You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2045 lines
74KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  22. #define _DARWIN_C_SOURCE // needed for MAP_ANON
  23. #include <inttypes.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include <string.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "libavutil/attributes.h"
  38. #include "libavutil/avassert.h"
  39. #include "libavutil/avutil.h"
  40. #include "libavutil/bswap.h"
  41. #include "libavutil/cpu.h"
  42. #include "libavutil/intreadwrite.h"
  43. #include "libavutil/mathematics.h"
  44. #include "libavutil/opt.h"
  45. #include "libavutil/pixdesc.h"
  46. #include "libavutil/x86/asm.h"
  47. #include "libavutil/x86/cpu.h"
  48. #include "rgb2rgb.h"
  49. #include "swscale.h"
  50. #include "swscale_internal.h"
  51. static void handle_formats(SwsContext *c);
  52. unsigned swscale_version(void)
  53. {
  54. av_assert0(LIBSWSCALE_VERSION_MICRO >= 100);
  55. return LIBSWSCALE_VERSION_INT;
  56. }
  57. const char *swscale_configuration(void)
  58. {
  59. return FFMPEG_CONFIGURATION;
  60. }
  61. const char *swscale_license(void)
  62. {
  63. #define LICENSE_PREFIX "libswscale license: "
  64. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  65. }
  66. #define RET 0xC3 // near return opcode for x86
  67. typedef struct FormatEntry {
  68. uint8_t is_supported_in :1;
  69. uint8_t is_supported_out :1;
  70. uint8_t is_supported_endianness :1;
  71. } FormatEntry;
  72. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  73. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  74. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  75. [AV_PIX_FMT_RGB24] = { 1, 1 },
  76. [AV_PIX_FMT_BGR24] = { 1, 1 },
  77. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  78. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  79. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  80. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  81. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  82. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  83. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  84. [AV_PIX_FMT_PAL8] = { 1, 0 },
  85. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  86. [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
  87. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  88. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  89. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  90. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  91. [AV_PIX_FMT_BGR8] = { 1, 1 },
  92. [AV_PIX_FMT_BGR4] = { 0, 1 },
  93. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  94. [AV_PIX_FMT_RGB8] = { 1, 1 },
  95. [AV_PIX_FMT_RGB4] = { 0, 1 },
  96. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  97. [AV_PIX_FMT_NV12] = { 1, 1 },
  98. [AV_PIX_FMT_NV21] = { 1, 1 },
  99. [AV_PIX_FMT_ARGB] = { 1, 1 },
  100. [AV_PIX_FMT_RGBA] = { 1, 1 },
  101. [AV_PIX_FMT_ABGR] = { 1, 1 },
  102. [AV_PIX_FMT_BGRA] = { 1, 1 },
  103. [AV_PIX_FMT_0RGB] = { 1, 1 },
  104. [AV_PIX_FMT_RGB0] = { 1, 1 },
  105. [AV_PIX_FMT_0BGR] = { 1, 1 },
  106. [AV_PIX_FMT_BGR0] = { 1, 1 },
  107. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  108. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  109. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  110. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  111. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  112. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  113. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  114. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  115. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  116. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  117. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  118. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  119. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  120. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  121. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  122. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  123. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  124. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  125. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  126. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  127. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  128. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  129. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  130. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  131. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  132. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  133. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  134. [AV_PIX_FMT_RGBA64BE] = { 1, 1 },
  135. [AV_PIX_FMT_RGBA64LE] = { 1, 1 },
  136. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  137. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  138. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  139. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  140. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  141. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  142. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  143. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  144. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  145. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  146. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  147. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  148. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  149. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  150. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  151. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  152. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  153. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  154. [AV_PIX_FMT_Y400A] = { 1, 0 },
  155. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  156. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  157. [AV_PIX_FMT_BGRA64BE] = { 0, 0 },
  158. [AV_PIX_FMT_BGRA64LE] = { 0, 0 },
  159. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  160. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  161. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  162. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  163. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  164. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  165. [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
  166. [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
  167. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  168. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  169. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  170. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  171. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  172. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  173. [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
  174. [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
  175. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  176. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  177. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  178. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  179. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  180. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  181. [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
  182. [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
  183. [AV_PIX_FMT_GBRP] = { 1, 1 },
  184. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  185. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  186. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  187. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  188. [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
  189. [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
  190. [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
  191. [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
  192. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  193. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  194. [AV_PIX_FMT_XYZ12BE] = { 1, 0, 1 },
  195. [AV_PIX_FMT_XYZ12LE] = { 1, 0, 1 },
  196. [AV_PIX_FMT_GBRAP] = { 1, 1 },
  197. [AV_PIX_FMT_GBRAP16LE] = { 1, 0 },
  198. [AV_PIX_FMT_GBRAP16BE] = { 1, 0 },
  199. };
  200. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  201. {
  202. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  203. format_entries[pix_fmt].is_supported_in : 0;
  204. }
  205. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  206. {
  207. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  208. format_entries[pix_fmt].is_supported_out : 0;
  209. }
  210. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  211. {
  212. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  213. format_entries[pix_fmt].is_supported_endianness : 0;
  214. }
  215. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  216. #if FF_API_SWS_FORMAT_NAME
  217. const char *sws_format_name(enum AVPixelFormat format)
  218. {
  219. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  220. if (desc)
  221. return desc->name;
  222. else
  223. return "Unknown format";
  224. }
  225. #endif
  226. static double getSplineCoeff(double a, double b, double c, double d,
  227. double dist)
  228. {
  229. if (dist <= 1.0)
  230. return ((d * dist + c) * dist + b) * dist + a;
  231. else
  232. return getSplineCoeff(0.0,
  233. b + 2.0 * c + 3.0 * d,
  234. c + 3.0 * d,
  235. -b - 3.0 * c - 6.0 * d,
  236. dist - 1.0);
  237. }
  238. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  239. int *outFilterSize, int xInc, int srcW,
  240. int dstW, int filterAlign, int one,
  241. int flags, int cpu_flags,
  242. SwsVector *srcFilter, SwsVector *dstFilter,
  243. double param[2])
  244. {
  245. int i;
  246. int filterSize;
  247. int filter2Size;
  248. int minFilterSize;
  249. int64_t *filter = NULL;
  250. int64_t *filter2 = NULL;
  251. const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
  252. int ret = -1;
  253. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  254. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  255. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
  256. if (FFABS(xInc - 0x10000) < 10) { // unscaled
  257. int i;
  258. filterSize = 1;
  259. FF_ALLOCZ_OR_GOTO(NULL, filter,
  260. dstW * sizeof(*filter) * filterSize, fail);
  261. for (i = 0; i < dstW; i++) {
  262. filter[i * filterSize] = fone;
  263. (*filterPos)[i] = i;
  264. }
  265. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  266. int i;
  267. int64_t xDstInSrc;
  268. filterSize = 1;
  269. FF_ALLOC_OR_GOTO(NULL, filter,
  270. dstW * sizeof(*filter) * filterSize, fail);
  271. xDstInSrc = xInc / 2 - 0x8000;
  272. for (i = 0; i < dstW; i++) {
  273. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  274. (*filterPos)[i] = xx;
  275. filter[i] = fone;
  276. xDstInSrc += xInc;
  277. }
  278. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  279. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  280. int i;
  281. int64_t xDstInSrc;
  282. filterSize = 2;
  283. FF_ALLOC_OR_GOTO(NULL, filter,
  284. dstW * sizeof(*filter) * filterSize, fail);
  285. xDstInSrc = xInc / 2 - 0x8000;
  286. for (i = 0; i < dstW; i++) {
  287. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  288. int j;
  289. (*filterPos)[i] = xx;
  290. // bilinear upscale / linear interpolate / area averaging
  291. for (j = 0; j < filterSize; j++) {
  292. int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
  293. if (coeff < 0)
  294. coeff = 0;
  295. filter[i * filterSize + j] = coeff;
  296. xx++;
  297. }
  298. xDstInSrc += xInc;
  299. }
  300. } else {
  301. int64_t xDstInSrc;
  302. int sizeFactor;
  303. if (flags & SWS_BICUBIC)
  304. sizeFactor = 4;
  305. else if (flags & SWS_X)
  306. sizeFactor = 8;
  307. else if (flags & SWS_AREA)
  308. sizeFactor = 1; // downscale only, for upscale it is bilinear
  309. else if (flags & SWS_GAUSS)
  310. sizeFactor = 8; // infinite ;)
  311. else if (flags & SWS_LANCZOS)
  312. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  313. else if (flags & SWS_SINC)
  314. sizeFactor = 20; // infinite ;)
  315. else if (flags & SWS_SPLINE)
  316. sizeFactor = 20; // infinite ;)
  317. else if (flags & SWS_BILINEAR)
  318. sizeFactor = 2;
  319. else {
  320. av_assert0(0);
  321. }
  322. if (xInc <= 1 << 16)
  323. filterSize = 1 + sizeFactor; // upscale
  324. else
  325. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  326. filterSize = FFMIN(filterSize, srcW - 2);
  327. filterSize = FFMAX(filterSize, 1);
  328. FF_ALLOC_OR_GOTO(NULL, filter,
  329. dstW * sizeof(*filter) * filterSize, fail);
  330. xDstInSrc = xInc - 0x10000;
  331. for (i = 0; i < dstW; i++) {
  332. int xx = (xDstInSrc - ((filterSize - 2) << 16)) / (1 << 17);
  333. int j;
  334. (*filterPos)[i] = xx;
  335. for (j = 0; j < filterSize; j++) {
  336. int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
  337. double floatd;
  338. int64_t coeff;
  339. if (xInc > 1 << 16)
  340. d = d * dstW / srcW;
  341. floatd = d * (1.0 / (1 << 30));
  342. if (flags & SWS_BICUBIC) {
  343. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  344. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  345. if (d >= 1LL << 31) {
  346. coeff = 0.0;
  347. } else {
  348. int64_t dd = (d * d) >> 30;
  349. int64_t ddd = (dd * d) >> 30;
  350. if (d < 1LL << 30)
  351. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  352. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  353. (6 * (1 << 24) - 2 * B) * (1 << 30);
  354. else
  355. coeff = (-B - 6 * C) * ddd +
  356. (6 * B + 30 * C) * dd +
  357. (-12 * B - 48 * C) * d +
  358. (8 * B + 24 * C) * (1 << 30);
  359. }
  360. coeff /= (1LL<<54)/fone;
  361. }
  362. #if 0
  363. else if (flags & SWS_X) {
  364. double p = param ? param * 0.01 : 0.3;
  365. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  366. coeff *= pow(2.0, -p * d * d);
  367. }
  368. #endif
  369. else if (flags & SWS_X) {
  370. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  371. double c;
  372. if (floatd < 1.0)
  373. c = cos(floatd * M_PI);
  374. else
  375. c = -1.0;
  376. if (c < 0.0)
  377. c = -pow(-c, A);
  378. else
  379. c = pow(c, A);
  380. coeff = (c * 0.5 + 0.5) * fone;
  381. } else if (flags & SWS_AREA) {
  382. int64_t d2 = d - (1 << 29);
  383. if (d2 * xInc < -(1LL << (29 + 16)))
  384. coeff = 1.0 * (1LL << (30 + 16));
  385. else if (d2 * xInc < (1LL << (29 + 16)))
  386. coeff = -d2 * xInc + (1LL << (29 + 16));
  387. else
  388. coeff = 0.0;
  389. coeff *= fone >> (30 + 16);
  390. } else if (flags & SWS_GAUSS) {
  391. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  392. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  393. } else if (flags & SWS_SINC) {
  394. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  395. } else if (flags & SWS_LANCZOS) {
  396. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  397. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  398. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  399. if (floatd > p)
  400. coeff = 0;
  401. } else if (flags & SWS_BILINEAR) {
  402. coeff = (1 << 30) - d;
  403. if (coeff < 0)
  404. coeff = 0;
  405. coeff *= fone >> 30;
  406. } else if (flags & SWS_SPLINE) {
  407. double p = -2.196152422706632;
  408. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  409. } else {
  410. av_assert0(0);
  411. }
  412. filter[i * filterSize + j] = coeff;
  413. xx++;
  414. }
  415. xDstInSrc += 2 * xInc;
  416. }
  417. }
  418. /* apply src & dst Filter to filter -> filter2
  419. * av_free(filter);
  420. */
  421. av_assert0(filterSize > 0);
  422. filter2Size = filterSize;
  423. if (srcFilter)
  424. filter2Size += srcFilter->length - 1;
  425. if (dstFilter)
  426. filter2Size += dstFilter->length - 1;
  427. av_assert0(filter2Size > 0);
  428. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
  429. for (i = 0; i < dstW; i++) {
  430. int j, k;
  431. if (srcFilter) {
  432. for (k = 0; k < srcFilter->length; k++) {
  433. for (j = 0; j < filterSize; j++)
  434. filter2[i * filter2Size + k + j] +=
  435. srcFilter->coeff[k] * filter[i * filterSize + j];
  436. }
  437. } else {
  438. for (j = 0; j < filterSize; j++)
  439. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  440. }
  441. // FIXME dstFilter
  442. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  443. }
  444. av_freep(&filter);
  445. /* try to reduce the filter-size (step1 find size and shift left) */
  446. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  447. minFilterSize = 0;
  448. for (i = dstW - 1; i >= 0; i--) {
  449. int min = filter2Size;
  450. int j;
  451. int64_t cutOff = 0.0;
  452. /* get rid of near zero elements on the left by shifting left */
  453. for (j = 0; j < filter2Size; j++) {
  454. int k;
  455. cutOff += FFABS(filter2[i * filter2Size]);
  456. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  457. break;
  458. /* preserve monotonicity because the core can't handle the
  459. * filter otherwise */
  460. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  461. break;
  462. // move filter coefficients left
  463. for (k = 1; k < filter2Size; k++)
  464. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  465. filter2[i * filter2Size + k - 1] = 0;
  466. (*filterPos)[i]++;
  467. }
  468. cutOff = 0;
  469. /* count near zeros on the right */
  470. for (j = filter2Size - 1; j > 0; j--) {
  471. cutOff += FFABS(filter2[i * filter2Size + j]);
  472. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  473. break;
  474. min--;
  475. }
  476. if (min > minFilterSize)
  477. minFilterSize = min;
  478. }
  479. if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) {
  480. // we can handle the special case 4, so we don't want to go the full 8
  481. if (minFilterSize < 5)
  482. filterAlign = 4;
  483. /* We really don't want to waste our time doing useless computation, so
  484. * fall back on the scalar C code for very small filters.
  485. * Vectorizing is worth it only if you have a decent-sized vector. */
  486. if (minFilterSize < 3)
  487. filterAlign = 1;
  488. }
  489. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  490. // special case for unscaled vertical filtering
  491. if (minFilterSize == 1 && filterAlign == 2)
  492. filterAlign = 1;
  493. }
  494. av_assert0(minFilterSize > 0);
  495. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  496. av_assert0(filterSize > 0);
  497. filter = av_malloc(filterSize * dstW * sizeof(*filter));
  498. if (filterSize >= MAX_FILTER_SIZE * 16 /
  499. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter) {
  500. av_log(NULL, AV_LOG_ERROR, "sws: filterSize %d is too large, try less extreem scaling or increase MAX_FILTER_SIZE and recompile\n", filterSize);
  501. goto fail;
  502. }
  503. *outFilterSize = filterSize;
  504. if (flags & SWS_PRINT_INFO)
  505. av_log(NULL, AV_LOG_VERBOSE,
  506. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  507. filter2Size, filterSize);
  508. /* try to reduce the filter-size (step2 reduce it) */
  509. for (i = 0; i < dstW; i++) {
  510. int j;
  511. for (j = 0; j < filterSize; j++) {
  512. if (j >= filter2Size)
  513. filter[i * filterSize + j] = 0;
  514. else
  515. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  516. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  517. filter[i * filterSize + j] = 0;
  518. }
  519. }
  520. // FIXME try to align filterPos if possible
  521. // fix borders
  522. for (i = 0; i < dstW; i++) {
  523. int j;
  524. if ((*filterPos)[i] < 0) {
  525. // move filter coefficients left to compensate for filterPos
  526. for (j = 1; j < filterSize; j++) {
  527. int left = FFMAX(j + (*filterPos)[i], 0);
  528. filter[i * filterSize + left] += filter[i * filterSize + j];
  529. filter[i * filterSize + j] = 0;
  530. }
  531. (*filterPos)[i]= 0;
  532. }
  533. if ((*filterPos)[i] + filterSize > srcW) {
  534. int shift = (*filterPos)[i] + filterSize - srcW;
  535. // move filter coefficients right to compensate for filterPos
  536. for (j = filterSize - 2; j >= 0; j--) {
  537. int right = FFMIN(j + shift, filterSize - 1);
  538. filter[i * filterSize + right] += filter[i * filterSize + j];
  539. filter[i * filterSize + j] = 0;
  540. }
  541. (*filterPos)[i]= srcW - filterSize;
  542. }
  543. }
  544. // Note the +1 is for the MMX scaler which reads over the end
  545. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  546. FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
  547. *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
  548. /* normalize & store in outFilter */
  549. for (i = 0; i < dstW; i++) {
  550. int j;
  551. int64_t error = 0;
  552. int64_t sum = 0;
  553. for (j = 0; j < filterSize; j++) {
  554. sum += filter[i * filterSize + j];
  555. }
  556. sum = (sum + one / 2) / one;
  557. for (j = 0; j < *outFilterSize; j++) {
  558. int64_t v = filter[i * filterSize + j] + error;
  559. int intV = ROUNDED_DIV(v, sum);
  560. (*outFilter)[i * (*outFilterSize) + j] = intV;
  561. error = v - intV * sum;
  562. }
  563. }
  564. (*filterPos)[dstW + 0] =
  565. (*filterPos)[dstW + 1] =
  566. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  567. * read over the end */
  568. for (i = 0; i < *outFilterSize; i++) {
  569. int k = (dstW - 1) * (*outFilterSize) + i;
  570. (*outFilter)[k + 1 * (*outFilterSize)] =
  571. (*outFilter)[k + 2 * (*outFilterSize)] =
  572. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  573. }
  574. ret = 0;
  575. fail:
  576. if(ret < 0)
  577. av_log(NULL, AV_LOG_ERROR, "sws: initFilter failed\n");
  578. av_free(filter);
  579. av_free(filter2);
  580. return ret;
  581. }
  582. #if HAVE_MMXEXT_INLINE
  583. static av_cold int init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
  584. int16_t *filter, int32_t *filterPos,
  585. int numSplits)
  586. {
  587. uint8_t *fragmentA;
  588. x86_reg imm8OfPShufW1A;
  589. x86_reg imm8OfPShufW2A;
  590. x86_reg fragmentLengthA;
  591. uint8_t *fragmentB;
  592. x86_reg imm8OfPShufW1B;
  593. x86_reg imm8OfPShufW2B;
  594. x86_reg fragmentLengthB;
  595. int fragmentPos;
  596. int xpos, i;
  597. // create an optimized horizontal scaling routine
  598. /* This scaler is made of runtime-generated MMXEXT code using specially tuned
  599. * pshufw instructions. For every four output pixels, if four input pixels
  600. * are enough for the fast bilinear scaling, then a chunk of fragmentB is
  601. * used. If five input pixels are needed, then a chunk of fragmentA is used.
  602. */
  603. // code fragment
  604. __asm__ volatile (
  605. "jmp 9f \n\t"
  606. // Begin
  607. "0: \n\t"
  608. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  609. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  610. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  611. "punpcklbw %%mm7, %%mm1 \n\t"
  612. "punpcklbw %%mm7, %%mm0 \n\t"
  613. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  614. "1: \n\t"
  615. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  616. "2: \n\t"
  617. "psubw %%mm1, %%mm0 \n\t"
  618. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  619. "pmullw %%mm3, %%mm0 \n\t"
  620. "psllw $7, %%mm1 \n\t"
  621. "paddw %%mm1, %%mm0 \n\t"
  622. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  623. "add $8, %%"REG_a" \n\t"
  624. // End
  625. "9: \n\t"
  626. // "int $3 \n\t"
  627. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  628. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  629. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  630. "dec %1 \n\t"
  631. "dec %2 \n\t"
  632. "sub %0, %1 \n\t"
  633. "sub %0, %2 \n\t"
  634. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  635. "sub %0, %3 \n\t"
  636. : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  637. "=r" (fragmentLengthA)
  638. );
  639. __asm__ volatile (
  640. "jmp 9f \n\t"
  641. // Begin
  642. "0: \n\t"
  643. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  644. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  645. "punpcklbw %%mm7, %%mm0 \n\t"
  646. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  647. "1: \n\t"
  648. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  649. "2: \n\t"
  650. "psubw %%mm1, %%mm0 \n\t"
  651. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  652. "pmullw %%mm3, %%mm0 \n\t"
  653. "psllw $7, %%mm1 \n\t"
  654. "paddw %%mm1, %%mm0 \n\t"
  655. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  656. "add $8, %%"REG_a" \n\t"
  657. // End
  658. "9: \n\t"
  659. // "int $3 \n\t"
  660. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  661. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  662. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  663. "dec %1 \n\t"
  664. "dec %2 \n\t"
  665. "sub %0, %1 \n\t"
  666. "sub %0, %2 \n\t"
  667. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  668. "sub %0, %3 \n\t"
  669. : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  670. "=r" (fragmentLengthB)
  671. );
  672. xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
  673. fragmentPos = 0;
  674. for (i = 0; i < dstW / numSplits; i++) {
  675. int xx = xpos >> 16;
  676. if ((i & 3) == 0) {
  677. int a = 0;
  678. int b = ((xpos + xInc) >> 16) - xx;
  679. int c = ((xpos + xInc * 2) >> 16) - xx;
  680. int d = ((xpos + xInc * 3) >> 16) - xx;
  681. int inc = (d + 1 < 4);
  682. uint8_t *fragment = (d + 1 < 4) ? fragmentB : fragmentA;
  683. x86_reg imm8OfPShufW1 = (d + 1 < 4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  684. x86_reg imm8OfPShufW2 = (d + 1 < 4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  685. x86_reg fragmentLength = (d + 1 < 4) ? fragmentLengthB : fragmentLengthA;
  686. int maxShift = 3 - (d + inc);
  687. int shift = 0;
  688. if (filterCode) {
  689. filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9;
  690. filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9;
  691. filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
  692. filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
  693. filterPos[i / 2] = xx;
  694. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  695. filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) |
  696. ((b + inc) << 2) |
  697. ((c + inc) << 4) |
  698. ((d + inc) << 6);
  699. filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) |
  700. (c << 4) |
  701. (d << 6);
  702. if (i + 4 - inc >= dstW)
  703. shift = maxShift; // avoid overread
  704. else if ((filterPos[i / 2] & 3) <= maxShift)
  705. shift = filterPos[i / 2] & 3; // align
  706. if (shift && i >= shift) {
  707. filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
  708. filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
  709. filterPos[i / 2] -= shift;
  710. }
  711. }
  712. fragmentPos += fragmentLength;
  713. if (filterCode)
  714. filterCode[fragmentPos] = RET;
  715. }
  716. xpos += xInc;
  717. }
  718. if (filterCode)
  719. filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part
  720. return fragmentPos + 1;
  721. }
  722. #endif /* HAVE_MMXEXT_INLINE */
  723. static void getSubSampleFactors(int *h, int *v, enum AVPixelFormat format)
  724. {
  725. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  726. *h = desc->log2_chroma_w;
  727. *v = desc->log2_chroma_h;
  728. }
  729. static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
  730. {
  731. int64_t W, V, Z, Cy, Cu, Cv;
  732. int64_t vr = table[0];
  733. int64_t ub = table[1];
  734. int64_t ug = -table[2];
  735. int64_t vg = -table[3];
  736. int64_t ONE = 65536;
  737. int64_t cy = ONE;
  738. uint8_t *p = (uint8_t*)c->input_rgb2yuv_table;
  739. int i;
  740. static const int8_t map[] = {
  741. BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
  742. RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
  743. RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
  744. BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
  745. BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
  746. RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
  747. RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
  748. BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
  749. BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
  750. RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
  751. RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
  752. BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
  753. RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX,
  754. BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX,
  755. GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
  756. -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
  757. RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX,
  758. BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX,
  759. GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
  760. -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
  761. RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX,
  762. BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX,
  763. GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
  764. -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
  765. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
  766. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
  767. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
  768. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
  769. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
  770. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
  771. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
  772. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
  773. BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
  774. BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
  775. BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
  776. };
  777. dstRange = 0; //FIXME range = 1 is handled elsewhere
  778. if (!dstRange) {
  779. cy = cy * 255 / 219;
  780. } else {
  781. vr = vr * 224 / 255;
  782. ub = ub * 224 / 255;
  783. ug = ug * 224 / 255;
  784. vg = vg * 224 / 255;
  785. }
  786. W = ROUNDED_DIV(ONE*ONE*ug, ub);
  787. V = ROUNDED_DIV(ONE*ONE*vg, vr);
  788. Z = ONE*ONE-W-V;
  789. Cy = ROUNDED_DIV(cy*Z, ONE);
  790. Cu = ROUNDED_DIV(ub*Z, ONE);
  791. Cv = ROUNDED_DIV(vr*Z, ONE);
  792. c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
  793. c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
  794. c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
  795. c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
  796. c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
  797. c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
  798. c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
  799. c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
  800. c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
  801. if(/*!dstRange && */table == ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]) {
  802. c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  803. c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  804. c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  805. c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  806. c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  807. c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  808. c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  809. c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  810. c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  811. }
  812. for(i=0; i<FF_ARRAY_ELEMS(map); i++)
  813. AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
  814. }
  815. static void fill_xyztables(struct SwsContext *c)
  816. {
  817. int i;
  818. double xyzgamma = XYZ_GAMMA;
  819. double rgbgamma = 1.0 / RGB_GAMMA;
  820. static const int16_t xyz2rgb_matrix[3][4] = {
  821. {13270, -6295, -2041},
  822. {-3969, 7682, 170},
  823. { 228, -835, 4329} };
  824. static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096];
  825. memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
  826. c->xyzgamma = xyzgamma_tab;
  827. c->rgbgamma = rgbgamma_tab;
  828. if (rgbgamma_tab[4095])
  829. return;
  830. /* set gamma vectors */
  831. for (i = 0; i < 4096; i++) {
  832. xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
  833. rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
  834. }
  835. }
  836. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  837. int srcRange, const int table[4], int dstRange,
  838. int brightness, int contrast, int saturation)
  839. {
  840. const AVPixFmtDescriptor *desc_dst;
  841. const AVPixFmtDescriptor *desc_src;
  842. memcpy(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  843. memcpy(c->dstColorspaceTable, table, sizeof(int) * 4);
  844. handle_formats(c);
  845. desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  846. desc_src = av_pix_fmt_desc_get(c->srcFormat);
  847. if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
  848. dstRange = 0;
  849. if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
  850. srcRange = 0;
  851. c->brightness = brightness;
  852. c->contrast = contrast;
  853. c->saturation = saturation;
  854. c->srcRange = srcRange;
  855. c->dstRange = dstRange;
  856. fill_xyztables(c);
  857. if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat)))
  858. return -1;
  859. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  860. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  861. if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
  862. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  863. contrast, saturation);
  864. // FIXME factorize
  865. if (HAVE_ALTIVEC && av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC)
  866. ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness,
  867. contrast, saturation);
  868. }
  869. fill_rgb2yuv_table(c, table, dstRange);
  870. return 0;
  871. }
  872. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  873. int *srcRange, int **table, int *dstRange,
  874. int *brightness, int *contrast, int *saturation)
  875. {
  876. if (!c || isYUV(c->dstFormat) || isGray(c->dstFormat))
  877. return -1;
  878. *inv_table = c->srcColorspaceTable;
  879. *table = c->dstColorspaceTable;
  880. *srcRange = c->srcRange;
  881. *dstRange = c->dstRange;
  882. *brightness = c->brightness;
  883. *contrast = c->contrast;
  884. *saturation = c->saturation;
  885. return 0;
  886. }
  887. static int handle_jpeg(enum AVPixelFormat *format)
  888. {
  889. switch (*format) {
  890. case AV_PIX_FMT_YUVJ420P:
  891. *format = AV_PIX_FMT_YUV420P;
  892. return 1;
  893. case AV_PIX_FMT_YUVJ411P:
  894. *format = AV_PIX_FMT_YUV411P;
  895. return 1;
  896. case AV_PIX_FMT_YUVJ422P:
  897. *format = AV_PIX_FMT_YUV422P;
  898. return 1;
  899. case AV_PIX_FMT_YUVJ444P:
  900. *format = AV_PIX_FMT_YUV444P;
  901. return 1;
  902. case AV_PIX_FMT_YUVJ440P:
  903. *format = AV_PIX_FMT_YUV440P;
  904. return 1;
  905. case AV_PIX_FMT_GRAY8:
  906. return 1;
  907. default:
  908. return 0;
  909. }
  910. }
  911. static int handle_0alpha(enum AVPixelFormat *format)
  912. {
  913. switch (*format) {
  914. case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
  915. case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
  916. case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
  917. case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
  918. default: return 0;
  919. }
  920. }
  921. static int handle_xyz(enum AVPixelFormat *format)
  922. {
  923. switch (*format) {
  924. case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
  925. case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
  926. default: return 0;
  927. }
  928. }
  929. static void handle_formats(SwsContext *c)
  930. {
  931. c->src0Alpha |= handle_0alpha(&c->srcFormat);
  932. c->dst0Alpha |= handle_0alpha(&c->dstFormat);
  933. c->srcXYZ |= handle_xyz(&c->srcFormat);
  934. c->dstXYZ |= handle_xyz(&c->dstFormat);
  935. }
  936. SwsContext *sws_alloc_context(void)
  937. {
  938. SwsContext *c = av_mallocz(sizeof(SwsContext));
  939. if (c) {
  940. c->av_class = &sws_context_class;
  941. av_opt_set_defaults(c);
  942. }
  943. return c;
  944. }
  945. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  946. SwsFilter *dstFilter)
  947. {
  948. int i, j;
  949. int usesVFilter, usesHFilter;
  950. int unscaled;
  951. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  952. int srcW = c->srcW;
  953. int srcH = c->srcH;
  954. int dstW = c->dstW;
  955. int dstH = c->dstH;
  956. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
  957. int flags, cpu_flags;
  958. enum AVPixelFormat srcFormat = c->srcFormat;
  959. enum AVPixelFormat dstFormat = c->dstFormat;
  960. const AVPixFmtDescriptor *desc_src;
  961. const AVPixFmtDescriptor *desc_dst;
  962. cpu_flags = av_get_cpu_flags();
  963. flags = c->flags;
  964. emms_c();
  965. if (!rgb15to16)
  966. sws_rgb2rgb_init();
  967. unscaled = (srcW == dstW && srcH == dstH);
  968. c->srcRange |= handle_jpeg(&c->srcFormat);
  969. c->dstRange |= handle_jpeg(&c->dstFormat);
  970. if (!c->contrast && !c->saturation && !c->dstFormatBpp)
  971. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  972. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  973. c->dstRange, 0, 1 << 16, 1 << 16);
  974. if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
  975. av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
  976. handle_formats(c);
  977. srcFormat = c->srcFormat;
  978. dstFormat = c->dstFormat;
  979. desc_src = av_pix_fmt_desc_get(srcFormat);
  980. desc_dst = av_pix_fmt_desc_get(dstFormat);
  981. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  982. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  983. if (!sws_isSupportedInput(srcFormat)) {
  984. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  985. av_get_pix_fmt_name(srcFormat));
  986. return AVERROR(EINVAL);
  987. }
  988. if (!sws_isSupportedOutput(dstFormat)) {
  989. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  990. av_get_pix_fmt_name(dstFormat));
  991. return AVERROR(EINVAL);
  992. }
  993. }
  994. i = flags & (SWS_POINT |
  995. SWS_AREA |
  996. SWS_BILINEAR |
  997. SWS_FAST_BILINEAR |
  998. SWS_BICUBIC |
  999. SWS_X |
  1000. SWS_GAUSS |
  1001. SWS_LANCZOS |
  1002. SWS_SINC |
  1003. SWS_SPLINE |
  1004. SWS_BICUBLIN);
  1005. if (!i || (i & (i - 1))) {
  1006. av_log(c, AV_LOG_ERROR, "Exactly one scaler algorithm must be chosen, got %X\n", i);
  1007. return AVERROR(EINVAL);
  1008. }
  1009. /* sanity check */
  1010. if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
  1011. /* FIXME check if these are enough and try to lower them after
  1012. * fixing the relevant parts of the code */
  1013. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  1014. srcW, srcH, dstW, dstH);
  1015. return AVERROR(EINVAL);
  1016. }
  1017. if (!dstFilter)
  1018. dstFilter = &dummyFilter;
  1019. if (!srcFilter)
  1020. srcFilter = &dummyFilter;
  1021. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  1022. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  1023. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  1024. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  1025. c->vRounder = 4 * 0x0001000100010001ULL;
  1026. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  1027. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  1028. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  1029. (dstFilter->chrV && dstFilter->chrV->length > 1);
  1030. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  1031. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  1032. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  1033. (dstFilter->chrH && dstFilter->chrH->length > 1);
  1034. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  1035. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  1036. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
  1037. if (dstW&1) {
  1038. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
  1039. flags |= SWS_FULL_CHR_H_INT;
  1040. c->flags = flags;
  1041. }
  1042. }
  1043. if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
  1044. dstFormat == AV_PIX_FMT_RGB4_BYTE ||
  1045. dstFormat == AV_PIX_FMT_BGR8 ||
  1046. dstFormat == AV_PIX_FMT_RGB8) {
  1047. if (flags & SWS_ERROR_DIFFUSION && !(flags & SWS_FULL_CHR_H_INT)) {
  1048. av_log(c, AV_LOG_DEBUG,
  1049. "Error diffusion dither is only supported in full chroma interpolation for destination format '%s'\n",
  1050. av_get_pix_fmt_name(dstFormat));
  1051. flags |= SWS_FULL_CHR_H_INT;
  1052. c->flags = flags;
  1053. }
  1054. if (!(flags & SWS_ERROR_DIFFUSION) && (flags & SWS_FULL_CHR_H_INT)) {
  1055. av_log(c, AV_LOG_DEBUG,
  1056. "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
  1057. av_get_pix_fmt_name(dstFormat));
  1058. flags |= SWS_ERROR_DIFFUSION;
  1059. c->flags = flags;
  1060. }
  1061. }
  1062. if (isPlanarRGB(dstFormat)) {
  1063. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1064. av_log(c, AV_LOG_DEBUG,
  1065. "%s output is not supported with half chroma resolution, switching to full\n",
  1066. av_get_pix_fmt_name(dstFormat));
  1067. flags |= SWS_FULL_CHR_H_INT;
  1068. c->flags = flags;
  1069. }
  1070. }
  1071. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  1072. * chroma interpolation */
  1073. if (flags & SWS_FULL_CHR_H_INT &&
  1074. isAnyRGB(dstFormat) &&
  1075. !isPlanarRGB(dstFormat) &&
  1076. dstFormat != AV_PIX_FMT_RGBA &&
  1077. dstFormat != AV_PIX_FMT_ARGB &&
  1078. dstFormat != AV_PIX_FMT_BGRA &&
  1079. dstFormat != AV_PIX_FMT_ABGR &&
  1080. dstFormat != AV_PIX_FMT_RGB24 &&
  1081. dstFormat != AV_PIX_FMT_BGR24 &&
  1082. dstFormat != AV_PIX_FMT_BGR4_BYTE &&
  1083. dstFormat != AV_PIX_FMT_RGB4_BYTE &&
  1084. dstFormat != AV_PIX_FMT_BGR8 &&
  1085. dstFormat != AV_PIX_FMT_RGB8
  1086. ) {
  1087. av_log(c, AV_LOG_WARNING,
  1088. "full chroma interpolation for destination format '%s' not yet implemented\n",
  1089. av_get_pix_fmt_name(dstFormat));
  1090. flags &= ~SWS_FULL_CHR_H_INT;
  1091. c->flags = flags;
  1092. }
  1093. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  1094. c->chrDstHSubSample = 1;
  1095. // drop some chroma lines if the user wants it
  1096. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  1097. SWS_SRC_V_CHR_DROP_SHIFT;
  1098. c->chrSrcVSubSample += c->vChrDrop;
  1099. /* drop every other pixel for chroma calculation unless user
  1100. * wants full chroma */
  1101. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  1102. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  1103. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  1104. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  1105. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  1106. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  1107. srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
  1108. srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
  1109. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  1110. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  1111. (flags & SWS_FAST_BILINEAR)))
  1112. c->chrSrcHSubSample = 1;
  1113. // Note the FF_CEIL_RSHIFT is so that we always round toward +inf.
  1114. c->chrSrcW = FF_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
  1115. c->chrSrcH = FF_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
  1116. c->chrDstW = FF_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
  1117. c->chrDstH = FF_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
  1118. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
  1119. /* unscaled special cases */
  1120. if (unscaled && !usesHFilter && !usesVFilter &&
  1121. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  1122. ff_get_unscaled_swscale(c);
  1123. if (c->swScale) {
  1124. if (flags & SWS_PRINT_INFO)
  1125. av_log(c, AV_LOG_INFO,
  1126. "using unscaled %s -> %s special converter\n",
  1127. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1128. return 0;
  1129. }
  1130. }
  1131. c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
  1132. if (c->srcBpc < 8)
  1133. c->srcBpc = 8;
  1134. c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
  1135. if (c->dstBpc < 8)
  1136. c->dstBpc = 8;
  1137. if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
  1138. c->srcBpc = 16;
  1139. if (c->dstBpc == 16)
  1140. dst_stride <<= 1;
  1141. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
  1142. c->canMMXEXTBeUsed = (dstW >= srcW && (dstW & 31) == 0 &&
  1143. (srcW & 15) == 0) ? 1 : 0;
  1144. if (!c->canMMXEXTBeUsed && dstW >= srcW && (srcW & 15) == 0
  1145. && (flags & SWS_FAST_BILINEAR)) {
  1146. if (flags & SWS_PRINT_INFO)
  1147. av_log(c, AV_LOG_INFO,
  1148. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  1149. }
  1150. if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
  1151. c->canMMXEXTBeUsed = 0;
  1152. } else
  1153. c->canMMXEXTBeUsed = 0;
  1154. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  1155. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  1156. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  1157. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  1158. * correct scaling.
  1159. * n-2 is the last chrominance sample available.
  1160. * This is not perfect, but no one should notice the difference, the more
  1161. * correct variant would be like the vertical one, but that would require
  1162. * some special code for the first and last pixel */
  1163. if (flags & SWS_FAST_BILINEAR) {
  1164. if (c->canMMXEXTBeUsed) {
  1165. c->lumXInc += 20;
  1166. c->chrXInc += 20;
  1167. }
  1168. // we don't use the x86 asm scaler if MMX is available
  1169. else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
  1170. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  1171. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  1172. }
  1173. }
  1174. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  1175. /* precalculate horizontal scaler filter coefficients */
  1176. {
  1177. #if HAVE_MMXEXT_INLINE
  1178. // can't downscale !!!
  1179. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  1180. c->lumMmxextFilterCodeSize = init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  1181. NULL, NULL, 8);
  1182. c->chrMmxextFilterCodeSize = init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  1183. NULL, NULL, NULL, 4);
  1184. #if USE_MMAP
  1185. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  1186. PROT_READ | PROT_WRITE,
  1187. MAP_PRIVATE | MAP_ANONYMOUS,
  1188. -1, 0);
  1189. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  1190. PROT_READ | PROT_WRITE,
  1191. MAP_PRIVATE | MAP_ANONYMOUS,
  1192. -1, 0);
  1193. #elif HAVE_VIRTUALALLOC
  1194. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  1195. c->lumMmxextFilterCodeSize,
  1196. MEM_COMMIT,
  1197. PAGE_EXECUTE_READWRITE);
  1198. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  1199. c->chrMmxextFilterCodeSize,
  1200. MEM_COMMIT,
  1201. PAGE_EXECUTE_READWRITE);
  1202. #else
  1203. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  1204. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1205. #endif
  1206. #ifdef MAP_ANONYMOUS
  1207. if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
  1208. #else
  1209. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1210. #endif
  1211. {
  1212. av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
  1213. return AVERROR(ENOMEM);
  1214. }
  1215. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1216. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1217. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1218. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1219. init_hscaler_mmxext( dstW, c->lumXInc, c->lumMmxextFilterCode,
  1220. c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
  1221. init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1222. c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
  1223. #if USE_MMAP
  1224. mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1225. mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1226. #endif
  1227. } else
  1228. #endif /* HAVE_MMXEXT_INLINE */
  1229. {
  1230. const int filterAlign =
  1231. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 4 :
  1232. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  1233. 1;
  1234. if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1235. &c->hLumFilterSize, c->lumXInc,
  1236. srcW, dstW, filterAlign, 1 << 14,
  1237. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1238. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1239. c->param) < 0)
  1240. goto fail;
  1241. if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1242. &c->hChrFilterSize, c->chrXInc,
  1243. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1244. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1245. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1246. c->param) < 0)
  1247. goto fail;
  1248. }
  1249. } // initialize horizontal stuff
  1250. /* precalculate vertical scaler filter coefficients */
  1251. {
  1252. const int filterAlign =
  1253. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 2 :
  1254. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  1255. 1;
  1256. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1257. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1258. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1259. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1260. c->param) < 0)
  1261. goto fail;
  1262. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1263. c->chrYInc, c->chrSrcH, c->chrDstH,
  1264. filterAlign, (1 << 12),
  1265. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1266. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1267. c->param) < 0)
  1268. goto fail;
  1269. #if HAVE_ALTIVEC
  1270. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1271. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1272. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1273. int j;
  1274. short *p = (short *)&c->vYCoeffsBank[i];
  1275. for (j = 0; j < 8; j++)
  1276. p[j] = c->vLumFilter[i];
  1277. }
  1278. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1279. int j;
  1280. short *p = (short *)&c->vCCoeffsBank[i];
  1281. for (j = 0; j < 8; j++)
  1282. p[j] = c->vChrFilter[i];
  1283. }
  1284. #endif
  1285. }
  1286. // calculate buffer sizes so that they won't run out while handling these damn slices
  1287. c->vLumBufSize = c->vLumFilterSize;
  1288. c->vChrBufSize = c->vChrFilterSize;
  1289. for (i = 0; i < dstH; i++) {
  1290. int chrI = (int64_t)i * c->chrDstH / dstH;
  1291. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1292. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1293. << c->chrSrcVSubSample));
  1294. nextSlice >>= c->chrSrcVSubSample;
  1295. nextSlice <<= c->chrSrcVSubSample;
  1296. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1297. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1298. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1299. (nextSlice >> c->chrSrcVSubSample))
  1300. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1301. c->vChrFilterPos[chrI];
  1302. }
  1303. for (i = 0; i < 4; i++)
  1304. FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
  1305. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1306. * need to allocate several megabytes to handle all possible cases) */
  1307. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1308. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1309. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1310. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1311. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1312. /* Note we need at least one pixel more at the end because of the MMX code
  1313. * (just in case someone wants to replace the 4000/8000). */
  1314. /* align at 16 bytes for AltiVec */
  1315. for (i = 0; i < c->vLumBufSize; i++) {
  1316. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1317. dst_stride + 16, fail);
  1318. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1319. }
  1320. // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
  1321. c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
  1322. c->uv_offx2 = dst_stride + 16;
  1323. for (i = 0; i < c->vChrBufSize; i++) {
  1324. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1325. dst_stride * 2 + 32, fail);
  1326. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1327. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1328. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1329. }
  1330. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1331. for (i = 0; i < c->vLumBufSize; i++) {
  1332. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1333. dst_stride + 16, fail);
  1334. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1335. }
  1336. // try to avoid drawing green stuff between the right end and the stride end
  1337. for (i = 0; i < c->vChrBufSize; i++)
  1338. if(desc_dst->comp[0].depth_minus1 == 15){
  1339. av_assert0(c->dstBpc > 14);
  1340. for(j=0; j<dst_stride/2+1; j++)
  1341. ((int32_t*)(c->chrUPixBuf[i]))[j] = 1<<18;
  1342. } else
  1343. for(j=0; j<dst_stride+1; j++)
  1344. ((int16_t*)(c->chrUPixBuf[i]))[j] = 1<<14;
  1345. av_assert0(c->chrDstH <= dstH);
  1346. if (flags & SWS_PRINT_INFO) {
  1347. if (flags & SWS_FAST_BILINEAR)
  1348. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  1349. else if (flags & SWS_BILINEAR)
  1350. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  1351. else if (flags & SWS_BICUBIC)
  1352. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  1353. else if (flags & SWS_X)
  1354. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  1355. else if (flags & SWS_POINT)
  1356. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  1357. else if (flags & SWS_AREA)
  1358. av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
  1359. else if (flags & SWS_BICUBLIN)
  1360. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  1361. else if (flags & SWS_GAUSS)
  1362. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  1363. else if (flags & SWS_SINC)
  1364. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  1365. else if (flags & SWS_LANCZOS)
  1366. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  1367. else if (flags & SWS_SPLINE)
  1368. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  1369. else
  1370. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  1371. av_log(c, AV_LOG_INFO, "from %s to %s%s ",
  1372. av_get_pix_fmt_name(srcFormat),
  1373. #ifdef DITHER1XBPP
  1374. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1375. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1376. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1377. "dithered " : "",
  1378. #else
  1379. "",
  1380. #endif
  1381. av_get_pix_fmt_name(dstFormat));
  1382. if (INLINE_MMXEXT(cpu_flags))
  1383. av_log(c, AV_LOG_INFO, "using MMXEXT\n");
  1384. else if (INLINE_AMD3DNOW(cpu_flags))
  1385. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  1386. else if (INLINE_MMX(cpu_flags))
  1387. av_log(c, AV_LOG_INFO, "using MMX\n");
  1388. else if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC)
  1389. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  1390. else
  1391. av_log(c, AV_LOG_INFO, "using C\n");
  1392. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1393. av_log(c, AV_LOG_DEBUG,
  1394. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1395. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1396. av_log(c, AV_LOG_DEBUG,
  1397. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1398. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1399. c->chrXInc, c->chrYInc);
  1400. }
  1401. c->swScale = ff_getSwsFunc(c);
  1402. return 0;
  1403. fail: // FIXME replace things by appropriate error codes
  1404. return -1;
  1405. }
  1406. #if FF_API_SWS_GETCONTEXT
  1407. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1408. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1409. int flags, SwsFilter *srcFilter,
  1410. SwsFilter *dstFilter, const double *param)
  1411. {
  1412. SwsContext *c;
  1413. if (!(c = sws_alloc_context()))
  1414. return NULL;
  1415. c->flags = flags;
  1416. c->srcW = srcW;
  1417. c->srcH = srcH;
  1418. c->dstW = dstW;
  1419. c->dstH = dstH;
  1420. c->srcFormat = srcFormat;
  1421. c->dstFormat = dstFormat;
  1422. if (param) {
  1423. c->param[0] = param[0];
  1424. c->param[1] = param[1];
  1425. }
  1426. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1427. sws_freeContext(c);
  1428. return NULL;
  1429. }
  1430. return c;
  1431. }
  1432. #endif
  1433. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1434. float lumaSharpen, float chromaSharpen,
  1435. float chromaHShift, float chromaVShift,
  1436. int verbose)
  1437. {
  1438. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1439. if (!filter)
  1440. return NULL;
  1441. if (lumaGBlur != 0.0) {
  1442. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1443. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1444. } else {
  1445. filter->lumH = sws_getIdentityVec();
  1446. filter->lumV = sws_getIdentityVec();
  1447. }
  1448. if (chromaGBlur != 0.0) {
  1449. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1450. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1451. } else {
  1452. filter->chrH = sws_getIdentityVec();
  1453. filter->chrV = sws_getIdentityVec();
  1454. }
  1455. if (chromaSharpen != 0.0) {
  1456. SwsVector *id = sws_getIdentityVec();
  1457. sws_scaleVec(filter->chrH, -chromaSharpen);
  1458. sws_scaleVec(filter->chrV, -chromaSharpen);
  1459. sws_addVec(filter->chrH, id);
  1460. sws_addVec(filter->chrV, id);
  1461. sws_freeVec(id);
  1462. }
  1463. if (lumaSharpen != 0.0) {
  1464. SwsVector *id = sws_getIdentityVec();
  1465. sws_scaleVec(filter->lumH, -lumaSharpen);
  1466. sws_scaleVec(filter->lumV, -lumaSharpen);
  1467. sws_addVec(filter->lumH, id);
  1468. sws_addVec(filter->lumV, id);
  1469. sws_freeVec(id);
  1470. }
  1471. if (chromaHShift != 0.0)
  1472. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1473. if (chromaVShift != 0.0)
  1474. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1475. sws_normalizeVec(filter->chrH, 1.0);
  1476. sws_normalizeVec(filter->chrV, 1.0);
  1477. sws_normalizeVec(filter->lumH, 1.0);
  1478. sws_normalizeVec(filter->lumV, 1.0);
  1479. if (verbose)
  1480. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1481. if (verbose)
  1482. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1483. return filter;
  1484. }
  1485. SwsVector *sws_allocVec(int length)
  1486. {
  1487. SwsVector *vec;
  1488. if(length <= 0 || length > INT_MAX/ sizeof(double))
  1489. return NULL;
  1490. vec = av_malloc(sizeof(SwsVector));
  1491. if (!vec)
  1492. return NULL;
  1493. vec->length = length;
  1494. vec->coeff = av_malloc(sizeof(double) * length);
  1495. if (!vec->coeff)
  1496. av_freep(&vec);
  1497. return vec;
  1498. }
  1499. SwsVector *sws_getGaussianVec(double variance, double quality)
  1500. {
  1501. const int length = (int)(variance * quality + 0.5) | 1;
  1502. int i;
  1503. double middle = (length - 1) * 0.5;
  1504. SwsVector *vec;
  1505. if(variance < 0 || quality < 0)
  1506. return NULL;
  1507. vec = sws_allocVec(length);
  1508. if (!vec)
  1509. return NULL;
  1510. for (i = 0; i < length; i++) {
  1511. double dist = i - middle;
  1512. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1513. sqrt(2 * variance * M_PI);
  1514. }
  1515. sws_normalizeVec(vec, 1.0);
  1516. return vec;
  1517. }
  1518. SwsVector *sws_getConstVec(double c, int length)
  1519. {
  1520. int i;
  1521. SwsVector *vec = sws_allocVec(length);
  1522. if (!vec)
  1523. return NULL;
  1524. for (i = 0; i < length; i++)
  1525. vec->coeff[i] = c;
  1526. return vec;
  1527. }
  1528. SwsVector *sws_getIdentityVec(void)
  1529. {
  1530. return sws_getConstVec(1.0, 1);
  1531. }
  1532. static double sws_dcVec(SwsVector *a)
  1533. {
  1534. int i;
  1535. double sum = 0;
  1536. for (i = 0; i < a->length; i++)
  1537. sum += a->coeff[i];
  1538. return sum;
  1539. }
  1540. void sws_scaleVec(SwsVector *a, double scalar)
  1541. {
  1542. int i;
  1543. for (i = 0; i < a->length; i++)
  1544. a->coeff[i] *= scalar;
  1545. }
  1546. void sws_normalizeVec(SwsVector *a, double height)
  1547. {
  1548. sws_scaleVec(a, height / sws_dcVec(a));
  1549. }
  1550. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1551. {
  1552. int length = a->length + b->length - 1;
  1553. int i, j;
  1554. SwsVector *vec = sws_getConstVec(0.0, length);
  1555. if (!vec)
  1556. return NULL;
  1557. for (i = 0; i < a->length; i++) {
  1558. for (j = 0; j < b->length; j++) {
  1559. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1560. }
  1561. }
  1562. return vec;
  1563. }
  1564. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1565. {
  1566. int length = FFMAX(a->length, b->length);
  1567. int i;
  1568. SwsVector *vec = sws_getConstVec(0.0, length);
  1569. if (!vec)
  1570. return NULL;
  1571. for (i = 0; i < a->length; i++)
  1572. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1573. for (i = 0; i < b->length; i++)
  1574. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1575. return vec;
  1576. }
  1577. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1578. {
  1579. int length = FFMAX(a->length, b->length);
  1580. int i;
  1581. SwsVector *vec = sws_getConstVec(0.0, length);
  1582. if (!vec)
  1583. return NULL;
  1584. for (i = 0; i < a->length; i++)
  1585. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1586. for (i = 0; i < b->length; i++)
  1587. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1588. return vec;
  1589. }
  1590. /* shift left / or right if "shift" is negative */
  1591. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1592. {
  1593. int length = a->length + FFABS(shift) * 2;
  1594. int i;
  1595. SwsVector *vec = sws_getConstVec(0.0, length);
  1596. if (!vec)
  1597. return NULL;
  1598. for (i = 0; i < a->length; i++) {
  1599. vec->coeff[i + (length - 1) / 2 -
  1600. (a->length - 1) / 2 - shift] = a->coeff[i];
  1601. }
  1602. return vec;
  1603. }
  1604. void sws_shiftVec(SwsVector *a, int shift)
  1605. {
  1606. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1607. av_free(a->coeff);
  1608. a->coeff = shifted->coeff;
  1609. a->length = shifted->length;
  1610. av_free(shifted);
  1611. }
  1612. void sws_addVec(SwsVector *a, SwsVector *b)
  1613. {
  1614. SwsVector *sum = sws_sumVec(a, b);
  1615. av_free(a->coeff);
  1616. a->coeff = sum->coeff;
  1617. a->length = sum->length;
  1618. av_free(sum);
  1619. }
  1620. void sws_subVec(SwsVector *a, SwsVector *b)
  1621. {
  1622. SwsVector *diff = sws_diffVec(a, b);
  1623. av_free(a->coeff);
  1624. a->coeff = diff->coeff;
  1625. a->length = diff->length;
  1626. av_free(diff);
  1627. }
  1628. void sws_convVec(SwsVector *a, SwsVector *b)
  1629. {
  1630. SwsVector *conv = sws_getConvVec(a, b);
  1631. av_free(a->coeff);
  1632. a->coeff = conv->coeff;
  1633. a->length = conv->length;
  1634. av_free(conv);
  1635. }
  1636. SwsVector *sws_cloneVec(SwsVector *a)
  1637. {
  1638. int i;
  1639. SwsVector *vec = sws_allocVec(a->length);
  1640. if (!vec)
  1641. return NULL;
  1642. for (i = 0; i < a->length; i++)
  1643. vec->coeff[i] = a->coeff[i];
  1644. return vec;
  1645. }
  1646. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1647. {
  1648. int i;
  1649. double max = 0;
  1650. double min = 0;
  1651. double range;
  1652. for (i = 0; i < a->length; i++)
  1653. if (a->coeff[i] > max)
  1654. max = a->coeff[i];
  1655. for (i = 0; i < a->length; i++)
  1656. if (a->coeff[i] < min)
  1657. min = a->coeff[i];
  1658. range = max - min;
  1659. for (i = 0; i < a->length; i++) {
  1660. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1661. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1662. for (; x > 0; x--)
  1663. av_log(log_ctx, log_level, " ");
  1664. av_log(log_ctx, log_level, "|\n");
  1665. }
  1666. }
  1667. void sws_freeVec(SwsVector *a)
  1668. {
  1669. if (!a)
  1670. return;
  1671. av_freep(&a->coeff);
  1672. a->length = 0;
  1673. av_free(a);
  1674. }
  1675. void sws_freeFilter(SwsFilter *filter)
  1676. {
  1677. if (!filter)
  1678. return;
  1679. if (filter->lumH)
  1680. sws_freeVec(filter->lumH);
  1681. if (filter->lumV)
  1682. sws_freeVec(filter->lumV);
  1683. if (filter->chrH)
  1684. sws_freeVec(filter->chrH);
  1685. if (filter->chrV)
  1686. sws_freeVec(filter->chrV);
  1687. av_free(filter);
  1688. }
  1689. void sws_freeContext(SwsContext *c)
  1690. {
  1691. int i;
  1692. if (!c)
  1693. return;
  1694. if (c->lumPixBuf) {
  1695. for (i = 0; i < c->vLumBufSize; i++)
  1696. av_freep(&c->lumPixBuf[i]);
  1697. av_freep(&c->lumPixBuf);
  1698. }
  1699. if (c->chrUPixBuf) {
  1700. for (i = 0; i < c->vChrBufSize; i++)
  1701. av_freep(&c->chrUPixBuf[i]);
  1702. av_freep(&c->chrUPixBuf);
  1703. av_freep(&c->chrVPixBuf);
  1704. }
  1705. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1706. for (i = 0; i < c->vLumBufSize; i++)
  1707. av_freep(&c->alpPixBuf[i]);
  1708. av_freep(&c->alpPixBuf);
  1709. }
  1710. for (i = 0; i < 4; i++)
  1711. av_freep(&c->dither_error[i]);
  1712. av_freep(&c->vLumFilter);
  1713. av_freep(&c->vChrFilter);
  1714. av_freep(&c->hLumFilter);
  1715. av_freep(&c->hChrFilter);
  1716. #if HAVE_ALTIVEC
  1717. av_freep(&c->vYCoeffsBank);
  1718. av_freep(&c->vCCoeffsBank);
  1719. #endif
  1720. av_freep(&c->vLumFilterPos);
  1721. av_freep(&c->vChrFilterPos);
  1722. av_freep(&c->hLumFilterPos);
  1723. av_freep(&c->hChrFilterPos);
  1724. #if HAVE_MMX_INLINE
  1725. #if USE_MMAP
  1726. if (c->lumMmxextFilterCode)
  1727. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  1728. if (c->chrMmxextFilterCode)
  1729. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  1730. #elif HAVE_VIRTUALALLOC
  1731. if (c->lumMmxextFilterCode)
  1732. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  1733. if (c->chrMmxextFilterCode)
  1734. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  1735. #else
  1736. av_free(c->lumMmxextFilterCode);
  1737. av_free(c->chrMmxextFilterCode);
  1738. #endif
  1739. c->lumMmxextFilterCode = NULL;
  1740. c->chrMmxextFilterCode = NULL;
  1741. #endif /* HAVE_MMX_INLINE */
  1742. av_freep(&c->yuvTable);
  1743. av_freep(&c->formatConvBuffer);
  1744. av_free(c);
  1745. }
  1746. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1747. int srcH, enum AVPixelFormat srcFormat,
  1748. int dstW, int dstH,
  1749. enum AVPixelFormat dstFormat, int flags,
  1750. SwsFilter *srcFilter,
  1751. SwsFilter *dstFilter,
  1752. const double *param)
  1753. {
  1754. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1755. SWS_PARAM_DEFAULT };
  1756. if (!param)
  1757. param = default_param;
  1758. if (context &&
  1759. (context->srcW != srcW ||
  1760. context->srcH != srcH ||
  1761. context->srcFormat != srcFormat ||
  1762. context->dstW != dstW ||
  1763. context->dstH != dstH ||
  1764. context->dstFormat != dstFormat ||
  1765. context->flags != flags ||
  1766. context->param[0] != param[0] ||
  1767. context->param[1] != param[1])) {
  1768. sws_freeContext(context);
  1769. context = NULL;
  1770. }
  1771. if (!context) {
  1772. if (!(context = sws_alloc_context()))
  1773. return NULL;
  1774. context->srcW = srcW;
  1775. context->srcH = srcH;
  1776. context->srcFormat = srcFormat;
  1777. context->dstW = dstW;
  1778. context->dstH = dstH;
  1779. context->dstFormat = dstFormat;
  1780. context->flags = flags;
  1781. context->param[0] = param[0];
  1782. context->param[1] = param[1];
  1783. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1784. sws_freeContext(context);
  1785. return NULL;
  1786. }
  1787. }
  1788. return context;
  1789. }