED)
  2763. vc1_decode_i_blocks_adv(v);
  2764. else
  2765. vc1_decode_i_blocks(v);
  2766. break;
  2767. case AV_PICTURE_TYPE_P:
  2768. if (v->p_frame_skipped)
  2769. vc1_decode_skip_blocks(v);
  2770. else
  2771. vc1_decode_p_blocks(v);
  2772. break;
  2773. case AV_PICTURE_TYPE_B:
  2774. if (v->bi_type) {
  2775. if (v->profile == PROFILE_ADVANCED)
  2776. vc1_decode_i_blocks_adv(v);
  2777. else
  2778. vc1_decode_i_blocks(v);
  2779. } else
  2780. vc1_decode_b_blocks(v);
  2781. break;
  2782. }
  2783. }
  2784. }