You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4161 lines
154KB

  1. /*
  2. * Matroska file demuxer
  3. * Copyright (c) 2003-2008 The FFmpeg Project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Matroska file demuxer
  24. * @author Ronald Bultje <rbultje@ronald.bitfreak.net>
  25. * @author with a little help from Moritz Bunkus <moritz@bunkus.org>
  26. * @author totally reworked by Aurelien Jacobs <aurel@gnuage.org>
  27. * @see specs available on the Matroska project page: http://www.matroska.org/
  28. */
  29. #include "config.h"
  30. #include <inttypes.h>
  31. #include <stdio.h>
  32. #include "libavutil/avstring.h"
  33. #include "libavutil/base64.h"
  34. #include "libavutil/dict.h"
  35. #include "libavutil/intfloat.h"
  36. #include "libavutil/intreadwrite.h"
  37. #include "libavutil/lzo.h"
  38. #include "libavutil/mastering_display_metadata.h"
  39. #include "libavutil/mathematics.h"
  40. #include "libavutil/opt.h"
  41. #include "libavutil/time_internal.h"
  42. #include "libavutil/spherical.h"
  43. #include "libavcodec/bytestream.h"
  44. #include "libavcodec/flac.h"
  45. #include "libavcodec/mpeg4audio.h"
  46. #include "avformat.h"
  47. #include "avio_internal.h"
  48. #include "internal.h"
  49. #include "isom.h"
  50. #include "matroska.h"
  51. #include "oggdec.h"
  52. /* For ff_codec_get_id(). */
  53. #include "riff.h"
  54. #include "rmsipr.h"
  55. #if CONFIG_BZLIB
  56. #include <bzlib.h>
  57. #endif
  58. #if CONFIG_ZLIB
  59. #include <zlib.h>
  60. #endif
  61. #include "qtpalette.h"
  62. #define EBML_UNKNOWN_LENGTH UINT64_MAX /* EBML unknown length, in uint64_t */
  63. #define NEEDS_CHECKING 2 /* Indicates that some error checks
  64. * still need to be performed */
  65. #define LEVEL_ENDED 3 /* return value of ebml_parse when the
  66. * syntax level used for parsing ended. */
  67. typedef enum {
  68. EBML_NONE,
  69. EBML_UINT,
  70. EBML_FLOAT,
  71. EBML_STR,
  72. EBML_UTF8,
  73. EBML_BIN,
  74. EBML_NEST,
  75. EBML_LEVEL1,
  76. EBML_STOP,
  77. EBML_SINT,
  78. EBML_TYPE_COUNT
  79. } EbmlType;
  80. typedef const struct EbmlSyntax {
  81. uint32_t id;
  82. EbmlType type;
  83. int list_elem_size;
  84. int data_offset;
  85. union {
  86. int64_t i;
  87. uint64_t u;
  88. double f;
  89. const char *s;
  90. const struct EbmlSyntax *n;
  91. } def;
  92. } EbmlSyntax;
  93. typedef struct EbmlList {
  94. int nb_elem;
  95. void *elem;
  96. } EbmlList;
  97. typedef struct EbmlBin {
  98. int size;
  99. AVBufferRef *buf;
  100. uint8_t *data;
  101. int64_t pos;
  102. } EbmlBin;
  103. typedef struct Ebml {
  104. uint64_t version;
  105. uint64_t max_size;
  106. uint64_t id_length;
  107. char *doctype;
  108. uint64_t doctype_version;
  109. } Ebml;
  110. typedef struct MatroskaTrackCompression {
  111. uint64_t algo;
  112. EbmlBin settings;
  113. } MatroskaTrackCompression;
  114. typedef struct MatroskaTrackEncryption {
  115. uint64_t algo;
  116. EbmlBin key_id;
  117. } MatroskaTrackEncryption;
  118. typedef struct MatroskaTrackEncoding {
  119. uint64_t scope;
  120. uint64_t type;
  121. MatroskaTrackCompression compression;
  122. MatroskaTrackEncryption encryption;
  123. } MatroskaTrackEncoding;
  124. typedef struct MatroskaMasteringMeta {
  125. double r_x;
  126. double r_y;
  127. double g_x;
  128. double g_y;
  129. double b_x;
  130. double b_y;
  131. double white_x;
  132. double white_y;
  133. double max_luminance;
  134. double min_luminance;
  135. } MatroskaMasteringMeta;
  136. typedef struct MatroskaTrackVideoColor {
  137. uint64_t matrix_coefficients;
  138. uint64_t bits_per_channel;
  139. uint64_t chroma_sub_horz;
  140. uint64_t chroma_sub_vert;
  141. uint64_t cb_sub_horz;
  142. uint64_t cb_sub_vert;
  143. uint64_t chroma_siting_horz;
  144. uint64_t chroma_siting_vert;
  145. uint64_t range;
  146. uint64_t transfer_characteristics;
  147. uint64_t primaries;
  148. uint64_t max_cll;
  149. uint64_t max_fall;
  150. MatroskaMasteringMeta mastering_meta;
  151. } MatroskaTrackVideoColor;
  152. typedef struct MatroskaTrackVideoProjection {
  153. uint64_t type;
  154. EbmlBin private;
  155. double yaw;
  156. double pitch;
  157. double roll;
  158. } MatroskaTrackVideoProjection;
  159. typedef struct MatroskaTrackVideo {
  160. double frame_rate;
  161. uint64_t display_width;
  162. uint64_t display_height;
  163. uint64_t pixel_width;
  164. uint64_t pixel_height;
  165. EbmlBin color_space;
  166. uint64_t display_unit;
  167. uint64_t interlaced;
  168. uint64_t field_order;
  169. uint64_t stereo_mode;
  170. uint64_t alpha_mode;
  171. EbmlList color;
  172. MatroskaTrackVideoProjection projection;
  173. } MatroskaTrackVideo;
  174. typedef struct MatroskaTrackAudio {
  175. double samplerate;
  176. double out_samplerate;
  177. uint64_t bitdepth;
  178. uint64_t channels;
  179. /* real audio header (extracted from extradata) */
  180. int coded_framesize;
  181. int sub_packet_h;
  182. int frame_size;
  183. int sub_packet_size;
  184. int sub_packet_cnt;
  185. int pkt_cnt;
  186. uint64_t buf_timecode;
  187. uint8_t *buf;
  188. } MatroskaTrackAudio;
  189. typedef struct MatroskaTrackPlane {
  190. uint64_t uid;
  191. uint64_t type;
  192. } MatroskaTrackPlane;
  193. typedef struct MatroskaTrackOperation {
  194. EbmlList combine_planes;
  195. } MatroskaTrackOperation;
  196. typedef struct MatroskaTrack {
  197. uint64_t num;
  198. uint64_t uid;
  199. uint64_t type;
  200. char *name;
  201. char *codec_id;
  202. EbmlBin codec_priv;
  203. char *language;
  204. double time_scale;
  205. uint64_t default_duration;
  206. uint64_t flag_default;
  207. uint64_t flag_forced;
  208. uint64_t seek_preroll;
  209. MatroskaTrackVideo video;
  210. MatroskaTrackAudio audio;
  211. MatroskaTrackOperation operation;
  212. EbmlList encodings;
  213. uint64_t codec_delay;
  214. uint64_t codec_delay_in_track_tb;
  215. AVStream *stream;
  216. int64_t end_timecode;
  217. int ms_compat;
  218. uint64_t max_block_additional_id;
  219. uint32_t palette[AVPALETTE_COUNT];
  220. int has_palette;
  221. } MatroskaTrack;
  222. typedef struct MatroskaAttachment {
  223. uint64_t uid;
  224. char *filename;
  225. char *mime;
  226. EbmlBin bin;
  227. AVStream *stream;
  228. } MatroskaAttachment;
  229. typedef struct MatroskaChapter {
  230. uint64_t start;
  231. uint64_t end;
  232. uint64_t uid;
  233. char *title;
  234. AVChapter *chapter;
  235. } MatroskaChapter;
  236. typedef struct MatroskaIndexPos {
  237. uint64_t track;
  238. uint64_t pos;
  239. } MatroskaIndexPos;
  240. typedef struct MatroskaIndex {
  241. uint64_t time;
  242. EbmlList pos;
  243. } MatroskaIndex;
  244. typedef struct MatroskaTag {
  245. char *name;
  246. char *string;
  247. char *lang;
  248. uint64_t def;
  249. EbmlList sub;
  250. } MatroskaTag;
  251. typedef struct MatroskaTagTarget {
  252. char *type;
  253. uint64_t typevalue;
  254. uint64_t trackuid;
  255. uint64_t chapteruid;
  256. uint64_t attachuid;
  257. } MatroskaTagTarget;
  258. typedef struct MatroskaTags {
  259. MatroskaTagTarget target;
  260. EbmlList tag;
  261. } MatroskaTags;
  262. typedef struct MatroskaSeekhead {
  263. uint64_t id;
  264. uint64_t pos;
  265. } MatroskaSeekhead;
  266. typedef struct MatroskaLevel {
  267. uint64_t start;
  268. uint64_t length;
  269. } MatroskaLevel;
  270. typedef struct MatroskaBlock {
  271. uint64_t duration;
  272. int64_t reference;
  273. uint64_t non_simple;
  274. EbmlBin bin;
  275. uint64_t additional_id;
  276. EbmlBin additional;
  277. int64_t discard_padding;
  278. } MatroskaBlock;
  279. typedef struct MatroskaCluster {
  280. MatroskaBlock block;
  281. uint64_t timecode;
  282. int64_t pos;
  283. } MatroskaCluster;
  284. typedef struct MatroskaLevel1Element {
  285. uint64_t pos;
  286. uint32_t id;
  287. int parsed;
  288. } MatroskaLevel1Element;
  289. typedef struct MatroskaDemuxContext {
  290. const AVClass *class;
  291. AVFormatContext *ctx;
  292. /* EBML stuff */
  293. int num_levels;
  294. MatroskaLevel levels[EBML_MAX_DEPTH];
  295. uint32_t current_id;
  296. int64_t resync_pos;
  297. uint64_t time_scale;
  298. double duration;
  299. char *title;
  300. char *muxingapp;
  301. EbmlBin date_utc;
  302. EbmlList tracks;
  303. EbmlList attachments;
  304. EbmlList chapters;
  305. EbmlList index;
  306. EbmlList tags;
  307. EbmlList seekhead;
  308. /* byte position of the segment inside the stream */
  309. int64_t segment_start;
  310. /* the packet queue */
  311. AVPacketList *queue;
  312. AVPacketList *queue_end;
  313. int done;
  314. /* What to skip before effectively reading a packet. */
  315. int skip_to_keyframe;
  316. uint64_t skip_to_timecode;
  317. /* File has a CUES element, but we defer parsing until it is needed. */
  318. int cues_parsing_deferred;
  319. /* Level1 elements and whether they were read yet */
  320. MatroskaLevel1Element level1_elems[64];
  321. int num_level1_elems;
  322. MatroskaCluster current_cluster;
  323. /* WebM DASH Manifest live flag */
  324. int is_live;
  325. /* Bandwidth value for WebM DASH Manifest */
  326. int bandwidth;
  327. } MatroskaDemuxContext;
  328. #define CHILD_OF(parent) { .def = { .n = parent } }
  329. static const EbmlSyntax ebml_syntax[], matroska_segment[], matroska_track_video_color[], matroska_track_video[],
  330. matroska_track[], matroska_track_encoding[], matroska_track_encodings[],
  331. matroska_track_combine_planes[], matroska_track_operation[], matroska_tracks[],
  332. matroska_attachments[], matroska_chapter_entry[], matroska_chapter[], matroska_chapters[],
  333. matroska_index_entry[], matroska_index[], matroska_tag[], matroska_tags[], matroska_seekhead[],
  334. matroska_blockadditions[], matroska_blockgroup[], matroska_cluster_parsing[];
  335. static const EbmlSyntax ebml_header[] = {
  336. { EBML_ID_EBMLREADVERSION, EBML_UINT, 0, offsetof(Ebml, version), { .u = EBML_VERSION } },
  337. { EBML_ID_EBMLMAXSIZELENGTH, EBML_UINT, 0, offsetof(Ebml, max_size), { .u = 8 } },
  338. { EBML_ID_EBMLMAXIDLENGTH, EBML_UINT, 0, offsetof(Ebml, id_length), { .u = 4 } },
  339. { EBML_ID_DOCTYPE, EBML_STR, 0, offsetof(Ebml, doctype), { .s = "(none)" } },
  340. { EBML_ID_DOCTYPEREADVERSION, EBML_UINT, 0, offsetof(Ebml, doctype_version), { .u = 1 } },
  341. { EBML_ID_EBMLVERSION, EBML_NONE },
  342. { EBML_ID_DOCTYPEVERSION, EBML_NONE },
  343. CHILD_OF(ebml_syntax)
  344. };
  345. static const EbmlSyntax ebml_syntax[] = {
  346. { EBML_ID_HEADER, EBML_NEST, 0, 0, { .n = ebml_header } },
  347. { MATROSKA_ID_SEGMENT, EBML_STOP },
  348. { 0 }
  349. };
  350. static const EbmlSyntax matroska_info[] = {
  351. { MATROSKA_ID_TIMECODESCALE, EBML_UINT, 0, offsetof(MatroskaDemuxContext, time_scale), { .u = 1000000 } },
  352. { MATROSKA_ID_DURATION, EBML_FLOAT, 0, offsetof(MatroskaDemuxContext, duration) },
  353. { MATROSKA_ID_TITLE, EBML_UTF8, 0, offsetof(MatroskaDemuxContext, title) },
  354. { MATROSKA_ID_WRITINGAPP, EBML_NONE },
  355. { MATROSKA_ID_MUXINGAPP, EBML_UTF8, 0, offsetof(MatroskaDemuxContext, muxingapp) },
  356. { MATROSKA_ID_DATEUTC, EBML_BIN, 0, offsetof(MatroskaDemuxContext, date_utc) },
  357. { MATROSKA_ID_SEGMENTUID, EBML_NONE },
  358. CHILD_OF(matroska_segment)
  359. };
  360. static const EbmlSyntax matroska_mastering_meta[] = {
  361. { MATROSKA_ID_VIDEOCOLOR_RX, EBML_FLOAT, 0, offsetof(MatroskaMasteringMeta, r_x), { .f=-1 } },
  362. { MATROSKA_ID_VIDEOCOLOR_RY, EBML_FLOAT, 0, offsetof(MatroskaMasteringMeta, r_y), { .f=-1 } },
  363. { MATROSKA_ID_VIDEOCOLOR_GX, EBML_FLOAT, 0, offsetof(MatroskaMasteringMeta, g_x), { .f=-1 } },
  364. { MATROSKA_ID_VIDEOCOLOR_GY, EBML_FLOAT, 0, offsetof(MatroskaMasteringMeta, g_y), { .f=-1 } },
  365. { MATROSKA_ID_VIDEOCOLOR_BX, EBML_FLOAT, 0, offsetof(MatroskaMasteringMeta, b_x), { .f=-1 } },
  366. { MATROSKA_ID_VIDEOCOLOR_BY, EBML_FLOAT, 0, offsetof(MatroskaMasteringMeta, b_y), { .f=-1 } },
  367. { MATROSKA_ID_VIDEOCOLOR_WHITEX, EBML_FLOAT, 0, offsetof(MatroskaMasteringMeta, white_x), { .f=-1 } },
  368. { MATROSKA_ID_VIDEOCOLOR_WHITEY, EBML_FLOAT, 0, offsetof(MatroskaMasteringMeta, white_y), { .f=-1 } },
  369. { MATROSKA_ID_VIDEOCOLOR_LUMINANCEMIN, EBML_FLOAT, 0, offsetof(MatroskaMasteringMeta, min_luminance), { .f=-1 } },
  370. { MATROSKA_ID_VIDEOCOLOR_LUMINANCEMAX, EBML_FLOAT, 0, offsetof(MatroskaMasteringMeta, max_luminance), { .f=-1 } },
  371. CHILD_OF(matroska_track_video_color)
  372. };
  373. static const EbmlSyntax matroska_track_video_color[] = {
  374. { MATROSKA_ID_VIDEOCOLORMATRIXCOEFF, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, matrix_coefficients), { .u = AVCOL_SPC_UNSPECIFIED } },
  375. { MATROSKA_ID_VIDEOCOLORBITSPERCHANNEL, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, bits_per_channel), { .u=0 } },
  376. { MATROSKA_ID_VIDEOCOLORCHROMASUBHORZ, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, chroma_sub_horz), { .u=0 } },
  377. { MATROSKA_ID_VIDEOCOLORCHROMASUBVERT, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, chroma_sub_vert), { .u=0 } },
  378. { MATROSKA_ID_VIDEOCOLORCBSUBHORZ, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, cb_sub_horz), { .u=0 } },
  379. { MATROSKA_ID_VIDEOCOLORCBSUBVERT, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, cb_sub_vert), { .u=0 } },
  380. { MATROSKA_ID_VIDEOCOLORCHROMASITINGHORZ, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, chroma_siting_horz), { .u = MATROSKA_COLOUR_CHROMASITINGHORZ_UNDETERMINED } },
  381. { MATROSKA_ID_VIDEOCOLORCHROMASITINGVERT, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, chroma_siting_vert), { .u = MATROSKA_COLOUR_CHROMASITINGVERT_UNDETERMINED } },
  382. { MATROSKA_ID_VIDEOCOLORRANGE, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, range), { .u = AVCOL_RANGE_UNSPECIFIED } },
  383. { MATROSKA_ID_VIDEOCOLORTRANSFERCHARACTERISTICS, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, transfer_characteristics), { .u = AVCOL_TRC_UNSPECIFIED } },
  384. { MATROSKA_ID_VIDEOCOLORPRIMARIES, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, primaries), { .u = AVCOL_PRI_UNSPECIFIED } },
  385. { MATROSKA_ID_VIDEOCOLORMAXCLL, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, max_cll), { .u=0 } },
  386. { MATROSKA_ID_VIDEOCOLORMAXFALL, EBML_UINT, 0, offsetof(MatroskaTrackVideoColor, max_fall), { .u=0 } },
  387. { MATROSKA_ID_VIDEOCOLORMASTERINGMETA, EBML_NEST, 0, offsetof(MatroskaTrackVideoColor, mastering_meta), { .n = matroska_mastering_meta } },
  388. CHILD_OF(matroska_track_video)
  389. };
  390. static const EbmlSyntax matroska_track_video_projection[] = {
  391. { MATROSKA_ID_VIDEOPROJECTIONTYPE, EBML_UINT, 0, offsetof(MatroskaTrackVideoProjection, type), { .u = MATROSKA_VIDEO_PROJECTION_TYPE_RECTANGULAR } },
  392. { MATROSKA_ID_VIDEOPROJECTIONPRIVATE, EBML_BIN, 0, offsetof(MatroskaTrackVideoProjection, private) },
  393. { MATROSKA_ID_VIDEOPROJECTIONPOSEYAW, EBML_FLOAT, 0, offsetof(MatroskaTrackVideoProjection, yaw), { .f=0.0 } },
  394. { MATROSKA_ID_VIDEOPROJECTIONPOSEPITCH, EBML_FLOAT, 0, offsetof(MatroskaTrackVideoProjection, pitch), { .f=0.0 } },
  395. { MATROSKA_ID_VIDEOPROJECTIONPOSEROLL, EBML_FLOAT, 0, offsetof(MatroskaTrackVideoProjection, roll), { .f=0.0 } },
  396. CHILD_OF(matroska_track_video)
  397. };
  398. static const EbmlSyntax matroska_track_video[] = {
  399. { MATROSKA_ID_VIDEOFRAMERATE, EBML_FLOAT, 0, offsetof(MatroskaTrackVideo, frame_rate) },
  400. { MATROSKA_ID_VIDEODISPLAYWIDTH, EBML_UINT, 0, offsetof(MatroskaTrackVideo, display_width), { .u=-1 } },
  401. { MATROSKA_ID_VIDEODISPLAYHEIGHT, EBML_UINT, 0, offsetof(MatroskaTrackVideo, display_height), { .u=-1 } },
  402. { MATROSKA_ID_VIDEOPIXELWIDTH, EBML_UINT, 0, offsetof(MatroskaTrackVideo, pixel_width) },
  403. { MATROSKA_ID_VIDEOPIXELHEIGHT, EBML_UINT, 0, offsetof(MatroskaTrackVideo, pixel_height) },
  404. { MATROSKA_ID_VIDEOCOLORSPACE, EBML_BIN, 0, offsetof(MatroskaTrackVideo, color_space) },
  405. { MATROSKA_ID_VIDEOALPHAMODE, EBML_UINT, 0, offsetof(MatroskaTrackVideo, alpha_mode) },
  406. { MATROSKA_ID_VIDEOCOLOR, EBML_NEST, sizeof(MatroskaTrackVideoColor), offsetof(MatroskaTrackVideo, color), { .n = matroska_track_video_color } },
  407. { MATROSKA_ID_VIDEOPROJECTION, EBML_NEST, 0, offsetof(MatroskaTrackVideo, projection), { .n = matroska_track_video_projection } },
  408. { MATROSKA_ID_VIDEOPIXELCROPB, EBML_NONE },
  409. { MATROSKA_ID_VIDEOPIXELCROPT, EBML_NONE },
  410. { MATROSKA_ID_VIDEOPIXELCROPL, EBML_NONE },
  411. { MATROSKA_ID_VIDEOPIXELCROPR, EBML_NONE },
  412. { MATROSKA_ID_VIDEODISPLAYUNIT, EBML_UINT, 0, offsetof(MatroskaTrackVideo, display_unit), { .u= MATROSKA_VIDEO_DISPLAYUNIT_PIXELS } },
  413. { MATROSKA_ID_VIDEOFLAGINTERLACED, EBML_UINT, 0, offsetof(MatroskaTrackVideo, interlaced), { .u = MATROSKA_VIDEO_INTERLACE_FLAG_UNDETERMINED } },
  414. { MATROSKA_ID_VIDEOFIELDORDER, EBML_UINT, 0, offsetof(MatroskaTrackVideo, field_order), { .u = MATROSKA_VIDEO_FIELDORDER_UNDETERMINED } },
  415. { MATROSKA_ID_VIDEOSTEREOMODE, EBML_UINT, 0, offsetof(MatroskaTrackVideo, stereo_mode), { .u = MATROSKA_VIDEO_STEREOMODE_TYPE_NB } },
  416. { MATROSKA_ID_VIDEOASPECTRATIO, EBML_NONE },
  417. CHILD_OF(matroska_track)
  418. };
  419. static const EbmlSyntax matroska_track_audio[] = {
  420. { MATROSKA_ID_AUDIOSAMPLINGFREQ, EBML_FLOAT, 0, offsetof(MatroskaTrackAudio, samplerate), { .f = 8000.0 } },
  421. { MATROSKA_ID_AUDIOOUTSAMPLINGFREQ, EBML_FLOAT, 0, offsetof(MatroskaTrackAudio, out_samplerate) },
  422. { MATROSKA_ID_AUDIOBITDEPTH, EBML_UINT, 0, offsetof(MatroskaTrackAudio, bitdepth) },
  423. { MATROSKA_ID_AUDIOCHANNELS, EBML_UINT, 0, offsetof(MatroskaTrackAudio, channels), { .u = 1 } },
  424. CHILD_OF(matroska_track)
  425. };
  426. static const EbmlSyntax matroska_track_encoding_compression[] = {
  427. { MATROSKA_ID_ENCODINGCOMPALGO, EBML_UINT, 0, offsetof(MatroskaTrackCompression, algo), { .u = 0 } },
  428. { MATROSKA_ID_ENCODINGCOMPSETTINGS, EBML_BIN, 0, offsetof(MatroskaTrackCompression, settings) },
  429. CHILD_OF(matroska_track_encoding)
  430. };
  431. static const EbmlSyntax matroska_track_encoding_encryption[] = {
  432. { MATROSKA_ID_ENCODINGENCALGO, EBML_UINT, 0, offsetof(MatroskaTrackEncryption,algo), {.u = 0} },
  433. { MATROSKA_ID_ENCODINGENCKEYID, EBML_BIN, 0, offsetof(MatroskaTrackEncryption,key_id) },
  434. { MATROSKA_ID_ENCODINGENCAESSETTINGS, EBML_NONE },
  435. { MATROSKA_ID_ENCODINGSIGALGO, EBML_NONE },
  436. { MATROSKA_ID_ENCODINGSIGHASHALGO, EBML_NONE },
  437. { MATROSKA_ID_ENCODINGSIGKEYID, EBML_NONE },
  438. { MATROSKA_ID_ENCODINGSIGNATURE, EBML_NONE },
  439. CHILD_OF(matroska_track_encoding)
  440. };
  441. static const EbmlSyntax matroska_track_encoding[] = {
  442. { MATROSKA_ID_ENCODINGSCOPE, EBML_UINT, 0, offsetof(MatroskaTrackEncoding, scope), { .u = 1 } },
  443. { MATROSKA_ID_ENCODINGTYPE, EBML_UINT, 0, offsetof(MatroskaTrackEncoding, type), { .u = 0 } },
  444. { MATROSKA_ID_ENCODINGCOMPRESSION, EBML_NEST, 0, offsetof(MatroskaTrackEncoding, compression), { .n = matroska_track_encoding_compression } },
  445. { MATROSKA_ID_ENCODINGENCRYPTION, EBML_NEST, 0, offsetof(MatroskaTrackEncoding, encryption), { .n = matroska_track_encoding_encryption } },
  446. { MATROSKA_ID_ENCODINGORDER, EBML_NONE },
  447. CHILD_OF(matroska_track_encodings)
  448. };
  449. static const EbmlSyntax matroska_track_encodings[] = {
  450. { MATROSKA_ID_TRACKCONTENTENCODING, EBML_NEST, sizeof(MatroskaTrackEncoding), offsetof(MatroskaTrack, encodings), { .n = matroska_track_encoding } },
  451. CHILD_OF(matroska_track)
  452. };
  453. static const EbmlSyntax matroska_track_plane[] = {
  454. { MATROSKA_ID_TRACKPLANEUID, EBML_UINT, 0, offsetof(MatroskaTrackPlane,uid) },
  455. { MATROSKA_ID_TRACKPLANETYPE, EBML_UINT, 0, offsetof(MatroskaTrackPlane,type) },
  456. CHILD_OF(matroska_track_combine_planes)
  457. };
  458. static const EbmlSyntax matroska_track_combine_planes[] = {
  459. { MATROSKA_ID_TRACKPLANE, EBML_NEST, sizeof(MatroskaTrackPlane), offsetof(MatroskaTrackOperation,combine_planes), {.n = matroska_track_plane} },
  460. CHILD_OF(matroska_track_operation)
  461. };
  462. static const EbmlSyntax matroska_track_operation[] = {
  463. { MATROSKA_ID_TRACKCOMBINEPLANES, EBML_NEST, 0, 0, {.n = matroska_track_combine_planes} },
  464. CHILD_OF(matroska_track)
  465. };
  466. static const EbmlSyntax matroska_track[] = {
  467. { MATROSKA_ID_TRACKNUMBER, EBML_UINT, 0, offsetof(MatroskaTrack, num) },
  468. { MATROSKA_ID_TRACKNAME, EBML_UTF8, 0, offsetof(MatroskaTrack, name) },
  469. { MATROSKA_ID_TRACKUID, EBML_UINT, 0, offsetof(MatroskaTrack, uid) },
  470. { MATROSKA_ID_TRACKTYPE, EBML_UINT, 0, offsetof(MatroskaTrack, type) },
  471. { MATROSKA_ID_CODECID, EBML_STR, 0, offsetof(MatroskaTrack, codec_id) },
  472. { MATROSKA_ID_CODECPRIVATE, EBML_BIN, 0, offsetof(MatroskaTrack, codec_priv) },
  473. { MATROSKA_ID_CODECDELAY, EBML_UINT, 0, offsetof(MatroskaTrack, codec_delay) },
  474. { MATROSKA_ID_TRACKLANGUAGE, EBML_UTF8, 0, offsetof(MatroskaTrack, language), { .s = "eng" } },
  475. { MATROSKA_ID_TRACKDEFAULTDURATION, EBML_UINT, 0, offsetof(MatroskaTrack, default_duration) },
  476. { MATROSKA_ID_TRACKTIMECODESCALE, EBML_FLOAT, 0, offsetof(MatroskaTrack, time_scale), { .f = 1.0 } },
  477. { MATROSKA_ID_TRACKFLAGDEFAULT, EBML_UINT, 0, offsetof(MatroskaTrack, flag_default), { .u = 1 } },
  478. { MATROSKA_ID_TRACKFLAGFORCED, EBML_UINT, 0, offsetof(MatroskaTrack, flag_forced), { .u = 0 } },
  479. { MATROSKA_ID_TRACKVIDEO, EBML_NEST, 0, offsetof(MatroskaTrack, video), { .n = matroska_track_video } },
  480. { MATROSKA_ID_TRACKAUDIO, EBML_NEST, 0, offsetof(MatroskaTrack, audio), { .n = matroska_track_audio } },
  481. { MATROSKA_ID_TRACKOPERATION, EBML_NEST, 0, offsetof(MatroskaTrack, operation), { .n = matroska_track_operation } },
  482. { MATROSKA_ID_TRACKCONTENTENCODINGS, EBML_NEST, 0, 0, { .n = matroska_track_encodings } },
  483. { MATROSKA_ID_TRACKMAXBLKADDID, EBML_UINT, 0, offsetof(MatroskaTrack, max_block_additional_id) },
  484. { MATROSKA_ID_SEEKPREROLL, EBML_UINT, 0, offsetof(MatroskaTrack, seek_preroll) },
  485. { MATROSKA_ID_TRACKFLAGENABLED, EBML_NONE },
  486. { MATROSKA_ID_TRACKFLAGLACING, EBML_NONE },
  487. { MATROSKA_ID_CODECNAME, EBML_NONE },
  488. { MATROSKA_ID_CODECDECODEALL, EBML_NONE },
  489. { MATROSKA_ID_CODECINFOURL, EBML_NONE },
  490. { MATROSKA_ID_CODECDOWNLOADURL, EBML_NONE },
  491. { MATROSKA_ID_TRACKMINCACHE, EBML_NONE },
  492. { MATROSKA_ID_TRACKMAXCACHE, EBML_NONE },
  493. CHILD_OF(matroska_tracks)
  494. };
  495. static const EbmlSyntax matroska_tracks[] = {
  496. { MATROSKA_ID_TRACKENTRY, EBML_NEST, sizeof(MatroskaTrack), offsetof(MatroskaDemuxContext, tracks), { .n = matroska_track } },
  497. CHILD_OF(matroska_segment)
  498. };
  499. static const EbmlSyntax matroska_attachment[] = {
  500. { MATROSKA_ID_FILEUID, EBML_UINT, 0, offsetof(MatroskaAttachment, uid) },
  501. { MATROSKA_ID_FILENAME, EBML_UTF8, 0, offsetof(MatroskaAttachment, filename) },
  502. { MATROSKA_ID_FILEMIMETYPE, EBML_STR, 0, offsetof(MatroskaAttachment, mime) },
  503. { MATROSKA_ID_FILEDATA, EBML_BIN, 0, offsetof(MatroskaAttachment, bin) },
  504. { MATROSKA_ID_FILEDESC, EBML_NONE },
  505. CHILD_OF(matroska_attachments)
  506. };
  507. static const EbmlSyntax matroska_attachments[] = {
  508. { MATROSKA_ID_ATTACHEDFILE, EBML_NEST, sizeof(MatroskaAttachment), offsetof(MatroskaDemuxContext, attachments), { .n = matroska_attachment } },
  509. CHILD_OF(matroska_segment)
  510. };
  511. static const EbmlSyntax matroska_chapter_display[] = {
  512. { MATROSKA_ID_CHAPSTRING, EBML_UTF8, 0, offsetof(MatroskaChapter, title) },
  513. { MATROSKA_ID_CHAPLANG, EBML_NONE },
  514. { MATROSKA_ID_CHAPCOUNTRY, EBML_NONE },
  515. CHILD_OF(matroska_chapter_entry)
  516. };
  517. static const EbmlSyntax matroska_chapter_entry[] = {
  518. { MATROSKA_ID_CHAPTERTIMESTART, EBML_UINT, 0, offsetof(MatroskaChapter, start), { .u = AV_NOPTS_VALUE } },
  519. { MATROSKA_ID_CHAPTERTIMEEND, EBML_UINT, 0, offsetof(MatroskaChapter, end), { .u = AV_NOPTS_VALUE } },
  520. { MATROSKA_ID_CHAPTERUID, EBML_UINT, 0, offsetof(MatroskaChapter, uid) },
  521. { MATROSKA_ID_CHAPTERDISPLAY, EBML_NEST, 0, 0, { .n = matroska_chapter_display } },
  522. { MATROSKA_ID_CHAPTERFLAGHIDDEN, EBML_NONE },
  523. { MATROSKA_ID_CHAPTERFLAGENABLED, EBML_NONE },
  524. { MATROSKA_ID_CHAPTERPHYSEQUIV, EBML_NONE },
  525. { MATROSKA_ID_CHAPTERATOM, EBML_NONE },
  526. CHILD_OF(matroska_chapter)
  527. };
  528. static const EbmlSyntax matroska_chapter[] = {
  529. { MATROSKA_ID_CHAPTERATOM, EBML_NEST, sizeof(MatroskaChapter), offsetof(MatroskaDemuxContext, chapters), { .n = matroska_chapter_entry } },
  530. { MATROSKA_ID_EDITIONUID, EBML_NONE },
  531. { MATROSKA_ID_EDITIONFLAGHIDDEN, EBML_NONE },
  532. { MATROSKA_ID_EDITIONFLAGDEFAULT, EBML_NONE },
  533. { MATROSKA_ID_EDITIONFLAGORDERED, EBML_NONE },
  534. CHILD_OF(matroska_chapters)
  535. };
  536. static const EbmlSyntax matroska_chapters[] = {
  537. { MATROSKA_ID_EDITIONENTRY, EBML_NEST, 0, 0, { .n = matroska_chapter } },
  538. CHILD_OF(matroska_segment)
  539. };
  540. static const EbmlSyntax matroska_index_pos[] = {
  541. { MATROSKA_ID_CUETRACK, EBML_UINT, 0, offsetof(MatroskaIndexPos, track) },
  542. { MATROSKA_ID_CUECLUSTERPOSITION, EBML_UINT, 0, offsetof(MatroskaIndexPos, pos) },
  543. { MATROSKA_ID_CUERELATIVEPOSITION,EBML_NONE },
  544. { MATROSKA_ID_CUEDURATION, EBML_NONE },
  545. { MATROSKA_ID_CUEBLOCKNUMBER, EBML_NONE },
  546. CHILD_OF(matroska_index_entry)
  547. };
  548. static const EbmlSyntax matroska_index_entry[] = {
  549. { MATROSKA_ID_CUETIME, EBML_UINT, 0, offsetof(MatroskaIndex, time) },
  550. { MATROSKA_ID_CUETRACKPOSITION, EBML_NEST, sizeof(MatroskaIndexPos), offsetof(MatroskaIndex, pos), { .n = matroska_index_pos } },
  551. CHILD_OF(matroska_index)
  552. };
  553. static const EbmlSyntax matroska_index[] = {
  554. { MATROSKA_ID_POINTENTRY, EBML_NEST, sizeof(MatroskaIndex), offsetof(MatroskaDemuxContext, index), { .n = matroska_index_entry } },
  555. CHILD_OF(matroska_segment)
  556. };
  557. static const EbmlSyntax matroska_simpletag[] = {
  558. { MATROSKA_ID_TAGNAME, EBML_UTF8, 0, offsetof(MatroskaTag, name) },
  559. { MATROSKA_ID_TAGSTRING, EBML_UTF8, 0, offsetof(MatroskaTag, string) },
  560. { MATROSKA_ID_TAGLANG, EBML_STR, 0, offsetof(MatroskaTag, lang), { .s = "und" } },
  561. { MATROSKA_ID_TAGDEFAULT, EBML_UINT, 0, offsetof(MatroskaTag, def) },
  562. { MATROSKA_ID_TAGDEFAULT_BUG, EBML_UINT, 0, offsetof(MatroskaTag, def) },
  563. { MATROSKA_ID_SIMPLETAG, EBML_NEST, sizeof(MatroskaTag), offsetof(MatroskaTag, sub), { .n = matroska_simpletag } },
  564. CHILD_OF(matroska_tag)
  565. };
  566. static const EbmlSyntax matroska_tagtargets[] = {
  567. { MATROSKA_ID_TAGTARGETS_TYPE, EBML_STR, 0, offsetof(MatroskaTagTarget, type) },
  568. { MATROSKA_ID_TAGTARGETS_TYPEVALUE, EBML_UINT, 0, offsetof(MatroskaTagTarget, typevalue), { .u = 50 } },
  569. { MATROSKA_ID_TAGTARGETS_TRACKUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, trackuid) },
  570. { MATROSKA_ID_TAGTARGETS_CHAPTERUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, chapteruid) },
  571. { MATROSKA_ID_TAGTARGETS_ATTACHUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, attachuid) },
  572. CHILD_OF(matroska_tag)
  573. };
  574. static const EbmlSyntax matroska_tag[] = {
  575. { MATROSKA_ID_SIMPLETAG, EBML_NEST, sizeof(MatroskaTag), offsetof(MatroskaTags, tag), { .n = matroska_simpletag } },
  576. { MATROSKA_ID_TAGTARGETS, EBML_NEST, 0, offsetof(MatroskaTags, target), { .n = matroska_tagtargets } },
  577. CHILD_OF(matroska_tags)
  578. };
  579. static const EbmlSyntax matroska_tags[] = {
  580. { MATROSKA_ID_TAG, EBML_NEST, sizeof(MatroskaTags), offsetof(MatroskaDemuxContext, tags), { .n = matroska_tag } },
  581. CHILD_OF(matroska_segment)
  582. };
  583. static const EbmlSyntax matroska_seekhead_entry[] = {
  584. { MATROSKA_ID_SEEKID, EBML_UINT, 0, offsetof(MatroskaSeekhead, id) },
  585. { MATROSKA_ID_SEEKPOSITION, EBML_UINT, 0, offsetof(MatroskaSeekhead, pos), { .u = -1 } },
  586. CHILD_OF(matroska_seekhead)
  587. };
  588. static const EbmlSyntax matroska_seekhead[] = {
  589. { MATROSKA_ID_SEEKENTRY, EBML_NEST, sizeof(MatroskaSeekhead), offsetof(MatroskaDemuxContext, seekhead), { .n = matroska_seekhead_entry } },
  590. CHILD_OF(matroska_segment)
  591. };
  592. static const EbmlSyntax matroska_segment[] = {
  593. { MATROSKA_ID_INFO, EBML_LEVEL1, 0, 0, { .n = matroska_info } },
  594. { MATROSKA_ID_TRACKS, EBML_LEVEL1, 0, 0, { .n = matroska_tracks } },
  595. { MATROSKA_ID_ATTACHMENTS, EBML_LEVEL1, 0, 0, { .n = matroska_attachments } },
  596. { MATROSKA_ID_CHAPTERS, EBML_LEVEL1, 0, 0, { .n = matroska_chapters } },
  597. { MATROSKA_ID_CUES, EBML_LEVEL1, 0, 0, { .n = matroska_index } },
  598. { MATROSKA_ID_TAGS, EBML_LEVEL1, 0, 0, { .n = matroska_tags } },
  599. { MATROSKA_ID_SEEKHEAD, EBML_LEVEL1, 0, 0, { .n = matroska_seekhead } },
  600. { MATROSKA_ID_CLUSTER, EBML_STOP },
  601. { 0 } /* We don't want to go back to level 0, so don't add the parent. */
  602. };
  603. static const EbmlSyntax matroska_segments[] = {
  604. { MATROSKA_ID_SEGMENT, EBML_NEST, 0, 0, { .n = matroska_segment } },
  605. { 0 }
  606. };
  607. static const EbmlSyntax matroska_blockmore[] = {
  608. { MATROSKA_ID_BLOCKADDID, EBML_UINT, 0, offsetof(MatroskaBlock,additional_id) },
  609. { MATROSKA_ID_BLOCKADDITIONAL, EBML_BIN, 0, offsetof(MatroskaBlock,additional) },
  610. CHILD_OF(matroska_blockadditions)
  611. };
  612. static const EbmlSyntax matroska_blockadditions[] = {
  613. { MATROSKA_ID_BLOCKMORE, EBML_NEST, 0, 0, {.n = matroska_blockmore} },
  614. CHILD_OF(matroska_blockgroup)
  615. };
  616. static const EbmlSyntax matroska_blockgroup[] = {
  617. { MATROSKA_ID_BLOCK, EBML_BIN, 0, offsetof(MatroskaBlock, bin) },
  618. { MATROSKA_ID_BLOCKADDITIONS, EBML_NEST, 0, 0, { .n = matroska_blockadditions} },
  619. { MATROSKA_ID_BLOCKDURATION, EBML_UINT, 0, offsetof(MatroskaBlock, duration) },
  620. { MATROSKA_ID_DISCARDPADDING, EBML_SINT, 0, offsetof(MatroskaBlock, discard_padding) },
  621. { MATROSKA_ID_BLOCKREFERENCE, EBML_SINT, 0, offsetof(MatroskaBlock, reference), { .i = INT64_MIN } },
  622. { MATROSKA_ID_CODECSTATE, EBML_NONE },
  623. { 1, EBML_UINT, 0, offsetof(MatroskaBlock, non_simple), { .u = 1 } },
  624. CHILD_OF(matroska_cluster_parsing)
  625. };
  626. // The following array contains SimpleBlock and BlockGroup twice
  627. // in order to reuse the other values for matroska_cluster_enter.
  628. static const EbmlSyntax matroska_cluster_parsing[] = {
  629. { MATROSKA_ID_SIMPLEBLOCK, EBML_BIN, 0, offsetof(MatroskaBlock, bin) },
  630. { MATROSKA_ID_BLOCKGROUP, EBML_NEST, 0, 0, { .n = matroska_blockgroup } },
  631. { MATROSKA_ID_CLUSTERTIMECODE, EBML_UINT, 0, offsetof(MatroskaCluster, timecode) },
  632. { MATROSKA_ID_SIMPLEBLOCK, EBML_STOP },
  633. { MATROSKA_ID_BLOCKGROUP, EBML_STOP },
  634. { MATROSKA_ID_CLUSTERPOSITION, EBML_NONE },
  635. { MATROSKA_ID_CLUSTERPREVSIZE, EBML_NONE },
  636. CHILD_OF(matroska_segment)
  637. };
  638. static const EbmlSyntax matroska_cluster_enter[] = {
  639. { MATROSKA_ID_CLUSTER, EBML_NEST, 0, 0, { .n = &matroska_cluster_parsing[2] } },
  640. { 0 }
  641. };
  642. static const EbmlSyntax matroska_clusters[] = {
  643. { MATROSKA_ID_CLUSTER, EBML_STOP },
  644. { MATROSKA_ID_CUES, EBML_NONE },
  645. { MATROSKA_ID_TAGS, EBML_NONE },
  646. { MATROSKA_ID_INFO, EBML_NONE },
  647. { MATROSKA_ID_TRACKS, EBML_NONE },
  648. { MATROSKA_ID_ATTACHMENTS, EBML_NONE },
  649. { MATROSKA_ID_CHAPTERS, EBML_NONE },
  650. { MATROSKA_ID_SEEKHEAD, EBML_NONE },
  651. { 0 } /* We don't want to go back to level 0, so don't add the parent. */
  652. };
  653. #undef CHILD_OF
  654. static const char *const matroska_doctypes[] = { "matroska", "webm" };
  655. static int matroska_read_close(AVFormatContext *s);
  656. /*
  657. * This function prepares the status for parsing of level 1 elements.
  658. */
  659. static int matroska_reset_status(MatroskaDemuxContext *matroska,
  660. uint32_t id, int64_t position)
  661. {
  662. if (position >= 0) {
  663. int err = avio_seek(matroska->ctx->pb, position, SEEK_SET);
  664. if (err < 0)
  665. return err;
  666. }
  667. matroska->current_id = id;
  668. matroska->num_levels = 1;
  669. matroska->resync_pos = avio_tell(matroska->ctx->pb);
  670. if (id)
  671. matroska->resync_pos -= (av_log2(id) + 7) / 8;
  672. return 0;
  673. }
  674. static int matroska_resync(MatroskaDemuxContext *matroska, int64_t last_pos)
  675. {
  676. AVIOContext *pb = matroska->ctx->pb;
  677. uint32_t id;
  678. /* Try to seek to the last position to resync from. If this doesn't work,
  679. * we resync from the earliest position available: The start of the buffer. */
  680. if (last_pos < avio_tell(pb) && avio_seek(pb, last_pos + 1, SEEK_SET) < 0) {
  681. av_log(matroska->ctx, AV_LOG_WARNING,
  682. "Seek to desired resync point failed. Seeking to "
  683. "earliest point available instead.\n");
  684. avio_seek(pb, FFMAX(avio_tell(pb) + (pb->buffer - pb->buf_ptr),
  685. last_pos + 1), SEEK_SET);
  686. }
  687. id = avio_rb32(pb);
  688. // try to find a toplevel element
  689. while (!avio_feof(pb)) {
  690. if (id == MATROSKA_ID_INFO || id == MATROSKA_ID_TRACKS ||
  691. id == MATROSKA_ID_CUES || id == MATROSKA_ID_TAGS ||
  692. id == MATROSKA_ID_SEEKHEAD || id == MATROSKA_ID_ATTACHMENTS ||
  693. id == MATROSKA_ID_CLUSTER || id == MATROSKA_ID_CHAPTERS) {
  694. /* Prepare the context for parsing of a level 1 element. */
  695. matroska_reset_status(matroska, id, -1);
  696. /* Given that we are here means that an error has occured,
  697. * so treat the segment as unknown length in order not to
  698. * discard valid data that happens to be beyond the designated
  699. * end of the segment. */
  700. matroska->levels[0].length = EBML_UNKNOWN_LENGTH;
  701. return 0;
  702. }
  703. id = (id << 8) | avio_r8(pb);
  704. }
  705. matroska->done = 1;
  706. return pb->error ? pb->error : AVERROR_EOF;
  707. }
  708. /*
  709. * Read: an "EBML number", which is defined as a variable-length
  710. * array of bytes. The first byte indicates the length by giving a
  711. * number of 0-bits followed by a one. The position of the first
  712. * "one" bit inside the first byte indicates the length of this
  713. * number.
  714. * Returns: number of bytes read, < 0 on error
  715. */
  716. static int ebml_read_num(MatroskaDemuxContext *matroska, AVIOContext *pb,
  717. int max_size, uint64_t *number, int eof_forbidden)
  718. {
  719. int read, n = 1;
  720. uint64_t total;
  721. int64_t pos;
  722. /* The first byte tells us the length in bytes - except when it is zero. */
  723. total = avio_r8(pb);
  724. if (pb->eof_reached)
  725. goto err;
  726. /* get the length of the EBML number */
  727. read = 8 - ff_log2_tab[total];
  728. if (!total || read > max_size) {
  729. pos = avio_tell(pb) - 1;
  730. if (!total) {
  731. av_log(matroska->ctx, AV_LOG_ERROR,
  732. "0x00 at pos %"PRId64" (0x%"PRIx64") invalid as first byte "
  733. "of an EBML number\n", pos, pos);
  734. } else {
  735. av_log(matroska->ctx, AV_LOG_ERROR,
  736. "Length %d indicated by an EBML number's first byte 0x%02x "
  737. "at pos %"PRId64" (0x%"PRIx64") exceeds max length %d.\n",
  738. read, (uint8_t) total, pos, pos, max_size);
  739. }
  740. return AVERROR_INVALIDDATA;
  741. }
  742. /* read out length */
  743. total ^= 1 << ff_log2_tab[total];
  744. while (n++ < read)
  745. total = (total << 8) | avio_r8(pb);
  746. if (pb->eof_reached) {
  747. eof_forbidden = 1;
  748. goto err;
  749. }
  750. *number = total;
  751. return read;
  752. err:
  753. pos = avio_tell(pb);
  754. if (pb->error) {
  755. av_log(matroska->ctx, AV_LOG_ERROR,
  756. "Read error at pos. %"PRIu64" (0x%"PRIx64")\n",
  757. pos, pos);
  758. return pb->error;
  759. }
  760. if (eof_forbidden) {
  761. av_log(matroska->ctx, AV_LOG_ERROR, "File ended prematurely "
  762. "at pos. %"PRIu64" (0x%"PRIx64")\n", pos, pos);
  763. return AVERROR(EIO);
  764. }
  765. return AVERROR_EOF;
  766. }
  767. /**
  768. * Read a EBML length value.
  769. * This needs special handling for the "unknown length" case which has multiple
  770. * encodings.
  771. */
  772. static int ebml_read_length(MatroskaDemuxContext *matroska, AVIOContext *pb,
  773. uint64_t *number)
  774. {
  775. int res = ebml_read_num(matroska, pb, 8, number, 1);
  776. if (res > 0 && *number + 1 == 1ULL << (7 * res))
  777. *number = EBML_UNKNOWN_LENGTH;
  778. return res;
  779. }
  780. /*
  781. * Read the next element as an unsigned int.
  782. * Returns NEEDS_CHECKING.
  783. */
  784. static int ebml_read_uint(AVIOContext *pb, int size, uint64_t *num)
  785. {
  786. int n = 0;
  787. /* big-endian ordering; build up number */
  788. *num = 0;
  789. while (n++ < size)
  790. *num = (*num << 8) | avio_r8(pb);
  791. return NEEDS_CHECKING;
  792. }
  793. /*
  794. * Read the next element as a signed int.
  795. * Returns NEEDS_CHECKING.
  796. */
  797. static int ebml_read_sint(AVIOContext *pb, int size, int64_t *num)
  798. {
  799. int n = 1;
  800. if (size == 0) {
  801. *num = 0;
  802. } else {
  803. *num = sign_extend(avio_r8(pb), 8);
  804. /* big-endian ordering; build up number */
  805. while (n++ < size)
  806. *num = ((uint64_t)*num << 8) | avio_r8(pb);
  807. }
  808. return NEEDS_CHECKING;
  809. }
  810. /*
  811. * Read the next element as a float.
  812. * Returns NEEDS_CHECKING or < 0 on obvious failure.
  813. */
  814. static int ebml_read_float(AVIOContext *pb, int size, double *num)
  815. {
  816. if (size == 0)
  817. *num = 0;
  818. else if (size == 4)
  819. *num = av_int2float(avio_rb32(pb));
  820. else if (size == 8)
  821. *num = av_int2double(avio_rb64(pb));
  822. else
  823. return AVERROR_INVALIDDATA;
  824. return NEEDS_CHECKING;
  825. }
  826. /*
  827. * Read the next element as an ASCII string.
  828. * 0 is success, < 0 or NEEDS_CHECKING is failure.
  829. */
  830. static int ebml_read_ascii(AVIOContext *pb, int size, char **str)
  831. {
  832. char *res;
  833. int ret;
  834. /* EBML strings are usually not 0-terminated, so we allocate one
  835. * byte more, read the string and NULL-terminate it ourselves. */
  836. if (!(res = av_malloc(size + 1)))
  837. return AVERROR(ENOMEM);
  838. if ((ret = avio_read(pb, (uint8_t *) res, size)) != size) {
  839. av_free(res);
  840. return ret < 0 ? ret : NEEDS_CHECKING;
  841. }
  842. (res)[size] = '\0';
  843. av_free(*str);
  844. *str = res;
  845. return 0;
  846. }
  847. /*
  848. * Read the next element as binary data.
  849. * 0 is success, < 0 or NEEDS_CHECKING is failure.
  850. */
  851. static int ebml_read_binary(AVIOContext *pb, int length, EbmlBin *bin)
  852. {
  853. int ret;
  854. ret = av_buffer_realloc(&bin->buf, length + AV_INPUT_BUFFER_PADDING_SIZE);
  855. if (ret < 0)
  856. return ret;
  857. memset(bin->buf->data + length, 0, AV_INPUT_BUFFER_PADDING_SIZE);
  858. bin->data = bin->buf->data;
  859. bin->size = length;
  860. bin->pos = avio_tell(pb);
  861. if ((ret = avio_read(pb, bin->data, length)) != length) {
  862. av_buffer_unref(&bin->buf);
  863. bin->data = NULL;
  864. bin->size = 0;
  865. return ret < 0 ? ret : NEEDS_CHECKING;
  866. }
  867. return 0;
  868. }
  869. /*
  870. * Read the next element, but only the header. The contents
  871. * are supposed to be sub-elements which can be read separately.
  872. * 0 is success, < 0 is failure.
  873. */
  874. static int ebml_read_master(MatroskaDemuxContext *matroska, uint64_t length)
  875. {
  876. AVIOContext *pb = matroska->ctx->pb;
  877. MatroskaLevel *level;
  878. if (matroska->num_levels >= EBML_MAX_DEPTH) {
  879. av_log(matroska->ctx, AV_LOG_ERROR,
  880. "File moves beyond max. allowed depth (%d)\n", EBML_MAX_DEPTH);
  881. return AVERROR(ENOSYS);
  882. }
  883. level = &matroska->levels[matroska->num_levels++];
  884. level->start = avio_tell(pb);
  885. level->length = length;
  886. return 0;
  887. }
  888. /*
  889. * Read signed/unsigned "EBML" numbers.
  890. * Return: number of bytes processed, < 0 on error
  891. */
  892. static int matroska_ebmlnum_uint(MatroskaDemuxContext *matroska,
  893. uint8_t *data, uint32_t size, uint64_t *num)
  894. {
  895. AVIOContext pb;
  896. ffio_init_context(&pb, data, size, 0, NULL, NULL, NULL, NULL);
  897. return ebml_read_num(matroska, &pb, FFMIN(size, 8), num, 1);
  898. }
  899. /*
  900. * Same as above, but signed.
  901. */
  902. static int matroska_ebmlnum_sint(MatroskaDemuxContext *matroska,
  903. uint8_t *data, uint32_t size, int64_t *num)
  904. {
  905. uint64_t unum;
  906. int res;
  907. /* read as unsigned number first */
  908. if ((res = matroska_ebmlnum_uint(matroska, data, size, &unum)) < 0)
  909. return res;
  910. /* make signed (weird way) */
  911. *num = unum - ((1LL << (7 * res - 1)) - 1);
  912. return res;
  913. }
  914. static int ebml_parse(MatroskaDemuxContext *matroska,
  915. EbmlSyntax *syntax, void *data);
  916. static EbmlSyntax *ebml_parse_id(EbmlSyntax *syntax, uint32_t id)
  917. {
  918. int i;
  919. // Whoever touches this should be aware of the duplication
  920. // existing in matroska_cluster_parsing.
  921. for (i = 0; syntax[i].id; i++)
  922. if (id == syntax[i].id)
  923. break;
  924. return &syntax[i];
  925. }
  926. static int ebml_parse_nest(MatroskaDemuxContext *matroska, EbmlSyntax *syntax,
  927. void *data)
  928. {
  929. int i, res;
  930. for (i = 0; syntax[i].id; i++)
  931. switch (syntax[i].type) {
  932. case EBML_SINT:
  933. *(int64_t *) ((char *) data + syntax[i].data_offset) = syntax[i].def.i;
  934. break;
  935. case EBML_UINT:
  936. *(uint64_t *) ((char *) data + syntax[i].data_offset) = syntax[i].def.u;
  937. break;
  938. case EBML_FLOAT:
  939. *(double *) ((char *) data + syntax[i].data_offset) = syntax[i].def.f;
  940. break;
  941. case EBML_STR:
  942. case EBML_UTF8:
  943. // the default may be NULL
  944. if (syntax[i].def.s) {
  945. uint8_t **dst = (uint8_t **) ((uint8_t *) data + syntax[i].data_offset);
  946. *dst = av_strdup(syntax[i].def.s);
  947. if (!*dst)
  948. return AVERROR(ENOMEM);
  949. }
  950. break;
  951. }
  952. if (!matroska->levels[matroska->num_levels - 1].length) {
  953. matroska->num_levels--;
  954. return 0;
  955. }
  956. do {
  957. res = ebml_parse(matroska, syntax, data);
  958. } while (!res);
  959. return res == LEVEL_ENDED ? 0 : res;
  960. }
  961. static int is_ebml_id_valid(uint32_t id)
  962. {
  963. // Due to endian nonsense in Matroska, the highest byte with any bits set
  964. // will contain the leading length bit. This bit in turn identifies the
  965. // total byte length of the element by its position within the byte.
  966. unsigned int bits = av_log2(id);
  967. return id && (bits + 7) / 8 == (8 - bits % 8);
  968. }
  969. /*
  970. * Allocate and return the entry for the level1 element with the given ID. If
  971. * an entry already exists, return the existing entry.
  972. */
  973. static MatroskaLevel1Element *matroska_find_level1_elem(MatroskaDemuxContext *matroska,
  974. uint32_t id)
  975. {
  976. int i;
  977. MatroskaLevel1Element *elem;
  978. if (!is_ebml_id_valid(id))
  979. return NULL;
  980. // Some files link to all clusters; useless.
  981. if (id == MATROSKA_ID_CLUSTER)
  982. return NULL;
  983. // There can be multiple seekheads.
  984. if (id != MATROSKA_ID_SEEKHEAD) {
  985. for (i = 0; i < matroska->num_level1_elems; i++) {
  986. if (matroska->level1_elems[i].id == id)
  987. return &matroska->level1_elems[i];
  988. }
  989. }
  990. // Only a completely broken file would have more elements.
  991. // It also provides a low-effort way to escape from circular seekheads
  992. // (every iteration will add a level1 entry).
  993. if (matroska->num_level1_elems >= FF_ARRAY_ELEMS(matroska->level1_elems)) {
  994. av_log(matroska->ctx, AV_LOG_ERROR, "Too many level1 elements or circular seekheads.\n");
  995. return NULL;
  996. }
  997. elem = &matroska->level1_elems[matroska->num_level1_elems++];
  998. *elem = (MatroskaLevel1Element){.id = id};
  999. return elem;
  1000. }
  1001. static int ebml_parse(MatroskaDemuxContext *matroska,
  1002. EbmlSyntax *syntax, void *data)
  1003. {
  1004. static const uint64_t max_lengths[EBML_TYPE_COUNT] = {
  1005. [EBML_UINT] = 8,
  1006. [EBML_SINT] = 8,
  1007. [EBML_FLOAT] = 8,
  1008. // max. 16 MB for strings
  1009. [EBML_STR] = 0x1000000,
  1010. [EBML_UTF8] = 0x1000000,
  1011. // max. 256 MB for binary data
  1012. [EBML_BIN] = 0x10000000,
  1013. // no limits for anything else
  1014. };
  1015. AVIOContext *pb = matroska->ctx->pb;
  1016. uint32_t id;
  1017. uint64_t length;
  1018. int64_t pos = avio_tell(pb);
  1019. int res, update_pos = 1, level_check;
  1020. void *newelem;
  1021. MatroskaLevel1Element *level1_elem;
  1022. MatroskaLevel *level = matroska->num_levels ? &matroska->levels[matroska->num_levels - 1] : NULL;
  1023. if (!matroska->current_id) {
  1024. uint64_t id;
  1025. res = ebml_read_num(matroska, pb, 4, &id, 0);
  1026. if (res < 0) {
  1027. if (pb->eof_reached && res == AVERROR_EOF) {
  1028. if (matroska->is_live)
  1029. // in live mode, finish parsing if EOF is reached.
  1030. return 1;
  1031. if (level && level->length == EBML_UNKNOWN_LENGTH && pos == avio_tell(pb)) {
  1032. // Unknown-length levels automatically end at EOF.
  1033. matroska->num_levels--;
  1034. return LEVEL_ENDED;
  1035. }
  1036. }
  1037. return res;
  1038. }
  1039. matroska->current_id = id | 1 << 7 * res;
  1040. } else
  1041. pos -= (av_log2(matroska->current_id) + 7) / 8;
  1042. id = matroska->current_id;
  1043. syntax = ebml_parse_id(syntax, id);
  1044. if (!syntax->id && id != EBML_ID_VOID && id != EBML_ID_CRC32) {
  1045. if (level && level->length == EBML_UNKNOWN_LENGTH) {
  1046. // Unknown-length levels end when an element from an upper level
  1047. // in the hierarchy is encountered.
  1048. while (syntax->def.n) {
  1049. syntax = ebml_parse_id(syntax->def.n, id);
  1050. if (syntax->id) {
  1051. matroska->num_levels--;
  1052. return LEVEL_ENDED;
  1053. }
  1054. };
  1055. }
  1056. av_log(matroska->ctx, AV_LOG_DEBUG, "Unknown entry 0x%"PRIX32" at pos. "
  1057. "%"PRId64"\n", id, pos);
  1058. update_pos = 0; /* Don't update resync_pos as an error might have happened. */
  1059. }
  1060. data = (char *) data + syntax->data_offset;
  1061. if (syntax->list_elem_size) {
  1062. EbmlList *list = data;
  1063. newelem = av_realloc_array(list->elem, list->nb_elem + 1, syntax->list_elem_size);
  1064. if (!newelem)
  1065. return AVERROR(ENOMEM);
  1066. list->elem = newelem;
  1067. data = (char *) list->elem + list->nb_elem * syntax->list_elem_size;
  1068. memset(data, 0, syntax->list_elem_size);
  1069. list->nb_elem++;
  1070. }
  1071. if (syntax->type != EBML_STOP) {
  1072. matroska->current_id = 0;
  1073. if ((res = ebml_read_length(matroska, pb, &length)) < 0)
  1074. return res;
  1075. if (max_lengths[syntax->type] && length > max_lengths[syntax->type]) {
  1076. av_log(matroska->ctx, AV_LOG_ERROR,
  1077. "Invalid length 0x%"PRIx64" > 0x%"PRIx64" for syntax element %i\n",
  1078. length, max_lengths[syntax->type], syntax->type);
  1079. return AVERROR_INVALIDDATA;
  1080. }
  1081. if (matroska->num_levels > 0) {
  1082. MatroskaLevel *level = &matroska->levels[matroska->num_levels - 1];
  1083. AVIOContext *pb = matroska->ctx->pb;
  1084. int64_t pos = avio_tell(pb);
  1085. if (length != EBML_UNKNOWN_LENGTH &&
  1086. level->length != EBML_UNKNOWN_LENGTH) {
  1087. uint64_t elem_end = pos + length,
  1088. level_end = level->start + level->length;
  1089. if (elem_end < level_end) {
  1090. level_check = 0;
  1091. } else if (elem_end == level_end) {
  1092. level_check = LEVEL_ENDED;
  1093. } else {
  1094. av_log(matroska->ctx, AV_LOG_ERROR,
  1095. "Element at 0x%"PRIx64" ending at 0x%"PRIx64" exceeds "
  1096. "containing master element ending at 0x%"PRIx64"\n",
  1097. pos, elem_end, level_end);
  1098. return AVERROR_INVALIDDATA;
  1099. }
  1100. } else if (length != EBML_UNKNOWN_LENGTH) {
  1101. level_check = 0;
  1102. } else if (level->length != EBML_UNKNOWN_LENGTH) {
  1103. av_log(matroska->ctx, AV_LOG_ERROR, "Unknown-sized element "
  1104. "at 0x%"PRIx64" inside parent with finite size\n", pos);
  1105. return AVERROR_INVALIDDATA;
  1106. } else if (id != MATROSKA_ID_CLUSTER) {
  1107. // According to the specifications only clusters and segments
  1108. // are allowed to be unknown-sized.
  1109. av_log(matroska->ctx, AV_LOG_ERROR,
  1110. "Found unknown-sized element other than a cluster at "
  1111. "0x%"PRIx64". Dropping the invalid element.\n", pos);
  1112. return AVERROR_INVALIDDATA;
  1113. } else
  1114. level_check = 0;
  1115. } else
  1116. level_check = 0;
  1117. if (update_pos) {
  1118. // We have found an element that is allowed at this place
  1119. // in the hierarchy and it passed all checks, so treat the beginning
  1120. // of the element as the "last known good" position.
  1121. matroska->resync_pos = pos;
  1122. }
  1123. }
  1124. switch (syntax->type) {
  1125. case EBML_UINT:
  1126. res = ebml_read_uint(pb, length, data);
  1127. break;
  1128. case EBML_SINT:
  1129. res = ebml_read_sint(pb, length, data);
  1130. break;
  1131. case EBML_FLOAT:
  1132. res = ebml_read_float(pb, length, data);
  1133. break;
  1134. case EBML_STR:
  1135. case EBML_UTF8:
  1136. res = ebml_read_ascii(pb, length, data);
  1137. break;
  1138. case EBML_BIN:
  1139. res = ebml_read_binary(pb, length, data);
  1140. break;
  1141. case EBML_LEVEL1:
  1142. case EBML_NEST:
  1143. if ((res = ebml_read_master(matroska, length)) < 0)
  1144. return res;
  1145. if (id == MATROSKA_ID_SEGMENT)
  1146. matroska->segment_start = avio_tell(matroska->ctx->pb);
  1147. if (id == MATROSKA_ID_CUES)
  1148. matroska->cues_parsing_deferred = 0;
  1149. if (syntax->type == EBML_LEVEL1 &&
  1150. (level1_elem = matroska_find_level1_elem(matroska, syntax->id))) {
  1151. if (level1_elem->parsed)
  1152. av_log(matroska->ctx, AV_LOG_ERROR, "Duplicate element\n");
  1153. level1_elem->parsed = 1;
  1154. }
  1155. if (res = ebml_parse_nest(matroska, syntax->def.n, data))
  1156. return res;
  1157. break;
  1158. case EBML_STOP:
  1159. return 1;
  1160. default:
  1161. if (length) {
  1162. int64_t res2;
  1163. if (ffio_limit(pb, length) != length) {
  1164. // ffio_limit emits its own error message,
  1165. // so we don't have to.
  1166. return AVERROR(EIO);
  1167. }
  1168. if ((res2 = avio_skip(pb, length - 1)) >= 0) {
  1169. // avio_skip might take us past EOF. We check for this
  1170. // by skipping only length - 1 bytes, reading a byte and
  1171. // checking the error flags. This is done in order to check
  1172. // that the element has been properly skipped even when
  1173. // no filesize (that ffio_limit relies on) is available.
  1174. avio_r8(pb);
  1175. res = NEEDS_CHECKING;
  1176. } else
  1177. res = res2;
  1178. } else
  1179. res = 0;
  1180. }
  1181. if (res) {
  1182. if (res == NEEDS_CHECKING) {
  1183. if (pb->eof_reached) {
  1184. if (pb->error)
  1185. res = pb->error;
  1186. else
  1187. res = AVERROR_EOF;
  1188. } else
  1189. goto level_check;
  1190. }
  1191. if (res == AVERROR_INVALIDDATA)
  1192. av_log(matroska->ctx, AV_LOG_ERROR, "Invalid element\n");
  1193. else if (res == AVERROR(EIO))
  1194. av_log(matroska->ctx, AV_LOG_ERROR, "Read error\n");
  1195. else if (res == AVERROR_EOF) {
  1196. av_log(matroska->ctx, AV_LOG_ERROR, "File ended prematurely\n");
  1197. res = AVERROR(EIO);
  1198. }
  1199. return res;
  1200. }
  1201. level_check:
  1202. if (level_check == LEVEL_ENDED && matroska->num_levels) {
  1203. level = &matroska->levels[matroska->num_levels - 1];
  1204. pos = avio_tell(pb);
  1205. // Given that pos >= level->start no check for
  1206. // level->length != EBML_UNKNOWN_LENGTH is necessary.
  1207. while (matroska->num_levels && pos == level->start + level->length) {
  1208. matroska->num_levels--;
  1209. level--;
  1210. }
  1211. }
  1212. return level_check;
  1213. }
  1214. static void ebml_free(EbmlSyntax *syntax, void *data)
  1215. {
  1216. int i, j;
  1217. for (i = 0; syntax[i].id; i++) {
  1218. void *data_off = (char *) data + syntax[i].data_offset;
  1219. switch (syntax[i].type) {
  1220. case EBML_STR:
  1221. case EBML_UTF8:
  1222. av_freep(data_off);
  1223. break;
  1224. case EBML_BIN:
  1225. av_buffer_unref(&((EbmlBin *) data_off)->buf);
  1226. break;
  1227. case EBML_LEVEL1:
  1228. case EBML_NEST:
  1229. if (syntax[i].list_elem_size) {
  1230. EbmlList *list = data_off;
  1231. char *ptr = list->elem;
  1232. for (j = 0; j < list->nb_elem;
  1233. j++, ptr += syntax[i].list_elem_size)
  1234. ebml_free(syntax[i].def.n, ptr);
  1235. av_freep(&list->elem);
  1236. list->nb_elem = 0;
  1237. } else
  1238. ebml_free(syntax[i].def.n, data_off);
  1239. default:
  1240. break;
  1241. }
  1242. }
  1243. }
  1244. /*
  1245. * Autodetecting...
  1246. */
  1247. static int matroska_probe(const AVProbeData *p)
  1248. {
  1249. uint64_t total = 0;
  1250. int len_mask = 0x80, size = 1, n = 1, i;
  1251. /* EBML header? */
  1252. if (AV_RB32(p->buf) != EBML_ID_HEADER)
  1253. return 0;
  1254. /* length of header */
  1255. total = p->buf[4];
  1256. while (size <= 8 && !(total & len_mask)) {
  1257. size++;
  1258. len_mask >>= 1;
  1259. }
  1260. if (size > 8)
  1261. return 0;
  1262. total &= (len_mask - 1);
  1263. while (n < size)
  1264. total = (total << 8) | p->buf[4 + n++];
  1265. /* Does the probe data contain the whole header? */
  1266. if (p->buf_size < 4 + size + total)
  1267. return 0;
  1268. /* The header should contain a known document type. For now,
  1269. * we don't parse the whole header but simply check for the
  1270. * availability of that array of characters inside the header.
  1271. * Not fully fool-proof, but good enough. */
  1272. for (i = 0; i < FF_ARRAY_ELEMS(matroska_doctypes); i++) {
  1273. size_t probelen = strlen(matroska_doctypes[i]);
  1274. if (total < probelen)
  1275. continue;
  1276. for (n = 4 + size; n <= 4 + size + total - probelen; n++)
  1277. if (!memcmp(p->buf + n, matroska_doctypes[i], probelen))
  1278. return AVPROBE_SCORE_MAX;
  1279. }
  1280. // probably valid EBML header but no recognized doctype
  1281. return AVPROBE_SCORE_EXTENSION;
  1282. }
  1283. static MatroskaTrack *matroska_find_track_by_num(MatroskaDemuxContext *matroska,
  1284. int num)
  1285. {
  1286. MatroskaTrack *tracks = matroska->tracks.elem;
  1287. int i;
  1288. for (i = 0; i < matroska->tracks.nb_elem; i++)
  1289. if (tracks[i].num == num)
  1290. return &tracks[i];
  1291. av_log(matroska->ctx, AV_LOG_ERROR, "Invalid track number %d\n", num);
  1292. return NULL;
  1293. }
  1294. static int matroska_decode_buffer(uint8_t **buf, int *buf_size,
  1295. MatroskaTrack *track)
  1296. {
  1297. MatroskaTrackEncoding *encodings = track->encodings.elem;
  1298. uint8_t *data = *buf;
  1299. int isize = *buf_size;
  1300. uint8_t *pkt_data = NULL;
  1301. uint8_t av_unused *newpktdata;
  1302. int pkt_size = isize;
  1303. int result = 0;
  1304. int olen;
  1305. if (pkt_size >= 10000000U)
  1306. return AVERROR_INVALIDDATA;
  1307. switch (encodings[0].compression.algo) {
  1308. case MATROSKA_TRACK_ENCODING_COMP_HEADERSTRIP:
  1309. {
  1310. int header_size = encodings[0].compression.settings.size;
  1311. uint8_t *header = encodings[0].compression.settings.data;
  1312. if (header_size && !header) {
  1313. av_log(NULL, AV_LOG_ERROR, "Compression size but no data in headerstrip\n");
  1314. return -1;
  1315. }
  1316. if (!header_size)
  1317. return 0;
  1318. pkt_size = isize + header_size;
  1319. pkt_data = av_malloc(pkt_size + AV_INPUT_BUFFER_PADDING_SIZE);
  1320. if (!pkt_data)
  1321. return AVERROR(ENOMEM);
  1322. memcpy(pkt_data, header, header_size);
  1323. memcpy(pkt_data + header_size, data, isize);
  1324. break;
  1325. }
  1326. #if CONFIG_LZO
  1327. case MATROSKA_TRACK_ENCODING_COMP_LZO:
  1328. do {
  1329. olen = pkt_size *= 3;
  1330. newpktdata = av_realloc(pkt_data, pkt_size + AV_LZO_OUTPUT_PADDING
  1331. + AV_INPUT_BUFFER_PADDING_SIZE);
  1332. if (!newpktdata) {
  1333. result = AVERROR(ENOMEM);
  1334. goto failed;
  1335. }
  1336. pkt_data = newpktdata;
  1337. result = av_lzo1x_decode(pkt_data, &olen, data, &isize);
  1338. } while (result == AV_LZO_OUTPUT_FULL && pkt_size < 10000000);
  1339. if (result) {
  1340. result = AVERROR_INVALIDDATA;
  1341. goto failed;
  1342. }
  1343. pkt_size -= olen;
  1344. break;
  1345. #endif
  1346. #if CONFIG_ZLIB
  1347. case MATROSKA_TRACK_ENCODING_COMP_ZLIB:
  1348. {
  1349. z_stream zstream = { 0 };
  1350. if (inflateInit(&zstream) != Z_OK)
  1351. return -1;
  1352. zstream.next_in = data;
  1353. zstream.avail_in = isize;
  1354. do {
  1355. pkt_size *= 3;
  1356. newpktdata = av_realloc(pkt_data, pkt_size + AV_INPUT_BUFFER_PADDING_SIZE);
  1357. if (!newpktdata) {
  1358. inflateEnd(&zstream);
  1359. result = AVERROR(ENOMEM);
  1360. goto failed;
  1361. }
  1362. pkt_data = newpktdata;
  1363. zstream.avail_out = pkt_size - zstream.total_out;
  1364. zstream.next_out = pkt_data + zstream.total_out;
  1365. result = inflate(&zstream, Z_NO_FLUSH);
  1366. } while (result == Z_OK && pkt_size < 10000000);
  1367. pkt_size = zstream.total_out;
  1368. inflateEnd(&zstream);
  1369. if (result != Z_STREAM_END) {
  1370. if (result == Z_MEM_ERROR)
  1371. result = AVERROR(ENOMEM);
  1372. else
  1373. result = AVERROR_INVALIDDATA;
  1374. goto failed;
  1375. }
  1376. break;
  1377. }
  1378. #endif
  1379. #if CONFIG_BZLIB
  1380. case MATROSKA_TRACK_ENCODING_COMP_BZLIB:
  1381. {
  1382. bz_stream bzstream = { 0 };
  1383. if (BZ2_bzDecompressInit(&bzstream, 0, 0) != BZ_OK)
  1384. return -1;
  1385. bzstream.next_in = data;
  1386. bzstream.avail_in = isize;
  1387. do {
  1388. pkt_size *= 3;
  1389. newpktdata = av_realloc(pkt_data, pkt_size + AV_INPUT_BUFFER_PADDING_SIZE);
  1390. if (!newpktdata) {
  1391. BZ2_bzDecompressEnd(&bzstream);
  1392. result = AVERROR(ENOMEM);
  1393. goto failed;
  1394. }
  1395. pkt_data = newpktdata;
  1396. bzstream.avail_out = pkt_size - bzstream.total_out_lo32;
  1397. bzstream.next_out = pkt_data + bzstream.total_out_lo32;
  1398. result = BZ2_bzDecompress(&bzstream);
  1399. } while (result == BZ_OK && pkt_size < 10000000);
  1400. pkt_size = bzstream.total_out_lo32;
  1401. BZ2_bzDecompressEnd(&bzstream);
  1402. if (result != BZ_STREAM_END) {
  1403. if (result == BZ_MEM_ERROR)
  1404. result = AVERROR(ENOMEM);
  1405. else
  1406. result = AVERROR_INVALIDDATA;
  1407. goto failed;
  1408. }
  1409. break;
  1410. }
  1411. #endif
  1412. default:
  1413. return AVERROR_INVALIDDATA;
  1414. }
  1415. memset(pkt_data + pkt_size, 0, AV_INPUT_BUFFER_PADDING_SIZE);
  1416. *buf = pkt_data;
  1417. *buf_size = pkt_size;
  1418. return 0;
  1419. failed:
  1420. av_free(pkt_data);
  1421. return result;
  1422. }
  1423. static void matroska_convert_tag(AVFormatContext *s, EbmlList *list,
  1424. AVDictionary **metadata, char *prefix)
  1425. {
  1426. MatroskaTag *tags = list->elem;
  1427. char key[1024];
  1428. int i;
  1429. for (i = 0; i < list->nb_elem; i++) {
  1430. const char *lang = tags[i].lang &&
  1431. strcmp(tags[i].lang, "und") ? tags[i].lang : NULL;
  1432. if (!tags[i].name) {
  1433. av_log(s, AV_LOG_WARNING, "Skipping invalid tag with no TagName.\n");
  1434. continue;
  1435. }
  1436. if (prefix)
  1437. snprintf(key, sizeof(key), "%s/%s", prefix, tags[i].name);
  1438. else
  1439. av_strlcpy(key, tags[i].name, sizeof(key));
  1440. if (tags[i].def || !lang) {
  1441. av_dict_set(metadata, key, tags[i].string, 0);
  1442. if (tags[i].sub.nb_elem)
  1443. matroska_convert_tag(s, &tags[i].sub, metadata, key);
  1444. }
  1445. if (lang) {
  1446. av_strlcat(key, "-", sizeof(key));
  1447. av_strlcat(key, lang, sizeof(key));
  1448. av_dict_set(metadata, key, tags[i].string, 0);
  1449. if (tags[i].sub.nb_elem)
  1450. matroska_convert_tag(s, &tags[i].sub, metadata, key);
  1451. }
  1452. }
  1453. ff_metadata_conv(metadata, NULL, ff_mkv_metadata_conv);
  1454. }
  1455. static void matroska_convert_tags(AVFormatContext *s)
  1456. {
  1457. MatroskaDemuxContext *matroska = s->priv_data;
  1458. MatroskaTags *tags = matroska->tags.elem;
  1459. int i, j;
  1460. for (i = 0; i < matroska->tags.nb_elem; i++) {
  1461. if (tags[i].target.attachuid) {
  1462. MatroskaAttachment *attachment = matroska->attachments.elem;
  1463. int found = 0;
  1464. for (j = 0; j < matroska->attachments.nb_elem; j++) {
  1465. if (attachment[j].uid == tags[i].target.attachuid &&
  1466. attachment[j].stream) {
  1467. matroska_convert_tag(s, &tags[i].tag,
  1468. &attachment[j].stream->metadata, NULL);
  1469. found = 1;
  1470. }
  1471. }
  1472. if (!found) {
  1473. av_log(NULL, AV_LOG_WARNING,
  1474. "The tags at index %d refer to a "
  1475. "non-existent attachment %"PRId64".\n",
  1476. i, tags[i].target.attachuid);
  1477. }
  1478. } else if (tags[i].target.chapteruid) {
  1479. MatroskaChapter *chapter = matroska->chapters.elem;
  1480. int found = 0;
  1481. for (j = 0; j < matroska->chapters.nb_elem; j++) {
  1482. if (chapter[j].uid == tags[i].target.chapteruid &&
  1483. chapter[j].chapter) {
  1484. matroska_convert_tag(s, &tags[i].tag,
  1485. &chapter[j].chapter->metadata, NULL);
  1486. found = 1;
  1487. }
  1488. }
  1489. if (!found) {
  1490. av_log(NULL, AV_LOG_WARNING,
  1491. "The tags at index %d refer to a non-existent chapter "
  1492. "%"PRId64".\n",
  1493. i, tags[i].target.chapteruid);
  1494. }
  1495. } else if (tags[i].target.trackuid) {
  1496. MatroskaTrack *track = matroska->tracks.elem;
  1497. int found = 0;
  1498. for (j = 0; j < matroska->tracks.nb_elem; j++) {
  1499. if (track[j].uid == tags[i].target.trackuid &&
  1500. track[j].stream) {
  1501. matroska_convert_tag(s, &tags[i].tag,
  1502. &track[j].stream->metadata, NULL);
  1503. found = 1;
  1504. }
  1505. }
  1506. if (!found) {
  1507. av_log(NULL, AV_LOG_WARNING,
  1508. "The tags at index %d refer to a non-existent track "
  1509. "%"PRId64".\n",
  1510. i, tags[i].target.trackuid);
  1511. }
  1512. } else {
  1513. matroska_convert_tag(s, &tags[i].tag, &s->metadata,
  1514. tags[i].target.type);
  1515. }
  1516. }
  1517. }
  1518. static int matroska_parse_seekhead_entry(MatroskaDemuxContext *matroska,
  1519. uint64_t pos)
  1520. {
  1521. uint32_t saved_id = matroska->current_id;
  1522. int64_t before_pos = avio_tell(matroska->ctx->pb);
  1523. MatroskaLevel level;
  1524. int64_t offset;
  1525. int ret = 0;
  1526. /* seek */
  1527. offset = pos + matroska->segment_start;
  1528. if (avio_seek(matroska->ctx->pb, offset, SEEK_SET) == offset) {
  1529. /* We don't want to lose our seekhead level, so we add
  1530. * a dummy. This is a crude hack. */
  1531. if (matroska->num_levels == EBML_MAX_DEPTH) {
  1532. av_log(matroska->ctx, AV_LOG_INFO,
  1533. "Max EBML element depth (%d) reached, "
  1534. "cannot parse further.\n", EBML_MAX_DEPTH);
  1535. ret = AVERROR_INVALIDDATA;
  1536. } else {
  1537. level.start = 0;
  1538. level.length = EBML_UNKNOWN_LENGTH;
  1539. matroska->levels[matroska->num_levels] = level;
  1540. matroska->num_levels++;
  1541. matroska->current_id = 0;
  1542. ret = ebml_parse(matroska, matroska_segment, matroska);
  1543. if (ret == LEVEL_ENDED) {
  1544. /* This can only happen if the seek brought us beyond EOF. */
  1545. ret = AVERROR_EOF;
  1546. }
  1547. }
  1548. }
  1549. /* Seek back - notice that in all instances where this is used
  1550. * it is safe to set the level to 1. */
  1551. matroska_reset_status(matroska, saved_id, before_pos);
  1552. return ret;
  1553. }
  1554. static void matroska_execute_seekhead(MatroskaDemuxContext *matroska)
  1555. {
  1556. EbmlList *seekhead_list = &matroska->seekhead;
  1557. int i;
  1558. // we should not do any seeking in the streaming case
  1559. if (!(matroska->ctx->pb->seekable & AVIO_SEEKABLE_NORMAL))
  1560. return;
  1561. for (i = 0; i < seekhead_list->nb_elem; i++) {
  1562. MatroskaSeekhead *seekheads = seekhead_list->elem;
  1563. uint32_t id = seekheads[i].id;
  1564. uint64_t pos = seekheads[i].pos;
  1565. MatroskaLevel1Element *elem = matroska_find_level1_elem(matroska, id);
  1566. if (!elem || elem->parsed)
  1567. continue;
  1568. elem->pos = pos;
  1569. // defer cues parsing until we actually need cue data.
  1570. if (id == MATROSKA_ID_CUES)
  1571. continue;
  1572. if (matroska_parse_seekhead_entry(matroska, pos) < 0) {
  1573. // mark index as broken
  1574. matroska->cues_parsing_deferred = -1;
  1575. break;
  1576. }
  1577. elem->parsed = 1;
  1578. }
  1579. }
  1580. static void matroska_add_index_entries(MatroskaDemuxContext *matroska)
  1581. {
  1582. EbmlList *index_list;
  1583. MatroskaIndex *index;
  1584. uint64_t index_scale = 1;
  1585. int i, j;
  1586. if (matroska->ctx->flags & AVFMT_FLAG_IGNIDX)
  1587. return;
  1588. index_list = &matroska->index;
  1589. index = index_list->elem;
  1590. if (index_list->nb_elem < 2)
  1591. return;
  1592. if (index[1].time > 1E14 / matroska->time_scale) {
  1593. av_log(matroska->ctx, AV_LOG_WARNING, "Dropping apparently-broken index.\n");
  1594. return;
  1595. }
  1596. for (i = 0; i < index_list->nb_elem; i++) {
  1597. EbmlList *pos_list = &index[i].pos;
  1598. MatroskaIndexPos *pos = pos_list->elem;
  1599. for (j = 0; j < pos_list->nb_elem; j++) {
  1600. MatroskaTrack *track = matroska_find_track_by_num(matroska,
  1601. pos[j].track);
  1602. if (track && track->stream)
  1603. av_add_index_entry(track->stream,
  1604. pos[j].pos + matroska->segment_start,
  1605. index[i].time / index_scale, 0, 0,
  1606. AVINDEX_KEYFRAME);
  1607. }
  1608. }
  1609. }
  1610. static void matroska_parse_cues(MatroskaDemuxContext *matroska) {
  1611. int i;
  1612. if (matroska->ctx->flags & AVFMT_FLAG_IGNIDX)
  1613. return;
  1614. for (i = 0; i < matroska->num_level1_elems; i++) {
  1615. MatroskaLevel1Element *elem = &matroska->level1_elems[i];
  1616. if (elem->id == MATROSKA_ID_CUES && !elem->parsed) {
  1617. if (matroska_parse_seekhead_entry(matroska, elem->pos) < 0)
  1618. matroska->cues_parsing_deferred = -1;
  1619. elem->parsed = 1;
  1620. break;
  1621. }
  1622. }
  1623. matroska_add_index_entries(matroska);
  1624. }
  1625. static int matroska_aac_profile(char *codec_id)
  1626. {
  1627. static const char *const aac_profiles[] = { "MAIN", "LC", "SSR" };
  1628. int profile;
  1629. for (profile = 0; profile < FF_ARRAY_ELEMS(aac_profiles); profile++)
  1630. if (strstr(codec_id, aac_profiles[profile]))
  1631. break;
  1632. return profile + 1;
  1633. }
  1634. static int matroska_aac_sri(int samplerate)
  1635. {
  1636. int sri;
  1637. for (sri = 0; sri < FF_ARRAY_ELEMS(avpriv_mpeg4audio_sample_rates); sri++)
  1638. if (avpriv_mpeg4audio_sample_rates[sri] == samplerate)
  1639. break;
  1640. return sri;
  1641. }
  1642. static void matroska_metadata_creation_time(AVDictionary **metadata, int64_t date_utc)
  1643. {
  1644. /* Convert to seconds and adjust by number of seconds between 2001-01-01 and Epoch */
  1645. avpriv_dict_set_timestamp(metadata, "creation_time", date_utc / 1000 + 978307200000000LL);
  1646. }
  1647. static int matroska_parse_flac(AVFormatContext *s,
  1648. MatroskaTrack *track,
  1649. int *offset)
  1650. {
  1651. AVStream *st = track->stream;
  1652. uint8_t *p = track->codec_priv.data;
  1653. int size = track->codec_priv.size;
  1654. if (size < 8 + FLAC_STREAMINFO_SIZE || p[4] & 0x7f) {
  1655. av_log(s, AV_LOG_WARNING, "Invalid FLAC private data\n");
  1656. track->codec_priv.size = 0;
  1657. return 0;
  1658. }
  1659. *offset = 8;
  1660. track->codec_priv.size = 8 + FLAC_STREAMINFO_SIZE;
  1661. p += track->codec_priv.size;
  1662. size -= track->codec_priv.size;
  1663. /* parse the remaining metadata blocks if present */
  1664. while (size >= 4) {
  1665. int block_last, block_type, block_size;
  1666. flac_parse_block_header(p, &block_last, &block_type, &block_size);
  1667. p += 4;
  1668. size -= 4;
  1669. if (block_size > size)
  1670. return 0;
  1671. /* check for the channel mask */
  1672. if (block_type == FLAC_METADATA_TYPE_VORBIS_COMMENT) {
  1673. AVDictionary *dict = NULL;
  1674. AVDictionaryEntry *chmask;
  1675. ff_vorbis_comment(s, &dict, p, block_size, 0);
  1676. chmask = av_dict_get(dict, "WAVEFORMATEXTENSIBLE_CHANNEL_MASK", NULL, 0);
  1677. if (chmask) {
  1678. uint64_t mask = strtol(chmask->value, NULL, 0);
  1679. if (!mask || mask & ~0x3ffffULL) {
  1680. av_log(s, AV_LOG_WARNING,
  1681. "Invalid value of WAVEFORMATEXTENSIBLE_CHANNEL_MASK\n");
  1682. } else
  1683. st->codecpar->channel_layout = mask;
  1684. }
  1685. av_dict_free(&dict);
  1686. }
  1687. p += block_size;
  1688. size -= block_size;
  1689. }
  1690. return 0;
  1691. }
  1692. static int mkv_field_order(MatroskaDemuxContext *matroska, int64_t field_order)
  1693. {
  1694. int major, minor, micro, bttb = 0;
  1695. /* workaround a bug in our Matroska muxer, introduced in version 57.36 alongside
  1696. * this function, and fixed in 57.52 */
  1697. if (matroska->muxingapp && sscanf(matroska->muxingapp, "Lavf%d.%d.%d", &major, &minor, &micro) == 3)
  1698. bttb = (major == 57 && minor >= 36 && minor <= 51 && micro >= 100);
  1699. switch (field_order) {
  1700. case MATROSKA_VIDEO_FIELDORDER_PROGRESSIVE:
  1701. return AV_FIELD_PROGRESSIVE;
  1702. case MATROSKA_VIDEO_FIELDORDER_UNDETERMINED:
  1703. return AV_FIELD_UNKNOWN;
  1704. case MATROSKA_VIDEO_FIELDORDER_TT:
  1705. return AV_FIELD_TT;
  1706. case MATROSKA_VIDEO_FIELDORDER_BB:
  1707. return AV_FIELD_BB;
  1708. case MATROSKA_VIDEO_FIELDORDER_BT:
  1709. return bttb ? AV_FIELD_TB : AV_FIELD_BT;
  1710. case MATROSKA_VIDEO_FIELDORDER_TB:
  1711. return bttb ? AV_FIELD_BT : AV_FIELD_TB;
  1712. default:
  1713. return AV_FIELD_UNKNOWN;
  1714. }
  1715. }
  1716. static void mkv_stereo_mode_display_mul(int stereo_mode,
  1717. int *h_width, int *h_height)
  1718. {
  1719. switch (stereo_mode) {
  1720. case MATROSKA_VIDEO_STEREOMODE_TYPE_MONO:
  1721. case MATROSKA_VIDEO_STEREOMODE_TYPE_CHECKERBOARD_RL:
  1722. case MATROSKA_VIDEO_STEREOMODE_TYPE_CHECKERBOARD_LR:
  1723. case MATROSKA_VIDEO_STEREOMODE_TYPE_BOTH_EYES_BLOCK_RL:
  1724. case MATROSKA_VIDEO_STEREOMODE_TYPE_BOTH_EYES_BLOCK_LR:
  1725. break;
  1726. case MATROSKA_VIDEO_STEREOMODE_TYPE_RIGHT_LEFT:
  1727. case MATROSKA_VIDEO_STEREOMODE_TYPE_LEFT_RIGHT:
  1728. case MATROSKA_VIDEO_STEREOMODE_TYPE_COL_INTERLEAVED_RL:
  1729. case MATROSKA_VIDEO_STEREOMODE_TYPE_COL_INTERLEAVED_LR:
  1730. *h_width = 2;
  1731. break;
  1732. case MATROSKA_VIDEO_STEREOMODE_TYPE_BOTTOM_TOP:
  1733. case MATROSKA_VIDEO_STEREOMODE_TYPE_TOP_BOTTOM:
  1734. case MATROSKA_VIDEO_STEREOMODE_TYPE_ROW_INTERLEAVED_RL:
  1735. case MATROSKA_VIDEO_STEREOMODE_TYPE_ROW_INTERLEAVED_LR:
  1736. *h_height = 2;
  1737. break;
  1738. }
  1739. }
  1740. static int mkv_parse_video_color(AVStream *st, const MatroskaTrack *track) {
  1741. const MatroskaTrackVideoColor *color = track->video.color.elem;
  1742. const MatroskaMasteringMeta *mastering_meta;
  1743. int has_mastering_primaries, has_mastering_luminance;
  1744. if (!track->video.color.nb_elem)
  1745. return 0;
  1746. mastering_meta = &color->mastering_meta;
  1747. // Mastering primaries are CIE 1931 coords, and must be > 0.
  1748. has_mastering_primaries =
  1749. mastering_meta->r_x > 0 && mastering_meta->r_y > 0 &&
  1750. mastering_meta->g_x > 0 && mastering_meta->g_y > 0 &&
  1751. mastering_meta->b_x > 0 && mastering_meta->b_y > 0 &&
  1752. mastering_meta->white_x > 0 && mastering_meta->white_y > 0;
  1753. has_mastering_luminance = mastering_meta->max_luminance > 0;
  1754. if (color->matrix_coefficients != AVCOL_SPC_RESERVED)
  1755. st->codecpar->color_space = color->matrix_coefficients;
  1756. if (color->primaries != AVCOL_PRI_RESERVED &&
  1757. color->primaries != AVCOL_PRI_RESERVED0)
  1758. st->codecpar->color_primaries = color->primaries;
  1759. if (color->transfer_characteristics != AVCOL_TRC_RESERVED &&
  1760. color->transfer_characteristics != AVCOL_TRC_RESERVED0)
  1761. st->codecpar->color_trc = color->transfer_characteristics;
  1762. if (color->range != AVCOL_RANGE_UNSPECIFIED &&
  1763. color->range <= AVCOL_RANGE_JPEG)
  1764. st->codecpar->color_range = color->range;
  1765. if (color->chroma_siting_horz != MATROSKA_COLOUR_CHROMASITINGHORZ_UNDETERMINED &&
  1766. color->chroma_siting_vert != MATROSKA_COLOUR_CHROMASITINGVERT_UNDETERMINED &&
  1767. color->chroma_siting_horz < MATROSKA_COLOUR_CHROMASITINGHORZ_NB &&
  1768. color->chroma_siting_vert < MATROSKA_COLOUR_CHROMASITINGVERT_NB) {
  1769. st->codecpar->chroma_location =
  1770. avcodec_chroma_pos_to_enum((color->chroma_siting_horz - 1) << 7,
  1771. (color->chroma_siting_vert - 1) << 7);
  1772. }
  1773. if (color->max_cll && color->max_fall) {
  1774. size_t size = 0;
  1775. int ret;
  1776. AVContentLightMetadata *metadata = av_content_light_metadata_alloc(&size);
  1777. if (!metadata)
  1778. return AVERROR(ENOMEM);
  1779. ret = av_stream_add_side_data(st, AV_PKT_DATA_CONTENT_LIGHT_LEVEL,
  1780. (uint8_t *)metadata, size);
  1781. if (ret < 0) {
  1782. av_freep(&metadata);
  1783. return ret;
  1784. }
  1785. metadata->MaxCLL = color->max_cll;
  1786. metadata->MaxFALL = color->max_fall;
  1787. }
  1788. if (has_mastering_primaries || has_mastering_luminance) {
  1789. // Use similar rationals as other standards.
  1790. const int chroma_den = 50000;
  1791. const int luma_den = 10000;
  1792. AVMasteringDisplayMetadata *metadata =
  1793. (AVMasteringDisplayMetadata*) av_stream_new_side_data(
  1794. st, AV_PKT_DATA_MASTERING_DISPLAY_METADATA,
  1795. sizeof(AVMasteringDisplayMetadata));
  1796. if (!metadata) {
  1797. return AVERROR(ENOMEM);
  1798. }
  1799. memset(metadata, 0, sizeof(AVMasteringDisplayMetadata));
  1800. if (has_mastering_primaries) {
  1801. metadata->display_primaries[0][0] = av_make_q(
  1802. round(mastering_meta->r_x * chroma_den), chroma_den);
  1803. metadata->display_primaries[0][1] = av_make_q(
  1804. round(mastering_meta->r_y * chroma_den), chroma_den);
  1805. metadata->display_primaries[1][0] = av_make_q(
  1806. round(mastering_meta->g_x * chroma_den), chroma_den);
  1807. metadata->display_primaries[1][1] = av_make_q(
  1808. round(mastering_meta->g_y * chroma_den), chroma_den);
  1809. metadata->display_primaries[2][0] = av_make_q(
  1810. round(mastering_meta->b_x * chroma_den), chroma_den);
  1811. metadata->display_primaries[2][1] = av_make_q(
  1812. round(mastering_meta->b_y * chroma_den), chroma_den);
  1813. metadata->white_point[0] = av_make_q(
  1814. round(mastering_meta->white_x * chroma_den), chroma_den);
  1815. metadata->white_point[1] = av_make_q(
  1816. round(mastering_meta->white_y * chroma_den), chroma_den);
  1817. metadata->has_primaries = 1;
  1818. }
  1819. if (has_mastering_luminance) {
  1820. metadata->max_luminance = av_make_q(
  1821. round(mastering_meta->max_luminance * luma_den), luma_den);
  1822. metadata->min_luminance = av_make_q(
  1823. round(mastering_meta->min_luminance * luma_den), luma_den);
  1824. metadata->has_luminance = 1;
  1825. }
  1826. }
  1827. return 0;
  1828. }
  1829. static int mkv_parse_video_projection(AVStream *st, const MatroskaTrack *track) {
  1830. AVSphericalMapping *spherical;
  1831. enum AVSphericalProjection projection;
  1832. size_t spherical_size;
  1833. uint32_t l = 0, t = 0, r = 0, b = 0;
  1834. uint32_t padding = 0;
  1835. int ret;
  1836. GetByteContext gb;
  1837. bytestream2_init(&gb, track->video.projection.private.data,
  1838. track->video.projection.private.size);
  1839. if (bytestream2_get_byte(&gb) != 0) {
  1840. av_log(NULL, AV_LOG_WARNING, "Unknown spherical metadata\n");
  1841. return 0;
  1842. }
  1843. bytestream2_skip(&gb, 3); // flags
  1844. switch (track->video.projection.type) {
  1845. case MATROSKA_VIDEO_PROJECTION_TYPE_EQUIRECTANGULAR:
  1846. if (track->video.projection.private.size == 20) {
  1847. t = bytestream2_get_be32(&gb);
  1848. b = bytestream2_get_be32(&gb);
  1849. l = bytestream2_get_be32(&gb);
  1850. r = bytestream2_get_be32(&gb);
  1851. if (b >= UINT_MAX - t || r >= UINT_MAX - l) {
  1852. av_log(NULL, AV_LOG_ERROR,
  1853. "Invalid bounding rectangle coordinates "
  1854. "%"PRIu32",%"PRIu32",%"PRIu32",%"PRIu32"\n",
  1855. l, t, r, b);
  1856. return AVERROR_INVALIDDATA;
  1857. }
  1858. } else if (track->video.projection.private.size != 0) {
  1859. av_log(NULL, AV_LOG_ERROR, "Unknown spherical metadata\n");
  1860. return AVERROR_INVALIDDATA;
  1861. }
  1862. if (l || t || r || b)
  1863. projection = AV_SPHERICAL_EQUIRECTANGULAR_TILE;
  1864. else
  1865. projection = AV_SPHERICAL_EQUIRECTANGULAR;
  1866. break;
  1867. case MATROSKA_VIDEO_PROJECTION_TYPE_CUBEMAP:
  1868. if (track->video.projection.private.size < 4) {
  1869. av_log(NULL, AV_LOG_ERROR, "Missing projection private properties\n");
  1870. return AVERROR_INVALIDDATA;
  1871. } else if (track->video.projection.private.size == 12) {
  1872. uint32_t layout = bytestream2_get_be32(&gb);
  1873. if (layout) {
  1874. av_log(NULL, AV_LOG_WARNING,
  1875. "Unknown spherical cubemap layout %"PRIu32"\n", layout);
  1876. return 0;
  1877. }
  1878. projection = AV_SPHERICAL_CUBEMAP;
  1879. padding = bytestream2_get_be32(&gb);
  1880. } else {
  1881. av_log(NULL, AV_LOG_ERROR, "Unknown spherical metadata\n");
  1882. return AVERROR_INVALIDDATA;
  1883. }
  1884. break;
  1885. case MATROSKA_VIDEO_PROJECTION_TYPE_RECTANGULAR:
  1886. /* No Spherical metadata */
  1887. return 0;
  1888. default:
  1889. av_log(NULL, AV_LOG_WARNING,
  1890. "Unknown spherical metadata type %"PRIu64"\n",
  1891. track->video.projection.type);
  1892. return 0;
  1893. }
  1894. spherical = av_spherical_alloc(&spherical_size);
  1895. if (!spherical)
  1896. return AVERROR(ENOMEM);
  1897. spherical->projection = projection;
  1898. spherical->yaw = (int32_t) (track->video.projection.yaw * (1 << 16));
  1899. spherical->pitch = (int32_t) (track->video.projection.pitch * (1 << 16));
  1900. spherical->roll = (int32_t) (track->video.projection.roll * (1 << 16));
  1901. spherical->padding = padding;
  1902. spherical->bound_left = l;
  1903. spherical->bound_top = t;
  1904. spherical->bound_right = r;
  1905. spherical->bound_bottom = b;
  1906. ret = av_stream_add_side_data(st, AV_PKT_DATA_SPHERICAL, (uint8_t *)spherical,
  1907. spherical_size);
  1908. if (ret < 0) {
  1909. av_freep(&spherical);
  1910. return ret;
  1911. }
  1912. return 0;
  1913. }
  1914. static int get_qt_codec(MatroskaTrack *track, uint32_t *fourcc, enum AVCodecID *codec_id)
  1915. {
  1916. const AVCodecTag *codec_tags;
  1917. codec_tags = track->type == MATROSKA_TRACK_TYPE_VIDEO ?
  1918. ff_codec_movvideo_tags : ff_codec_movaudio_tags;
  1919. /* Normalize noncompliant private data that starts with the fourcc
  1920. * by expanding/shifting the data by 4 bytes and storing the data
  1921. * size at the start. */
  1922. if (ff_codec_get_id(codec_tags, AV_RL32(track->codec_priv.data))) {
  1923. int ret = av_buffer_realloc(&track->codec_priv.buf,
  1924. track->codec_priv.size + 4 + AV_INPUT_BUFFER_PADDING_SIZE);
  1925. if (ret < 0)
  1926. return ret;
  1927. track->codec_priv.data = track->codec_priv.buf->data;
  1928. memmove(track->codec_priv.data + 4, track->codec_priv.data, track->codec_priv.size);
  1929. track->codec_priv.size += 4;
  1930. AV_WB32(track->codec_priv.data, track->codec_priv.size);
  1931. }
  1932. *fourcc = AV_RL32(track->codec_priv.data + 4);
  1933. *codec_id = ff_codec_get_id(codec_tags, *fourcc);
  1934. return 0;
  1935. }
  1936. static int matroska_parse_tracks(AVFormatContext *s)
  1937. {
  1938. MatroskaDemuxContext *matroska = s->priv_data;
  1939. MatroskaTrack *tracks = matroska->tracks.elem;
  1940. AVStream *st;
  1941. int i, j, ret;
  1942. int k;
  1943. for (i = 0; i < matroska->tracks.nb_elem; i++) {
  1944. MatroskaTrack *track = &tracks[i];
  1945. enum AVCodecID codec_id = AV_CODEC_ID_NONE;
  1946. EbmlList *encodings_list = &track->encodings;
  1947. MatroskaTrackEncoding *encodings = encodings_list->elem;
  1948. uint8_t *extradata = NULL;
  1949. int extradata_size = 0;
  1950. int extradata_offset = 0;
  1951. uint32_t fourcc = 0;
  1952. AVIOContext b;
  1953. char* key_id_base64 = NULL;
  1954. int bit_depth = -1;
  1955. /* Apply some sanity checks. */
  1956. if (track->type != MATROSKA_TRACK_TYPE_VIDEO &&
  1957. track->type != MATROSKA_TRACK_TYPE_AUDIO &&
  1958. track->type != MATROSKA_TRACK_TYPE_SUBTITLE &&
  1959. track->type != MATROSKA_TRACK_TYPE_METADATA) {
  1960. av_log(matroska->ctx, AV_LOG_INFO,
  1961. "Unknown or unsupported track type %"PRIu64"\n",
  1962. track->type);
  1963. continue;
  1964. }
  1965. if (!track->codec_id)
  1966. continue;
  1967. if (track->audio.samplerate < 0 || track->audio.samplerate > INT_MAX ||
  1968. isnan(track->audio.samplerate)) {
  1969. av_log(matroska->ctx, AV_LOG_WARNING,
  1970. "Invalid sample rate %f, defaulting to 8000 instead.\n",
  1971. track->audio.samplerate);
  1972. track->audio.samplerate = 8000;
  1973. }
  1974. if (track->type == MATROSKA_TRACK_TYPE_VIDEO) {
  1975. if (!track->default_duration && track->video.frame_rate > 0) {
  1976. double default_duration = 1000000000 / track->video.frame_rate;
  1977. if (default_duration > UINT64_MAX || default_duration < 0) {
  1978. av_log(matroska->ctx, AV_LOG_WARNING,
  1979. "Invalid frame rate %e. Cannot calculate default duration.\n",
  1980. track->video.frame_rate);
  1981. } else {
  1982. track->default_duration = default_duration;
  1983. }
  1984. }
  1985. if (track->video.display_width == -1)
  1986. track->video.display_width = track->video.pixel_width;
  1987. if (track->video.display_height == -1)
  1988. track->video.display_height = track->video.pixel_height;
  1989. if (track->video.color_space.size == 4)
  1990. fourcc = AV_RL32(track->video.color_space.data);
  1991. } else if (track->type == MATROSKA_TRACK_TYPE_AUDIO) {
  1992. if (!track->audio.out_samplerate)
  1993. track->audio.out_samplerate = track->audio.samplerate;
  1994. }
  1995. if (encodings_list->nb_elem > 1) {
  1996. av_log(matroska->ctx, AV_LOG_ERROR,
  1997. "Multiple combined encodings not supported");
  1998. } else if (encodings_list->nb_elem == 1) {
  1999. if (encodings[0].type) {
  2000. if (encodings[0].encryption.key_id.size > 0) {
  2001. /* Save the encryption key id to be stored later as a
  2002. metadata tag. */
  2003. const int b64_size = AV_BASE64_SIZE(encodings[0].encryption.key_id.size);
  2004. key_id_base64 = av_malloc(b64_size);
  2005. if (key_id_base64 == NULL)
  2006. return AVERROR(ENOMEM);
  2007. av_base64_encode(key_id_base64, b64_size,
  2008. encodings[0].encryption.key_id.data,
  2009. encodings[0].encryption.key_id.size);
  2010. } else {
  2011. encodings[0].scope = 0;
  2012. av_log(matroska->ctx, AV_LOG_ERROR,
  2013. "Unsupported encoding type");
  2014. }
  2015. } else if (
  2016. #if CONFIG_ZLIB
  2017. encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_ZLIB &&
  2018. #endif
  2019. #if CONFIG_BZLIB
  2020. encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_BZLIB &&
  2021. #endif
  2022. #if CONFIG_LZO
  2023. encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_LZO &&
  2024. #endif
  2025. encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_HEADERSTRIP) {
  2026. encodings[0].scope = 0;
  2027. av_log(matroska->ctx, AV_LOG_ERROR,
  2028. "Unsupported encoding type");
  2029. } else if (track->codec_priv.size && encodings[0].scope & 2) {
  2030. uint8_t *codec_priv = track->codec_priv.data;
  2031. int ret = matroska_decode_buffer(&track->codec_priv.data,
  2032. &track->codec_priv.size,
  2033. track);
  2034. if (ret < 0) {
  2035. track->codec_priv.data = NULL;
  2036. track->codec_priv.size = 0;
  2037. av_log(matroska->ctx, AV_LOG_ERROR,
  2038. "Failed to decode codec private data\n");
  2039. }
  2040. if (codec_priv != track->codec_priv.data) {
  2041. av_buffer_unref(&track->codec_priv.buf);
  2042. if (track->codec_priv.data) {
  2043. track->codec_priv.buf = av_buffer_create(track->codec_priv.data,
  2044. track->codec_priv.size + AV_INPUT_BUFFER_PADDING_SIZE,
  2045. NULL, NULL, 0);
  2046. if (!track->codec_priv.buf) {
  2047. av_freep(&track->codec_priv.data);
  2048. track->codec_priv.size = 0;
  2049. return AVERROR(ENOMEM);
  2050. }
  2051. }
  2052. }
  2053. }
  2054. }
  2055. for (j = 0; ff_mkv_codec_tags[j].id != AV_CODEC_ID_NONE; j++) {
  2056. if (!strncmp(ff_mkv_codec_tags[j].str, track->codec_id,
  2057. strlen(ff_mkv_codec_tags[j].str))) {
  2058. codec_id = ff_mkv_codec_tags[j].id;
  2059. break;
  2060. }
  2061. }
  2062. st = track->stream = avformat_new_stream(s, NULL);
  2063. if (!st) {
  2064. av_free(key_id_base64);
  2065. return AVERROR(ENOMEM);
  2066. }
  2067. if (key_id_base64) {
  2068. /* export encryption key id as base64 metadata tag */
  2069. av_dict_set(&st->metadata, "enc_key_id", key_id_base64, 0);
  2070. av_freep(&key_id_base64);
  2071. }
  2072. if (!strcmp(track->codec_id, "V_MS/VFW/FOURCC") &&
  2073. track->codec_priv.size >= 40 &&
  2074. track->codec_priv.data) {
  2075. track->ms_compat = 1;
  2076. bit_depth = AV_RL16(track->codec_priv.data + 14);
  2077. fourcc = AV_RL32(track->codec_priv.data + 16);
  2078. codec_id = ff_codec_get_id(ff_codec_bmp_tags,
  2079. fourcc);
  2080. if (!codec_id)
  2081. codec_id = ff_codec_get_id(ff_codec_movvideo_tags,
  2082. fourcc);
  2083. extradata_offset = 40;
  2084. } else if (!strcmp(track->codec_id, "A_MS/ACM") &&
  2085. track->codec_priv.size >= 14 &&
  2086. track->codec_priv.data) {
  2087. int ret;
  2088. ffio_init_context(&b, track->codec_priv.data,
  2089. track->codec_priv.size,
  2090. 0, NULL, NULL, NULL, NULL);
  2091. ret = ff_get_wav_header(s, &b, st->codecpar, track->codec_priv.size, 0);
  2092. if (ret < 0)
  2093. return ret;
  2094. codec_id = st->codecpar->codec_id;
  2095. fourcc = st->codecpar->codec_tag;
  2096. extradata_offset = FFMIN(track->codec_priv.size, 18);
  2097. } else if (!strcmp(track->codec_id, "A_QUICKTIME")
  2098. /* Normally 36, but allow noncompliant private data */
  2099. && (track->codec_priv.size >= 32)
  2100. && (track->codec_priv.data)) {
  2101. uint16_t sample_size;
  2102. int ret = get_qt_codec(track, &fourcc, &codec_id);
  2103. if (ret < 0)
  2104. return ret;
  2105. sample_size = AV_RB16(track->codec_priv.data + 26);
  2106. if (fourcc == 0) {
  2107. if (sample_size == 8) {
  2108. fourcc = MKTAG('r','a','w',' ');
  2109. codec_id = ff_codec_get_id(ff_codec_movaudio_tags, fourcc);
  2110. } else if (sample_size == 16) {
  2111. fourcc = MKTAG('t','w','o','s');
  2112. codec_id = ff_codec_get_id(ff_codec_movaudio_tags, fourcc);
  2113. }
  2114. }
  2115. if ((fourcc == MKTAG('t','w','o','s') ||
  2116. fourcc == MKTAG('s','o','w','t')) &&
  2117. sample_size == 8)
  2118. codec_id = AV_CODEC_ID_PCM_S8;
  2119. } else if (!strcmp(track->codec_id, "V_QUICKTIME") &&
  2120. (track->codec_priv.size >= 21) &&
  2121. (track->codec_priv.data)) {
  2122. int ret = get_qt_codec(track, &fourcc, &codec_id);
  2123. if (ret < 0)
  2124. return ret;
  2125. if (codec_id == AV_CODEC_ID_NONE && AV_RL32(track->codec_priv.data+4) == AV_RL32("SMI ")) {
  2126. fourcc = MKTAG('S','V','Q','3');
  2127. codec_id = ff_codec_get_id(ff_codec_movvideo_tags, fourcc);
  2128. }
  2129. if (codec_id == AV_CODEC_ID_NONE)
  2130. av_log(matroska->ctx, AV_LOG_ERROR,
  2131. "mov FourCC not found %s.\n", av_fourcc2str(fourcc));
  2132. if (track->codec_priv.size >= 86) {
  2133. bit_depth = AV_RB16(track->codec_priv.data + 82);
  2134. ffio_init_context(&b, track->codec_priv.data,
  2135. track->codec_priv.size,
  2136. 0, NULL, NULL, NULL, NULL);
  2137. if (ff_get_qtpalette(codec_id, &b, track->palette)) {
  2138. bit_depth &= 0x1F;
  2139. track->has_palette = 1;
  2140. }
  2141. }
  2142. } else if (codec_id == AV_CODEC_ID_PCM_S16BE) {
  2143. switch (track->audio.bitdepth) {
  2144. case 8:
  2145. codec_id = AV_CODEC_ID_PCM_U8;
  2146. break;
  2147. case 24:
  2148. codec_id = AV_CODEC_ID_PCM_S24BE;
  2149. break;
  2150. case 32:
  2151. codec_id = AV_CODEC_ID_PCM_S32BE;
  2152. break;
  2153. }
  2154. } else if (codec_id == AV_CODEC_ID_PCM_S16LE) {
  2155. switch (track->audio.bitdepth) {
  2156. case 8:
  2157. codec_id = AV_CODEC_ID_PCM_U8;
  2158. break;
  2159. case 24:
  2160. codec_id = AV_CODEC_ID_PCM_S24LE;
  2161. break;
  2162. case 32:
  2163. codec_id = AV_CODEC_ID_PCM_S32LE;
  2164. break;
  2165. }
  2166. } else if (codec_id == AV_CODEC_ID_PCM_F32LE &&
  2167. track->audio.bitdepth == 64) {
  2168. codec_id = AV_CODEC_ID_PCM_F64LE;
  2169. } else if (codec_id == AV_CODEC_ID_AAC && !track->codec_priv.size) {
  2170. int profile = matroska_aac_profile(track->codec_id);
  2171. int sri = matroska_aac_sri(track->audio.samplerate);
  2172. extradata = av_mallocz(5 + AV_INPUT_BUFFER_PADDING_SIZE);
  2173. if (!extradata)
  2174. return AVERROR(ENOMEM);
  2175. extradata[0] = (profile << 3) | ((sri & 0x0E) >> 1);
  2176. extradata[1] = ((sri & 0x01) << 7) | (track->audio.channels << 3);
  2177. if (strstr(track->codec_id, "SBR")) {
  2178. sri = matroska_aac_sri(track->audio.out_samplerate);
  2179. extradata[2] = 0x56;
  2180. extradata[3] = 0xE5;
  2181. extradata[4] = 0x80 | (sri << 3);
  2182. extradata_size = 5;
  2183. } else
  2184. extradata_size = 2;
  2185. } else if (codec_id == AV_CODEC_ID_ALAC && track->codec_priv.size && track->codec_priv.size < INT_MAX - 12 - AV_INPUT_BUFFER_PADDING_SIZE) {
  2186. /* Only ALAC's magic cookie is stored in Matroska's track headers.
  2187. * Create the "atom size", "tag", and "tag version" fields the
  2188. * decoder expects manually. */
  2189. extradata_size = 12 + track->codec_priv.size;
  2190. extradata = av_mallocz(extradata_size +
  2191. AV_INPUT_BUFFER_PADDING_SIZE);
  2192. if (!extradata)
  2193. return AVERROR(ENOMEM);
  2194. AV_WB32(extradata, extradata_size);
  2195. memcpy(&extradata[4], "alac", 4);
  2196. AV_WB32(&extradata[8], 0);
  2197. memcpy(&extradata[12], track->codec_priv.data,
  2198. track->codec_priv.size);
  2199. } else if (codec_id == AV_CODEC_ID_TTA) {
  2200. extradata_size = 30;
  2201. extradata = av_mallocz(extradata_size + AV_INPUT_BUFFER_PADDING_SIZE);
  2202. if (!extradata)
  2203. return AVERROR(ENOMEM);
  2204. ffio_init_context(&b, extradata, extradata_size, 1,
  2205. NULL, NULL, NULL, NULL);
  2206. avio_write(&b, "TTA1", 4);
  2207. avio_wl16(&b, 1);
  2208. if (track->audio.channels > UINT16_MAX ||
  2209. track->audio.bitdepth > UINT16_MAX) {
  2210. av_log(matroska->ctx, AV_LOG_WARNING,
  2211. "Too large audio channel number %"PRIu64
  2212. " or bitdepth %"PRIu64". Skipping track.\n",
  2213. track->audio.channels, track->audio.bitdepth);
  2214. av_freep(&extradata);
  2215. if (matroska->ctx->error_recognition & AV_EF_EXPLODE)
  2216. return AVERROR_INVALIDDATA;
  2217. else
  2218. continue;
  2219. }
  2220. avio_wl16(&b, track->audio.channels);
  2221. avio_wl16(&b, track->audio.bitdepth);
  2222. if (track->audio.out_samplerate < 0 || track->audio.out_samplerate > INT_MAX)
  2223. return AVERROR_INVALIDDATA;
  2224. avio_wl32(&b, track->audio.out_samplerate);
  2225. avio_wl32(&b, av_rescale((matroska->duration * matroska->time_scale),
  2226. track->audio.out_samplerate,
  2227. AV_TIME_BASE * 1000));
  2228. } else if (codec_id == AV_CODEC_ID_RV10 ||
  2229. codec_id == AV_CODEC_ID_RV20 ||
  2230. codec_id == AV_CODEC_ID_RV30 ||
  2231. codec_id == AV_CODEC_ID_RV40) {
  2232. extradata_offset = 26;
  2233. } else if (codec_id == AV_CODEC_ID_RA_144) {
  2234. track->audio.out_samplerate = 8000;
  2235. track->audio.channels = 1;
  2236. } else if ((codec_id == AV_CODEC_ID_RA_288 ||
  2237. codec_id == AV_CODEC_ID_COOK ||
  2238. codec_id == AV_CODEC_ID_ATRAC3 ||
  2239. codec_id == AV_CODEC_ID_SIPR)
  2240. && track->codec_priv.data) {
  2241. int flavor;
  2242. ffio_init_context(&b, track->codec_priv.data,
  2243. track->codec_priv.size,
  2244. 0, NULL, NULL, NULL, NULL);
  2245. avio_skip(&b, 22);
  2246. flavor = avio_rb16(&b);
  2247. track->audio.coded_framesize = avio_rb32(&b);
  2248. avio_skip(&b, 12);
  2249. track->audio.sub_packet_h = avio_rb16(&b);
  2250. track->audio.frame_size = avio_rb16(&b);
  2251. track->audio.sub_packet_size = avio_rb16(&b);
  2252. if (flavor < 0 ||
  2253. track->audio.coded_framesize <= 0 ||
  2254. track->audio.sub_packet_h <= 0 ||
  2255. track->audio.frame_size <= 0 ||
  2256. track->audio.sub_packet_size <= 0 && codec_id != AV_CODEC_ID_SIPR)
  2257. return AVERROR_INVALIDDATA;
  2258. track->audio.buf = av_malloc_array(track->audio.sub_packet_h,
  2259. track->audio.frame_size);
  2260. if (!track->audio.buf)
  2261. return AVERROR(ENOMEM);
  2262. if (codec_id == AV_CODEC_ID_RA_288) {
  2263. st->codecpar->block_align = track->audio.coded_framesize;
  2264. track->codec_priv.size = 0;
  2265. } else {
  2266. if (codec_id == AV_CODEC_ID_SIPR && flavor < 4) {
  2267. static const int sipr_bit_rate[4] = { 6504, 8496, 5000, 16000 };
  2268. track->audio.sub_packet_size = ff_sipr_subpk_size[flavor];
  2269. st->codecpar->bit_rate = sipr_bit_rate[flavor];
  2270. }
  2271. st->codecpar->block_align = track->audio.sub_packet_size;
  2272. extradata_offset = 78;
  2273. }
  2274. } else if (codec_id == AV_CODEC_ID_FLAC && track->codec_priv.size) {
  2275. ret = matroska_parse_flac(s, track, &extradata_offset);
  2276. if (ret < 0)
  2277. return ret;
  2278. } else if (codec_id == AV_CODEC_ID_PRORES && track->codec_priv.size == 4) {
  2279. fourcc = AV_RL32(track->codec_priv.data);
  2280. } else if (codec_id == AV_CODEC_ID_VP9 && track->codec_priv.size) {
  2281. /* we don't need any value stored in CodecPrivate.
  2282. make sure that it's not exported as extradata. */
  2283. track->codec_priv.size = 0;
  2284. } else if (codec_id == AV_CODEC_ID_AV1 && track->codec_priv.size) {
  2285. /* For now, propagate only the OBUs, if any. Once libavcodec is
  2286. updated to handle isobmff style extradata this can be removed. */
  2287. extradata_offset = 4;
  2288. }
  2289. track->codec_priv.size -= extradata_offset;
  2290. if (codec_id == AV_CODEC_ID_NONE)
  2291. av_log(matroska->ctx, AV_LOG_INFO,
  2292. "Unknown/unsupported AVCodecID %s.\n", track->codec_id);
  2293. if (track->time_scale < 0.01)
  2294. track->time_scale = 1.0;
  2295. avpriv_set_pts_info(st, 64, matroska->time_scale * track->time_scale,
  2296. 1000 * 1000 * 1000); /* 64 bit pts in ns */
  2297. /* convert the delay from ns to the track timebase */
  2298. track->codec_delay_in_track_tb = av_rescale_q(track->codec_delay,
  2299. (AVRational){ 1, 1000000000 },
  2300. st->time_base);
  2301. st->codecpar->codec_id = codec_id;
  2302. if (strcmp(track->language, "und"))
  2303. av_dict_set(&st->metadata, "language", track->language, 0);
  2304. av_dict_set(&st->metadata, "title", track->name, 0);
  2305. if (track->flag_default)
  2306. st->disposition |= AV_DISPOSITION_DEFAULT;
  2307. if (track->flag_forced)
  2308. st->disposition |= AV_DISPOSITION_FORCED;
  2309. if (!st->codecpar->extradata) {
  2310. if (extradata) {
  2311. st->codecpar->extradata = extradata;
  2312. st->codecpar->extradata_size = extradata_size;
  2313. } else if (track->codec_priv.data && track->codec_priv.size > 0) {
  2314. if (ff_alloc_extradata(st->codecpar, track->codec_priv.size))
  2315. return AVERROR(ENOMEM);
  2316. memcpy(st->codecpar->extradata,
  2317. track->codec_priv.data + extradata_offset,
  2318. track->codec_priv.size);
  2319. }
  2320. }
  2321. if (track->type == MATROSKA_TRACK_TYPE_VIDEO) {
  2322. MatroskaTrackPlane *planes = track->operation.combine_planes.elem;
  2323. int display_width_mul = 1;
  2324. int display_height_mul = 1;
  2325. st->codecpar->codec_type = AVMEDIA_TYPE_VIDEO;
  2326. st->codecpar->codec_tag = fourcc;
  2327. if (bit_depth >= 0)
  2328. st->codecpar->bits_per_coded_sample = bit_depth;
  2329. st->codecpar->width = track->video.pixel_width;
  2330. st->codecpar->height = track->video.pixel_height;
  2331. if (track->video.interlaced == MATROSKA_VIDEO_INTERLACE_FLAG_INTERLACED)
  2332. st->codecpar->field_order = mkv_field_order(matroska, track->video.field_order);
  2333. else if (track->video.interlaced == MATROSKA_VIDEO_INTERLACE_FLAG_PROGRESSIVE)
  2334. st->codecpar->field_order = AV_FIELD_PROGRESSIVE;
  2335. if (track->video.stereo_mode && track->video.stereo_mode < MATROSKA_VIDEO_STEREOMODE_TYPE_NB)
  2336. mkv_stereo_mode_display_mul(track->video.stereo_mode, &display_width_mul, &display_height_mul);
  2337. if (track->video.display_unit < MATROSKA_VIDEO_DISPLAYUNIT_UNKNOWN) {
  2338. av_reduce(&st->sample_aspect_ratio.num,
  2339. &st->sample_aspect_ratio.den,
  2340. st->codecpar->height * track->video.display_width * display_width_mul,
  2341. st->codecpar->width * track->video.display_height * display_height_mul,
  2342. 255);
  2343. }
  2344. if (st->codecpar->codec_id != AV_CODEC_ID_HEVC)
  2345. st->need_parsing = AVSTREAM_PARSE_HEADERS;
  2346. if (track->default_duration) {
  2347. av_reduce(&st->avg_frame_rate.num, &st->avg_frame_rate.den,
  2348. 1000000000, track->default_duration, 30000);
  2349. #if FF_API_R_FRAME_RATE
  2350. if ( st->avg_frame_rate.num < st->avg_frame_rate.den * 1000LL
  2351. && st->avg_frame_rate.num > st->avg_frame_rate.den * 5LL)
  2352. st->r_frame_rate = st->avg_frame_rate;
  2353. #endif
  2354. }
  2355. /* export stereo mode flag as metadata tag */
  2356. if (track->video.stereo_mode && track->video.stereo_mode < MATROSKA_VIDEO_STEREOMODE_TYPE_NB)
  2357. av_dict_set(&st->metadata, "stereo_mode", ff_matroska_video_stereo_mode[track->video.stereo_mode], 0);
  2358. /* export alpha mode flag as metadata tag */
  2359. if (track->video.alpha_mode)
  2360. av_dict_set(&st->metadata, "alpha_mode", "1", 0);
  2361. /* if we have virtual track, mark the real tracks */
  2362. for (j=0; j < track->operation.combine_planes.nb_elem; j++) {
  2363. char buf[32];
  2364. if (planes[j].type >= MATROSKA_VIDEO_STEREO_PLANE_COUNT)
  2365. continue;
  2366. snprintf(buf, sizeof(buf), "%s_%d",
  2367. ff_matroska_video_stereo_plane[planes[j].type], i);
  2368. for (k=0; k < matroska->tracks.nb_elem; k++)
  2369. if (planes[j].uid == tracks[k].uid && tracks[k].stream) {
  2370. av_dict_set(&tracks[k].stream->metadata,
  2371. "stereo_mode", buf, 0);
  2372. break;
  2373. }
  2374. }
  2375. // add stream level stereo3d side data if it is a supported format
  2376. if (track->video.stereo_mode < MATROSKA_VIDEO_STEREOMODE_TYPE_NB &&
  2377. track->video.stereo_mode != 10 && track->video.stereo_mode != 12) {
  2378. int ret = ff_mkv_stereo3d_conv(st, track->video.stereo_mode);
  2379. if (ret < 0)
  2380. return ret;
  2381. }
  2382. ret = mkv_parse_video_color(st, track);
  2383. if (ret < 0)
  2384. return ret;
  2385. ret = mkv_parse_video_projection(st, track);
  2386. if (ret < 0)
  2387. return ret;
  2388. } else if (track->type == MATROSKA_TRACK_TYPE_AUDIO) {
  2389. st->codecpar->codec_type = AVMEDIA_TYPE_AUDIO;
  2390. st->codecpar->codec_tag = fourcc;
  2391. st->codecpar->sample_rate = track->audio.out_samplerate;
  2392. st->codecpar->channels = track->audio.channels;
  2393. if (!st->codecpar->bits_per_coded_sample)
  2394. st->codecpar->bits_per_coded_sample = track->audio.bitdepth;
  2395. if (st->codecpar->codec_id == AV_CODEC_ID_MP3 ||
  2396. st->codecpar->codec_id == AV_CODEC_ID_MLP ||
  2397. st->codecpar->codec_id == AV_CODEC_ID_TRUEHD)
  2398. st->need_parsing = AVSTREAM_PARSE_FULL;
  2399. else if (st->codecpar->codec_id != AV_CODEC_ID_AAC)
  2400. st->need_parsing = AVSTREAM_PARSE_HEADERS;
  2401. if (track->codec_delay > 0) {
  2402. st->codecpar->initial_padding = av_rescale_q(track->codec_delay,
  2403. (AVRational){1, 1000000000},
  2404. (AVRational){1, st->codecpar->codec_id == AV_CODEC_ID_OPUS ?
  2405. 48000 : st->codecpar->sample_rate});
  2406. }
  2407. if (track->seek_preroll > 0) {
  2408. st->codecpar->seek_preroll = av_rescale_q(track->seek_preroll,
  2409. (AVRational){1, 1000000000},
  2410. (AVRational){1, st->codecpar->sample_rate});
  2411. }
  2412. } else if (codec_id == AV_CODEC_ID_WEBVTT) {
  2413. st->codecpar->codec_type = AVMEDIA_TYPE_SUBTITLE;
  2414. if (!strcmp(track->codec_id, "D_WEBVTT/CAPTIONS")) {
  2415. st->disposition |= AV_DISPOSITION_CAPTIONS;
  2416. } else if (!strcmp(track->codec_id, "D_WEBVTT/DESCRIPTIONS")) {
  2417. st->disposition |= AV_DISPOSITION_DESCRIPTIONS;
  2418. } else if (!strcmp(track->codec_id, "D_WEBVTT/METADATA")) {
  2419. st->disposition |= AV_DISPOSITION_METADATA;
  2420. }
  2421. } else if (track->type == MATROSKA_TRACK_TYPE_SUBTITLE) {
  2422. st->codecpar->codec_type = AVMEDIA_TYPE_SUBTITLE;
  2423. }
  2424. }
  2425. return 0;
  2426. }
  2427. static int matroska_read_header(AVFormatContext *s)
  2428. {
  2429. MatroskaDemuxContext *matroska = s->priv_data;
  2430. EbmlList *attachments_list = &matroska->attachments;
  2431. EbmlList *chapters_list = &matroska->chapters;
  2432. MatroskaAttachment *attachments;
  2433. MatroskaChapter *chapters;
  2434. uint64_t max_start = 0;
  2435. int64_t pos;
  2436. Ebml ebml = { 0 };
  2437. int i, j, res;
  2438. matroska->ctx = s;
  2439. matroska->cues_parsing_deferred = 1;
  2440. /* First read the EBML header. */
  2441. if (ebml_parse(matroska, ebml_syntax, &ebml) || !ebml.doctype) {
  2442. av_log(matroska->ctx, AV_LOG_ERROR, "EBML header parsing failed\n");
  2443. ebml_free(ebml_syntax, &ebml);
  2444. return AVERROR_INVALIDDATA;
  2445. }
  2446. if (ebml.version > EBML_VERSION ||
  2447. ebml.max_size > sizeof(uint64_t) ||
  2448. ebml.id_length > sizeof(uint32_t) ||
  2449. ebml.doctype_version > 3) {
  2450. avpriv_report_missing_feature(matroska->ctx,
  2451. "EBML version %"PRIu64", doctype %s, doc version %"PRIu64,
  2452. ebml.version, ebml.doctype, ebml.doctype_version);
  2453. ebml_free(ebml_syntax, &ebml);
  2454. return AVERROR_PATCHWELCOME;
  2455. } else if (ebml.doctype_version == 3) {
  2456. av_log(matroska->ctx, AV_LOG_WARNING,
  2457. "EBML header using unsupported features\n"
  2458. "(EBML version %"PRIu64", doctype %s, doc version %"PRIu64")\n",
  2459. ebml.version, ebml.doctype, ebml.doctype_version);
  2460. }
  2461. for (i = 0; i < FF_ARRAY_ELEMS(matroska_doctypes); i++)
  2462. if (!strcmp(ebml.doctype, matroska_doctypes[i]))
  2463. break;
  2464. if (i >= FF_ARRAY_ELEMS(matroska_doctypes)) {
  2465. av_log(s, AV_LOG_WARNING, "Unknown EBML doctype '%s'\n", ebml.doctype);
  2466. if (matroska->ctx->error_recognition & AV_EF_EXPLODE) {
  2467. ebml_free(ebml_syntax, &ebml);
  2468. return AVERROR_INVALIDDATA;
  2469. }
  2470. }
  2471. ebml_free(ebml_syntax, &ebml);
  2472. /* The next thing is a segment. */
  2473. pos = avio_tell(matroska->ctx->pb);
  2474. res = ebml_parse(matroska, matroska_segments, matroska);
  2475. // try resyncing until we find a EBML_STOP type element.
  2476. while (res != 1) {
  2477. res = matroska_resync(matroska, pos);
  2478. if (res < 0)
  2479. goto fail;
  2480. pos = avio_tell(matroska->ctx->pb);
  2481. res = ebml_parse(matroska, matroska_segment, matroska);
  2482. }
  2483. /* Set data_offset as it might be needed later by seek_frame_generic. */
  2484. if (matroska->current_id == MATROSKA_ID_CLUSTER)
  2485. s->internal->data_offset = avio_tell(matroska->ctx->pb) - 4;
  2486. matroska_execute_seekhead(matroska);
  2487. if (!matroska->time_scale)
  2488. matroska->time_scale = 1000000;
  2489. if (matroska->duration)
  2490. matroska->ctx->duration = matroska->duration * matroska->time_scale *
  2491. 1000 / AV_TIME_BASE;
  2492. av_dict_set(&s->metadata, "title", matroska->title, 0);
  2493. av_dict_set(&s->metadata, "encoder", matroska->muxingapp, 0);
  2494. if (matroska->date_utc.size == 8)
  2495. matroska_metadata_creation_time(&s->metadata, AV_RB64(matroska->date_utc.data));
  2496. res = matroska_parse_tracks(s);
  2497. if (res < 0)
  2498. goto fail;
  2499. attachments = attachments_list->elem;
  2500. for (j = 0; j < attachments_list->nb_elem; j++) {
  2501. if (!(attachments[j].filename && attachments[j].mime &&
  2502. attachments[j].bin.data && attachments[j].bin.size > 0)) {
  2503. av_log(matroska->ctx, AV_LOG_ERROR, "incomplete attachment\n");
  2504. } else {
  2505. AVStream *st = avformat_new_stream(s, NULL);
  2506. if (!st)
  2507. break;
  2508. av_dict_set(&st->metadata, "filename", attachments[j].filename, 0);
  2509. av_dict_set(&st->metadata, "mimetype", attachments[j].mime, 0);
  2510. st->codecpar->codec_id = AV_CODEC_ID_NONE;
  2511. for (i = 0; ff_mkv_image_mime_tags[i].id != AV_CODEC_ID_NONE; i++) {
  2512. if (!strncmp(ff_mkv_image_mime_tags[i].str, attachments[j].mime,
  2513. strlen(ff_mkv_image_mime_tags[i].str))) {
  2514. st->codecpar->codec_id = ff_mkv_image_mime_tags[i].id;
  2515. break;
  2516. }
  2517. }
  2518. attachments[j].stream = st;
  2519. if (st->codecpar->codec_id != AV_CODEC_ID_NONE) {
  2520. AVPacket *pkt = &st->attached_pic;
  2521. st->disposition |= AV_DISPOSITION_ATTACHED_PIC;
  2522. st->codecpar->codec_type = AVMEDIA_TYPE_VIDEO;
  2523. av_init_packet(pkt);
  2524. pkt->buf = av_buffer_ref(attachments[j].bin.buf);
  2525. if (!pkt->buf)
  2526. return AVERROR(ENOMEM);
  2527. pkt->data = attachments[j].bin.data;
  2528. pkt->size = attachments[j].bin.size;
  2529. pkt->stream_index = st->index;
  2530. pkt->flags |= AV_PKT_FLAG_KEY;
  2531. } else {
  2532. st->codecpar->codec_type = AVMEDIA_TYPE_ATTACHMENT;
  2533. if (ff_alloc_extradata(st->codecpar, attachments[j].bin.size))
  2534. break;
  2535. memcpy(st->codecpar->extradata, attachments[j].bin.data,
  2536. attachments[j].bin.size);
  2537. for (i = 0; ff_mkv_mime_tags[i].id != AV_CODEC_ID_NONE; i++) {
  2538. if (!strncmp(ff_mkv_mime_tags[i].str, attachments[j].mime,
  2539. strlen(ff_mkv_mime_tags[i].str))) {
  2540. st->codecpar->codec_id = ff_mkv_mime_tags[i].id;
  2541. break;
  2542. }
  2543. }
  2544. }
  2545. }
  2546. }
  2547. chapters = chapters_list->elem;
  2548. for (i = 0; i < chapters_list->nb_elem; i++)
  2549. if (chapters[i].start != AV_NOPTS_VALUE && chapters[i].uid &&
  2550. (max_start == 0 || chapters[i].start > max_start)) {
  2551. chapters[i].chapter =
  2552. avpriv_new_chapter(s, chapters[i].uid,
  2553. (AVRational) { 1, 1000000000 },
  2554. chapters[i].start, chapters[i].end,
  2555. chapters[i].title);
  2556. if (chapters[i].chapter) {
  2557. av_dict_set(&chapters[i].chapter->metadata,
  2558. "title", chapters[i].title, 0);
  2559. }
  2560. max_start = chapters[i].start;
  2561. }
  2562. matroska_add_index_entries(matroska);
  2563. matroska_convert_tags(s);
  2564. return 0;
  2565. fail:
  2566. matroska_read_close(s);
  2567. return res;
  2568. }
  2569. /*
  2570. * Put one packet in an application-supplied AVPacket struct.
  2571. * Returns 0 on success or -1 on failure.
  2572. */
  2573. static int matroska_deliver_packet(MatroskaDemuxContext *matroska,
  2574. AVPacket *pkt)
  2575. {
  2576. if (matroska->queue) {
  2577. MatroskaTrack *tracks = matroska->tracks.elem;
  2578. MatroskaTrack *track;
  2579. ff_packet_list_get(&matroska->queue, &matroska->queue_end, pkt);
  2580. track = &tracks[pkt->stream_index];
  2581. if (track->has_palette) {
  2582. uint8_t *pal = av_packet_new_side_data(pkt, AV_PKT_DATA_PALETTE, AVPALETTE_SIZE);
  2583. if (!pal) {
  2584. av_log(matroska->ctx, AV_LOG_ERROR, "Cannot append palette to packet\n");
  2585. } else {
  2586. memcpy(pal, track->palette, AVPALETTE_SIZE);
  2587. }
  2588. track->has_palette = 0;
  2589. }
  2590. return 0;
  2591. }
  2592. return -1;
  2593. }
  2594. /*
  2595. * Free all packets in our internal queue.
  2596. */
  2597. static void matroska_clear_queue(MatroskaDemuxContext *matroska)
  2598. {
  2599. ff_packet_list_free(&matroska->queue, &matroska->queue_end);
  2600. }
  2601. static int matroska_parse_laces(MatroskaDemuxContext *matroska, uint8_t **buf,
  2602. int *buf_size, int type,
  2603. uint32_t **lace_buf, int *laces)
  2604. {
  2605. int res = 0, n, size = *buf_size;
  2606. uint8_t *data = *buf;
  2607. uint32_t *lace_size;
  2608. if (!type) {
  2609. *laces = 1;
  2610. *lace_buf = av_malloc(sizeof(**lace_buf));
  2611. if (!*lace_buf)
  2612. return AVERROR(ENOMEM);
  2613. *lace_buf[0] = size;
  2614. return 0;
  2615. }
  2616. av_assert0(size > 0);
  2617. *laces = *data + 1;
  2618. data += 1;
  2619. size -= 1;
  2620. lace_size = av_malloc_array(*laces, sizeof(*lace_size));
  2621. if (!lace_size)
  2622. return AVERROR(ENOMEM);
  2623. switch (type) {
  2624. case 0x1: /* Xiph lacing */
  2625. {
  2626. uint8_t temp;
  2627. uint32_t total = 0;
  2628. for (n = 0; res == 0 && n < *laces - 1; n++) {
  2629. lace_size[n] = 0;
  2630. while (1) {
  2631. if (size <= total) {
  2632. res = AVERROR_INVALIDDATA;
  2633. break;
  2634. }
  2635. temp = *data;
  2636. total += temp;
  2637. lace_size[n] += temp;
  2638. data += 1;
  2639. size -= 1;
  2640. if (temp != 0xff)
  2641. break;
  2642. }
  2643. }
  2644. if (size <= total) {
  2645. res = AVERROR_INVALIDDATA;
  2646. break;
  2647. }
  2648. lace_size[n] = size - total;
  2649. break;
  2650. }
  2651. case 0x2: /* fixed-size lacing */
  2652. if (size % (*laces)) {
  2653. res = AVERROR_INVALIDDATA;
  2654. break;
  2655. }
  2656. for (n = 0; n < *laces; n++)
  2657. lace_size[n] = size / *laces;
  2658. break;
  2659. case 0x3: /* EBML lacing */
  2660. {
  2661. uint64_t num;
  2662. uint64_t total;
  2663. n = matroska_ebmlnum_uint(matroska, data, size, &num);
  2664. if (n < 0 || num > INT_MAX) {
  2665. av_log(matroska->ctx, AV_LOG_INFO,
  2666. "EBML block data error\n");
  2667. res = n<0 ? n : AVERROR_INVALIDDATA;
  2668. break;
  2669. }
  2670. data += n;
  2671. size -= n;
  2672. total = lace_size[0] = num;
  2673. for (n = 1; res == 0 && n < *laces - 1; n++) {
  2674. int64_t snum;
  2675. int r;
  2676. r = matroska_ebmlnum_sint(matroska, data, size, &snum);
  2677. if (r < 0 || lace_size[n - 1] + snum > (uint64_t)INT_MAX) {
  2678. av_log(matroska->ctx, AV_LOG_INFO,
  2679. "EBML block data error\n");
  2680. res = r<0 ? r : AVERROR_INVALIDDATA;
  2681. break;
  2682. }
  2683. data += r;
  2684. size -= r;
  2685. lace_size[n] = lace_size[n - 1] + snum;
  2686. total += lace_size[n];
  2687. }
  2688. if (size <= total) {
  2689. res = AVERROR_INVALIDDATA;
  2690. break;
  2691. }
  2692. lace_size[*laces - 1] = size - total;
  2693. break;
  2694. }
  2695. }
  2696. *buf = data;
  2697. *lace_buf = lace_size;
  2698. *buf_size = size;
  2699. return res;
  2700. }
  2701. static int matroska_parse_rm_audio(MatroskaDemuxContext *matroska,
  2702. MatroskaTrack *track, AVStream *st,
  2703. uint8_t *data, int size, uint64_t timecode,
  2704. int64_t pos)
  2705. {
  2706. int a = st->codecpar->block_align;
  2707. int sps = track->audio.sub_packet_size;
  2708. int cfs = track->audio.coded_framesize;
  2709. int h = track->audio.sub_packet_h;
  2710. int y = track->audio.sub_packet_cnt;
  2711. int w = track->audio.frame_size;
  2712. int x;
  2713. if (!track->audio.pkt_cnt) {
  2714. if (track->audio.sub_packet_cnt == 0)
  2715. track->audio.buf_timecode = timecode;
  2716. if (st->codecpar->codec_id == AV_CODEC_ID_RA_288) {
  2717. if (size < cfs * h / 2) {
  2718. av_log(matroska->ctx, AV_LOG_ERROR,
  2719. "Corrupt int4 RM-style audio packet size\n");
  2720. return AVERROR_INVALIDDATA;
  2721. }
  2722. for (x = 0; x < h / 2; x++)
  2723. memcpy(track->audio.buf + x * 2 * w + y * cfs,
  2724. data + x * cfs, cfs);
  2725. } else if (st->codecpar->codec_id == AV_CODEC_ID_SIPR) {
  2726. if (size < w) {
  2727. av_log(matroska->ctx, AV_LOG_ERROR,
  2728. "Corrupt sipr RM-style audio packet size\n");
  2729. return AVERROR_INVALIDDATA;
  2730. }
  2731. memcpy(track->audio.buf + y * w, data, w);
  2732. } else {
  2733. if (size < sps * w / sps || h<=0 || w%sps) {
  2734. av_log(matroska->ctx, AV_LOG_ERROR,
  2735. "Corrupt generic RM-style audio packet size\n");
  2736. return AVERROR_INVALIDDATA;
  2737. }
  2738. for (x = 0; x < w / sps; x++)
  2739. memcpy(track->audio.buf +
  2740. sps * (h * x + ((h + 1) / 2) * (y & 1) + (y >> 1)),
  2741. data + x * sps, sps);
  2742. }
  2743. if (++track->audio.sub_packet_cnt >= h) {
  2744. if (st->codecpar->codec_id == AV_CODEC_ID_SIPR)
  2745. ff_rm_reorder_sipr_data(track->audio.buf, h, w);
  2746. track->audio.sub_packet_cnt = 0;
  2747. track->audio.pkt_cnt = h * w / a;
  2748. }
  2749. }
  2750. while (track->audio.pkt_cnt) {
  2751. int ret;
  2752. AVPacket pktl, *pkt = &pktl;
  2753. ret = av_new_packet(pkt, a);
  2754. if (ret < 0) {
  2755. return ret;
  2756. }
  2757. memcpy(pkt->data,
  2758. track->audio.buf + a * (h * w / a - track->audio.pkt_cnt--),
  2759. a);
  2760. pkt->pts = track->audio.buf_timecode;
  2761. track->audio.buf_timecode = AV_NOPTS_VALUE;
  2762. pkt->pos = pos;
  2763. pkt->stream_index = st->index;
  2764. ret = ff_packet_list_put(&matroska->queue, &matroska->queue_end, pkt, 0);
  2765. if (ret < 0) {
  2766. av_packet_unref(pkt);
  2767. return AVERROR(ENOMEM);
  2768. }
  2769. }
  2770. return 0;
  2771. }
  2772. /* reconstruct full wavpack blocks from mangled matroska ones */
  2773. static int matroska_parse_wavpack(MatroskaTrack *track, uint8_t *src,
  2774. uint8_t **pdst, int *size)
  2775. {
  2776. uint8_t *dst = NULL;
  2777. int dstlen = 0;
  2778. int srclen = *size;
  2779. uint32_t samples;
  2780. uint16_t ver;
  2781. int ret, offset = 0;
  2782. if (srclen < 12 || track->stream->codecpar->extradata_size < 2)
  2783. return AVERROR_INVALIDDATA;
  2784. ver = AV_RL16(track->stream->codecpar->extradata);
  2785. samples = AV_RL32(src);
  2786. src += 4;
  2787. srclen -= 4;
  2788. while (srclen >= 8) {
  2789. int multiblock;
  2790. uint32_t blocksize;
  2791. uint8_t *tmp;
  2792. uint32_t flags = AV_RL32(src);
  2793. uint32_t crc = AV_RL32(src + 4);
  2794. src += 8;
  2795. srclen -= 8;
  2796. multiblock = (flags & 0x1800) != 0x1800;
  2797. if (multiblock) {
  2798. if (srclen < 4) {
  2799. ret = AVERROR_INVALIDDATA;
  2800. goto fail;
  2801. }
  2802. blocksize = AV_RL32(src);
  2803. src += 4;
  2804. srclen -= 4;
  2805. } else
  2806. blocksize = srclen;
  2807. if (blocksize > srclen) {
  2808. ret = AVERROR_INVALIDDATA;
  2809. goto fail;
  2810. }
  2811. tmp = av_realloc(dst, dstlen + blocksize + 32 + AV_INPUT_BUFFER_PADDING_SIZE);
  2812. if (!tmp) {
  2813. ret = AVERROR(ENOMEM);
  2814. goto fail;
  2815. }
  2816. dst = tmp;
  2817. dstlen += blocksize + 32;
  2818. AV_WL32(dst + offset, MKTAG('w', 'v', 'p', 'k')); // tag
  2819. AV_WL32(dst + offset + 4, blocksize + 24); // blocksize - 8
  2820. AV_WL16(dst + offset + 8, ver); // version
  2821. AV_WL16(dst + offset + 10, 0); // track/index_no
  2822. AV_WL32(dst + offset + 12, 0); // total samples
  2823. AV_WL32(dst + offset + 16, 0); // block index
  2824. AV_WL32(dst + offset + 20, samples); // number of samples
  2825. AV_WL32(dst + offset + 24, flags); // flags
  2826. AV_WL32(dst + offset + 28, crc); // crc
  2827. memcpy(dst + offset + 32, src, blocksize); // block data
  2828. src += blocksize;
  2829. srclen -= blocksize;
  2830. offset += blocksize + 32;
  2831. }
  2832. memset(dst + dstlen, 0, AV_INPUT_BUFFER_PADDING_SIZE);
  2833. *pdst = dst;
  2834. *size = dstlen;
  2835. return 0;
  2836. fail:
  2837. av_freep(&dst);
  2838. return ret;
  2839. }
  2840. static int matroska_parse_prores(MatroskaTrack *track, uint8_t *src,
  2841. uint8_t **pdst, int *size)
  2842. {
  2843. uint8_t *dst = src;
  2844. int dstlen = *size;
  2845. if (AV_RB32(&src[4]) != MKBETAG('i', 'c', 'p', 'f')) {
  2846. dst = av_malloc(dstlen + 8 + AV_INPUT_BUFFER_PADDING_SIZE);
  2847. if (!dst)
  2848. return AVERROR(ENOMEM);
  2849. AV_WB32(dst, dstlen);
  2850. AV_WB32(dst + 4, MKBETAG('i', 'c', 'p', 'f'));
  2851. memcpy(dst + 8, src, dstlen);
  2852. memset(dst + 8 + dstlen, 0, AV_INPUT_BUFFER_PADDING_SIZE);
  2853. dstlen += 8;
  2854. }
  2855. *pdst = dst;
  2856. *size = dstlen;
  2857. return 0;
  2858. }
  2859. static int matroska_parse_webvtt(MatroskaDemuxContext *matroska,
  2860. MatroskaTrack *track,
  2861. AVStream *st,
  2862. uint8_t *data, int data_len,
  2863. uint64_t timecode,
  2864. uint64_t duration,
  2865. int64_t pos)
  2866. {
  2867. AVPacket pktl, *pkt = &pktl;
  2868. uint8_t *id, *settings, *text, *buf;
  2869. int id_len, settings_len, text_len;
  2870. uint8_t *p, *q;
  2871. int err;
  2872. if (data_len <= 0)
  2873. return AVERROR_INVALIDDATA;
  2874. p = data;
  2875. q = data + data_len;
  2876. id = p;
  2877. id_len = -1;
  2878. while (p < q) {
  2879. if (*p == '\r' || *p == '\n') {
  2880. id_len = p - id;
  2881. if (*p == '\r')
  2882. p++;
  2883. break;
  2884. }
  2885. p++;
  2886. }
  2887. if (p >= q || *p != '\n')
  2888. return AVERROR_INVALIDDATA;
  2889. p++;
  2890. settings = p;
  2891. settings_len = -1;
  2892. while (p < q) {
  2893. if (*p == '\r' || *p == '\n') {
  2894. settings_len = p - settings;
  2895. if (*p == '\r')
  2896. p++;
  2897. break;
  2898. }
  2899. p++;
  2900. }
  2901. if (p >= q || *p != '\n')
  2902. return AVERROR_INVALIDDATA;
  2903. p++;
  2904. text = p;
  2905. text_len = q - p;
  2906. while (text_len > 0) {
  2907. const int len = text_len - 1;
  2908. const uint8_t c = p[len];
  2909. if (c != '\r' && c != '\n')
  2910. break;
  2911. text_len = len;
  2912. }
  2913. if (text_len <= 0)
  2914. return AVERROR_INVALIDDATA;
  2915. err = av_new_packet(pkt, text_len);
  2916. if (err < 0) {
  2917. return err;
  2918. }
  2919. memcpy(pkt->data, text, text_len);
  2920. if (id_len > 0) {
  2921. buf = av_packet_new_side_data(pkt,
  2922. AV_PKT_DATA_WEBVTT_IDENTIFIER,
  2923. id_len);
  2924. if (!buf) {
  2925. av_packet_unref(pkt);
  2926. return AVERROR(ENOMEM);
  2927. }
  2928. memcpy(buf, id, id_len);
  2929. }
  2930. if (settings_len > 0) {
  2931. buf = av_packet_new_side_data(pkt,
  2932. AV_PKT_DATA_WEBVTT_SETTINGS,
  2933. settings_len);
  2934. if (!buf) {
  2935. av_packet_unref(pkt);
  2936. return AVERROR(ENOMEM);
  2937. }
  2938. memcpy(buf, settings, settings_len);
  2939. }
  2940. // Do we need this for subtitles?
  2941. // pkt->flags = AV_PKT_FLAG_KEY;
  2942. pkt->stream_index = st->index;
  2943. pkt->pts = timecode;
  2944. // Do we need this for subtitles?
  2945. // pkt->dts = timecode;
  2946. pkt->duration = duration;
  2947. pkt->pos = pos;
  2948. err = ff_packet_list_put(&matroska->queue, &matroska->queue_end, pkt, 0);
  2949. if (err < 0) {
  2950. av_packet_unref(pkt);
  2951. return AVERROR(ENOMEM);
  2952. }
  2953. return 0;
  2954. }
  2955. static int matroska_parse_frame(MatroskaDemuxContext *matroska,
  2956. MatroskaTrack *track, AVStream *st,
  2957. AVBufferRef *buf, uint8_t *data, int pkt_size,
  2958. uint64_t timecode, uint64_t lace_duration,
  2959. int64_t pos, int is_keyframe,
  2960. uint8_t *additional, uint64_t additional_id, int additional_size,
  2961. int64_t discard_padding)
  2962. {
  2963. MatroskaTrackEncoding *encodings = track->encodings.elem;
  2964. uint8_t *pkt_data = data;
  2965. int res;
  2966. AVPacket pktl, *pkt = &pktl;
  2967. if (encodings && !encodings->type && encodings->scope & 1) {
  2968. res = matroska_decode_buffer(&pkt_data, &pkt_size, track);
  2969. if (res < 0)
  2970. return res;
  2971. }
  2972. if (st->codecpar->codec_id == AV_CODEC_ID_WAVPACK) {
  2973. uint8_t *wv_data;
  2974. res = matroska_parse_wavpack(track, pkt_data, &wv_data, &pkt_size);
  2975. if (res < 0) {
  2976. av_log(matroska->ctx, AV_LOG_ERROR,
  2977. "Error parsing a wavpack block.\n");
  2978. goto fail;
  2979. }
  2980. if (pkt_data != data)
  2981. av_freep(&pkt_data);
  2982. pkt_data = wv_data;
  2983. }
  2984. if (st->codecpar->codec_id == AV_CODEC_ID_PRORES) {
  2985. uint8_t *pr_data;
  2986. res = matroska_parse_prores(track, pkt_data, &pr_data, &pkt_size);
  2987. if (res < 0) {
  2988. av_log(matroska->ctx, AV_LOG_ERROR,
  2989. "Error parsing a prores block.\n");
  2990. goto fail;
  2991. }
  2992. if (pkt_data != data)
  2993. av_freep(&pkt_data);
  2994. pkt_data = pr_data;
  2995. }
  2996. av_init_packet(pkt);
  2997. if (pkt_data != data)
  2998. pkt->buf = av_buffer_create(pkt_data, pkt_size + AV_INPUT_BUFFER_PADDING_SIZE,
  2999. NULL, NULL, 0);
  3000. else
  3001. pkt->buf = av_buffer_ref(buf);
  3002. if (!pkt->buf) {
  3003. res = AVERROR(ENOMEM);
  3004. goto fail;
  3005. }
  3006. pkt->data = pkt_data;
  3007. pkt->size = pkt_size;
  3008. pkt->flags = is_keyframe;
  3009. pkt->stream_index = st->index;
  3010. if (additional_size > 0) {
  3011. uint8_t *side_data = av_packet_new_side_data(pkt,
  3012. AV_PKT_DATA_MATROSKA_BLOCKADDITIONAL,
  3013. additional_size + 8);
  3014. if (!side_data) {
  3015. av_packet_unref(pkt);
  3016. return AVERROR(ENOMEM);
  3017. }
  3018. AV_WB64(side_data, additional_id);
  3019. memcpy(side_data + 8, additional, additional_size);
  3020. }
  3021. if (discard_padding) {
  3022. uint8_t *side_data = av_packet_new_side_data(pkt,
  3023. AV_PKT_DATA_SKIP_SAMPLES,
  3024. 10);
  3025. if (!side_data) {
  3026. av_packet_unref(pkt);
  3027. return AVERROR(ENOMEM);
  3028. }
  3029. discard_padding = av_rescale_q(discard_padding,
  3030. (AVRational){1, 1000000000},
  3031. (AVRational){1, st->codecpar->sample_rate});
  3032. if (discard_padding > 0) {
  3033. AV_WL32(side_data + 4, discard_padding);
  3034. } else {
  3035. AV_WL32(side_data, -discard_padding);
  3036. }
  3037. }
  3038. if (track->ms_compat)
  3039. pkt->dts = timecode;
  3040. else
  3041. pkt->pts = timecode;
  3042. pkt->pos = pos;
  3043. pkt->duration = lace_duration;
  3044. #if FF_API_CONVERGENCE_DURATION
  3045. FF_DISABLE_DEPRECATION_WARNINGS
  3046. if (st->codecpar->codec_id == AV_CODEC_ID_SUBRIP) {
  3047. pkt->convergence_duration = lace_duration;
  3048. }
  3049. FF_ENABLE_DEPRECATION_WARNINGS
  3050. #endif
  3051. res = ff_packet_list_put(&matroska->queue, &matroska->queue_end, pkt, 0);
  3052. if (res < 0) {
  3053. av_packet_unref(pkt);
  3054. return AVERROR(ENOMEM);
  3055. }
  3056. return 0;
  3057. fail:
  3058. if (pkt_data != data)
  3059. av_freep(&pkt_data);
  3060. return res;
  3061. }
  3062. static int matroska_parse_block(MatroskaDemuxContext *matroska, AVBufferRef *buf, uint8_t *data,
  3063. int size, int64_t pos, uint64_t cluster_time,
  3064. uint64_t block_duration, int is_keyframe,
  3065. uint8_t *additional, uint64_t additional_id, int additional_size,
  3066. int64_t cluster_pos, int64_t discard_padding)
  3067. {
  3068. uint64_t timecode = AV_NOPTS_VALUE;
  3069. MatroskaTrack *track;
  3070. int res = 0;
  3071. AVStream *st;
  3072. int16_t block_time;
  3073. uint32_t *lace_size = NULL;
  3074. int n, flags, laces = 0;
  3075. uint64_t num;
  3076. int trust_default_duration = 1;
  3077. if ((n = matroska_ebmlnum_uint(matroska, data, size, &num)) < 0) {
  3078. return n;
  3079. }
  3080. data += n;
  3081. size -= n;
  3082. track = matroska_find_track_by_num(matroska, num);
  3083. if (!track || !track->stream) {
  3084. av_log(matroska->ctx, AV_LOG_INFO,
  3085. "Invalid stream %"PRIu64"\n", num);
  3086. return AVERROR_INVALIDDATA;
  3087. } else if (size <= 3)
  3088. return 0;
  3089. st = track->stream;
  3090. if (st->discard >= AVDISCARD_ALL)
  3091. return res;
  3092. av_assert1(block_duration != AV_NOPTS_VALUE);
  3093. block_time = sign_extend(AV_RB16(data), 16);
  3094. data += 2;
  3095. flags = *data++;
  3096. size -= 3;
  3097. if (is_keyframe == -1)
  3098. is_keyframe = flags & 0x80 ? AV_PKT_FLAG_KEY : 0;
  3099. if (cluster_time != (uint64_t) -1 &&
  3100. (block_time >= 0 || cluster_time >= -block_time)) {
  3101. timecode = cluster_time + block_time - track->codec_delay_in_track_tb;
  3102. if (track->type == MATROSKA_TRACK_TYPE_SUBTITLE &&
  3103. timecode < track->end_timecode)
  3104. is_keyframe = 0; /* overlapping subtitles are not key frame */
  3105. if (is_keyframe) {
  3106. ff_reduce_index(matroska->ctx, st->index);
  3107. av_add_index_entry(st, cluster_pos, timecode, 0, 0,
  3108. AVINDEX_KEYFRAME);
  3109. }
  3110. }
  3111. if (matroska->skip_to_keyframe &&
  3112. track->type != MATROSKA_TRACK_TYPE_SUBTITLE) {
  3113. // Compare signed timecodes. Timecode may be negative due to codec delay
  3114. // offset. We don't support timestamps greater than int64_t anyway - see
  3115. // AVPacket's pts.
  3116. if ((int64_t)timecode < (int64_t)matroska->skip_to_timecode)
  3117. return res;
  3118. if (is_keyframe)
  3119. matroska->skip_to_keyframe = 0;
  3120. else if (!st->skip_to_keyframe) {
  3121. av_log(matroska->ctx, AV_LOG_ERROR, "File is broken, keyframes not correctly marked!\n");
  3122. matroska->skip_to_keyframe = 0;
  3123. }
  3124. }
  3125. res = matroska_parse_laces(matroska, &data, &size, (flags & 0x06) >> 1,
  3126. &lace_size, &laces);
  3127. if (res)
  3128. goto end;
  3129. if (track->audio.samplerate == 8000) {
  3130. // If this is needed for more codecs, then add them here
  3131. if (st->codecpar->codec_id == AV_CODEC_ID_AC3) {
  3132. if (track->audio.samplerate != st->codecpar->sample_rate || !st->codecpar->frame_size)
  3133. trust_default_duration = 0;
  3134. }
  3135. }
  3136. if (!block_duration && trust_default_duration)
  3137. block_duration = track->default_duration * laces / matroska->time_scale;
  3138. if (cluster_time != (uint64_t)-1 && (block_time >= 0 || cluster_time >= -block_time))
  3139. track->end_timecode =
  3140. FFMAX(track->end_timecode, timecode + block_duration);
  3141. for (n = 0; n < laces; n++) {
  3142. int64_t lace_duration = block_duration*(n+1) / laces - block_duration*n / laces;
  3143. if (lace_size[n] > size) {
  3144. av_log(matroska->ctx, AV_LOG_ERROR, "Invalid packet size\n");
  3145. break;
  3146. }
  3147. if ((st->codecpar->codec_id == AV_CODEC_ID_RA_288 ||
  3148. st->codecpar->codec_id == AV_CODEC_ID_COOK ||
  3149. st->codecpar->codec_id == AV_CODEC_ID_SIPR ||
  3150. st->codecpar->codec_id == AV_CODEC_ID_ATRAC3) &&
  3151. st->codecpar->block_align && track->audio.sub_packet_size) {
  3152. res = matroska_parse_rm_audio(matroska, track, st, data,
  3153. lace_size[n],
  3154. timecode, pos);
  3155. if (res)
  3156. goto end;
  3157. } else if (st->codecpar->codec_id == AV_CODEC_ID_WEBVTT) {
  3158. res = matroska_parse_webvtt(matroska, track, st,
  3159. data, lace_size[n],
  3160. timecode, lace_duration,
  3161. pos);
  3162. if (res)
  3163. goto end;
  3164. } else {
  3165. res = matroska_parse_frame(matroska, track, st, buf, data, lace_size[n],
  3166. timecode, lace_duration, pos,
  3167. !n ? is_keyframe : 0,
  3168. additional, additional_id, additional_size,
  3169. discard_padding);
  3170. if (res)
  3171. goto end;
  3172. }
  3173. if (timecode != AV_NOPTS_VALUE)
  3174. timecode = lace_duration ? timecode + lace_duration : AV_NOPTS_VALUE;
  3175. data += lace_size[n];
  3176. size -= lace_size[n];
  3177. }
  3178. end:
  3179. av_free(lace_size);
  3180. return res;
  3181. }
  3182. static int matroska_parse_cluster(MatroskaDemuxContext *matroska)
  3183. {
  3184. MatroskaCluster *cluster = &matroska->current_cluster;
  3185. MatroskaBlock *block = &cluster->block;
  3186. int res;
  3187. av_assert0(matroska->num_levels <= 2);
  3188. if (matroska->num_levels == 1) {
  3189. res = ebml_parse(matroska, matroska_clusters, NULL);
  3190. if (res == 1) {
  3191. /* Found a cluster: subtract the size of the ID already read. */
  3192. cluster->pos = avio_tell(matroska->ctx->pb) - 4;
  3193. res = ebml_parse(matroska, matroska_cluster_enter, cluster);
  3194. if (res < 0)
  3195. return res;
  3196. }
  3197. }
  3198. if (matroska->num_levels == 2) {
  3199. /* We are inside a cluster. */
  3200. res = ebml_parse(matroska, matroska_cluster_parsing, cluster);
  3201. if (res >= 0 && block->bin.size > 0) {
  3202. int is_keyframe = block->non_simple ? block->reference == INT64_MIN : -1;
  3203. uint8_t* additional = block->additional.size > 0 ?
  3204. block->additional.data : NULL;
  3205. res = matroska_parse_block(matroska, block->bin.buf, block->bin.data,
  3206. block->bin.size, block->bin.pos,
  3207. cluster->timecode, block->duration,
  3208. is_keyframe, additional, block->additional_id,
  3209. block->additional.size, cluster->pos,
  3210. block->discard_padding);
  3211. }
  3212. ebml_free(matroska_blockgroup, block);
  3213. memset(block, 0, sizeof(*block));
  3214. } else if (!matroska->num_levels) {
  3215. matroska->done = 1;
  3216. return AVERROR_EOF;
  3217. }
  3218. return res;
  3219. }
  3220. static int matroska_read_packet(AVFormatContext *s, AVPacket *pkt)
  3221. {
  3222. MatroskaDemuxContext *matroska = s->priv_data;
  3223. int ret = 0;
  3224. if (matroska->resync_pos == -1) {
  3225. // This can only happen if generic seeking has been used.
  3226. matroska->resync_pos = avio_tell(s->pb);
  3227. }
  3228. while (matroska_deliver_packet(matroska, pkt)) {
  3229. if (matroska->done)
  3230. return (ret < 0) ? ret : AVERROR_EOF;
  3231. if (matroska_parse_cluster(matroska) < 0)
  3232. ret = matroska_resync(matroska, matroska->resync_pos);
  3233. }
  3234. return 0;
  3235. }
  3236. static int matroska_read_seek(AVFormatContext *s, int stream_index,
  3237. int64_t timestamp, int flags)
  3238. {
  3239. MatroskaDemuxContext *matroska = s->priv_data;
  3240. MatroskaTrack *tracks = NULL;
  3241. AVStream *st = s->streams[stream_index];
  3242. int i, index;
  3243. /* Parse the CUES now since we need the index data to seek. */
  3244. if (matroska->cues_parsing_deferred > 0) {
  3245. matroska->cues_parsing_deferred = 0;
  3246. matroska_parse_cues(matroska);
  3247. }
  3248. if (!st->nb_index_entries)
  3249. goto err;
  3250. timestamp = FFMAX(timestamp, st->index_entries[0].timestamp);
  3251. if ((index = av_index_search_timestamp(st, timestamp, flags)) < 0 || index == st->nb_index_entries - 1) {
  3252. matroska_reset_status(matroska, 0, st->index_entries[st->nb_index_entries - 1].pos);
  3253. while ((index = av_index_search_timestamp(st, timestamp, flags)) < 0 || index == st->nb_index_entries - 1) {
  3254. matroska_clear_queue(matroska);
  3255. if (matroska_parse_cluster(matroska) < 0)
  3256. break;
  3257. }
  3258. }
  3259. matroska_clear_queue(matroska);
  3260. if (index < 0 || (matroska->cues_parsing_deferred < 0 && index == st->nb_index_entries - 1))
  3261. goto err;
  3262. tracks = matroska->tracks.elem;
  3263. for (i = 0; i < matroska->tracks.nb_elem; i++) {
  3264. tracks[i].audio.pkt_cnt = 0;
  3265. tracks[i].audio.sub_packet_cnt = 0;
  3266. tracks[i].audio.buf_timecode = AV_NOPTS_VALUE;
  3267. tracks[i].end_timecode = 0;
  3268. }
  3269. /* We seek to a level 1 element, so set the appropriate status. */
  3270. matroska_reset_status(matroska, 0, st->index_entries[index].pos);
  3271. if (flags & AVSEEK_FLAG_ANY) {
  3272. st->skip_to_keyframe = 0;
  3273. matroska->skip_to_timecode = timestamp;
  3274. } else {
  3275. st->skip_to_keyframe = 1;
  3276. matroska->skip_to_timecode = st->index_entries[index].timestamp;
  3277. }
  3278. matroska->skip_to_keyframe = 1;
  3279. matroska->done = 0;
  3280. ff_update_cur_dts(s, st, st->index_entries[index].timestamp);
  3281. return 0;
  3282. err:
  3283. // slightly hackish but allows proper fallback to
  3284. // the generic seeking code.
  3285. matroska_reset_status(matroska, 0, -1);
  3286. matroska->resync_pos = -1;
  3287. matroska_clear_queue(matroska);
  3288. st->skip_to_keyframe =
  3289. matroska->skip_to_keyframe = 0;
  3290. matroska->done = 0;
  3291. return -1;
  3292. }
  3293. static int matroska_read_close(AVFormatContext *s)
  3294. {
  3295. MatroskaDemuxContext *matroska = s->priv_data;
  3296. MatroskaTrack *tracks = matroska->tracks.elem;
  3297. int n;
  3298. matroska_clear_queue(matroska);
  3299. for (n = 0; n < matroska->tracks.nb_elem; n++)
  3300. if (tracks[n].type == MATROSKA_TRACK_TYPE_AUDIO)
  3301. av_freep(&tracks[n].audio.buf);
  3302. ebml_free(matroska_segment, matroska);
  3303. return 0;
  3304. }
  3305. typedef struct {
  3306. int64_t start_time_ns;
  3307. int64_t end_time_ns;
  3308. int64_t start_offset;
  3309. int64_t end_offset;
  3310. } CueDesc;
  3311. /* This function searches all the Cues and returns the CueDesc corresponding to
  3312. * the timestamp ts. Returned CueDesc will be such that start_time_ns <= ts <
  3313. * end_time_ns. All 4 fields will be set to -1 if ts >= file's duration.
  3314. */
  3315. static CueDesc get_cue_desc(AVFormatContext *s, int64_t ts, int64_t cues_start) {
  3316. MatroskaDemuxContext *matroska = s->priv_data;
  3317. CueDesc cue_desc;
  3318. int i;
  3319. int nb_index_entries = s->streams[0]->nb_index_entries;
  3320. AVIndexEntry *index_entries = s->streams[0]->index_entries;
  3321. if (ts >= matroska->duration * matroska->time_scale) return (CueDesc) {-1, -1, -1, -1};
  3322. for (i = 1; i < nb_index_entries; i++) {
  3323. if (index_entries[i - 1].timestamp * matroska->time_scale <= ts &&
  3324. index_entries[i].timestamp * matroska->time_scale > ts) {
  3325. break;
  3326. }
  3327. }
  3328. --i;
  3329. cue_desc.start_time_ns = index_entries[i].timestamp * matroska->time_scale;
  3330. cue_desc.start_offset = index_entries[i].pos - matroska->segment_start;
  3331. if (i != nb_index_entries - 1) {
  3332. cue_desc.end_time_ns = index_entries[i + 1].timestamp * matroska->time_scale;
  3333. cue_desc.end_offset = index_entries[i + 1].pos - matroska->segment_start;
  3334. } else {
  3335. cue_desc.end_time_ns = matroska->duration * matroska->time_scale;
  3336. // FIXME: this needs special handling for files where Cues appear
  3337. // before Clusters. the current logic assumes Cues appear after
  3338. // Clusters.
  3339. cue_desc.end_offset = cues_start - matroska->segment_start;
  3340. }
  3341. return cue_desc;
  3342. }
  3343. static int webm_clusters_start_with_keyframe(AVFormatContext *s)
  3344. {
  3345. MatroskaDemuxContext *matroska = s->priv_data;
  3346. uint32_t id = matroska->current_id;
  3347. int64_t cluster_pos, before_pos;
  3348. int index, rv = 1;
  3349. if (s->streams[0]->nb_index_entries <= 0) return 0;
  3350. // seek to the first cluster using cues.
  3351. index = av_index_search_timestamp(s->streams[0], 0, 0);
  3352. if (index < 0) return 0;
  3353. cluster_pos = s->streams[0]->index_entries[index].pos;
  3354. before_pos = avio_tell(s->pb);
  3355. while (1) {
  3356. uint64_t cluster_id, cluster_length;
  3357. int read;
  3358. AVPacket *pkt;
  3359. avio_seek(s->pb, cluster_pos, SEEK_SET);
  3360. // read cluster id and length
  3361. read = ebml_read_num(matroska, matroska->ctx->pb, 4, &cluster_id, 1);
  3362. if (read < 0 || cluster_id != 0xF43B675) // done with all clusters
  3363. break;
  3364. read = ebml_read_length(matroska, matroska->ctx->pb, &cluster_length);
  3365. if (read < 0)
  3366. break;
  3367. matroska_reset_status(matroska, 0, cluster_pos);
  3368. matroska_clear_queue(matroska);
  3369. if (matroska_parse_cluster(matroska) < 0 ||
  3370. !matroska->queue) {
  3371. break;
  3372. }
  3373. pkt = &matroska->queue->pkt;
  3374. // 4 + read is the length of the cluster id and the cluster length field.
  3375. cluster_pos += 4 + read + cluster_length;
  3376. if (!(pkt->flags & AV_PKT_FLAG_KEY)) {
  3377. rv = 0;
  3378. break;
  3379. }
  3380. }
  3381. /* Restore the status after matroska_read_header: */
  3382. matroska_reset_status(matroska, id, before_pos);
  3383. return rv;
  3384. }
  3385. static int buffer_size_after_time_downloaded(int64_t time_ns, double search_sec, int64_t bps,
  3386. double min_buffer, double* buffer,
  3387. double* sec_to_download, AVFormatContext *s,
  3388. int64_t cues_start)
  3389. {
  3390. double nano_seconds_per_second = 1000000000.0;
  3391. double time_sec = time_ns / nano_seconds_per_second;
  3392. int rv = 0;
  3393. int64_t time_to_search_ns = (int64_t)(search_sec * nano_seconds_per_second);
  3394. int64_t end_time_ns = time_ns + time_to_search_ns;
  3395. double sec_downloaded = 0.0;
  3396. CueDesc desc_curr = get_cue_desc(s, time_ns, cues_start);
  3397. if (desc_curr.start_time_ns == -1)
  3398. return -1;
  3399. *sec_to_download = 0.0;
  3400. // Check for non cue start time.
  3401. if (time_ns > desc_curr.start_time_ns) {
  3402. int64_t cue_nano = desc_curr.end_time_ns - time_ns;
  3403. double percent = (double)(cue_nano) / (desc_curr.end_time_ns - desc_curr.start_time_ns);
  3404. double cueBytes = (desc_curr.end_offset - desc_curr.start_offset) * percent;
  3405. double timeToDownload = (cueBytes * 8.0) / bps;
  3406. sec_downloaded += (cue_nano / nano_seconds_per_second) - timeToDownload;
  3407. *sec_to_download += timeToDownload;
  3408. // Check if the search ends within the first cue.
  3409. if (desc_curr.end_time_ns >= end_time_ns) {
  3410. double desc_end_time_sec = desc_curr.end_time_ns / nano_seconds_per_second;
  3411. double percent_to_sub = search_sec / (desc_end_time_sec - time_sec);
  3412. sec_downloaded = percent_to_sub * sec_downloaded;
  3413. *sec_to_download = percent_to_sub * *sec_to_download;
  3414. }
  3415. if ((sec_downloaded + *buffer) <= min_buffer) {
  3416. return 1;
  3417. }
  3418. // Get the next Cue.
  3419. desc_curr = get_cue_desc(s, desc_curr.end_time_ns, cues_start);
  3420. }
  3421. while (desc_curr.start_time_ns != -1) {
  3422. int64_t desc_bytes = desc_curr.end_offset - desc_curr.start_offset;
  3423. int64_t desc_ns = desc_curr.end_time_ns - desc_curr.start_time_ns;
  3424. double desc_sec = desc_ns / nano_seconds_per_second;
  3425. double bits = (desc_bytes * 8.0);
  3426. double time_to_download = bits / bps;
  3427. sec_downloaded += desc_sec - time_to_download;
  3428. *sec_to_download += time_to_download;
  3429. if (desc_curr.end_time_ns >= end_time_ns) {
  3430. double desc_end_time_sec = desc_curr.end_time_ns / nano_seconds_per_second;
  3431. double percent_to_sub = search_sec / (desc_end_time_sec - time_sec);
  3432. sec_downloaded = percent_to_sub * sec_downloaded;
  3433. *sec_to_download = percent_to_sub * *sec_to_download;
  3434. if ((sec_downloaded + *buffer) <= min_buffer)
  3435. rv = 1;
  3436. break;
  3437. }
  3438. if ((sec_downloaded + *buffer) <= min_buffer) {
  3439. rv = 1;
  3440. break;
  3441. }
  3442. desc_curr = get_cue_desc(s, desc_curr.end_time_ns, cues_start);
  3443. }
  3444. *buffer = *buffer + sec_downloaded;
  3445. return rv;
  3446. }
  3447. /* This function computes the bandwidth of the WebM file with the help of
  3448. * buffer_size_after_time_downloaded() function. Both of these functions are
  3449. * adapted from WebM Tools project and are adapted to work with FFmpeg's
  3450. * Matroska parsing mechanism.
  3451. *
  3452. * Returns the bandwidth of the file on success; -1 on error.
  3453. * */
  3454. static int64_t webm_dash_manifest_compute_bandwidth(AVFormatContext *s, int64_t cues_start)
  3455. {
  3456. MatroskaDemuxContext *matroska = s->priv_data;
  3457. AVStream *st = s->streams[0];
  3458. double bandwidth = 0.0;
  3459. int i;
  3460. for (i = 0; i < st->nb_index_entries; i++) {
  3461. int64_t prebuffer_ns = 1000000000;
  3462. int64_t time_ns = st->index_entries[i].timestamp * matroska->time_scale;
  3463. double nano_seconds_per_second = 1000000000.0;
  3464. int64_t prebuffered_ns = time_ns + prebuffer_ns;
  3465. double prebuffer_bytes = 0.0;
  3466. int64_t temp_prebuffer_ns = prebuffer_ns;
  3467. int64_t pre_bytes, pre_ns;
  3468. double pre_sec, prebuffer, bits_per_second;
  3469. CueDesc desc_beg = get_cue_desc(s, time_ns, cues_start);
  3470. // Start with the first Cue.
  3471. CueDesc desc_end = desc_beg;
  3472. // Figure out how much data we have downloaded for the prebuffer. This will
  3473. // be used later to adjust the bits per sample to try.
  3474. while (desc_end.start_time_ns != -1 && desc_end.end_time_ns < prebuffered_ns) {
  3475. // Prebuffered the entire Cue.
  3476. prebuffer_bytes += desc_end.end_offset - desc_end.start_offset;
  3477. temp_prebuffer_ns -= desc_end.end_time_ns - desc_end.start_time_ns;
  3478. desc_end = get_cue_desc(s, desc_end.end_time_ns, cues_start);
  3479. }
  3480. if (desc_end.start_time_ns == -1) {
  3481. // The prebuffer is larger than the duration.
  3482. if (matroska->duration * matroska->time_scale >= prebuffered_ns)
  3483. return -1;
  3484. bits_per_second = 0.0;
  3485. } else {
  3486. // The prebuffer ends in the last Cue. Estimate how much data was
  3487. // prebuffered.
  3488. pre_bytes = desc_end.end_offset - desc_end.start_offset;
  3489. pre_ns = desc_end.end_time_ns - desc_end.start_time_ns;
  3490. pre_sec = pre_ns / nano_seconds_per_second;
  3491. prebuffer_bytes +=
  3492. pre_bytes * ((temp_prebuffer_ns / nano_seconds_per_second) / pre_sec);
  3493. prebuffer = prebuffer_ns / nano_seconds_per_second;
  3494. // Set this to 0.0 in case our prebuffer buffers the entire video.
  3495. bits_per_second = 0.0;
  3496. do {
  3497. int64_t desc_bytes = desc_end.end_offset - desc_beg.start_offset;
  3498. int64_t desc_ns = desc_end.end_time_ns - desc_beg.start_time_ns;
  3499. double desc_sec = desc_ns / nano_seconds_per_second;
  3500. double calc_bits_per_second = (desc_bytes * 8) / desc_sec;
  3501. // Drop the bps by the percentage of bytes buffered.
  3502. double percent = (desc_bytes - prebuffer_bytes) / desc_bytes;
  3503. double mod_bits_per_second = calc_bits_per_second * percent;
  3504. if (prebuffer < desc_sec) {
  3505. double search_sec =
  3506. (double)(matroska->duration * matroska->time_scale) / nano_seconds_per_second;
  3507. // Add 1 so the bits per second should be a little bit greater than file
  3508. // datarate.
  3509. int64_t bps = (int64_t)(mod_bits_per_second) + 1;
  3510. const double min_buffer = 0.0;
  3511. double buffer = prebuffer;
  3512. double sec_to_download = 0.0;
  3513. int rv = buffer_size_after_time_downloaded(prebuffered_ns, search_sec, bps,
  3514. min_buffer, &buffer, &sec_to_download,
  3515. s, cues_start);
  3516. if (rv < 0) {
  3517. return -1;
  3518. } else if (rv == 0) {
  3519. bits_per_second = (double)(bps);
  3520. break;
  3521. }
  3522. }
  3523. desc_end = get_cue_desc(s, desc_end.end_time_ns, cues_start);
  3524. } while (desc_end.start_time_ns != -1);
  3525. }
  3526. if (bandwidth < bits_per_second) bandwidth = bits_per_second;
  3527. }
  3528. return (int64_t)bandwidth;
  3529. }
  3530. static int webm_dash_manifest_cues(AVFormatContext *s, int64_t init_range)
  3531. {
  3532. MatroskaDemuxContext *matroska = s->priv_data;
  3533. EbmlList *seekhead_list = &matroska->seekhead;
  3534. MatroskaSeekhead *seekhead = seekhead_list->elem;
  3535. char *buf;
  3536. int64_t cues_start = -1, cues_end = -1, before_pos, bandwidth;
  3537. int i;
  3538. int end = 0;
  3539. // determine cues start and end positions
  3540. for (i = 0; i < seekhead_list->nb_elem; i++)
  3541. if (seekhead[i].id == MATROSKA_ID_CUES)
  3542. break;
  3543. if (i >= seekhead_list->nb_elem) return -1;
  3544. before_pos = avio_tell(matroska->ctx->pb);
  3545. cues_start = seekhead[i].pos + matroska->segment_start;
  3546. if (avio_seek(matroska->ctx->pb, cues_start, SEEK_SET) == cues_start) {
  3547. // cues_end is computed as cues_start + cues_length + length of the
  3548. // Cues element ID (i.e. 4) + EBML length of the Cues element.
  3549. // cues_end is inclusive and the above sum is reduced by 1.
  3550. uint64_t cues_length, cues_id;
  3551. int bytes_read;
  3552. bytes_read = ebml_read_num (matroska, matroska->ctx->pb, 4, &cues_id, 1);
  3553. if (bytes_read < 0 || cues_id != (MATROSKA_ID_CUES & 0xfffffff))
  3554. return bytes_read < 0 ? bytes_read : AVERROR_INVALIDDATA;
  3555. bytes_read = ebml_read_length(matroska, matroska->ctx->pb, &cues_length);
  3556. if (bytes_read < 0)
  3557. return bytes_read;
  3558. cues_end = cues_start + 4 + bytes_read + cues_length - 1;
  3559. }
  3560. avio_seek(matroska->ctx->pb, before_pos, SEEK_SET);
  3561. if (cues_start == -1 || cues_end == -1) return -1;
  3562. // parse the cues
  3563. matroska_parse_cues(matroska);
  3564. // cues start
  3565. av_dict_set_int(&s->streams[0]->metadata, CUES_START, cues_start, 0);
  3566. // cues end
  3567. av_dict_set_int(&s->streams[0]->metadata, CUES_END, cues_end, 0);
  3568. // if the file has cues at the start, fix up the init range so tht
  3569. // it does not include it
  3570. if (cues_start <= init_range)
  3571. av_dict_set_int(&s->streams[0]->metadata, INITIALIZATION_RANGE, cues_start - 1, 0);
  3572. // bandwidth
  3573. bandwidth = webm_dash_manifest_compute_bandwidth(s, cues_start);
  3574. if (bandwidth < 0) return -1;
  3575. av_dict_set_int(&s->streams[0]->metadata, BANDWIDTH, bandwidth, 0);
  3576. // check if all clusters start with key frames
  3577. av_dict_set_int(&s->streams[0]->metadata, CLUSTER_KEYFRAME, webm_clusters_start_with_keyframe(s), 0);
  3578. // store cue point timestamps as a comma separated list for checking subsegment alignment in
  3579. // the muxer. assumes that each timestamp cannot be more than 20 characters long.
  3580. buf = av_malloc_array(s->streams[0]->nb_index_entries, 20);
  3581. if (!buf) return -1;
  3582. strcpy(buf, "");
  3583. for (i = 0; i < s->streams[0]->nb_index_entries; i++) {
  3584. int ret = snprintf(buf + end, 20,
  3585. "%" PRId64"%s", s->streams[0]->index_entries[i].timestamp,
  3586. i != s->streams[0]->nb_index_entries - 1 ? "," : "");
  3587. if (ret <= 0 || (ret == 20 && i == s->streams[0]->nb_index_entries - 1)) {
  3588. av_log(s, AV_LOG_ERROR, "timestamp too long.\n");
  3589. av_free(buf);
  3590. return AVERROR_INVALIDDATA;
  3591. }
  3592. end += ret;
  3593. }
  3594. av_dict_set(&s->streams[0]->metadata, CUE_TIMESTAMPS, buf, 0);
  3595. av_free(buf);
  3596. return 0;
  3597. }
  3598. static int webm_dash_manifest_read_header(AVFormatContext *s)
  3599. {
  3600. char *buf;
  3601. int ret = matroska_read_header(s);
  3602. int64_t init_range;
  3603. MatroskaTrack *tracks;
  3604. MatroskaDemuxContext *matroska = s->priv_data;
  3605. if (ret) {
  3606. av_log(s, AV_LOG_ERROR, "Failed to read file headers\n");
  3607. return -1;
  3608. }
  3609. if (!s->nb_streams) {
  3610. matroska_read_close(s);
  3611. av_log(s, AV_LOG_ERROR, "No streams found\n");
  3612. return AVERROR_INVALIDDATA;
  3613. }
  3614. if (!matroska->is_live) {
  3615. buf = av_asprintf("%g", matroska->duration);
  3616. if (!buf) return AVERROR(ENOMEM);
  3617. av_dict_set(&s->streams[0]->metadata, DURATION, buf, 0);
  3618. av_free(buf);
  3619. // initialization range
  3620. // 5 is the offset of Cluster ID.
  3621. init_range = avio_tell(s->pb) - 5;
  3622. av_dict_set_int(&s->streams[0]->metadata, INITIALIZATION_RANGE, init_range, 0);
  3623. }
  3624. // basename of the file
  3625. buf = strrchr(s->url, '/');
  3626. av_dict_set(&s->streams[0]->metadata, FILENAME, buf ? ++buf : s->url, 0);
  3627. // track number
  3628. tracks = matroska->tracks.elem;
  3629. av_dict_set_int(&s->streams[0]->metadata, TRACK_NUMBER, tracks[0].num, 0);
  3630. // parse the cues and populate Cue related fields
  3631. if (!matroska->is_live) {
  3632. ret = webm_dash_manifest_cues(s, init_range);
  3633. if (ret < 0) {
  3634. av_log(s, AV_LOG_ERROR, "Error parsing Cues\n");
  3635. return ret;
  3636. }
  3637. }
  3638. // use the bandwidth from the command line if it was provided
  3639. if (matroska->bandwidth > 0) {
  3640. av_dict_set_int(&s->streams[0]->metadata, BANDWIDTH,
  3641. matroska->bandwidth, 0);
  3642. }
  3643. return 0;
  3644. }
  3645. static int webm_dash_manifest_read_packet(AVFormatContext *s, AVPacket *pkt)
  3646. {
  3647. return AVERROR_EOF;
  3648. }
  3649. #define OFFSET(x) offsetof(MatroskaDemuxContext, x)
  3650. static const AVOption options[] = {
  3651. { "live", "flag indicating that the input is a live file that only has the headers.", OFFSET(is_live), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, AV_OPT_FLAG_DECODING_PARAM },
  3652. { "bandwidth", "bandwidth of this stream to be specified in the DASH manifest.", OFFSET(bandwidth), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT_MAX, AV_OPT_FLAG_DECODING_PARAM },
  3653. { NULL },
  3654. };
  3655. static const AVClass webm_dash_class = {
  3656. .class_name = "WebM DASH Manifest demuxer",
  3657. .item_name = av_default_item_name,
  3658. .option = options,
  3659. .version = LIBAVUTIL_VERSION_INT,
  3660. };
  3661. AVInputFormat ff_matroska_demuxer = {
  3662. .name = "matroska,webm",
  3663. .long_name = NULL_IF_CONFIG_SMALL("Matroska / WebM"),
  3664. .extensions = "mkv,mk3d,mka,mks",
  3665. .priv_data_size = sizeof(MatroskaDemuxContext),
  3666. .read_probe = matroska_probe,
  3667. .read_header = matroska_read_header,
  3668. .read_packet = matroska_read_packet,
  3669. .read_close = matroska_read_close,
  3670. .read_seek = matroska_read_seek,
  3671. .mime_type = "audio/webm,audio/x-matroska,video/webm,video/x-matroska"
  3672. };
  3673. AVInputFormat ff_webm_dash_manifest_demuxer = {
  3674. .name = "webm_dash_manifest",
  3675. .long_name = NULL_IF_CONFIG_SMALL("WebM DASH Manifest"),
  3676. .priv_data_size = sizeof(MatroskaDemuxContext),
  3677. .read_header = webm_dash_manifest_read_header,
  3678. .read_packet = webm_dash_manifest_read_packet,
  3679. .read_close = matroska_read_close,
  3680. .priv_class = &webm_dash_class,
  3681. };