You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

8149 lines
315KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file h264.c
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #include "dsputil.h"
  27. #include "avcodec.h"
  28. #include "mpegvideo.h"
  29. #include "h264.h"
  30. #include "h264data.h"
  31. #include "h264_parser.h"
  32. #include "golomb.h"
  33. #include "rectangle.h"
  34. #include "cabac.h"
  35. #ifdef ARCH_X86
  36. #include "i386/h264_i386.h"
  37. #endif
  38. //#undef NDEBUG
  39. #include <assert.h>
  40. /**
  41. * Value of Picture.reference when Picture is not a reference picture, but
  42. * is held for delayed output.
  43. */
  44. #define DELAYED_PIC_REF 4
  45. static VLC coeff_token_vlc[4];
  46. static VLC chroma_dc_coeff_token_vlc;
  47. static VLC total_zeros_vlc[15];
  48. static VLC chroma_dc_total_zeros_vlc[3];
  49. static VLC run_vlc[6];
  50. static VLC run7_vlc;
  51. static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
  52. static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
  53. static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  54. static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  55. static Picture * remove_long(H264Context *h, int i, int ref_mask);
  56. static av_always_inline uint32_t pack16to32(int a, int b){
  57. #ifdef WORDS_BIGENDIAN
  58. return (b&0xFFFF) + (a<<16);
  59. #else
  60. return (a&0xFFFF) + (b<<16);
  61. #endif
  62. }
  63. const uint8_t ff_rem6[52]={
  64. 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
  65. };
  66. const uint8_t ff_div6[52]={
  67. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
  68. };
  69. static void fill_caches(H264Context *h, int mb_type, int for_deblock){
  70. MpegEncContext * const s = &h->s;
  71. const int mb_xy= h->mb_xy;
  72. int topleft_xy, top_xy, topright_xy, left_xy[2];
  73. int topleft_type, top_type, topright_type, left_type[2];
  74. int left_block[8];
  75. int topleft_partition= -1;
  76. int i;
  77. top_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
  78. //FIXME deblocking could skip the intra and nnz parts.
  79. if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF)
  80. return;
  81. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  82. * stuff, I can't imagine that these complex rules are worth it. */
  83. topleft_xy = top_xy - 1;
  84. topright_xy= top_xy + 1;
  85. left_xy[1] = left_xy[0] = mb_xy-1;
  86. left_block[0]= 0;
  87. left_block[1]= 1;
  88. left_block[2]= 2;
  89. left_block[3]= 3;
  90. left_block[4]= 7;
  91. left_block[5]= 10;
  92. left_block[6]= 8;
  93. left_block[7]= 11;
  94. if(FRAME_MBAFF){
  95. const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
  96. const int top_pair_xy = pair_xy - s->mb_stride;
  97. const int topleft_pair_xy = top_pair_xy - 1;
  98. const int topright_pair_xy = top_pair_xy + 1;
  99. const int topleft_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
  100. const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
  101. const int topright_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
  102. const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
  103. const int curr_mb_frame_flag = !IS_INTERLACED(mb_type);
  104. const int bottom = (s->mb_y & 1);
  105. tprintf(s->avctx, "fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag, left_mb_frame_flag, topleft_mb_frame_flag, top_mb_frame_flag, topright_mb_frame_flag);
  106. if (bottom
  107. ? !curr_mb_frame_flag // bottom macroblock
  108. : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
  109. ) {
  110. top_xy -= s->mb_stride;
  111. }
  112. if (bottom
  113. ? !curr_mb_frame_flag // bottom macroblock
  114. : (!curr_mb_frame_flag && !topleft_mb_frame_flag) // top macroblock
  115. ) {
  116. topleft_xy -= s->mb_stride;
  117. } else if(bottom && curr_mb_frame_flag && !left_mb_frame_flag) {
  118. topleft_xy += s->mb_stride;
  119. // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
  120. topleft_partition = 0;
  121. }
  122. if (bottom
  123. ? !curr_mb_frame_flag // bottom macroblock
  124. : (!curr_mb_frame_flag && !topright_mb_frame_flag) // top macroblock
  125. ) {
  126. topright_xy -= s->mb_stride;
  127. }
  128. if (left_mb_frame_flag != curr_mb_frame_flag) {
  129. left_xy[1] = left_xy[0] = pair_xy - 1;
  130. if (curr_mb_frame_flag) {
  131. if (bottom) {
  132. left_block[0]= 2;
  133. left_block[1]= 2;
  134. left_block[2]= 3;
  135. left_block[3]= 3;
  136. left_block[4]= 8;
  137. left_block[5]= 11;
  138. left_block[6]= 8;
  139. left_block[7]= 11;
  140. } else {
  141. left_block[0]= 0;
  142. left_block[1]= 0;
  143. left_block[2]= 1;
  144. left_block[3]= 1;
  145. left_block[4]= 7;
  146. left_block[5]= 10;
  147. left_block[6]= 7;
  148. left_block[7]= 10;
  149. }
  150. } else {
  151. left_xy[1] += s->mb_stride;
  152. //left_block[0]= 0;
  153. left_block[1]= 2;
  154. left_block[2]= 0;
  155. left_block[3]= 2;
  156. //left_block[4]= 7;
  157. left_block[5]= 10;
  158. left_block[6]= 7;
  159. left_block[7]= 10;
  160. }
  161. }
  162. }
  163. h->top_mb_xy = top_xy;
  164. h->left_mb_xy[0] = left_xy[0];
  165. h->left_mb_xy[1] = left_xy[1];
  166. if(for_deblock){
  167. topleft_type = 0;
  168. topright_type = 0;
  169. top_type = h->slice_table[top_xy ] < 255 ? s->current_picture.mb_type[top_xy] : 0;
  170. left_type[0] = h->slice_table[left_xy[0] ] < 255 ? s->current_picture.mb_type[left_xy[0]] : 0;
  171. left_type[1] = h->slice_table[left_xy[1] ] < 255 ? s->current_picture.mb_type[left_xy[1]] : 0;
  172. if(FRAME_MBAFF && !IS_INTRA(mb_type)){
  173. int list;
  174. int v = *(uint16_t*)&h->non_zero_count[mb_xy][14];
  175. for(i=0; i<16; i++)
  176. h->non_zero_count_cache[scan8[i]] = (v>>i)&1;
  177. for(list=0; list<h->list_count; list++){
  178. if(USES_LIST(mb_type,list)){
  179. uint32_t *src = (uint32_t*)s->current_picture.motion_val[list][h->mb2b_xy[mb_xy]];
  180. uint32_t *dst = (uint32_t*)h->mv_cache[list][scan8[0]];
  181. int8_t *ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
  182. for(i=0; i<4; i++, dst+=8, src+=h->b_stride){
  183. dst[0] = src[0];
  184. dst[1] = src[1];
  185. dst[2] = src[2];
  186. dst[3] = src[3];
  187. }
  188. *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
  189. *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = pack16to32(ref[0],ref[1])*0x0101;
  190. ref += h->b8_stride;
  191. *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
  192. *(uint32_t*)&h->ref_cache[list][scan8[10]] = pack16to32(ref[0],ref[1])*0x0101;
  193. }else{
  194. fill_rectangle(&h-> mv_cache[list][scan8[ 0]], 4, 4, 8, 0, 4);
  195. fill_rectangle(&h->ref_cache[list][scan8[ 0]], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1);
  196. }
  197. }
  198. }
  199. }else{
  200. topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
  201. top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
  202. topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
  203. left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
  204. left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
  205. }
  206. if(IS_INTRA(mb_type)){
  207. h->topleft_samples_available=
  208. h->top_samples_available=
  209. h->left_samples_available= 0xFFFF;
  210. h->topright_samples_available= 0xEEEA;
  211. if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
  212. h->topleft_samples_available= 0xB3FF;
  213. h->top_samples_available= 0x33FF;
  214. h->topright_samples_available= 0x26EA;
  215. }
  216. for(i=0; i<2; i++){
  217. if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
  218. h->topleft_samples_available&= 0xDF5F;
  219. h->left_samples_available&= 0x5F5F;
  220. }
  221. }
  222. if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
  223. h->topleft_samples_available&= 0x7FFF;
  224. if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
  225. h->topright_samples_available&= 0xFBFF;
  226. if(IS_INTRA4x4(mb_type)){
  227. if(IS_INTRA4x4(top_type)){
  228. h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
  229. h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
  230. h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
  231. h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
  232. }else{
  233. int pred;
  234. if(!top_type || (IS_INTER(top_type) && h->pps.constrained_intra_pred))
  235. pred= -1;
  236. else{
  237. pred= 2;
  238. }
  239. h->intra4x4_pred_mode_cache[4+8*0]=
  240. h->intra4x4_pred_mode_cache[5+8*0]=
  241. h->intra4x4_pred_mode_cache[6+8*0]=
  242. h->intra4x4_pred_mode_cache[7+8*0]= pred;
  243. }
  244. for(i=0; i<2; i++){
  245. if(IS_INTRA4x4(left_type[i])){
  246. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
  247. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
  248. }else{
  249. int pred;
  250. if(!left_type[i] || (IS_INTER(left_type[i]) && h->pps.constrained_intra_pred))
  251. pred= -1;
  252. else{
  253. pred= 2;
  254. }
  255. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
  256. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
  257. }
  258. }
  259. }
  260. }
  261. /*
  262. 0 . T T. T T T T
  263. 1 L . .L . . . .
  264. 2 L . .L . . . .
  265. 3 . T TL . . . .
  266. 4 L . .L . . . .
  267. 5 L . .. . . . .
  268. */
  269. //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
  270. if(top_type){
  271. h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
  272. h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
  273. h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
  274. h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
  275. h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
  276. h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
  277. h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
  278. h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
  279. }else{
  280. h->non_zero_count_cache[4+8*0]=
  281. h->non_zero_count_cache[5+8*0]=
  282. h->non_zero_count_cache[6+8*0]=
  283. h->non_zero_count_cache[7+8*0]=
  284. h->non_zero_count_cache[1+8*0]=
  285. h->non_zero_count_cache[2+8*0]=
  286. h->non_zero_count_cache[1+8*3]=
  287. h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
  288. }
  289. for (i=0; i<2; i++) {
  290. if(left_type[i]){
  291. h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
  292. h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
  293. h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
  294. h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
  295. }else{
  296. h->non_zero_count_cache[3+8*1 + 2*8*i]=
  297. h->non_zero_count_cache[3+8*2 + 2*8*i]=
  298. h->non_zero_count_cache[0+8*1 + 8*i]=
  299. h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
  300. }
  301. }
  302. if( h->pps.cabac ) {
  303. // top_cbp
  304. if(top_type) {
  305. h->top_cbp = h->cbp_table[top_xy];
  306. } else if(IS_INTRA(mb_type)) {
  307. h->top_cbp = 0x1C0;
  308. } else {
  309. h->top_cbp = 0;
  310. }
  311. // left_cbp
  312. if (left_type[0]) {
  313. h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
  314. } else if(IS_INTRA(mb_type)) {
  315. h->left_cbp = 0x1C0;
  316. } else {
  317. h->left_cbp = 0;
  318. }
  319. if (left_type[0]) {
  320. h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
  321. }
  322. if (left_type[1]) {
  323. h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
  324. }
  325. }
  326. #if 1
  327. if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
  328. int list;
  329. for(list=0; list<h->list_count; list++){
  330. if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
  331. /*if(!h->mv_cache_clean[list]){
  332. memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
  333. memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
  334. h->mv_cache_clean[list]= 1;
  335. }*/
  336. continue;
  337. }
  338. h->mv_cache_clean[list]= 0;
  339. if(USES_LIST(top_type, list)){
  340. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  341. const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
  342. *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
  343. *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
  344. *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
  345. *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
  346. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  347. h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
  348. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  349. h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
  350. }else{
  351. *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
  352. *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
  353. *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
  354. *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
  355. *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
  356. }
  357. for(i=0; i<2; i++){
  358. int cache_idx = scan8[0] - 1 + i*2*8;
  359. if(USES_LIST(left_type[i], list)){
  360. const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
  361. const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
  362. *(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
  363. *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
  364. h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
  365. h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
  366. }else{
  367. *(uint32_t*)h->mv_cache [list][cache_idx ]=
  368. *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
  369. h->ref_cache[list][cache_idx ]=
  370. h->ref_cache[list][cache_idx+8]= left_type[i] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  371. }
  372. }
  373. if((for_deblock || (IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred)) && !FRAME_MBAFF)
  374. continue;
  375. if(USES_LIST(topleft_type, list)){
  376. const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
  377. const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
  378. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  379. h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  380. }else{
  381. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
  382. h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  383. }
  384. if(USES_LIST(topright_type, list)){
  385. const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
  386. const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
  387. *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  388. h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  389. }else{
  390. *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
  391. h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  392. }
  393. if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
  394. continue;
  395. h->ref_cache[list][scan8[5 ]+1] =
  396. h->ref_cache[list][scan8[7 ]+1] =
  397. h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
  398. h->ref_cache[list][scan8[4 ]] =
  399. h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
  400. *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
  401. *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
  402. *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  403. *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
  404. *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
  405. if( h->pps.cabac ) {
  406. /* XXX beurk, Load mvd */
  407. if(USES_LIST(top_type, list)){
  408. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  409. *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
  410. *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
  411. *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
  412. *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
  413. }else{
  414. *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
  415. *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
  416. *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
  417. *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
  418. }
  419. if(USES_LIST(left_type[0], list)){
  420. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  421. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
  422. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
  423. }else{
  424. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
  425. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
  426. }
  427. if(USES_LIST(left_type[1], list)){
  428. const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
  429. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
  430. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
  431. }else{
  432. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
  433. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
  434. }
  435. *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
  436. *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
  437. *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  438. *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
  439. *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
  440. if(h->slice_type_nos == FF_B_TYPE){
  441. fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
  442. if(IS_DIRECT(top_type)){
  443. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
  444. }else if(IS_8X8(top_type)){
  445. int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
  446. h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
  447. h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
  448. }else{
  449. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
  450. }
  451. if(IS_DIRECT(left_type[0]))
  452. h->direct_cache[scan8[0] - 1 + 0*8]= 1;
  453. else if(IS_8X8(left_type[0]))
  454. h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
  455. else
  456. h->direct_cache[scan8[0] - 1 + 0*8]= 0;
  457. if(IS_DIRECT(left_type[1]))
  458. h->direct_cache[scan8[0] - 1 + 2*8]= 1;
  459. else if(IS_8X8(left_type[1]))
  460. h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
  461. else
  462. h->direct_cache[scan8[0] - 1 + 2*8]= 0;
  463. }
  464. }
  465. if(FRAME_MBAFF){
  466. #define MAP_MVS\
  467. MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
  468. MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
  469. MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
  470. MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
  471. MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
  472. MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
  473. MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
  474. MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
  475. MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
  476. MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
  477. if(MB_FIELD){
  478. #define MAP_F2F(idx, mb_type)\
  479. if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  480. h->ref_cache[list][idx] <<= 1;\
  481. h->mv_cache[list][idx][1] /= 2;\
  482. h->mvd_cache[list][idx][1] /= 2;\
  483. }
  484. MAP_MVS
  485. #undef MAP_F2F
  486. }else{
  487. #define MAP_F2F(idx, mb_type)\
  488. if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  489. h->ref_cache[list][idx] >>= 1;\
  490. h->mv_cache[list][idx][1] <<= 1;\
  491. h->mvd_cache[list][idx][1] <<= 1;\
  492. }
  493. MAP_MVS
  494. #undef MAP_F2F
  495. }
  496. }
  497. }
  498. }
  499. #endif
  500. h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
  501. }
  502. static inline void write_back_intra_pred_mode(H264Context *h){
  503. const int mb_xy= h->mb_xy;
  504. h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
  505. h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
  506. h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
  507. h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
  508. h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
  509. h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
  510. h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
  511. }
  512. /**
  513. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  514. */
  515. static inline int check_intra4x4_pred_mode(H264Context *h){
  516. MpegEncContext * const s = &h->s;
  517. static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
  518. static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
  519. int i;
  520. if(!(h->top_samples_available&0x8000)){
  521. for(i=0; i<4; i++){
  522. int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
  523. if(status<0){
  524. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  525. return -1;
  526. } else if(status){
  527. h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
  528. }
  529. }
  530. }
  531. if(!(h->left_samples_available&0x8000)){
  532. for(i=0; i<4; i++){
  533. int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
  534. if(status<0){
  535. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  536. return -1;
  537. } else if(status){
  538. h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
  539. }
  540. }
  541. }
  542. return 0;
  543. } //FIXME cleanup like next
  544. /**
  545. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  546. */
  547. static inline int check_intra_pred_mode(H264Context *h, int mode){
  548. MpegEncContext * const s = &h->s;
  549. static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
  550. static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
  551. if(mode > 6U) {
  552. av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
  553. return -1;
  554. }
  555. if(!(h->top_samples_available&0x8000)){
  556. mode= top[ mode ];
  557. if(mode<0){
  558. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  559. return -1;
  560. }
  561. }
  562. if(!(h->left_samples_available&0x8000)){
  563. mode= left[ mode ];
  564. if(mode<0){
  565. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  566. return -1;
  567. }
  568. }
  569. return mode;
  570. }
  571. /**
  572. * gets the predicted intra4x4 prediction mode.
  573. */
  574. static inline int pred_intra_mode(H264Context *h, int n){
  575. const int index8= scan8[n];
  576. const int left= h->intra4x4_pred_mode_cache[index8 - 1];
  577. const int top = h->intra4x4_pred_mode_cache[index8 - 8];
  578. const int min= FFMIN(left, top);
  579. tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
  580. if(min<0) return DC_PRED;
  581. else return min;
  582. }
  583. static inline void write_back_non_zero_count(H264Context *h){
  584. const int mb_xy= h->mb_xy;
  585. h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
  586. h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
  587. h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
  588. h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
  589. h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
  590. h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
  591. h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
  592. h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
  593. h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
  594. h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
  595. h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
  596. h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
  597. h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
  598. if(FRAME_MBAFF){
  599. // store all luma nnzs, for deblocking
  600. int v = 0, i;
  601. for(i=0; i<16; i++)
  602. v += (!!h->non_zero_count_cache[scan8[i]]) << i;
  603. *(uint16_t*)&h->non_zero_count[mb_xy][14] = v;
  604. }
  605. }
  606. /**
  607. * gets the predicted number of non-zero coefficients.
  608. * @param n block index
  609. */
  610. static inline int pred_non_zero_count(H264Context *h, int n){
  611. const int index8= scan8[n];
  612. const int left= h->non_zero_count_cache[index8 - 1];
  613. const int top = h->non_zero_count_cache[index8 - 8];
  614. int i= left + top;
  615. if(i<64) i= (i+1)>>1;
  616. tprintf(h->s.avctx, "pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
  617. return i&31;
  618. }
  619. static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
  620. const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
  621. MpegEncContext *s = &h->s;
  622. /* there is no consistent mapping of mvs to neighboring locations that will
  623. * make mbaff happy, so we can't move all this logic to fill_caches */
  624. if(FRAME_MBAFF){
  625. const uint32_t *mb_types = s->current_picture_ptr->mb_type;
  626. const int16_t *mv;
  627. *(uint32_t*)h->mv_cache[list][scan8[0]-2] = 0;
  628. *C = h->mv_cache[list][scan8[0]-2];
  629. if(!MB_FIELD
  630. && (s->mb_y&1) && i < scan8[0]+8 && topright_ref != PART_NOT_AVAILABLE){
  631. int topright_xy = s->mb_x + (s->mb_y-1)*s->mb_stride + (i == scan8[0]+3);
  632. if(IS_INTERLACED(mb_types[topright_xy])){
  633. #define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
  634. const int x4 = X4, y4 = Y4;\
  635. const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
  636. if(!USES_LIST(mb_type,list))\
  637. return LIST_NOT_USED;\
  638. mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
  639. h->mv_cache[list][scan8[0]-2][0] = mv[0];\
  640. h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
  641. return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
  642. SET_DIAG_MV(*2, >>1, s->mb_x*4+(i&7)-4+part_width, s->mb_y*4-1);
  643. }
  644. }
  645. if(topright_ref == PART_NOT_AVAILABLE
  646. && ((s->mb_y&1) || i >= scan8[0]+8) && (i&7)==4
  647. && h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){
  648. if(!MB_FIELD
  649. && IS_INTERLACED(mb_types[h->left_mb_xy[0]])){
  650. SET_DIAG_MV(*2, >>1, s->mb_x*4-1, (s->mb_y|1)*4+(s->mb_y&1)*2+(i>>4)-1);
  651. }
  652. if(MB_FIELD
  653. && !IS_INTERLACED(mb_types[h->left_mb_xy[0]])
  654. && i >= scan8[0]+8){
  655. // left shift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's OK.
  656. SET_DIAG_MV(/2, <<1, s->mb_x*4-1, (s->mb_y&~1)*4 - 1 + ((i-scan8[0])>>3)*2);
  657. }
  658. }
  659. #undef SET_DIAG_MV
  660. }
  661. if(topright_ref != PART_NOT_AVAILABLE){
  662. *C= h->mv_cache[list][ i - 8 + part_width ];
  663. return topright_ref;
  664. }else{
  665. tprintf(s->avctx, "topright MV not available\n");
  666. *C= h->mv_cache[list][ i - 8 - 1 ];
  667. return h->ref_cache[list][ i - 8 - 1 ];
  668. }
  669. }
  670. /**
  671. * gets the predicted MV.
  672. * @param n the block index
  673. * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
  674. * @param mx the x component of the predicted motion vector
  675. * @param my the y component of the predicted motion vector
  676. */
  677. static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
  678. const int index8= scan8[n];
  679. const int top_ref= h->ref_cache[list][ index8 - 8 ];
  680. const int left_ref= h->ref_cache[list][ index8 - 1 ];
  681. const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
  682. const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
  683. const int16_t * C;
  684. int diagonal_ref, match_count;
  685. assert(part_width==1 || part_width==2 || part_width==4);
  686. /* mv_cache
  687. B . . A T T T T
  688. U . . L . . , .
  689. U . . L . . . .
  690. U . . L . . , .
  691. . . . L . . . .
  692. */
  693. diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
  694. match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
  695. tprintf(h->s.avctx, "pred_motion match_count=%d\n", match_count);
  696. if(match_count > 1){ //most common
  697. *mx= mid_pred(A[0], B[0], C[0]);
  698. *my= mid_pred(A[1], B[1], C[1]);
  699. }else if(match_count==1){
  700. if(left_ref==ref){
  701. *mx= A[0];
  702. *my= A[1];
  703. }else if(top_ref==ref){
  704. *mx= B[0];
  705. *my= B[1];
  706. }else{
  707. *mx= C[0];
  708. *my= C[1];
  709. }
  710. }else{
  711. if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
  712. *mx= A[0];
  713. *my= A[1];
  714. }else{
  715. *mx= mid_pred(A[0], B[0], C[0]);
  716. *my= mid_pred(A[1], B[1], C[1]);
  717. }
  718. }
  719. tprintf(h->s.avctx, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
  720. }
  721. /**
  722. * gets the directionally predicted 16x8 MV.
  723. * @param n the block index
  724. * @param mx the x component of the predicted motion vector
  725. * @param my the y component of the predicted motion vector
  726. */
  727. static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
  728. if(n==0){
  729. const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
  730. const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
  731. tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
  732. if(top_ref == ref){
  733. *mx= B[0];
  734. *my= B[1];
  735. return;
  736. }
  737. }else{
  738. const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
  739. const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
  740. tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
  741. if(left_ref == ref){
  742. *mx= A[0];
  743. *my= A[1];
  744. return;
  745. }
  746. }
  747. //RARE
  748. pred_motion(h, n, 4, list, ref, mx, my);
  749. }
  750. /**
  751. * gets the directionally predicted 8x16 MV.
  752. * @param n the block index
  753. * @param mx the x component of the predicted motion vector
  754. * @param my the y component of the predicted motion vector
  755. */
  756. static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
  757. if(n==0){
  758. const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
  759. const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
  760. tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
  761. if(left_ref == ref){
  762. *mx= A[0];
  763. *my= A[1];
  764. return;
  765. }
  766. }else{
  767. const int16_t * C;
  768. int diagonal_ref;
  769. diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
  770. tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
  771. if(diagonal_ref == ref){
  772. *mx= C[0];
  773. *my= C[1];
  774. return;
  775. }
  776. }
  777. //RARE
  778. pred_motion(h, n, 2, list, ref, mx, my);
  779. }
  780. static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
  781. const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
  782. const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
  783. tprintf(h->s.avctx, "pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
  784. if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
  785. || (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
  786. || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
  787. *mx = *my = 0;
  788. return;
  789. }
  790. pred_motion(h, 0, 4, 0, 0, mx, my);
  791. return;
  792. }
  793. static inline void direct_dist_scale_factor(H264Context * const h){
  794. const int poc = h->s.current_picture_ptr->poc;
  795. const int poc1 = h->ref_list[1][0].poc;
  796. int i;
  797. for(i=0; i<h->ref_count[0]; i++){
  798. int poc0 = h->ref_list[0][i].poc;
  799. int td = av_clip(poc1 - poc0, -128, 127);
  800. if(td == 0 /* FIXME || pic0 is a long-term ref */){
  801. h->dist_scale_factor[i] = 256;
  802. }else{
  803. int tb = av_clip(poc - poc0, -128, 127);
  804. int tx = (16384 + (FFABS(td) >> 1)) / td;
  805. h->dist_scale_factor[i] = av_clip((tb*tx + 32) >> 6, -1024, 1023);
  806. }
  807. }
  808. if(FRAME_MBAFF){
  809. for(i=0; i<h->ref_count[0]; i++){
  810. h->dist_scale_factor_field[2*i] =
  811. h->dist_scale_factor_field[2*i+1] = h->dist_scale_factor[i];
  812. }
  813. }
  814. }
  815. static inline void direct_ref_list_init(H264Context * const h){
  816. MpegEncContext * const s = &h->s;
  817. Picture * const ref1 = &h->ref_list[1][0];
  818. Picture * const cur = s->current_picture_ptr;
  819. int list, i, j;
  820. if(cur->pict_type == FF_I_TYPE)
  821. cur->ref_count[0] = 0;
  822. if(cur->pict_type != FF_B_TYPE)
  823. cur->ref_count[1] = 0;
  824. for(list=0; list<2; list++){
  825. cur->ref_count[list] = h->ref_count[list];
  826. for(j=0; j<h->ref_count[list]; j++)
  827. cur->ref_poc[list][j] = h->ref_list[list][j].poc;
  828. }
  829. if(cur->pict_type != FF_B_TYPE || h->direct_spatial_mv_pred)
  830. return;
  831. for(list=0; list<2; list++){
  832. for(i=0; i<ref1->ref_count[list]; i++){
  833. const int poc = ref1->ref_poc[list][i];
  834. h->map_col_to_list0[list][i] = 0; /* bogus; fills in for missing frames */
  835. for(j=0; j<h->ref_count[list]; j++)
  836. if(h->ref_list[list][j].poc == poc){
  837. h->map_col_to_list0[list][i] = j;
  838. break;
  839. }
  840. }
  841. }
  842. if(FRAME_MBAFF){
  843. for(list=0; list<2; list++){
  844. for(i=0; i<ref1->ref_count[list]; i++){
  845. j = h->map_col_to_list0[list][i];
  846. h->map_col_to_list0_field[list][2*i] = 2*j;
  847. h->map_col_to_list0_field[list][2*i+1] = 2*j+1;
  848. }
  849. }
  850. }
  851. }
  852. static inline void pred_direct_motion(H264Context * const h, int *mb_type){
  853. MpegEncContext * const s = &h->s;
  854. const int mb_xy = h->mb_xy;
  855. const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride;
  856. const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  857. const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy];
  858. const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy];
  859. const int16_t (*l1mv1)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[1][b4_xy];
  860. const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy];
  861. const int8_t *l1ref1 = &h->ref_list[1][0].ref_index[1][b8_xy];
  862. const int is_b8x8 = IS_8X8(*mb_type);
  863. unsigned int sub_mb_type;
  864. int i8, i4;
  865. #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
  866. if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){
  867. /* FIXME save sub mb types from previous frames (or derive from MVs)
  868. * so we know exactly what block size to use */
  869. sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
  870. *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
  871. }else if(!is_b8x8 && (mb_type_col & MB_TYPE_16x16_OR_INTRA)){
  872. sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
  873. *mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
  874. }else{
  875. sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
  876. *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
  877. }
  878. if(!is_b8x8)
  879. *mb_type |= MB_TYPE_DIRECT2;
  880. if(MB_FIELD)
  881. *mb_type |= MB_TYPE_INTERLACED;
  882. tprintf(s->avctx, "mb_type = %08x, sub_mb_type = %08x, is_b8x8 = %d, mb_type_col = %08x\n", *mb_type, sub_mb_type, is_b8x8, mb_type_col);
  883. if(h->direct_spatial_mv_pred){
  884. int ref[2];
  885. int mv[2][2];
  886. int list;
  887. /* FIXME interlacing + spatial direct uses wrong colocated block positions */
  888. /* ref = min(neighbors) */
  889. for(list=0; list<2; list++){
  890. int refa = h->ref_cache[list][scan8[0] - 1];
  891. int refb = h->ref_cache[list][scan8[0] - 8];
  892. int refc = h->ref_cache[list][scan8[0] - 8 + 4];
  893. if(refc == -2)
  894. refc = h->ref_cache[list][scan8[0] - 8 - 1];
  895. ref[list] = FFMIN3((unsigned)refa, (unsigned)refb, (unsigned)refc);
  896. if(ref[list] < 0)
  897. ref[list] = -1;
  898. }
  899. if(ref[0] < 0 && ref[1] < 0){
  900. ref[0] = ref[1] = 0;
  901. mv[0][0] = mv[0][1] =
  902. mv[1][0] = mv[1][1] = 0;
  903. }else{
  904. for(list=0; list<2; list++){
  905. if(ref[list] >= 0)
  906. pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
  907. else
  908. mv[list][0] = mv[list][1] = 0;
  909. }
  910. }
  911. if(ref[1] < 0){
  912. if(!is_b8x8)
  913. *mb_type &= ~MB_TYPE_L1;
  914. sub_mb_type &= ~MB_TYPE_L1;
  915. }else if(ref[0] < 0){
  916. if(!is_b8x8)
  917. *mb_type &= ~MB_TYPE_L0;
  918. sub_mb_type &= ~MB_TYPE_L0;
  919. }
  920. if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){
  921. int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride;
  922. int mb_types_col[2];
  923. int b8_stride = h->b8_stride;
  924. int b4_stride = h->b_stride;
  925. *mb_type = (*mb_type & ~MB_TYPE_16x16) | MB_TYPE_8x8;
  926. if(IS_INTERLACED(*mb_type)){
  927. mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy];
  928. mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
  929. if(s->mb_y&1){
  930. l1ref0 -= 2*b8_stride;
  931. l1ref1 -= 2*b8_stride;
  932. l1mv0 -= 4*b4_stride;
  933. l1mv1 -= 4*b4_stride;
  934. }
  935. b8_stride *= 3;
  936. b4_stride *= 6;
  937. }else{
  938. int cur_poc = s->current_picture_ptr->poc;
  939. int *col_poc = h->ref_list[1]->field_poc;
  940. int col_parity = FFABS(col_poc[0] - cur_poc) >= FFABS(col_poc[1] - cur_poc);
  941. int dy = 2*col_parity - (s->mb_y&1);
  942. mb_types_col[0] =
  943. mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy + col_parity*s->mb_stride];
  944. l1ref0 += dy*b8_stride;
  945. l1ref1 += dy*b8_stride;
  946. l1mv0 += 2*dy*b4_stride;
  947. l1mv1 += 2*dy*b4_stride;
  948. b8_stride = 0;
  949. }
  950. for(i8=0; i8<4; i8++){
  951. int x8 = i8&1;
  952. int y8 = i8>>1;
  953. int xy8 = x8+y8*b8_stride;
  954. int xy4 = 3*x8+y8*b4_stride;
  955. int a=0, b=0;
  956. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  957. continue;
  958. h->sub_mb_type[i8] = sub_mb_type;
  959. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
  960. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
  961. if(!IS_INTRA(mb_types_col[y8])
  962. && ( (l1ref0[xy8] == 0 && FFABS(l1mv0[xy4][0]) <= 1 && FFABS(l1mv0[xy4][1]) <= 1)
  963. || (l1ref0[xy8] < 0 && l1ref1[xy8] == 0 && FFABS(l1mv1[xy4][0]) <= 1 && FFABS(l1mv1[xy4][1]) <= 1))){
  964. if(ref[0] > 0)
  965. a= pack16to32(mv[0][0],mv[0][1]);
  966. if(ref[1] > 0)
  967. b= pack16to32(mv[1][0],mv[1][1]);
  968. }else{
  969. a= pack16to32(mv[0][0],mv[0][1]);
  970. b= pack16to32(mv[1][0],mv[1][1]);
  971. }
  972. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, a, 4);
  973. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, b, 4);
  974. }
  975. }else if(IS_16X16(*mb_type)){
  976. int a=0, b=0;
  977. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
  978. fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
  979. if(!IS_INTRA(mb_type_col)
  980. && ( (l1ref0[0] == 0 && FFABS(l1mv0[0][0]) <= 1 && FFABS(l1mv0[0][1]) <= 1)
  981. || (l1ref0[0] < 0 && l1ref1[0] == 0 && FFABS(l1mv1[0][0]) <= 1 && FFABS(l1mv1[0][1]) <= 1
  982. && (h->x264_build>33 || !h->x264_build)))){
  983. if(ref[0] > 0)
  984. a= pack16to32(mv[0][0],mv[0][1]);
  985. if(ref[1] > 0)
  986. b= pack16to32(mv[1][0],mv[1][1]);
  987. }else{
  988. a= pack16to32(mv[0][0],mv[0][1]);
  989. b= pack16to32(mv[1][0],mv[1][1]);
  990. }
  991. fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, a, 4);
  992. fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, b, 4);
  993. }else{
  994. for(i8=0; i8<4; i8++){
  995. const int x8 = i8&1;
  996. const int y8 = i8>>1;
  997. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  998. continue;
  999. h->sub_mb_type[i8] = sub_mb_type;
  1000. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
  1001. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
  1002. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
  1003. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
  1004. /* col_zero_flag */
  1005. if(!IS_INTRA(mb_type_col) && ( l1ref0[x8 + y8*h->b8_stride] == 0
  1006. || (l1ref0[x8 + y8*h->b8_stride] < 0 && l1ref1[x8 + y8*h->b8_stride] == 0
  1007. && (h->x264_build>33 || !h->x264_build)))){
  1008. const int16_t (*l1mv)[2]= l1ref0[x8 + y8*h->b8_stride] == 0 ? l1mv0 : l1mv1;
  1009. if(IS_SUB_8X8(sub_mb_type)){
  1010. const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
  1011. if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
  1012. if(ref[0] == 0)
  1013. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1014. if(ref[1] == 0)
  1015. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1016. }
  1017. }else
  1018. for(i4=0; i4<4; i4++){
  1019. const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
  1020. if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
  1021. if(ref[0] == 0)
  1022. *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
  1023. if(ref[1] == 0)
  1024. *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
  1025. }
  1026. }
  1027. }
  1028. }
  1029. }
  1030. }else{ /* direct temporal mv pred */
  1031. const int *map_col_to_list0[2] = {h->map_col_to_list0[0], h->map_col_to_list0[1]};
  1032. const int *dist_scale_factor = h->dist_scale_factor;
  1033. if(FRAME_MBAFF){
  1034. if(IS_INTERLACED(*mb_type)){
  1035. map_col_to_list0[0] = h->map_col_to_list0_field[0];
  1036. map_col_to_list0[1] = h->map_col_to_list0_field[1];
  1037. dist_scale_factor = h->dist_scale_factor_field;
  1038. }
  1039. if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){
  1040. /* FIXME assumes direct_8x8_inference == 1 */
  1041. const int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride;
  1042. int mb_types_col[2];
  1043. int y_shift;
  1044. *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1
  1045. | (is_b8x8 ? 0 : MB_TYPE_DIRECT2)
  1046. | (*mb_type & MB_TYPE_INTERLACED);
  1047. sub_mb_type = MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_16x16;
  1048. if(IS_INTERLACED(*mb_type)){
  1049. /* frame to field scaling */
  1050. mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy];
  1051. mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
  1052. if(s->mb_y&1){
  1053. l1ref0 -= 2*h->b8_stride;
  1054. l1ref1 -= 2*h->b8_stride;
  1055. l1mv0 -= 4*h->b_stride;
  1056. l1mv1 -= 4*h->b_stride;
  1057. }
  1058. y_shift = 0;
  1059. if( (mb_types_col[0] & MB_TYPE_16x16_OR_INTRA)
  1060. && (mb_types_col[1] & MB_TYPE_16x16_OR_INTRA)
  1061. && !is_b8x8)
  1062. *mb_type |= MB_TYPE_16x8;
  1063. else
  1064. *mb_type |= MB_TYPE_8x8;
  1065. }else{
  1066. /* field to frame scaling */
  1067. /* col_mb_y = (mb_y&~1) + (topAbsDiffPOC < bottomAbsDiffPOC ? 0 : 1)
  1068. * but in MBAFF, top and bottom POC are equal */
  1069. int dy = (s->mb_y&1) ? 1 : 2;
  1070. mb_types_col[0] =
  1071. mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
  1072. l1ref0 += dy*h->b8_stride;
  1073. l1ref1 += dy*h->b8_stride;
  1074. l1mv0 += 2*dy*h->b_stride;
  1075. l1mv1 += 2*dy*h->b_stride;
  1076. y_shift = 2;
  1077. if((mb_types_col[0] & (MB_TYPE_16x16_OR_INTRA|MB_TYPE_16x8))
  1078. && !is_b8x8)
  1079. *mb_type |= MB_TYPE_16x16;
  1080. else
  1081. *mb_type |= MB_TYPE_8x8;
  1082. }
  1083. for(i8=0; i8<4; i8++){
  1084. const int x8 = i8&1;
  1085. const int y8 = i8>>1;
  1086. int ref0, scale;
  1087. const int16_t (*l1mv)[2]= l1mv0;
  1088. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  1089. continue;
  1090. h->sub_mb_type[i8] = sub_mb_type;
  1091. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
  1092. if(IS_INTRA(mb_types_col[y8])){
  1093. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
  1094. fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1095. fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1096. continue;
  1097. }
  1098. ref0 = l1ref0[x8 + (y8*2>>y_shift)*h->b8_stride];
  1099. if(ref0 >= 0)
  1100. ref0 = map_col_to_list0[0][ref0*2>>y_shift];
  1101. else{
  1102. ref0 = map_col_to_list0[1][l1ref1[x8 + (y8*2>>y_shift)*h->b8_stride]*2>>y_shift];
  1103. l1mv= l1mv1;
  1104. }
  1105. scale = dist_scale_factor[ref0];
  1106. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
  1107. {
  1108. const int16_t *mv_col = l1mv[x8*3 + (y8*6>>y_shift)*h->b_stride];
  1109. int my_col = (mv_col[1]<<y_shift)/2;
  1110. int mx = (scale * mv_col[0] + 128) >> 8;
  1111. int my = (scale * my_col + 128) >> 8;
  1112. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
  1113. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-my_col), 4);
  1114. }
  1115. }
  1116. return;
  1117. }
  1118. }
  1119. /* one-to-one mv scaling */
  1120. if(IS_16X16(*mb_type)){
  1121. int ref, mv0, mv1;
  1122. fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
  1123. if(IS_INTRA(mb_type_col)){
  1124. ref=mv0=mv1=0;
  1125. }else{
  1126. const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0]]
  1127. : map_col_to_list0[1][l1ref1[0]];
  1128. const int scale = dist_scale_factor[ref0];
  1129. const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
  1130. int mv_l0[2];
  1131. mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
  1132. mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
  1133. ref= ref0;
  1134. mv0= pack16to32(mv_l0[0],mv_l0[1]);
  1135. mv1= pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
  1136. }
  1137. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
  1138. fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, mv0, 4);
  1139. fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, mv1, 4);
  1140. }else{
  1141. for(i8=0; i8<4; i8++){
  1142. const int x8 = i8&1;
  1143. const int y8 = i8>>1;
  1144. int ref0, scale;
  1145. const int16_t (*l1mv)[2]= l1mv0;
  1146. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  1147. continue;
  1148. h->sub_mb_type[i8] = sub_mb_type;
  1149. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
  1150. if(IS_INTRA(mb_type_col)){
  1151. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
  1152. fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1153. fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1154. continue;
  1155. }
  1156. ref0 = l1ref0[x8 + y8*h->b8_stride];
  1157. if(ref0 >= 0)
  1158. ref0 = map_col_to_list0[0][ref0];
  1159. else{
  1160. ref0 = map_col_to_list0[1][l1ref1[x8 + y8*h->b8_stride]];
  1161. l1mv= l1mv1;
  1162. }
  1163. scale = dist_scale_factor[ref0];
  1164. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
  1165. if(IS_SUB_8X8(sub_mb_type)){
  1166. const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
  1167. int mx = (scale * mv_col[0] + 128) >> 8;
  1168. int my = (scale * mv_col[1] + 128) >> 8;
  1169. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
  1170. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
  1171. }else
  1172. for(i4=0; i4<4; i4++){
  1173. const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
  1174. int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
  1175. mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
  1176. mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
  1177. *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
  1178. pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
  1179. }
  1180. }
  1181. }
  1182. }
  1183. }
  1184. static inline void write_back_motion(H264Context *h, int mb_type){
  1185. MpegEncContext * const s = &h->s;
  1186. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  1187. const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
  1188. int list;
  1189. if(!USES_LIST(mb_type, 0))
  1190. fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
  1191. for(list=0; list<h->list_count; list++){
  1192. int y;
  1193. if(!USES_LIST(mb_type, list))
  1194. continue;
  1195. for(y=0; y<4; y++){
  1196. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
  1197. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
  1198. }
  1199. if( h->pps.cabac ) {
  1200. if(IS_SKIP(mb_type))
  1201. fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4);
  1202. else
  1203. for(y=0; y<4; y++){
  1204. *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
  1205. *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
  1206. }
  1207. }
  1208. {
  1209. int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
  1210. ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
  1211. ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
  1212. ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
  1213. ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
  1214. }
  1215. }
  1216. if(h->slice_type_nos == FF_B_TYPE && h->pps.cabac){
  1217. if(IS_8X8(mb_type)){
  1218. uint8_t *direct_table = &h->direct_table[b8_xy];
  1219. direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
  1220. direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
  1221. direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
  1222. }
  1223. }
  1224. }
  1225. /**
  1226. * Decodes a network abstraction layer unit.
  1227. * @param consumed is the number of bytes used as input
  1228. * @param length is the length of the array
  1229. * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
  1230. * @returns decoded bytes, might be src+1 if no escapes
  1231. */
  1232. static const uint8_t *decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length){
  1233. int i, si, di;
  1234. uint8_t *dst;
  1235. int bufidx;
  1236. // src[0]&0x80; //forbidden bit
  1237. h->nal_ref_idc= src[0]>>5;
  1238. h->nal_unit_type= src[0]&0x1F;
  1239. src++; length--;
  1240. #if 0
  1241. for(i=0; i<length; i++)
  1242. printf("%2X ", src[i]);
  1243. #endif
  1244. for(i=0; i+1<length; i+=2){
  1245. if(src[i]) continue;
  1246. if(i>0 && src[i-1]==0) i--;
  1247. if(i+2<length && src[i+1]==0 && src[i+2]<=3){
  1248. if(src[i+2]!=3){
  1249. /* startcode, so we must be past the end */
  1250. length=i;
  1251. }
  1252. break;
  1253. }
  1254. }
  1255. if(i>=length-1){ //no escaped 0
  1256. *dst_length= length;
  1257. *consumed= length+1; //+1 for the header
  1258. return src;
  1259. }
  1260. bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data
  1261. h->rbsp_buffer[bufidx]= av_fast_realloc(h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length);
  1262. dst= h->rbsp_buffer[bufidx];
  1263. if (dst == NULL){
  1264. return NULL;
  1265. }
  1266. //printf("decoding esc\n");
  1267. si=di=0;
  1268. while(si<length){
  1269. //remove escapes (very rare 1:2^22)
  1270. if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
  1271. if(src[si+2]==3){ //escape
  1272. dst[di++]= 0;
  1273. dst[di++]= 0;
  1274. si+=3;
  1275. continue;
  1276. }else //next start code
  1277. break;
  1278. }
  1279. dst[di++]= src[si++];
  1280. }
  1281. *dst_length= di;
  1282. *consumed= si + 1;//+1 for the header
  1283. //FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
  1284. return dst;
  1285. }
  1286. /**
  1287. * identifies the exact end of the bitstream
  1288. * @return the length of the trailing, or 0 if damaged
  1289. */
  1290. static int decode_rbsp_trailing(H264Context *h, const uint8_t *src){
  1291. int v= *src;
  1292. int r;
  1293. tprintf(h->s.avctx, "rbsp trailing %X\n", v);
  1294. for(r=1; r<9; r++){
  1295. if(v&1) return r;
  1296. v>>=1;
  1297. }
  1298. return 0;
  1299. }
  1300. /**
  1301. * IDCT transforms the 16 dc values and dequantizes them.
  1302. * @param qp quantization parameter
  1303. */
  1304. static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  1305. #define stride 16
  1306. int i;
  1307. int temp[16]; //FIXME check if this is a good idea
  1308. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  1309. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  1310. //memset(block, 64, 2*256);
  1311. //return;
  1312. for(i=0; i<4; i++){
  1313. const int offset= y_offset[i];
  1314. const int z0= block[offset+stride*0] + block[offset+stride*4];
  1315. const int z1= block[offset+stride*0] - block[offset+stride*4];
  1316. const int z2= block[offset+stride*1] - block[offset+stride*5];
  1317. const int z3= block[offset+stride*1] + block[offset+stride*5];
  1318. temp[4*i+0]= z0+z3;
  1319. temp[4*i+1]= z1+z2;
  1320. temp[4*i+2]= z1-z2;
  1321. temp[4*i+3]= z0-z3;
  1322. }
  1323. for(i=0; i<4; i++){
  1324. const int offset= x_offset[i];
  1325. const int z0= temp[4*0+i] + temp[4*2+i];
  1326. const int z1= temp[4*0+i] - temp[4*2+i];
  1327. const int z2= temp[4*1+i] - temp[4*3+i];
  1328. const int z3= temp[4*1+i] + temp[4*3+i];
  1329. block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_residual
  1330. block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
  1331. block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
  1332. block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
  1333. }
  1334. }
  1335. #if 0
  1336. /**
  1337. * DCT transforms the 16 dc values.
  1338. * @param qp quantization parameter ??? FIXME
  1339. */
  1340. static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
  1341. // const int qmul= dequant_coeff[qp][0];
  1342. int i;
  1343. int temp[16]; //FIXME check if this is a good idea
  1344. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  1345. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  1346. for(i=0; i<4; i++){
  1347. const int offset= y_offset[i];
  1348. const int z0= block[offset+stride*0] + block[offset+stride*4];
  1349. const int z1= block[offset+stride*0] - block[offset+stride*4];
  1350. const int z2= block[offset+stride*1] - block[offset+stride*5];
  1351. const int z3= block[offset+stride*1] + block[offset+stride*5];
  1352. temp[4*i+0]= z0+z3;
  1353. temp[4*i+1]= z1+z2;
  1354. temp[4*i+2]= z1-z2;
  1355. temp[4*i+3]= z0-z3;
  1356. }
  1357. for(i=0; i<4; i++){
  1358. const int offset= x_offset[i];
  1359. const int z0= temp[4*0+i] + temp[4*2+i];
  1360. const int z1= temp[4*0+i] - temp[4*2+i];
  1361. const int z2= temp[4*1+i] - temp[4*3+i];
  1362. const int z3= temp[4*1+i] + temp[4*3+i];
  1363. block[stride*0 +offset]= (z0 + z3)>>1;
  1364. block[stride*2 +offset]= (z1 + z2)>>1;
  1365. block[stride*8 +offset]= (z1 - z2)>>1;
  1366. block[stride*10+offset]= (z0 - z3)>>1;
  1367. }
  1368. }
  1369. #endif
  1370. #undef xStride
  1371. #undef stride
  1372. static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  1373. const int stride= 16*2;
  1374. const int xStride= 16;
  1375. int a,b,c,d,e;
  1376. a= block[stride*0 + xStride*0];
  1377. b= block[stride*0 + xStride*1];
  1378. c= block[stride*1 + xStride*0];
  1379. d= block[stride*1 + xStride*1];
  1380. e= a-b;
  1381. a= a+b;
  1382. b= c-d;
  1383. c= c+d;
  1384. block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
  1385. block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
  1386. block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
  1387. block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
  1388. }
  1389. #if 0
  1390. static void chroma_dc_dct_c(DCTELEM *block){
  1391. const int stride= 16*2;
  1392. const int xStride= 16;
  1393. int a,b,c,d,e;
  1394. a= block[stride*0 + xStride*0];
  1395. b= block[stride*0 + xStride*1];
  1396. c= block[stride*1 + xStride*0];
  1397. d= block[stride*1 + xStride*1];
  1398. e= a-b;
  1399. a= a+b;
  1400. b= c-d;
  1401. c= c+d;
  1402. block[stride*0 + xStride*0]= (a+c);
  1403. block[stride*0 + xStride*1]= (e+b);
  1404. block[stride*1 + xStride*0]= (a-c);
  1405. block[stride*1 + xStride*1]= (e-b);
  1406. }
  1407. #endif
  1408. /**
  1409. * gets the chroma qp.
  1410. */
  1411. static inline int get_chroma_qp(H264Context *h, int t, int qscale){
  1412. return h->pps.chroma_qp_table[t][qscale];
  1413. }
  1414. //FIXME need to check that this does not overflow signed 32 bit for low qp, I am not sure, it's very close
  1415. //FIXME check that gcc inlines this (and optimizes intra & separate_dc stuff away)
  1416. static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int separate_dc){
  1417. int i;
  1418. const int * const quant_table= quant_coeff[qscale];
  1419. const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
  1420. const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
  1421. const unsigned int threshold2= (threshold1<<1);
  1422. int last_non_zero;
  1423. if(separate_dc){
  1424. if(qscale<=18){
  1425. //avoid overflows
  1426. const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
  1427. const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
  1428. const unsigned int dc_threshold2= (dc_threshold1<<1);
  1429. int level= block[0]*quant_coeff[qscale+18][0];
  1430. if(((unsigned)(level+dc_threshold1))>dc_threshold2){
  1431. if(level>0){
  1432. level= (dc_bias + level)>>(QUANT_SHIFT-2);
  1433. block[0]= level;
  1434. }else{
  1435. level= (dc_bias - level)>>(QUANT_SHIFT-2);
  1436. block[0]= -level;
  1437. }
  1438. // last_non_zero = i;
  1439. }else{
  1440. block[0]=0;
  1441. }
  1442. }else{
  1443. const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
  1444. const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
  1445. const unsigned int dc_threshold2= (dc_threshold1<<1);
  1446. int level= block[0]*quant_table[0];
  1447. if(((unsigned)(level+dc_threshold1))>dc_threshold2){
  1448. if(level>0){
  1449. level= (dc_bias + level)>>(QUANT_SHIFT+1);
  1450. block[0]= level;
  1451. }else{
  1452. level= (dc_bias - level)>>(QUANT_SHIFT+1);
  1453. block[0]= -level;
  1454. }
  1455. // last_non_zero = i;
  1456. }else{
  1457. block[0]=0;
  1458. }
  1459. }
  1460. last_non_zero= 0;
  1461. i=1;
  1462. }else{
  1463. last_non_zero= -1;
  1464. i=0;
  1465. }
  1466. for(; i<16; i++){
  1467. const int j= scantable[i];
  1468. int level= block[j]*quant_table[j];
  1469. // if( bias+level >= (1<<(QMAT_SHIFT - 3))
  1470. // || bias-level >= (1<<(QMAT_SHIFT - 3))){
  1471. if(((unsigned)(level+threshold1))>threshold2){
  1472. if(level>0){
  1473. level= (bias + level)>>QUANT_SHIFT;
  1474. block[j]= level;
  1475. }else{
  1476. level= (bias - level)>>QUANT_SHIFT;
  1477. block[j]= -level;
  1478. }
  1479. last_non_zero = i;
  1480. }else{
  1481. block[j]=0;
  1482. }
  1483. }
  1484. return last_non_zero;
  1485. }
  1486. static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
  1487. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1488. int src_x_offset, int src_y_offset,
  1489. qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
  1490. MpegEncContext * const s = &h->s;
  1491. const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
  1492. int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
  1493. const int luma_xy= (mx&3) + ((my&3)<<2);
  1494. uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize;
  1495. uint8_t * src_cb, * src_cr;
  1496. int extra_width= h->emu_edge_width;
  1497. int extra_height= h->emu_edge_height;
  1498. int emu=0;
  1499. const int full_mx= mx>>2;
  1500. const int full_my= my>>2;
  1501. const int pic_width = 16*s->mb_width;
  1502. const int pic_height = 16*s->mb_height >> MB_FIELD;
  1503. if(!pic->data[0]) //FIXME this is unacceptable, some sensible error concealment must be done for missing reference frames
  1504. return;
  1505. if(mx&7) extra_width -= 3;
  1506. if(my&7) extra_height -= 3;
  1507. if( full_mx < 0-extra_width
  1508. || full_my < 0-extra_height
  1509. || full_mx + 16/*FIXME*/ > pic_width + extra_width
  1510. || full_my + 16/*FIXME*/ > pic_height + extra_height){
  1511. ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  1512. src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize;
  1513. emu=1;
  1514. }
  1515. qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
  1516. if(!square){
  1517. qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
  1518. }
  1519. if(ENABLE_GRAY && s->flags&CODEC_FLAG_GRAY) return;
  1520. if(MB_FIELD){
  1521. // chroma offset when predicting from a field of opposite parity
  1522. my += 2 * ((s->mb_y & 1) - (pic->reference - 1));
  1523. emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
  1524. }
  1525. src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  1526. src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  1527. if(emu){
  1528. ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  1529. src_cb= s->edge_emu_buffer;
  1530. }
  1531. chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  1532. if(emu){
  1533. ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  1534. src_cr= s->edge_emu_buffer;
  1535. }
  1536. chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  1537. }
  1538. static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
  1539. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1540. int x_offset, int y_offset,
  1541. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  1542. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  1543. int list0, int list1){
  1544. MpegEncContext * const s = &h->s;
  1545. qpel_mc_func *qpix_op= qpix_put;
  1546. h264_chroma_mc_func chroma_op= chroma_put;
  1547. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  1548. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  1549. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  1550. x_offset += 8*s->mb_x;
  1551. y_offset += 8*(s->mb_y >> MB_FIELD);
  1552. if(list0){
  1553. Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
  1554. mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
  1555. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1556. qpix_op, chroma_op);
  1557. qpix_op= qpix_avg;
  1558. chroma_op= chroma_avg;
  1559. }
  1560. if(list1){
  1561. Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
  1562. mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
  1563. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1564. qpix_op, chroma_op);
  1565. }
  1566. }
  1567. static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
  1568. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1569. int x_offset, int y_offset,
  1570. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  1571. h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
  1572. h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
  1573. int list0, int list1){
  1574. MpegEncContext * const s = &h->s;
  1575. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  1576. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  1577. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  1578. x_offset += 8*s->mb_x;
  1579. y_offset += 8*(s->mb_y >> MB_FIELD);
  1580. if(list0 && list1){
  1581. /* don't optimize for luma-only case, since B-frames usually
  1582. * use implicit weights => chroma too. */
  1583. uint8_t *tmp_cb = s->obmc_scratchpad;
  1584. uint8_t *tmp_cr = s->obmc_scratchpad + 8;
  1585. uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize;
  1586. int refn0 = h->ref_cache[0][ scan8[n] ];
  1587. int refn1 = h->ref_cache[1][ scan8[n] ];
  1588. mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
  1589. dest_y, dest_cb, dest_cr,
  1590. x_offset, y_offset, qpix_put, chroma_put);
  1591. mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
  1592. tmp_y, tmp_cb, tmp_cr,
  1593. x_offset, y_offset, qpix_put, chroma_put);
  1594. if(h->use_weight == 2){
  1595. int weight0 = h->implicit_weight[refn0][refn1];
  1596. int weight1 = 64 - weight0;
  1597. luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0);
  1598. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0);
  1599. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0);
  1600. }else{
  1601. luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom,
  1602. h->luma_weight[0][refn0], h->luma_weight[1][refn1],
  1603. h->luma_offset[0][refn0] + h->luma_offset[1][refn1]);
  1604. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  1605. h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
  1606. h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]);
  1607. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  1608. h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
  1609. h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]);
  1610. }
  1611. }else{
  1612. int list = list1 ? 1 : 0;
  1613. int refn = h->ref_cache[list][ scan8[n] ];
  1614. Picture *ref= &h->ref_list[list][refn];
  1615. mc_dir_part(h, ref, n, square, chroma_height, delta, list,
  1616. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1617. qpix_put, chroma_put);
  1618. luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom,
  1619. h->luma_weight[list][refn], h->luma_offset[list][refn]);
  1620. if(h->use_weight_chroma){
  1621. chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  1622. h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
  1623. chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  1624. h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
  1625. }
  1626. }
  1627. }
  1628. static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
  1629. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1630. int x_offset, int y_offset,
  1631. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  1632. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  1633. h264_weight_func *weight_op, h264_biweight_func *weight_avg,
  1634. int list0, int list1){
  1635. if((h->use_weight==2 && list0 && list1
  1636. && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
  1637. || h->use_weight==1)
  1638. mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  1639. x_offset, y_offset, qpix_put, chroma_put,
  1640. weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
  1641. else
  1642. mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  1643. x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
  1644. }
  1645. static inline void prefetch_motion(H264Context *h, int list){
  1646. /* fetch pixels for estimated mv 4 macroblocks ahead
  1647. * optimized for 64byte cache lines */
  1648. MpegEncContext * const s = &h->s;
  1649. const int refn = h->ref_cache[list][scan8[0]];
  1650. if(refn >= 0){
  1651. const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
  1652. const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
  1653. uint8_t **src= h->ref_list[list][refn].data;
  1654. int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64;
  1655. s->dsp.prefetch(src[0]+off, s->linesize, 4);
  1656. off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64;
  1657. s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
  1658. }
  1659. }
  1660. static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1661. qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
  1662. qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
  1663. h264_weight_func *weight_op, h264_biweight_func *weight_avg){
  1664. MpegEncContext * const s = &h->s;
  1665. const int mb_xy= h->mb_xy;
  1666. const int mb_type= s->current_picture.mb_type[mb_xy];
  1667. assert(IS_INTER(mb_type));
  1668. prefetch_motion(h, 0);
  1669. if(IS_16X16(mb_type)){
  1670. mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
  1671. qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
  1672. &weight_op[0], &weight_avg[0],
  1673. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  1674. }else if(IS_16X8(mb_type)){
  1675. mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
  1676. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  1677. &weight_op[1], &weight_avg[1],
  1678. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  1679. mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
  1680. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  1681. &weight_op[1], &weight_avg[1],
  1682. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  1683. }else if(IS_8X16(mb_type)){
  1684. mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
  1685. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  1686. &weight_op[2], &weight_avg[2],
  1687. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  1688. mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
  1689. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  1690. &weight_op[2], &weight_avg[2],
  1691. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  1692. }else{
  1693. int i;
  1694. assert(IS_8X8(mb_type));
  1695. for(i=0; i<4; i++){
  1696. const int sub_mb_type= h->sub_mb_type[i];
  1697. const int n= 4*i;
  1698. int x_offset= (i&1)<<2;
  1699. int y_offset= (i&2)<<1;
  1700. if(IS_SUB_8X8(sub_mb_type)){
  1701. mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1702. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  1703. &weight_op[3], &weight_avg[3],
  1704. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1705. }else if(IS_SUB_8X4(sub_mb_type)){
  1706. mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1707. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  1708. &weight_op[4], &weight_avg[4],
  1709. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1710. mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
  1711. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  1712. &weight_op[4], &weight_avg[4],
  1713. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1714. }else if(IS_SUB_4X8(sub_mb_type)){
  1715. mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1716. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  1717. &weight_op[5], &weight_avg[5],
  1718. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1719. mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
  1720. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  1721. &weight_op[5], &weight_avg[5],
  1722. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1723. }else{
  1724. int j;
  1725. assert(IS_SUB_4X4(sub_mb_type));
  1726. for(j=0; j<4; j++){
  1727. int sub_x_offset= x_offset + 2*(j&1);
  1728. int sub_y_offset= y_offset + (j&2);
  1729. mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
  1730. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  1731. &weight_op[6], &weight_avg[6],
  1732. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1733. }
  1734. }
  1735. }
  1736. }
  1737. prefetch_motion(h, 1);
  1738. }
  1739. static av_cold void decode_init_vlc(void){
  1740. static int done = 0;
  1741. if (!done) {
  1742. int i;
  1743. done = 1;
  1744. init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
  1745. &chroma_dc_coeff_token_len [0], 1, 1,
  1746. &chroma_dc_coeff_token_bits[0], 1, 1, 1);
  1747. for(i=0; i<4; i++){
  1748. init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
  1749. &coeff_token_len [i][0], 1, 1,
  1750. &coeff_token_bits[i][0], 1, 1, 1);
  1751. }
  1752. for(i=0; i<3; i++){
  1753. init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
  1754. &chroma_dc_total_zeros_len [i][0], 1, 1,
  1755. &chroma_dc_total_zeros_bits[i][0], 1, 1, 1);
  1756. }
  1757. for(i=0; i<15; i++){
  1758. init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16,
  1759. &total_zeros_len [i][0], 1, 1,
  1760. &total_zeros_bits[i][0], 1, 1, 1);
  1761. }
  1762. for(i=0; i<6; i++){
  1763. init_vlc(&run_vlc[i], RUN_VLC_BITS, 7,
  1764. &run_len [i][0], 1, 1,
  1765. &run_bits[i][0], 1, 1, 1);
  1766. }
  1767. init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
  1768. &run_len [6][0], 1, 1,
  1769. &run_bits[6][0], 1, 1, 1);
  1770. }
  1771. }
  1772. static void free_tables(H264Context *h){
  1773. int i;
  1774. H264Context *hx;
  1775. av_freep(&h->intra4x4_pred_mode);
  1776. av_freep(&h->chroma_pred_mode_table);
  1777. av_freep(&h->cbp_table);
  1778. av_freep(&h->mvd_table[0]);
  1779. av_freep(&h->mvd_table[1]);
  1780. av_freep(&h->direct_table);
  1781. av_freep(&h->non_zero_count);
  1782. av_freep(&h->slice_table_base);
  1783. h->slice_table= NULL;
  1784. av_freep(&h->mb2b_xy);
  1785. av_freep(&h->mb2b8_xy);
  1786. for(i = 0; i < MAX_SPS_COUNT; i++)
  1787. av_freep(h->sps_buffers + i);
  1788. for(i = 0; i < MAX_PPS_COUNT; i++)
  1789. av_freep(h->pps_buffers + i);
  1790. for(i = 0; i < h->s.avctx->thread_count; i++) {
  1791. hx = h->thread_context[i];
  1792. if(!hx) continue;
  1793. av_freep(&hx->top_borders[1]);
  1794. av_freep(&hx->top_borders[0]);
  1795. av_freep(&hx->s.obmc_scratchpad);
  1796. }
  1797. }
  1798. static void init_dequant8_coeff_table(H264Context *h){
  1799. int i,q,x;
  1800. const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly
  1801. h->dequant8_coeff[0] = h->dequant8_buffer[0];
  1802. h->dequant8_coeff[1] = h->dequant8_buffer[1];
  1803. for(i=0; i<2; i++ ){
  1804. if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
  1805. h->dequant8_coeff[1] = h->dequant8_buffer[0];
  1806. break;
  1807. }
  1808. for(q=0; q<52; q++){
  1809. int shift = ff_div6[q];
  1810. int idx = ff_rem6[q];
  1811. for(x=0; x<64; x++)
  1812. h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] =
  1813. ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
  1814. h->pps.scaling_matrix8[i][x]) << shift;
  1815. }
  1816. }
  1817. }
  1818. static void init_dequant4_coeff_table(H264Context *h){
  1819. int i,j,q,x;
  1820. const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
  1821. for(i=0; i<6; i++ ){
  1822. h->dequant4_coeff[i] = h->dequant4_buffer[i];
  1823. for(j=0; j<i; j++){
  1824. if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
  1825. h->dequant4_coeff[i] = h->dequant4_buffer[j];
  1826. break;
  1827. }
  1828. }
  1829. if(j<i)
  1830. continue;
  1831. for(q=0; q<52; q++){
  1832. int shift = ff_div6[q] + 2;
  1833. int idx = ff_rem6[q];
  1834. for(x=0; x<16; x++)
  1835. h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
  1836. ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
  1837. h->pps.scaling_matrix4[i][x]) << shift;
  1838. }
  1839. }
  1840. }
  1841. static void init_dequant_tables(H264Context *h){
  1842. int i,x;
  1843. init_dequant4_coeff_table(h);
  1844. if(h->pps.transform_8x8_mode)
  1845. init_dequant8_coeff_table(h);
  1846. if(h->sps.transform_bypass){
  1847. for(i=0; i<6; i++)
  1848. for(x=0; x<16; x++)
  1849. h->dequant4_coeff[i][0][x] = 1<<6;
  1850. if(h->pps.transform_8x8_mode)
  1851. for(i=0; i<2; i++)
  1852. for(x=0; x<64; x++)
  1853. h->dequant8_coeff[i][0][x] = 1<<6;
  1854. }
  1855. }
  1856. /**
  1857. * allocates tables.
  1858. * needs width/height
  1859. */
  1860. static int alloc_tables(H264Context *h){
  1861. MpegEncContext * const s = &h->s;
  1862. const int big_mb_num= s->mb_stride * (s->mb_height+1);
  1863. int x,y;
  1864. CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t))
  1865. CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t))
  1866. CHECKED_ALLOCZ(h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(uint8_t))
  1867. CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
  1868. CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
  1869. CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
  1870. CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
  1871. CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
  1872. memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(uint8_t));
  1873. h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
  1874. CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint32_t));
  1875. CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint32_t));
  1876. for(y=0; y<s->mb_height; y++){
  1877. for(x=0; x<s->mb_width; x++){
  1878. const int mb_xy= x + y*s->mb_stride;
  1879. const int b_xy = 4*x + 4*y*h->b_stride;
  1880. const int b8_xy= 2*x + 2*y*h->b8_stride;
  1881. h->mb2b_xy [mb_xy]= b_xy;
  1882. h->mb2b8_xy[mb_xy]= b8_xy;
  1883. }
  1884. }
  1885. s->obmc_scratchpad = NULL;
  1886. if(!h->dequant4_coeff[0])
  1887. init_dequant_tables(h);
  1888. return 0;
  1889. fail:
  1890. free_tables(h);
  1891. return -1;
  1892. }
  1893. /**
  1894. * Mimic alloc_tables(), but for every context thread.
  1895. */
  1896. static void clone_tables(H264Context *dst, H264Context *src){
  1897. dst->intra4x4_pred_mode = src->intra4x4_pred_mode;
  1898. dst->non_zero_count = src->non_zero_count;
  1899. dst->slice_table = src->slice_table;
  1900. dst->cbp_table = src->cbp_table;
  1901. dst->mb2b_xy = src->mb2b_xy;
  1902. dst->mb2b8_xy = src->mb2b8_xy;
  1903. dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
  1904. dst->mvd_table[0] = src->mvd_table[0];
  1905. dst->mvd_table[1] = src->mvd_table[1];
  1906. dst->direct_table = src->direct_table;
  1907. dst->s.obmc_scratchpad = NULL;
  1908. ff_h264_pred_init(&dst->hpc, src->s.codec_id);
  1909. }
  1910. /**
  1911. * Init context
  1912. * Allocate buffers which are not shared amongst multiple threads.
  1913. */
  1914. static int context_init(H264Context *h){
  1915. CHECKED_ALLOCZ(h->top_borders[0], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
  1916. CHECKED_ALLOCZ(h->top_borders[1], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
  1917. return 0;
  1918. fail:
  1919. return -1; // free_tables will clean up for us
  1920. }
  1921. static av_cold void common_init(H264Context *h){
  1922. MpegEncContext * const s = &h->s;
  1923. s->width = s->avctx->width;
  1924. s->height = s->avctx->height;
  1925. s->codec_id= s->avctx->codec->id;
  1926. ff_h264_pred_init(&h->hpc, s->codec_id);
  1927. h->dequant_coeff_pps= -1;
  1928. s->unrestricted_mv=1;
  1929. s->decode=1; //FIXME
  1930. memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  1931. memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  1932. }
  1933. static av_cold int decode_init(AVCodecContext *avctx){
  1934. H264Context *h= avctx->priv_data;
  1935. MpegEncContext * const s = &h->s;
  1936. MPV_decode_defaults(s);
  1937. s->avctx = avctx;
  1938. common_init(h);
  1939. s->out_format = FMT_H264;
  1940. s->workaround_bugs= avctx->workaround_bugs;
  1941. // set defaults
  1942. // s->decode_mb= ff_h263_decode_mb;
  1943. s->quarter_sample = 1;
  1944. s->low_delay= 1;
  1945. if(avctx->codec_id == CODEC_ID_SVQ3)
  1946. avctx->pix_fmt= PIX_FMT_YUVJ420P;
  1947. else
  1948. avctx->pix_fmt= PIX_FMT_YUV420P;
  1949. decode_init_vlc();
  1950. if(avctx->extradata_size > 0 && avctx->extradata &&
  1951. *(char *)avctx->extradata == 1){
  1952. h->is_avc = 1;
  1953. h->got_avcC = 0;
  1954. } else {
  1955. h->is_avc = 0;
  1956. }
  1957. h->thread_context[0] = h;
  1958. return 0;
  1959. }
  1960. static int frame_start(H264Context *h){
  1961. MpegEncContext * const s = &h->s;
  1962. int i;
  1963. if(MPV_frame_start(s, s->avctx) < 0)
  1964. return -1;
  1965. ff_er_frame_start(s);
  1966. /*
  1967. * MPV_frame_start uses pict_type to derive key_frame.
  1968. * This is incorrect for H.264; IDR markings must be used.
  1969. * Zero here; IDR markings per slice in frame or fields are ORed in later.
  1970. * See decode_nal_units().
  1971. */
  1972. s->current_picture_ptr->key_frame= 0;
  1973. assert(s->linesize && s->uvlinesize);
  1974. for(i=0; i<16; i++){
  1975. h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
  1976. h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
  1977. }
  1978. for(i=0; i<4; i++){
  1979. h->block_offset[16+i]=
  1980. h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  1981. h->block_offset[24+16+i]=
  1982. h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  1983. }
  1984. /* can't be in alloc_tables because linesize isn't known there.
  1985. * FIXME: redo bipred weight to not require extra buffer? */
  1986. for(i = 0; i < s->avctx->thread_count; i++)
  1987. if(!h->thread_context[i]->s.obmc_scratchpad)
  1988. h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize);
  1989. /* some macroblocks will be accessed before they're available */
  1990. if(FRAME_MBAFF || s->avctx->thread_count > 1)
  1991. memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(uint8_t));
  1992. // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
  1993. // We mark the current picture as non-reference after allocating it, so
  1994. // that if we break out due to an error it can be released automatically
  1995. // in the next MPV_frame_start().
  1996. // SVQ3 as well as most other codecs have only last/next/current and thus
  1997. // get released even with set reference, besides SVQ3 and others do not
  1998. // mark frames as reference later "naturally".
  1999. if(s->codec_id != CODEC_ID_SVQ3)
  2000. s->current_picture_ptr->reference= 0;
  2001. s->current_picture_ptr->field_poc[0]=
  2002. s->current_picture_ptr->field_poc[1]= INT_MAX;
  2003. assert(s->current_picture_ptr->long_ref==0);
  2004. return 0;
  2005. }
  2006. static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){
  2007. MpegEncContext * const s = &h->s;
  2008. int i;
  2009. src_y -= linesize;
  2010. src_cb -= uvlinesize;
  2011. src_cr -= uvlinesize;
  2012. // There are two lines saved, the line above the the top macroblock of a pair,
  2013. // and the line above the bottom macroblock
  2014. h->left_border[0]= h->top_borders[0][s->mb_x][15];
  2015. for(i=1; i<17; i++){
  2016. h->left_border[i]= src_y[15+i* linesize];
  2017. }
  2018. *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
  2019. *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
  2020. if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2021. h->left_border[17 ]= h->top_borders[0][s->mb_x][16+7];
  2022. h->left_border[17+9]= h->top_borders[0][s->mb_x][24+7];
  2023. for(i=1; i<9; i++){
  2024. h->left_border[i+17 ]= src_cb[7+i*uvlinesize];
  2025. h->left_border[i+17+9]= src_cr[7+i*uvlinesize];
  2026. }
  2027. *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
  2028. *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
  2029. }
  2030. }
  2031. static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int simple){
  2032. MpegEncContext * const s = &h->s;
  2033. int temp8, i;
  2034. uint64_t temp64;
  2035. int deblock_left;
  2036. int deblock_top;
  2037. int mb_xy;
  2038. if(h->deblocking_filter == 2) {
  2039. mb_xy = h->mb_xy;
  2040. deblock_left = h->slice_table[mb_xy] == h->slice_table[mb_xy - 1];
  2041. deblock_top = h->slice_table[mb_xy] == h->slice_table[h->top_mb_xy];
  2042. } else {
  2043. deblock_left = (s->mb_x > 0);
  2044. deblock_top = (s->mb_y > 0);
  2045. }
  2046. src_y -= linesize + 1;
  2047. src_cb -= uvlinesize + 1;
  2048. src_cr -= uvlinesize + 1;
  2049. #define XCHG(a,b,t,xchg)\
  2050. t= a;\
  2051. if(xchg)\
  2052. a= b;\
  2053. b= t;
  2054. if(deblock_left){
  2055. for(i = !deblock_top; i<17; i++){
  2056. XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
  2057. }
  2058. }
  2059. if(deblock_top){
  2060. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
  2061. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
  2062. if(s->mb_x+1 < s->mb_width){
  2063. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
  2064. }
  2065. }
  2066. if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2067. if(deblock_left){
  2068. for(i = !deblock_top; i<9; i++){
  2069. XCHG(h->left_border[i+17 ], src_cb[i*uvlinesize], temp8, xchg);
  2070. XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg);
  2071. }
  2072. }
  2073. if(deblock_top){
  2074. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
  2075. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
  2076. }
  2077. }
  2078. }
  2079. static inline void backup_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
  2080. MpegEncContext * const s = &h->s;
  2081. int i;
  2082. src_y -= 2 * linesize;
  2083. src_cb -= 2 * uvlinesize;
  2084. src_cr -= 2 * uvlinesize;
  2085. // There are two lines saved, the line above the the top macroblock of a pair,
  2086. // and the line above the bottom macroblock
  2087. h->left_border[0]= h->top_borders[0][s->mb_x][15];
  2088. h->left_border[1]= h->top_borders[1][s->mb_x][15];
  2089. for(i=2; i<34; i++){
  2090. h->left_border[i]= src_y[15+i* linesize];
  2091. }
  2092. *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 32*linesize);
  2093. *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+32*linesize);
  2094. *(uint64_t*)(h->top_borders[1][s->mb_x]+0)= *(uint64_t*)(src_y + 33*linesize);
  2095. *(uint64_t*)(h->top_borders[1][s->mb_x]+8)= *(uint64_t*)(src_y +8+33*linesize);
  2096. if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2097. h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7];
  2098. h->left_border[34+ 1]= h->top_borders[1][s->mb_x][16+7];
  2099. h->left_border[34+18 ]= h->top_borders[0][s->mb_x][24+7];
  2100. h->left_border[34+18+1]= h->top_borders[1][s->mb_x][24+7];
  2101. for(i=2; i<18; i++){
  2102. h->left_border[i+34 ]= src_cb[7+i*uvlinesize];
  2103. h->left_border[i+34+18]= src_cr[7+i*uvlinesize];
  2104. }
  2105. *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+16*uvlinesize);
  2106. *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+16*uvlinesize);
  2107. *(uint64_t*)(h->top_borders[1][s->mb_x]+16)= *(uint64_t*)(src_cb+17*uvlinesize);
  2108. *(uint64_t*)(h->top_borders[1][s->mb_x]+24)= *(uint64_t*)(src_cr+17*uvlinesize);
  2109. }
  2110. }
  2111. static inline void xchg_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
  2112. MpegEncContext * const s = &h->s;
  2113. int temp8, i;
  2114. uint64_t temp64;
  2115. int deblock_left = (s->mb_x > 0);
  2116. int deblock_top = (s->mb_y > 1);
  2117. tprintf(s->avctx, "xchg_pair_border: src_y:%p src_cb:%p src_cr:%p ls:%d uvls:%d\n", src_y, src_cb, src_cr, linesize, uvlinesize);
  2118. src_y -= 2 * linesize + 1;
  2119. src_cb -= 2 * uvlinesize + 1;
  2120. src_cr -= 2 * uvlinesize + 1;
  2121. #define XCHG(a,b,t,xchg)\
  2122. t= a;\
  2123. if(xchg)\
  2124. a= b;\
  2125. b= t;
  2126. if(deblock_left){
  2127. for(i = (!deblock_top)<<1; i<34; i++){
  2128. XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
  2129. }
  2130. }
  2131. if(deblock_top){
  2132. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
  2133. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
  2134. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+0), *(uint64_t*)(src_y +1 +linesize), temp64, xchg);
  2135. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+8), *(uint64_t*)(src_y +9 +linesize), temp64, 1);
  2136. if(s->mb_x+1 < s->mb_width){
  2137. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
  2138. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x+1]), *(uint64_t*)(src_y +17 +linesize), temp64, 1);
  2139. }
  2140. }
  2141. if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2142. if(deblock_left){
  2143. for(i = (!deblock_top) << 1; i<18; i++){
  2144. XCHG(h->left_border[i+34 ], src_cb[i*uvlinesize], temp8, xchg);
  2145. XCHG(h->left_border[i+34+18], src_cr[i*uvlinesize], temp8, xchg);
  2146. }
  2147. }
  2148. if(deblock_top){
  2149. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
  2150. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
  2151. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+16), *(uint64_t*)(src_cb+1 +uvlinesize), temp64, 1);
  2152. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+24), *(uint64_t*)(src_cr+1 +uvlinesize), temp64, 1);
  2153. }
  2154. }
  2155. }
  2156. static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple){
  2157. MpegEncContext * const s = &h->s;
  2158. const int mb_x= s->mb_x;
  2159. const int mb_y= s->mb_y;
  2160. const int mb_xy= h->mb_xy;
  2161. const int mb_type= s->current_picture.mb_type[mb_xy];
  2162. uint8_t *dest_y, *dest_cb, *dest_cr;
  2163. int linesize, uvlinesize /*dct_offset*/;
  2164. int i;
  2165. int *block_offset = &h->block_offset[0];
  2166. const unsigned int bottom = mb_y & 1;
  2167. const int transform_bypass = (s->qscale == 0 && h->sps.transform_bypass), is_h264 = (simple || s->codec_id == CODEC_ID_H264);
  2168. void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
  2169. void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
  2170. dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
  2171. dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2172. dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2173. s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4);
  2174. s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2);
  2175. if (!simple && MB_FIELD) {
  2176. linesize = h->mb_linesize = s->linesize * 2;
  2177. uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
  2178. block_offset = &h->block_offset[24];
  2179. if(mb_y&1){ //FIXME move out of this function?
  2180. dest_y -= s->linesize*15;
  2181. dest_cb-= s->uvlinesize*7;
  2182. dest_cr-= s->uvlinesize*7;
  2183. }
  2184. if(FRAME_MBAFF) {
  2185. int list;
  2186. for(list=0; list<h->list_count; list++){
  2187. if(!USES_LIST(mb_type, list))
  2188. continue;
  2189. if(IS_16X16(mb_type)){
  2190. int8_t *ref = &h->ref_cache[list][scan8[0]];
  2191. fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1);
  2192. }else{
  2193. for(i=0; i<16; i+=4){
  2194. //FIXME can refs be smaller than 8x8 when !direct_8x8_inference ?
  2195. int ref = h->ref_cache[list][scan8[i]];
  2196. if(ref >= 0)
  2197. fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1);
  2198. }
  2199. }
  2200. }
  2201. }
  2202. } else {
  2203. linesize = h->mb_linesize = s->linesize;
  2204. uvlinesize = h->mb_uvlinesize = s->uvlinesize;
  2205. // dct_offset = s->linesize * 16;
  2206. }
  2207. if(transform_bypass){
  2208. idct_dc_add =
  2209. idct_add = IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
  2210. }else if(IS_8x8DCT(mb_type)){
  2211. idct_dc_add = s->dsp.h264_idct8_dc_add;
  2212. idct_add = s->dsp.h264_idct8_add;
  2213. }else{
  2214. idct_dc_add = s->dsp.h264_idct_dc_add;
  2215. idct_add = s->dsp.h264_idct_add;
  2216. }
  2217. if(!simple && FRAME_MBAFF && h->deblocking_filter && IS_INTRA(mb_type)
  2218. && (!bottom || !IS_INTRA(s->current_picture.mb_type[mb_xy-s->mb_stride]))){
  2219. int mbt_y = mb_y&~1;
  2220. uint8_t *top_y = s->current_picture.data[0] + (mbt_y * 16* s->linesize ) + mb_x * 16;
  2221. uint8_t *top_cb = s->current_picture.data[1] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
  2222. uint8_t *top_cr = s->current_picture.data[2] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
  2223. xchg_pair_border(h, top_y, top_cb, top_cr, s->linesize, s->uvlinesize, 1);
  2224. }
  2225. if (!simple && IS_INTRA_PCM(mb_type)) {
  2226. unsigned int x, y;
  2227. // The pixels are stored in h->mb array in the same order as levels,
  2228. // copy them in output in the correct order.
  2229. for(i=0; i<16; i++) {
  2230. for (y=0; y<4; y++) {
  2231. for (x=0; x<4; x++) {
  2232. *(dest_y + block_offset[i] + y*linesize + x) = h->mb[i*16+y*4+x];
  2233. }
  2234. }
  2235. }
  2236. for(i=16; i<16+4; i++) {
  2237. for (y=0; y<4; y++) {
  2238. for (x=0; x<4; x++) {
  2239. *(dest_cb + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
  2240. }
  2241. }
  2242. }
  2243. for(i=20; i<20+4; i++) {
  2244. for (y=0; y<4; y++) {
  2245. for (x=0; x<4; x++) {
  2246. *(dest_cr + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
  2247. }
  2248. }
  2249. }
  2250. } else {
  2251. if(IS_INTRA(mb_type)){
  2252. if(h->deblocking_filter && (simple || !FRAME_MBAFF))
  2253. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, simple);
  2254. if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2255. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
  2256. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
  2257. }
  2258. if(IS_INTRA4x4(mb_type)){
  2259. if(simple || !s->encoding){
  2260. if(IS_8x8DCT(mb_type)){
  2261. for(i=0; i<16; i+=4){
  2262. uint8_t * const ptr= dest_y + block_offset[i];
  2263. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  2264. const int nnz = h->non_zero_count_cache[ scan8[i] ];
  2265. h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
  2266. (h->topright_samples_available<<i)&0x4000, linesize);
  2267. if(nnz){
  2268. if(nnz == 1 && h->mb[i*16])
  2269. idct_dc_add(ptr, h->mb + i*16, linesize);
  2270. else
  2271. idct_add(ptr, h->mb + i*16, linesize);
  2272. }
  2273. }
  2274. }else
  2275. for(i=0; i<16; i++){
  2276. uint8_t * const ptr= dest_y + block_offset[i];
  2277. uint8_t *topright;
  2278. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  2279. int nnz, tr;
  2280. if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
  2281. const int topright_avail= (h->topright_samples_available<<i)&0x8000;
  2282. assert(mb_y || linesize <= block_offset[i]);
  2283. if(!topright_avail){
  2284. tr= ptr[3 - linesize]*0x01010101;
  2285. topright= (uint8_t*) &tr;
  2286. }else
  2287. topright= ptr + 4 - linesize;
  2288. }else
  2289. topright= NULL;
  2290. h->hpc.pred4x4[ dir ](ptr, topright, linesize);
  2291. nnz = h->non_zero_count_cache[ scan8[i] ];
  2292. if(nnz){
  2293. if(is_h264){
  2294. if(nnz == 1 && h->mb[i*16])
  2295. idct_dc_add(ptr, h->mb + i*16, linesize);
  2296. else
  2297. idct_add(ptr, h->mb + i*16, linesize);
  2298. }else
  2299. svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
  2300. }
  2301. }
  2302. }
  2303. }else{
  2304. h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
  2305. if(is_h264){
  2306. if(!transform_bypass)
  2307. h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[0][s->qscale][0]);
  2308. }else
  2309. svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
  2310. }
  2311. if(h->deblocking_filter && (simple || !FRAME_MBAFF))
  2312. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, simple);
  2313. }else if(is_h264){
  2314. hl_motion(h, dest_y, dest_cb, dest_cr,
  2315. s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
  2316. s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
  2317. s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
  2318. }
  2319. if(!IS_INTRA4x4(mb_type)){
  2320. if(is_h264){
  2321. if(IS_INTRA16x16(mb_type)){
  2322. for(i=0; i<16; i++){
  2323. if(h->non_zero_count_cache[ scan8[i] ])
  2324. idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  2325. else if(h->mb[i*16])
  2326. idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  2327. }
  2328. }else{
  2329. const int di = IS_8x8DCT(mb_type) ? 4 : 1;
  2330. for(i=0; i<16; i+=di){
  2331. int nnz = h->non_zero_count_cache[ scan8[i] ];
  2332. if(nnz){
  2333. if(nnz==1 && h->mb[i*16])
  2334. idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  2335. else
  2336. idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  2337. }
  2338. }
  2339. }
  2340. }else{
  2341. for(i=0; i<16; i++){
  2342. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
  2343. uint8_t * const ptr= dest_y + block_offset[i];
  2344. svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
  2345. }
  2346. }
  2347. }
  2348. }
  2349. if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2350. uint8_t *dest[2] = {dest_cb, dest_cr};
  2351. if(transform_bypass){
  2352. idct_add = idct_dc_add = s->dsp.add_pixels4;
  2353. }else{
  2354. idct_add = s->dsp.h264_idct_add;
  2355. idct_dc_add = s->dsp.h264_idct_dc_add;
  2356. chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp[0], h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]);
  2357. chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp[1], h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]);
  2358. }
  2359. if(is_h264){
  2360. for(i=16; i<16+8; i++){
  2361. if(h->non_zero_count_cache[ scan8[i] ])
  2362. idct_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  2363. else if(h->mb[i*16])
  2364. idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  2365. }
  2366. }else{
  2367. for(i=16; i<16+8; i++){
  2368. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
  2369. uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i];
  2370. svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
  2371. }
  2372. }
  2373. }
  2374. }
  2375. }
  2376. if(h->deblocking_filter) {
  2377. if (!simple && FRAME_MBAFF) {
  2378. //FIXME try deblocking one mb at a time?
  2379. // the reduction in load/storing mvs and such might outweigh the extra backup/xchg_border
  2380. const int mb_y = s->mb_y - 1;
  2381. uint8_t *pair_dest_y, *pair_dest_cb, *pair_dest_cr;
  2382. const int mb_xy= mb_x + mb_y*s->mb_stride;
  2383. const int mb_type_top = s->current_picture.mb_type[mb_xy];
  2384. const int mb_type_bottom= s->current_picture.mb_type[mb_xy+s->mb_stride];
  2385. if (!bottom) return;
  2386. pair_dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
  2387. pair_dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2388. pair_dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2389. if(IS_INTRA(mb_type_top | mb_type_bottom))
  2390. xchg_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize, 0);
  2391. backup_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize);
  2392. // deblock a pair
  2393. // top
  2394. s->mb_y--; h->mb_xy -= s->mb_stride;
  2395. tprintf(h->s.avctx, "call mbaff filter_mb mb_x:%d mb_y:%d pair_dest_y = %p, dest_y = %p\n", mb_x, mb_y, pair_dest_y, dest_y);
  2396. fill_caches(h, mb_type_top, 1); //FIXME don't fill stuff which isn't used by filter_mb
  2397. h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
  2398. h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]);
  2399. filter_mb(h, mb_x, mb_y, pair_dest_y, pair_dest_cb, pair_dest_cr, linesize, uvlinesize);
  2400. // bottom
  2401. s->mb_y++; h->mb_xy += s->mb_stride;
  2402. tprintf(h->s.avctx, "call mbaff filter_mb\n");
  2403. fill_caches(h, mb_type_bottom, 1); //FIXME don't fill stuff which isn't used by filter_mb
  2404. h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
  2405. h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
  2406. filter_mb(h, mb_x, mb_y+1, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  2407. } else {
  2408. tprintf(h->s.avctx, "call filter_mb\n");
  2409. backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, simple);
  2410. fill_caches(h, mb_type, 1); //FIXME don't fill stuff which isn't used by filter_mb
  2411. h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
  2412. h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]);
  2413. filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  2414. }
  2415. }
  2416. }
  2417. /**
  2418. * Process a macroblock; this case avoids checks for expensive uncommon cases.
  2419. */
  2420. static void hl_decode_mb_simple(H264Context *h){
  2421. hl_decode_mb_internal(h, 1);
  2422. }
  2423. /**
  2424. * Process a macroblock; this handles edge cases, such as interlacing.
  2425. */
  2426. static void av_noinline hl_decode_mb_complex(H264Context *h){
  2427. hl_decode_mb_internal(h, 0);
  2428. }
  2429. static void hl_decode_mb(H264Context *h){
  2430. MpegEncContext * const s = &h->s;
  2431. const int mb_xy= h->mb_xy;
  2432. const int mb_type= s->current_picture.mb_type[mb_xy];
  2433. int is_complex = FRAME_MBAFF || MB_FIELD || IS_INTRA_PCM(mb_type) || s->codec_id != CODEC_ID_H264 ||
  2434. (ENABLE_GRAY && (s->flags&CODEC_FLAG_GRAY)) || (ENABLE_H264_ENCODER && s->encoding) || ENABLE_SMALL;
  2435. if(ENABLE_H264_ENCODER && !s->decode)
  2436. return;
  2437. if (is_complex)
  2438. hl_decode_mb_complex(h);
  2439. else hl_decode_mb_simple(h);
  2440. }
  2441. static void pic_as_field(Picture *pic, const int parity){
  2442. int i;
  2443. for (i = 0; i < 4; ++i) {
  2444. if (parity == PICT_BOTTOM_FIELD)
  2445. pic->data[i] += pic->linesize[i];
  2446. pic->reference = parity;
  2447. pic->linesize[i] *= 2;
  2448. }
  2449. }
  2450. static int split_field_copy(Picture *dest, Picture *src,
  2451. int parity, int id_add){
  2452. int match = !!(src->reference & parity);
  2453. if (match) {
  2454. *dest = *src;
  2455. pic_as_field(dest, parity);
  2456. dest->pic_id *= 2;
  2457. dest->pic_id += id_add;
  2458. }
  2459. return match;
  2460. }
  2461. /**
  2462. * Split one reference list into field parts, interleaving by parity
  2463. * as per H.264 spec section 8.2.4.2.5. Output fields have their data pointers
  2464. * set to look at the actual start of data for that field.
  2465. *
  2466. * @param dest output list
  2467. * @param dest_len maximum number of fields to put in dest
  2468. * @param src the source reference list containing fields and/or field pairs
  2469. * (aka short_ref/long_ref, or
  2470. * refFrameListXShortTerm/refFrameListLongTerm in spec-speak)
  2471. * @param src_len number of Picture's in source (pairs and unmatched fields)
  2472. * @param parity the parity of the picture being decoded/needing
  2473. * these ref pics (PICT_{TOP,BOTTOM}_FIELD)
  2474. * @return number of fields placed in dest
  2475. */
  2476. static int split_field_half_ref_list(Picture *dest, int dest_len,
  2477. Picture *src, int src_len, int parity){
  2478. int same_parity = 1;
  2479. int same_i = 0;
  2480. int opp_i = 0;
  2481. int out_i;
  2482. int field_output;
  2483. for (out_i = 0; out_i < dest_len; out_i += field_output) {
  2484. if (same_parity && same_i < src_len) {
  2485. field_output = split_field_copy(dest + out_i, src + same_i,
  2486. parity, 1);
  2487. same_parity = !field_output;
  2488. same_i++;
  2489. } else if (opp_i < src_len) {
  2490. field_output = split_field_copy(dest + out_i, src + opp_i,
  2491. PICT_FRAME - parity, 0);
  2492. same_parity = field_output;
  2493. opp_i++;
  2494. } else {
  2495. break;
  2496. }
  2497. }
  2498. return out_i;
  2499. }
  2500. /**
  2501. * Split the reference frame list into a reference field list.
  2502. * This implements H.264 spec 8.2.4.2.5 for a combined input list.
  2503. * The input list contains both reference field pairs and
  2504. * unmatched reference fields; it is ordered as spec describes
  2505. * RefPicListX for frames in 8.2.4.2.1 and 8.2.4.2.3, except that
  2506. * unmatched field pairs are also present. Conceptually this is equivalent
  2507. * to concatenation of refFrameListXShortTerm with refFrameListLongTerm.
  2508. *
  2509. * @param dest output reference list where ordered fields are to be placed
  2510. * @param dest_len max number of fields to place at dest
  2511. * @param src source reference list, as described above
  2512. * @param src_len number of pictures (pairs and unmatched fields) in src
  2513. * @param parity parity of field being currently decoded
  2514. * (one of PICT_{TOP,BOTTOM}_FIELD)
  2515. * @param long_i index into src array that holds first long reference picture,
  2516. * or src_len if no long refs present.
  2517. */
  2518. static int split_field_ref_list(Picture *dest, int dest_len,
  2519. Picture *src, int src_len,
  2520. int parity, int long_i){
  2521. int i = split_field_half_ref_list(dest, dest_len, src, long_i, parity);
  2522. dest += i;
  2523. dest_len -= i;
  2524. i += split_field_half_ref_list(dest, dest_len, src + long_i,
  2525. src_len - long_i, parity);
  2526. return i;
  2527. }
  2528. /**
  2529. * fills the default_ref_list.
  2530. */
  2531. static int fill_default_ref_list(H264Context *h){
  2532. MpegEncContext * const s = &h->s;
  2533. int i;
  2534. int smallest_poc_greater_than_current = -1;
  2535. int structure_sel;
  2536. Picture sorted_short_ref[32];
  2537. Picture field_entry_list[2][32];
  2538. Picture *frame_list[2];
  2539. if (FIELD_PICTURE) {
  2540. structure_sel = PICT_FRAME;
  2541. frame_list[0] = field_entry_list[0];
  2542. frame_list[1] = field_entry_list[1];
  2543. } else {
  2544. structure_sel = 0;
  2545. frame_list[0] = h->default_ref_list[0];
  2546. frame_list[1] = h->default_ref_list[1];
  2547. }
  2548. if(h->slice_type_nos==FF_B_TYPE){
  2549. int list;
  2550. int len[2];
  2551. int short_len[2];
  2552. int out_i;
  2553. int limit= INT_MIN;
  2554. /* sort frame according to POC in B slice */
  2555. for(out_i=0; out_i<h->short_ref_count; out_i++){
  2556. int best_i=INT_MIN;
  2557. int best_poc=INT_MAX;
  2558. for(i=0; i<h->short_ref_count; i++){
  2559. const int poc= h->short_ref[i]->poc;
  2560. if(poc > limit && poc < best_poc){
  2561. best_poc= poc;
  2562. best_i= i;
  2563. }
  2564. }
  2565. assert(best_i != INT_MIN);
  2566. limit= best_poc;
  2567. sorted_short_ref[out_i]= *h->short_ref[best_i];
  2568. tprintf(h->s.avctx, "sorted poc: %d->%d poc:%d fn:%d\n", best_i, out_i, sorted_short_ref[out_i].poc, sorted_short_ref[out_i].frame_num);
  2569. if (-1 == smallest_poc_greater_than_current) {
  2570. if (h->short_ref[best_i]->poc >= s->current_picture_ptr->poc) {
  2571. smallest_poc_greater_than_current = out_i;
  2572. }
  2573. }
  2574. }
  2575. tprintf(h->s.avctx, "current poc: %d, smallest_poc_greater_than_current: %d\n", s->current_picture_ptr->poc, smallest_poc_greater_than_current);
  2576. // find the largest POC
  2577. for(list=0; list<2; list++){
  2578. int index = 0;
  2579. int j= -99;
  2580. int step= list ? -1 : 1;
  2581. for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++, j+=step) {
  2582. int sel;
  2583. while(j<0 || j>= h->short_ref_count){
  2584. if(j != -99 && step == (list ? -1 : 1))
  2585. return -1;
  2586. step = -step;
  2587. j= smallest_poc_greater_than_current + (step>>1);
  2588. }
  2589. sel = sorted_short_ref[j].reference | structure_sel;
  2590. if(sel != PICT_FRAME) continue;
  2591. frame_list[list][index ]= sorted_short_ref[j];
  2592. frame_list[list][index++].pic_id= sorted_short_ref[j].frame_num;
  2593. }
  2594. short_len[list] = index;
  2595. for(i = 0; i < 16 && index < h->ref_count[ list ]; i++){
  2596. int sel;
  2597. if(h->long_ref[i] == NULL) continue;
  2598. sel = h->long_ref[i]->reference | structure_sel;
  2599. if(sel != PICT_FRAME) continue;
  2600. frame_list[ list ][index ]= *h->long_ref[i];
  2601. frame_list[ list ][index++].pic_id= i;
  2602. }
  2603. len[list] = index;
  2604. }
  2605. for(list=0; list<2; list++){
  2606. if (FIELD_PICTURE)
  2607. len[list] = split_field_ref_list(h->default_ref_list[list],
  2608. h->ref_count[list],
  2609. frame_list[list],
  2610. len[list],
  2611. s->picture_structure,
  2612. short_len[list]);
  2613. // swap the two first elements of L1 when L0 and L1 are identical
  2614. if(list && len[0] > 1 && len[0] == len[1])
  2615. for(i=0; h->default_ref_list[0][i].data[0] == h->default_ref_list[1][i].data[0]; i++)
  2616. if(i == len[0]){
  2617. FFSWAP(Picture, h->default_ref_list[1][0], h->default_ref_list[1][1]);
  2618. break;
  2619. }
  2620. if(len[list] < h->ref_count[ list ])
  2621. memset(&h->default_ref_list[list][len[list]], 0, sizeof(Picture)*(h->ref_count[ list ] - len[list]));
  2622. }
  2623. }else{
  2624. int index=0;
  2625. int short_len;
  2626. for(i=0; i<h->short_ref_count; i++){
  2627. int sel;
  2628. sel = h->short_ref[i]->reference | structure_sel;
  2629. if(sel != PICT_FRAME) continue;
  2630. frame_list[0][index ]= *h->short_ref[i];
  2631. frame_list[0][index++].pic_id= h->short_ref[i]->frame_num;
  2632. }
  2633. short_len = index;
  2634. for(i = 0; i < 16; i++){
  2635. int sel;
  2636. if(h->long_ref[i] == NULL) continue;
  2637. sel = h->long_ref[i]->reference | structure_sel;
  2638. if(sel != PICT_FRAME) continue;
  2639. frame_list[0][index ]= *h->long_ref[i];
  2640. frame_list[0][index++].pic_id= i;
  2641. }
  2642. if (FIELD_PICTURE)
  2643. index = split_field_ref_list(h->default_ref_list[0],
  2644. h->ref_count[0], frame_list[0],
  2645. index, s->picture_structure,
  2646. short_len);
  2647. if(index < h->ref_count[0])
  2648. memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
  2649. }
  2650. #ifdef TRACE
  2651. for (i=0; i<h->ref_count[0]; i++) {
  2652. tprintf(h->s.avctx, "List0: %s fn:%d 0x%p\n", (h->default_ref_list[0][i].long_ref ? "LT" : "ST"), h->default_ref_list[0][i].pic_id, h->default_ref_list[0][i].data[0]);
  2653. }
  2654. if(h->slice_type_nos==FF_B_TYPE){
  2655. for (i=0; i<h->ref_count[1]; i++) {
  2656. tprintf(h->s.avctx, "List1: %s fn:%d 0x%p\n", (h->default_ref_list[1][i].long_ref ? "LT" : "ST"), h->default_ref_list[1][i].pic_id, h->default_ref_list[1][i].data[0]);
  2657. }
  2658. }
  2659. #endif
  2660. return 0;
  2661. }
  2662. static void print_short_term(H264Context *h);
  2663. static void print_long_term(H264Context *h);
  2664. /**
  2665. * Extract structure information about the picture described by pic_num in
  2666. * the current decoding context (frame or field). Note that pic_num is
  2667. * picture number without wrapping (so, 0<=pic_num<max_pic_num).
  2668. * @param pic_num picture number for which to extract structure information
  2669. * @param structure one of PICT_XXX describing structure of picture
  2670. * with pic_num
  2671. * @return frame number (short term) or long term index of picture
  2672. * described by pic_num
  2673. */
  2674. static int pic_num_extract(H264Context *h, int pic_num, int *structure){
  2675. MpegEncContext * const s = &h->s;
  2676. *structure = s->picture_structure;
  2677. if(FIELD_PICTURE){
  2678. if (!(pic_num & 1))
  2679. /* opposite field */
  2680. *structure ^= PICT_FRAME;
  2681. pic_num >>= 1;
  2682. }
  2683. return pic_num;
  2684. }
  2685. static int decode_ref_pic_list_reordering(H264Context *h){
  2686. MpegEncContext * const s = &h->s;
  2687. int list, index, pic_structure;
  2688. print_short_term(h);
  2689. print_long_term(h);
  2690. if(h->slice_type_nos==FF_I_TYPE) return 0; //FIXME move before function
  2691. for(list=0; list<h->list_count; list++){
  2692. memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
  2693. if(get_bits1(&s->gb)){
  2694. int pred= h->curr_pic_num;
  2695. for(index=0; ; index++){
  2696. unsigned int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
  2697. unsigned int pic_id;
  2698. int i;
  2699. Picture *ref = NULL;
  2700. if(reordering_of_pic_nums_idc==3)
  2701. break;
  2702. if(index >= h->ref_count[list]){
  2703. av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
  2704. return -1;
  2705. }
  2706. if(reordering_of_pic_nums_idc<3){
  2707. if(reordering_of_pic_nums_idc<2){
  2708. const unsigned int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
  2709. int frame_num;
  2710. if(abs_diff_pic_num > h->max_pic_num){
  2711. av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
  2712. return -1;
  2713. }
  2714. if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
  2715. else pred+= abs_diff_pic_num;
  2716. pred &= h->max_pic_num - 1;
  2717. frame_num = pic_num_extract(h, pred, &pic_structure);
  2718. for(i= h->short_ref_count-1; i>=0; i--){
  2719. ref = h->short_ref[i];
  2720. assert(ref->reference);
  2721. assert(!ref->long_ref);
  2722. if(ref->data[0] != NULL &&
  2723. ref->frame_num == frame_num &&
  2724. (ref->reference & pic_structure) &&
  2725. ref->long_ref == 0) // ignore non-existing pictures by testing data[0] pointer
  2726. break;
  2727. }
  2728. if(i>=0)
  2729. ref->pic_id= pred;
  2730. }else{
  2731. int long_idx;
  2732. pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
  2733. long_idx= pic_num_extract(h, pic_id, &pic_structure);
  2734. if(long_idx>31){
  2735. av_log(h->s.avctx, AV_LOG_ERROR, "long_term_pic_idx overflow\n");
  2736. return -1;
  2737. }
  2738. ref = h->long_ref[long_idx];
  2739. assert(!(ref && !ref->reference));
  2740. if(ref && (ref->reference & pic_structure)){
  2741. ref->pic_id= pic_id;
  2742. assert(ref->long_ref);
  2743. i=0;
  2744. }else{
  2745. i=-1;
  2746. }
  2747. }
  2748. if (i < 0) {
  2749. av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
  2750. memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
  2751. } else {
  2752. for(i=index; i+1<h->ref_count[list]; i++){
  2753. if(ref->long_ref == h->ref_list[list][i].long_ref && ref->pic_id == h->ref_list[list][i].pic_id)
  2754. break;
  2755. }
  2756. for(; i > index; i--){
  2757. h->ref_list[list][i]= h->ref_list[list][i-1];
  2758. }
  2759. h->ref_list[list][index]= *ref;
  2760. if (FIELD_PICTURE){
  2761. pic_as_field(&h->ref_list[list][index], pic_structure);
  2762. }
  2763. }
  2764. }else{
  2765. av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
  2766. return -1;
  2767. }
  2768. }
  2769. }
  2770. }
  2771. for(list=0; list<h->list_count; list++){
  2772. for(index= 0; index < h->ref_count[list]; index++){
  2773. if(!h->ref_list[list][index].data[0])
  2774. h->ref_list[list][index]= s->current_picture;
  2775. }
  2776. }
  2777. if(h->slice_type_nos==FF_B_TYPE && !h->direct_spatial_mv_pred)
  2778. direct_dist_scale_factor(h);
  2779. direct_ref_list_init(h);
  2780. return 0;
  2781. }
  2782. static void fill_mbaff_ref_list(H264Context *h){
  2783. int list, i, j;
  2784. for(list=0; list<2; list++){ //FIXME try list_count
  2785. for(i=0; i<h->ref_count[list]; i++){
  2786. Picture *frame = &h->ref_list[list][i];
  2787. Picture *field = &h->ref_list[list][16+2*i];
  2788. field[0] = *frame;
  2789. for(j=0; j<3; j++)
  2790. field[0].linesize[j] <<= 1;
  2791. field[0].reference = PICT_TOP_FIELD;
  2792. field[1] = field[0];
  2793. for(j=0; j<3; j++)
  2794. field[1].data[j] += frame->linesize[j];
  2795. field[1].reference = PICT_BOTTOM_FIELD;
  2796. h->luma_weight[list][16+2*i] = h->luma_weight[list][16+2*i+1] = h->luma_weight[list][i];
  2797. h->luma_offset[list][16+2*i] = h->luma_offset[list][16+2*i+1] = h->luma_offset[list][i];
  2798. for(j=0; j<2; j++){
  2799. h->chroma_weight[list][16+2*i][j] = h->chroma_weight[list][16+2*i+1][j] = h->chroma_weight[list][i][j];
  2800. h->chroma_offset[list][16+2*i][j] = h->chroma_offset[list][16+2*i+1][j] = h->chroma_offset[list][i][j];
  2801. }
  2802. }
  2803. }
  2804. for(j=0; j<h->ref_count[1]; j++){
  2805. for(i=0; i<h->ref_count[0]; i++)
  2806. h->implicit_weight[j][16+2*i] = h->implicit_weight[j][16+2*i+1] = h->implicit_weight[j][i];
  2807. memcpy(h->implicit_weight[16+2*j], h->implicit_weight[j], sizeof(*h->implicit_weight));
  2808. memcpy(h->implicit_weight[16+2*j+1], h->implicit_weight[j], sizeof(*h->implicit_weight));
  2809. }
  2810. }
  2811. static int pred_weight_table(H264Context *h){
  2812. MpegEncContext * const s = &h->s;
  2813. int list, i;
  2814. int luma_def, chroma_def;
  2815. h->use_weight= 0;
  2816. h->use_weight_chroma= 0;
  2817. h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
  2818. h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
  2819. luma_def = 1<<h->luma_log2_weight_denom;
  2820. chroma_def = 1<<h->chroma_log2_weight_denom;
  2821. for(list=0; list<2; list++){
  2822. for(i=0; i<h->ref_count[list]; i++){
  2823. int luma_weight_flag, chroma_weight_flag;
  2824. luma_weight_flag= get_bits1(&s->gb);
  2825. if(luma_weight_flag){
  2826. h->luma_weight[list][i]= get_se_golomb(&s->gb);
  2827. h->luma_offset[list][i]= get_se_golomb(&s->gb);
  2828. if( h->luma_weight[list][i] != luma_def
  2829. || h->luma_offset[list][i] != 0)
  2830. h->use_weight= 1;
  2831. }else{
  2832. h->luma_weight[list][i]= luma_def;
  2833. h->luma_offset[list][i]= 0;
  2834. }
  2835. chroma_weight_flag= get_bits1(&s->gb);
  2836. if(chroma_weight_flag){
  2837. int j;
  2838. for(j=0; j<2; j++){
  2839. h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
  2840. h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
  2841. if( h->chroma_weight[list][i][j] != chroma_def
  2842. || h->chroma_offset[list][i][j] != 0)
  2843. h->use_weight_chroma= 1;
  2844. }
  2845. }else{
  2846. int j;
  2847. for(j=0; j<2; j++){
  2848. h->chroma_weight[list][i][j]= chroma_def;
  2849. h->chroma_offset[list][i][j]= 0;
  2850. }
  2851. }
  2852. }
  2853. if(h->slice_type_nos != FF_B_TYPE) break;
  2854. }
  2855. h->use_weight= h->use_weight || h->use_weight_chroma;
  2856. return 0;
  2857. }
  2858. static void implicit_weight_table(H264Context *h){
  2859. MpegEncContext * const s = &h->s;
  2860. int ref0, ref1;
  2861. int cur_poc = s->current_picture_ptr->poc;
  2862. if( h->ref_count[0] == 1 && h->ref_count[1] == 1
  2863. && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
  2864. h->use_weight= 0;
  2865. h->use_weight_chroma= 0;
  2866. return;
  2867. }
  2868. h->use_weight= 2;
  2869. h->use_weight_chroma= 2;
  2870. h->luma_log2_weight_denom= 5;
  2871. h->chroma_log2_weight_denom= 5;
  2872. for(ref0=0; ref0 < h->ref_count[0]; ref0++){
  2873. int poc0 = h->ref_list[0][ref0].poc;
  2874. for(ref1=0; ref1 < h->ref_count[1]; ref1++){
  2875. int poc1 = h->ref_list[1][ref1].poc;
  2876. int td = av_clip(poc1 - poc0, -128, 127);
  2877. if(td){
  2878. int tb = av_clip(cur_poc - poc0, -128, 127);
  2879. int tx = (16384 + (FFABS(td) >> 1)) / td;
  2880. int dist_scale_factor = av_clip((tb*tx + 32) >> 6, -1024, 1023) >> 2;
  2881. if(dist_scale_factor < -64 || dist_scale_factor > 128)
  2882. h->implicit_weight[ref0][ref1] = 32;
  2883. else
  2884. h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
  2885. }else
  2886. h->implicit_weight[ref0][ref1] = 32;
  2887. }
  2888. }
  2889. }
  2890. /**
  2891. * Mark a picture as no longer needed for reference. The refmask
  2892. * argument allows unreferencing of individual fields or the whole frame.
  2893. * If the picture becomes entirely unreferenced, but is being held for
  2894. * display purposes, it is marked as such.
  2895. * @param refmask mask of fields to unreference; the mask is bitwise
  2896. * anded with the reference marking of pic
  2897. * @return non-zero if pic becomes entirely unreferenced (except possibly
  2898. * for display purposes) zero if one of the fields remains in
  2899. * reference
  2900. */
  2901. static inline int unreference_pic(H264Context *h, Picture *pic, int refmask){
  2902. int i;
  2903. if (pic->reference &= refmask) {
  2904. return 0;
  2905. } else {
  2906. for(i = 0; h->delayed_pic[i]; i++)
  2907. if(pic == h->delayed_pic[i]){
  2908. pic->reference=DELAYED_PIC_REF;
  2909. break;
  2910. }
  2911. return 1;
  2912. }
  2913. }
  2914. /**
  2915. * instantaneous decoder refresh.
  2916. */
  2917. static void idr(H264Context *h){
  2918. int i;
  2919. for(i=0; i<16; i++){
  2920. remove_long(h, i, 0);
  2921. }
  2922. assert(h->long_ref_count==0);
  2923. for(i=0; i<h->short_ref_count; i++){
  2924. unreference_pic(h, h->short_ref[i], 0);
  2925. h->short_ref[i]= NULL;
  2926. }
  2927. h->short_ref_count=0;
  2928. h->prev_frame_num= 0;
  2929. h->prev_frame_num_offset= 0;
  2930. h->prev_poc_msb=
  2931. h->prev_poc_lsb= 0;
  2932. }
  2933. /* forget old pics after a seek */
  2934. static void flush_dpb(AVCodecContext *avctx){
  2935. H264Context *h= avctx->priv_data;
  2936. int i;
  2937. for(i=0; i<MAX_DELAYED_PIC_COUNT; i++) {
  2938. if(h->delayed_pic[i])
  2939. h->delayed_pic[i]->reference= 0;
  2940. h->delayed_pic[i]= NULL;
  2941. }
  2942. h->outputed_poc= INT_MIN;
  2943. idr(h);
  2944. if(h->s.current_picture_ptr)
  2945. h->s.current_picture_ptr->reference= 0;
  2946. h->s.first_field= 0;
  2947. ff_mpeg_flush(avctx);
  2948. }
  2949. /**
  2950. * Find a Picture in the short term reference list by frame number.
  2951. * @param frame_num frame number to search for
  2952. * @param idx the index into h->short_ref where returned picture is found
  2953. * undefined if no picture found.
  2954. * @return pointer to the found picture, or NULL if no pic with the provided
  2955. * frame number is found
  2956. */
  2957. static Picture * find_short(H264Context *h, int frame_num, int *idx){
  2958. MpegEncContext * const s = &h->s;
  2959. int i;
  2960. for(i=0; i<h->short_ref_count; i++){
  2961. Picture *pic= h->short_ref[i];
  2962. if(s->avctx->debug&FF_DEBUG_MMCO)
  2963. av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
  2964. if(pic->frame_num == frame_num) {
  2965. *idx = i;
  2966. return pic;
  2967. }
  2968. }
  2969. return NULL;
  2970. }
  2971. /**
  2972. * Remove a picture from the short term reference list by its index in
  2973. * that list. This does no checking on the provided index; it is assumed
  2974. * to be valid. Other list entries are shifted down.
  2975. * @param i index into h->short_ref of picture to remove.
  2976. */
  2977. static void remove_short_at_index(H264Context *h, int i){
  2978. assert(i >= 0 && i < h->short_ref_count);
  2979. h->short_ref[i]= NULL;
  2980. if (--h->short_ref_count)
  2981. memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i)*sizeof(Picture*));
  2982. }
  2983. /**
  2984. *
  2985. * @return the removed picture or NULL if an error occurs
  2986. */
  2987. static Picture * remove_short(H264Context *h, int frame_num, int ref_mask){
  2988. MpegEncContext * const s = &h->s;
  2989. Picture *pic;
  2990. int i;
  2991. if(s->avctx->debug&FF_DEBUG_MMCO)
  2992. av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
  2993. pic = find_short(h, frame_num, &i);
  2994. if (pic){
  2995. if(unreference_pic(h, pic, ref_mask))
  2996. remove_short_at_index(h, i);
  2997. }
  2998. return pic;
  2999. }
  3000. /**
  3001. * Remove a picture from the long term reference list by its index in
  3002. * that list.
  3003. * @return the removed picture or NULL if an error occurs
  3004. */
  3005. static Picture * remove_long(H264Context *h, int i, int ref_mask){
  3006. Picture *pic;
  3007. pic= h->long_ref[i];
  3008. if (pic){
  3009. if(unreference_pic(h, pic, ref_mask)){
  3010. assert(h->long_ref[i]->long_ref == 1);
  3011. h->long_ref[i]->long_ref= 0;
  3012. h->long_ref[i]= NULL;
  3013. h->long_ref_count--;
  3014. }
  3015. }
  3016. return pic;
  3017. }
  3018. /**
  3019. * print short term list
  3020. */
  3021. static void print_short_term(H264Context *h) {
  3022. uint32_t i;
  3023. if(h->s.avctx->debug&FF_DEBUG_MMCO) {
  3024. av_log(h->s.avctx, AV_LOG_DEBUG, "short term list:\n");
  3025. for(i=0; i<h->short_ref_count; i++){
  3026. Picture *pic= h->short_ref[i];
  3027. av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
  3028. }
  3029. }
  3030. }
  3031. /**
  3032. * print long term list
  3033. */
  3034. static void print_long_term(H264Context *h) {
  3035. uint32_t i;
  3036. if(h->s.avctx->debug&FF_DEBUG_MMCO) {
  3037. av_log(h->s.avctx, AV_LOG_DEBUG, "long term list:\n");
  3038. for(i = 0; i < 16; i++){
  3039. Picture *pic= h->long_ref[i];
  3040. if (pic) {
  3041. av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
  3042. }
  3043. }
  3044. }
  3045. }
  3046. /**
  3047. * Executes the reference picture marking (memory management control operations).
  3048. */
  3049. static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){
  3050. MpegEncContext * const s = &h->s;
  3051. int i, j;
  3052. int current_ref_assigned=0;
  3053. Picture *pic;
  3054. if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0)
  3055. av_log(h->s.avctx, AV_LOG_DEBUG, "no mmco here\n");
  3056. for(i=0; i<mmco_count; i++){
  3057. int structure, frame_num;
  3058. if(s->avctx->debug&FF_DEBUG_MMCO)
  3059. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_pic_num, h->mmco[i].long_arg);
  3060. if( mmco[i].opcode == MMCO_SHORT2UNUSED
  3061. || mmco[i].opcode == MMCO_SHORT2LONG){
  3062. frame_num = pic_num_extract(h, mmco[i].short_pic_num, &structure);
  3063. pic = find_short(h, frame_num, &j);
  3064. if(!pic){
  3065. if(mmco[i].opcode != MMCO_SHORT2LONG || !h->long_ref[mmco[i].long_arg]
  3066. || h->long_ref[mmco[i].long_arg]->frame_num != frame_num)
  3067. av_log(h->s.avctx, AV_LOG_ERROR, "mmco: unref short failure\n");
  3068. continue;
  3069. }
  3070. }
  3071. switch(mmco[i].opcode){
  3072. case MMCO_SHORT2UNUSED:
  3073. if(s->avctx->debug&FF_DEBUG_MMCO)
  3074. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref short %d count %d\n", h->mmco[i].short_pic_num, h->short_ref_count);
  3075. remove_short(h, frame_num, structure ^ PICT_FRAME);
  3076. break;
  3077. case MMCO_SHORT2LONG:
  3078. if (h->long_ref[mmco[i].long_arg] != pic)
  3079. remove_long(h, mmco[i].long_arg, 0);
  3080. remove_short_at_index(h, j);
  3081. h->long_ref[ mmco[i].long_arg ]= pic;
  3082. if (h->long_ref[ mmco[i].long_arg ]){
  3083. h->long_ref[ mmco[i].long_arg ]->long_ref=1;
  3084. h->long_ref_count++;
  3085. }
  3086. break;
  3087. case MMCO_LONG2UNUSED:
  3088. j = pic_num_extract(h, mmco[i].long_arg, &structure);
  3089. pic = h->long_ref[j];
  3090. if (pic) {
  3091. remove_long(h, j, structure ^ PICT_FRAME);
  3092. } else if(s->avctx->debug&FF_DEBUG_MMCO)
  3093. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref long failure\n");
  3094. break;
  3095. case MMCO_LONG:
  3096. // Comment below left from previous code as it is an interresting note.
  3097. /* First field in pair is in short term list or
  3098. * at a different long term index.
  3099. * This is not allowed; see 7.4.3, notes 2 and 3.
  3100. * Report the problem and keep the pair where it is,
  3101. * and mark this field valid.
  3102. */
  3103. if (h->long_ref[mmco[i].long_arg] != s->current_picture_ptr) {
  3104. remove_long(h, mmco[i].long_arg, 0);
  3105. h->long_ref[ mmco[i].long_arg ]= s->current_picture_ptr;
  3106. h->long_ref[ mmco[i].long_arg ]->long_ref=1;
  3107. h->long_ref_count++;
  3108. }
  3109. s->current_picture_ptr->reference |= s->picture_structure;
  3110. current_ref_assigned=1;
  3111. break;
  3112. case MMCO_SET_MAX_LONG:
  3113. assert(mmco[i].long_arg <= 16);
  3114. // just remove the long term which index is greater than new max
  3115. for(j = mmco[i].long_arg; j<16; j++){
  3116. remove_long(h, j, 0);
  3117. }
  3118. break;
  3119. case MMCO_RESET:
  3120. while(h->short_ref_count){
  3121. remove_short(h, h->short_ref[0]->frame_num, 0);
  3122. }
  3123. for(j = 0; j < 16; j++) {
  3124. remove_long(h, j, 0);
  3125. }
  3126. s->current_picture_ptr->poc=
  3127. s->current_picture_ptr->field_poc[0]=
  3128. s->current_picture_ptr->field_poc[1]=
  3129. h->poc_lsb=
  3130. h->poc_msb=
  3131. h->frame_num=
  3132. s->current_picture_ptr->frame_num= 0;
  3133. break;
  3134. default: assert(0);
  3135. }
  3136. }
  3137. if (!current_ref_assigned) {
  3138. /* Second field of complementary field pair; the first field of
  3139. * which is already referenced. If short referenced, it
  3140. * should be first entry in short_ref. If not, it must exist
  3141. * in long_ref; trying to put it on the short list here is an
  3142. * error in the encoded bit stream (ref: 7.4.3, NOTE 2 and 3).
  3143. */
  3144. if (h->short_ref_count && h->short_ref[0] == s->current_picture_ptr) {
  3145. /* Just mark the second field valid */
  3146. s->current_picture_ptr->reference = PICT_FRAME;
  3147. } else if (s->current_picture_ptr->long_ref) {
  3148. av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term reference "
  3149. "assignment for second field "
  3150. "in complementary field pair "
  3151. "(first field is long term)\n");
  3152. } else {
  3153. pic= remove_short(h, s->current_picture_ptr->frame_num, 0);
  3154. if(pic){
  3155. av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term buffer state detected\n");
  3156. }
  3157. if(h->short_ref_count)
  3158. memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*));
  3159. h->short_ref[0]= s->current_picture_ptr;
  3160. h->short_ref_count++;
  3161. s->current_picture_ptr->reference |= s->picture_structure;
  3162. }
  3163. }
  3164. if (h->long_ref_count + h->short_ref_count > h->sps.ref_frame_count){
  3165. /* We have too many reference frames, probably due to corrupted
  3166. * stream. Need to discard one frame. Prevents overrun of the
  3167. * short_ref and long_ref buffers.
  3168. */
  3169. av_log(h->s.avctx, AV_LOG_ERROR,
  3170. "number of reference frames exceeds max (probably "
  3171. "corrupt input), discarding one\n");
  3172. if (h->long_ref_count && !h->short_ref_count) {
  3173. for (i = 0; i < 16; ++i)
  3174. if (h->long_ref[i])
  3175. break;
  3176. assert(i < 16);
  3177. remove_long(h, i, 0);
  3178. } else {
  3179. pic = h->short_ref[h->short_ref_count - 1];
  3180. remove_short(h, pic->frame_num, 0);
  3181. }
  3182. }
  3183. print_short_term(h);
  3184. print_long_term(h);
  3185. return 0;
  3186. }
  3187. static int decode_ref_pic_marking(H264Context *h, GetBitContext *gb){
  3188. MpegEncContext * const s = &h->s;
  3189. int i;
  3190. h->mmco_index= 0;
  3191. if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields
  3192. s->broken_link= get_bits1(gb) -1;
  3193. if(get_bits1(gb)){
  3194. h->mmco[0].opcode= MMCO_LONG;
  3195. h->mmco[0].long_arg= 0;
  3196. h->mmco_index= 1;
  3197. }
  3198. }else{
  3199. if(get_bits1(gb)){ // adaptive_ref_pic_marking_mode_flag
  3200. for(i= 0; i<MAX_MMCO_COUNT; i++) {
  3201. MMCOOpcode opcode= get_ue_golomb(gb);
  3202. h->mmco[i].opcode= opcode;
  3203. if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){
  3204. h->mmco[i].short_pic_num= (h->curr_pic_num - get_ue_golomb(gb) - 1) & (h->max_pic_num - 1);
  3205. /* if(h->mmco[i].short_pic_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_pic_num ] == NULL){
  3206. av_log(s->avctx, AV_LOG_ERROR, "illegal short ref in memory management control operation %d\n", mmco);
  3207. return -1;
  3208. }*/
  3209. }
  3210. if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){
  3211. unsigned int long_arg= get_ue_golomb(gb);
  3212. if(long_arg >= 32 || (long_arg >= 16 && !(opcode == MMCO_LONG2UNUSED && FIELD_PICTURE))){
  3213. av_log(h->s.avctx, AV_LOG_ERROR, "illegal long ref in memory management control operation %d\n", opcode);
  3214. return -1;
  3215. }
  3216. h->mmco[i].long_arg= long_arg;
  3217. }
  3218. if(opcode > (unsigned)MMCO_LONG){
  3219. av_log(h->s.avctx, AV_LOG_ERROR, "illegal memory management control operation %d\n", opcode);
  3220. return -1;
  3221. }
  3222. if(opcode == MMCO_END)
  3223. break;
  3224. }
  3225. h->mmco_index= i;
  3226. }else{
  3227. assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count);
  3228. if(h->short_ref_count && h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count &&
  3229. !(FIELD_PICTURE && !s->first_field && s->current_picture_ptr->reference)) {
  3230. h->mmco[0].opcode= MMCO_SHORT2UNUSED;
  3231. h->mmco[0].short_pic_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num;
  3232. h->mmco_index= 1;
  3233. if (FIELD_PICTURE) {
  3234. h->mmco[0].short_pic_num *= 2;
  3235. h->mmco[1].opcode= MMCO_SHORT2UNUSED;
  3236. h->mmco[1].short_pic_num= h->mmco[0].short_pic_num + 1;
  3237. h->mmco_index= 2;
  3238. }
  3239. }
  3240. }
  3241. }
  3242. return 0;
  3243. }
  3244. static int init_poc(H264Context *h){
  3245. MpegEncContext * const s = &h->s;
  3246. const int max_frame_num= 1<<h->sps.log2_max_frame_num;
  3247. int field_poc[2];
  3248. Picture *cur = s->current_picture_ptr;
  3249. h->frame_num_offset= h->prev_frame_num_offset;
  3250. if(h->frame_num < h->prev_frame_num)
  3251. h->frame_num_offset += max_frame_num;
  3252. if(h->sps.poc_type==0){
  3253. const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
  3254. if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
  3255. h->poc_msb = h->prev_poc_msb + max_poc_lsb;
  3256. else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
  3257. h->poc_msb = h->prev_poc_msb - max_poc_lsb;
  3258. else
  3259. h->poc_msb = h->prev_poc_msb;
  3260. //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
  3261. field_poc[0] =
  3262. field_poc[1] = h->poc_msb + h->poc_lsb;
  3263. if(s->picture_structure == PICT_FRAME)
  3264. field_poc[1] += h->delta_poc_bottom;
  3265. }else if(h->sps.poc_type==1){
  3266. int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
  3267. int i;
  3268. if(h->sps.poc_cycle_length != 0)
  3269. abs_frame_num = h->frame_num_offset + h->frame_num;
  3270. else
  3271. abs_frame_num = 0;
  3272. if(h->nal_ref_idc==0 && abs_frame_num > 0)
  3273. abs_frame_num--;
  3274. expected_delta_per_poc_cycle = 0;
  3275. for(i=0; i < h->sps.poc_cycle_length; i++)
  3276. expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
  3277. if(abs_frame_num > 0){
  3278. int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
  3279. int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
  3280. expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
  3281. for(i = 0; i <= frame_num_in_poc_cycle; i++)
  3282. expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
  3283. } else
  3284. expectedpoc = 0;
  3285. if(h->nal_ref_idc == 0)
  3286. expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
  3287. field_poc[0] = expectedpoc + h->delta_poc[0];
  3288. field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
  3289. if(s->picture_structure == PICT_FRAME)
  3290. field_poc[1] += h->delta_poc[1];
  3291. }else{
  3292. int poc= 2*(h->frame_num_offset + h->frame_num);
  3293. if(!h->nal_ref_idc)
  3294. poc--;
  3295. field_poc[0]= poc;
  3296. field_poc[1]= poc;
  3297. }
  3298. if(s->picture_structure != PICT_BOTTOM_FIELD)
  3299. s->current_picture_ptr->field_poc[0]= field_poc[0];
  3300. if(s->picture_structure != PICT_TOP_FIELD)
  3301. s->current_picture_ptr->field_poc[1]= field_poc[1];
  3302. cur->poc= FFMIN(cur->field_poc[0], cur->field_poc[1]);
  3303. return 0;
  3304. }
  3305. /**
  3306. * initialize scan tables
  3307. */
  3308. static void init_scan_tables(H264Context *h){
  3309. MpegEncContext * const s = &h->s;
  3310. int i;
  3311. if(s->dsp.h264_idct_add == ff_h264_idct_add_c){ //FIXME little ugly
  3312. memcpy(h->zigzag_scan, zigzag_scan, 16*sizeof(uint8_t));
  3313. memcpy(h-> field_scan, field_scan, 16*sizeof(uint8_t));
  3314. }else{
  3315. for(i=0; i<16; i++){
  3316. #define T(x) (x>>2) | ((x<<2) & 0xF)
  3317. h->zigzag_scan[i] = T(zigzag_scan[i]);
  3318. h-> field_scan[i] = T( field_scan[i]);
  3319. #undef T
  3320. }
  3321. }
  3322. if(s->dsp.h264_idct8_add == ff_h264_idct8_add_c){
  3323. memcpy(h->zigzag_scan8x8, zigzag_scan8x8, 64*sizeof(uint8_t));
  3324. memcpy(h->zigzag_scan8x8_cavlc, zigzag_scan8x8_cavlc, 64*sizeof(uint8_t));
  3325. memcpy(h->field_scan8x8, field_scan8x8, 64*sizeof(uint8_t));
  3326. memcpy(h->field_scan8x8_cavlc, field_scan8x8_cavlc, 64*sizeof(uint8_t));
  3327. }else{
  3328. for(i=0; i<64; i++){
  3329. #define T(x) (x>>3) | ((x&7)<<3)
  3330. h->zigzag_scan8x8[i] = T(zigzag_scan8x8[i]);
  3331. h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]);
  3332. h->field_scan8x8[i] = T(field_scan8x8[i]);
  3333. h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]);
  3334. #undef T
  3335. }
  3336. }
  3337. if(h->sps.transform_bypass){ //FIXME same ugly
  3338. h->zigzag_scan_q0 = zigzag_scan;
  3339. h->zigzag_scan8x8_q0 = zigzag_scan8x8;
  3340. h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc;
  3341. h->field_scan_q0 = field_scan;
  3342. h->field_scan8x8_q0 = field_scan8x8;
  3343. h->field_scan8x8_cavlc_q0 = field_scan8x8_cavlc;
  3344. }else{
  3345. h->zigzag_scan_q0 = h->zigzag_scan;
  3346. h->zigzag_scan8x8_q0 = h->zigzag_scan8x8;
  3347. h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc;
  3348. h->field_scan_q0 = h->field_scan;
  3349. h->field_scan8x8_q0 = h->field_scan8x8;
  3350. h->field_scan8x8_cavlc_q0 = h->field_scan8x8_cavlc;
  3351. }
  3352. }
  3353. /**
  3354. * Replicates H264 "master" context to thread contexts.
  3355. */
  3356. static void clone_slice(H264Context *dst, H264Context *src)
  3357. {
  3358. memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset));
  3359. dst->s.current_picture_ptr = src->s.current_picture_ptr;
  3360. dst->s.current_picture = src->s.current_picture;
  3361. dst->s.linesize = src->s.linesize;
  3362. dst->s.uvlinesize = src->s.uvlinesize;
  3363. dst->s.first_field = src->s.first_field;
  3364. dst->prev_poc_msb = src->prev_poc_msb;
  3365. dst->prev_poc_lsb = src->prev_poc_lsb;
  3366. dst->prev_frame_num_offset = src->prev_frame_num_offset;
  3367. dst->prev_frame_num = src->prev_frame_num;
  3368. dst->short_ref_count = src->short_ref_count;
  3369. memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref));
  3370. memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref));
  3371. memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list));
  3372. memcpy(dst->ref_list, src->ref_list, sizeof(dst->ref_list));
  3373. memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff));
  3374. memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff));
  3375. }
  3376. /**
  3377. * decodes a slice header.
  3378. * This will also call MPV_common_init() and frame_start() as needed.
  3379. *
  3380. * @param h h264context
  3381. * @param h0 h264 master context (differs from 'h' when doing sliced based parallel decoding)
  3382. *
  3383. * @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded
  3384. */
  3385. static int decode_slice_header(H264Context *h, H264Context *h0){
  3386. MpegEncContext * const s = &h->s;
  3387. MpegEncContext * const s0 = &h0->s;
  3388. unsigned int first_mb_in_slice;
  3389. unsigned int pps_id;
  3390. int num_ref_idx_active_override_flag;
  3391. static const uint8_t slice_type_map[5]= {FF_P_TYPE, FF_B_TYPE, FF_I_TYPE, FF_SP_TYPE, FF_SI_TYPE};
  3392. unsigned int slice_type, tmp, i, j;
  3393. int default_ref_list_done = 0;
  3394. int last_pic_structure;
  3395. s->dropable= h->nal_ref_idc == 0;
  3396. if((s->avctx->flags2 & CODEC_FLAG2_FAST) && !h->nal_ref_idc){
  3397. s->me.qpel_put= s->dsp.put_2tap_qpel_pixels_tab;
  3398. s->me.qpel_avg= s->dsp.avg_2tap_qpel_pixels_tab;
  3399. }else{
  3400. s->me.qpel_put= s->dsp.put_h264_qpel_pixels_tab;
  3401. s->me.qpel_avg= s->dsp.avg_h264_qpel_pixels_tab;
  3402. }
  3403. first_mb_in_slice= get_ue_golomb(&s->gb);
  3404. if((s->flags2 & CODEC_FLAG2_CHUNKS) && first_mb_in_slice == 0){
  3405. h0->current_slice = 0;
  3406. if (!s0->first_field)
  3407. s->current_picture_ptr= NULL;
  3408. }
  3409. slice_type= get_ue_golomb(&s->gb);
  3410. if(slice_type > 9){
  3411. av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
  3412. return -1;
  3413. }
  3414. if(slice_type > 4){
  3415. slice_type -= 5;
  3416. h->slice_type_fixed=1;
  3417. }else
  3418. h->slice_type_fixed=0;
  3419. slice_type= slice_type_map[ slice_type ];
  3420. if (slice_type == FF_I_TYPE
  3421. || (h0->current_slice != 0 && slice_type == h0->last_slice_type) ) {
  3422. default_ref_list_done = 1;
  3423. }
  3424. h->slice_type= slice_type;
  3425. h->slice_type_nos= slice_type & 3;
  3426. s->pict_type= h->slice_type; // to make a few old functions happy, it's wrong though
  3427. if (s->pict_type == FF_B_TYPE && s0->last_picture_ptr == NULL) {
  3428. av_log(h->s.avctx, AV_LOG_ERROR,
  3429. "B picture before any references, skipping\n");
  3430. return -1;
  3431. }
  3432. pps_id= get_ue_golomb(&s->gb);
  3433. if(pps_id>=MAX_PPS_COUNT){
  3434. av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
  3435. return -1;
  3436. }
  3437. if(!h0->pps_buffers[pps_id]) {
  3438. av_log(h->s.avctx, AV_LOG_ERROR, "non-existing PPS referenced\n");
  3439. return -1;
  3440. }
  3441. h->pps= *h0->pps_buffers[pps_id];
  3442. if(!h0->sps_buffers[h->pps.sps_id]) {
  3443. av_log(h->s.avctx, AV_LOG_ERROR, "non-existing SPS referenced\n");
  3444. return -1;
  3445. }
  3446. h->sps = *h0->sps_buffers[h->pps.sps_id];
  3447. if(h == h0 && h->dequant_coeff_pps != pps_id){
  3448. h->dequant_coeff_pps = pps_id;
  3449. init_dequant_tables(h);
  3450. }
  3451. s->mb_width= h->sps.mb_width;
  3452. s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
  3453. h->b_stride= s->mb_width*4;
  3454. h->b8_stride= s->mb_width*2;
  3455. s->width = 16*s->mb_width - 2*FFMIN(h->sps.crop_right, 7);
  3456. if(h->sps.frame_mbs_only_flag)
  3457. s->height= 16*s->mb_height - 2*FFMIN(h->sps.crop_bottom, 7);
  3458. else
  3459. s->height= 16*s->mb_height - 4*FFMIN(h->sps.crop_bottom, 3);
  3460. if (s->context_initialized
  3461. && ( s->width != s->avctx->width || s->height != s->avctx->height)) {
  3462. if(h != h0)
  3463. return -1; // width / height changed during parallelized decoding
  3464. free_tables(h);
  3465. MPV_common_end(s);
  3466. }
  3467. if (!s->context_initialized) {
  3468. if(h != h0)
  3469. return -1; // we cant (re-)initialize context during parallel decoding
  3470. if (MPV_common_init(s) < 0)
  3471. return -1;
  3472. s->first_field = 0;
  3473. init_scan_tables(h);
  3474. alloc_tables(h);
  3475. for(i = 1; i < s->avctx->thread_count; i++) {
  3476. H264Context *c;
  3477. c = h->thread_context[i] = av_malloc(sizeof(H264Context));
  3478. memcpy(c, h->s.thread_context[i], sizeof(MpegEncContext));
  3479. memset(&c->s + 1, 0, sizeof(H264Context) - sizeof(MpegEncContext));
  3480. c->sps = h->sps;
  3481. c->pps = h->pps;
  3482. init_scan_tables(c);
  3483. clone_tables(c, h);
  3484. }
  3485. for(i = 0; i < s->avctx->thread_count; i++)
  3486. if(context_init(h->thread_context[i]) < 0)
  3487. return -1;
  3488. s->avctx->width = s->width;
  3489. s->avctx->height = s->height;
  3490. s->avctx->sample_aspect_ratio= h->sps.sar;
  3491. if(!s->avctx->sample_aspect_ratio.den)
  3492. s->avctx->sample_aspect_ratio.den = 1;
  3493. if(h->sps.timing_info_present_flag){
  3494. s->avctx->time_base= (AVRational){h->sps.num_units_in_tick * 2, h->sps.time_scale};
  3495. if(h->x264_build > 0 && h->x264_build < 44)
  3496. s->avctx->time_base.den *= 2;
  3497. av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
  3498. s->avctx->time_base.num, s->avctx->time_base.den, 1<<30);
  3499. }
  3500. }
  3501. h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
  3502. h->mb_mbaff = 0;
  3503. h->mb_aff_frame = 0;
  3504. last_pic_structure = s0->picture_structure;
  3505. if(h->sps.frame_mbs_only_flag){
  3506. s->picture_structure= PICT_FRAME;
  3507. }else{
  3508. if(get_bits1(&s->gb)) { //field_pic_flag
  3509. s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
  3510. } else {
  3511. s->picture_structure= PICT_FRAME;
  3512. h->mb_aff_frame = h->sps.mb_aff;
  3513. }
  3514. }
  3515. if(h0->current_slice == 0){
  3516. while(h->frame_num != h->prev_frame_num &&
  3517. h->frame_num != (h->prev_frame_num+1)%(1<<h->sps.log2_max_frame_num)){
  3518. av_log(NULL, AV_LOG_DEBUG, "Frame num gap %d %d\n", h->frame_num, h->prev_frame_num);
  3519. frame_start(h);
  3520. h->prev_frame_num++;
  3521. h->prev_frame_num %= 1<<h->sps.log2_max_frame_num;
  3522. s->current_picture_ptr->frame_num= h->prev_frame_num;
  3523. execute_ref_pic_marking(h, NULL, 0);
  3524. }
  3525. /* See if we have a decoded first field looking for a pair... */
  3526. if (s0->first_field) {
  3527. assert(s0->current_picture_ptr);
  3528. assert(s0->current_picture_ptr->data[0]);
  3529. assert(s0->current_picture_ptr->reference != DELAYED_PIC_REF);
  3530. /* figure out if we have a complementary field pair */
  3531. if (!FIELD_PICTURE || s->picture_structure == last_pic_structure) {
  3532. /*
  3533. * Previous field is unmatched. Don't display it, but let it
  3534. * remain for reference if marked as such.
  3535. */
  3536. s0->current_picture_ptr = NULL;
  3537. s0->first_field = FIELD_PICTURE;
  3538. } else {
  3539. if (h->nal_ref_idc &&
  3540. s0->current_picture_ptr->reference &&
  3541. s0->current_picture_ptr->frame_num != h->frame_num) {
  3542. /*
  3543. * This and previous field were reference, but had
  3544. * different frame_nums. Consider this field first in
  3545. * pair. Throw away previous field except for reference
  3546. * purposes.
  3547. */
  3548. s0->first_field = 1;
  3549. s0->current_picture_ptr = NULL;
  3550. } else {
  3551. /* Second field in complementary pair */
  3552. s0->first_field = 0;
  3553. }
  3554. }
  3555. } else {
  3556. /* Frame or first field in a potentially complementary pair */
  3557. assert(!s0->current_picture_ptr);
  3558. s0->first_field = FIELD_PICTURE;
  3559. }
  3560. if((!FIELD_PICTURE || s0->first_field) && frame_start(h) < 0) {
  3561. s0->first_field = 0;
  3562. return -1;
  3563. }
  3564. }
  3565. if(h != h0)
  3566. clone_slice(h, h0);
  3567. s->current_picture_ptr->frame_num= h->frame_num; //FIXME frame_num cleanup
  3568. assert(s->mb_num == s->mb_width * s->mb_height);
  3569. if(first_mb_in_slice << FIELD_OR_MBAFF_PICTURE >= s->mb_num ||
  3570. first_mb_in_slice >= s->mb_num){
  3571. av_log(h->s.avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
  3572. return -1;
  3573. }
  3574. s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
  3575. s->resync_mb_y = s->mb_y = (first_mb_in_slice / s->mb_width) << FIELD_OR_MBAFF_PICTURE;
  3576. if (s->picture_structure == PICT_BOTTOM_FIELD)
  3577. s->resync_mb_y = s->mb_y = s->mb_y + 1;
  3578. assert(s->mb_y < s->mb_height);
  3579. if(s->picture_structure==PICT_FRAME){
  3580. h->curr_pic_num= h->frame_num;
  3581. h->max_pic_num= 1<< h->sps.log2_max_frame_num;
  3582. }else{
  3583. h->curr_pic_num= 2*h->frame_num + 1;
  3584. h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
  3585. }
  3586. if(h->nal_unit_type == NAL_IDR_SLICE){
  3587. get_ue_golomb(&s->gb); /* idr_pic_id */
  3588. }
  3589. if(h->sps.poc_type==0){
  3590. h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
  3591. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
  3592. h->delta_poc_bottom= get_se_golomb(&s->gb);
  3593. }
  3594. }
  3595. if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
  3596. h->delta_poc[0]= get_se_golomb(&s->gb);
  3597. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
  3598. h->delta_poc[1]= get_se_golomb(&s->gb);
  3599. }
  3600. init_poc(h);
  3601. if(h->pps.redundant_pic_cnt_present){
  3602. h->redundant_pic_count= get_ue_golomb(&s->gb);
  3603. }
  3604. //set defaults, might be overridden a few lines later
  3605. h->ref_count[0]= h->pps.ref_count[0];
  3606. h->ref_count[1]= h->pps.ref_count[1];
  3607. if(h->slice_type_nos != FF_I_TYPE){
  3608. if(h->slice_type_nos == FF_B_TYPE){
  3609. h->direct_spatial_mv_pred= get_bits1(&s->gb);
  3610. }
  3611. num_ref_idx_active_override_flag= get_bits1(&s->gb);
  3612. if(num_ref_idx_active_override_flag){
  3613. h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  3614. if(h->slice_type_nos==FF_B_TYPE)
  3615. h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  3616. if(h->ref_count[0]-1 > 32-1 || h->ref_count[1]-1 > 32-1){
  3617. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
  3618. h->ref_count[0]= h->ref_count[1]= 1;
  3619. return -1;
  3620. }
  3621. }
  3622. if(h->slice_type_nos == FF_B_TYPE)
  3623. h->list_count= 2;
  3624. else
  3625. h->list_count= 1;
  3626. }else
  3627. h->list_count= 0;
  3628. if(!default_ref_list_done){
  3629. fill_default_ref_list(h);
  3630. }
  3631. if(decode_ref_pic_list_reordering(h) < 0)
  3632. return -1;
  3633. if( (h->pps.weighted_pred && h->slice_type_nos == FF_P_TYPE )
  3634. || (h->pps.weighted_bipred_idc==1 && h->slice_type_nos== FF_B_TYPE ) )
  3635. pred_weight_table(h);
  3636. else if(h->pps.weighted_bipred_idc==2 && h->slice_type_nos== FF_B_TYPE)
  3637. implicit_weight_table(h);
  3638. else
  3639. h->use_weight = 0;
  3640. if(h->nal_ref_idc)
  3641. decode_ref_pic_marking(h0, &s->gb);
  3642. if(FRAME_MBAFF)
  3643. fill_mbaff_ref_list(h);
  3644. if( h->slice_type_nos != FF_I_TYPE && h->pps.cabac ){
  3645. tmp = get_ue_golomb(&s->gb);
  3646. if(tmp > 2){
  3647. av_log(s->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n");
  3648. return -1;
  3649. }
  3650. h->cabac_init_idc= tmp;
  3651. }
  3652. h->last_qscale_diff = 0;
  3653. tmp = h->pps.init_qp + get_se_golomb(&s->gb);
  3654. if(tmp>51){
  3655. av_log(s->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
  3656. return -1;
  3657. }
  3658. s->qscale= tmp;
  3659. h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
  3660. h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
  3661. //FIXME qscale / qp ... stuff
  3662. if(h->slice_type == FF_SP_TYPE){
  3663. get_bits1(&s->gb); /* sp_for_switch_flag */
  3664. }
  3665. if(h->slice_type==FF_SP_TYPE || h->slice_type == FF_SI_TYPE){
  3666. get_se_golomb(&s->gb); /* slice_qs_delta */
  3667. }
  3668. h->deblocking_filter = 1;
  3669. h->slice_alpha_c0_offset = 0;
  3670. h->slice_beta_offset = 0;
  3671. if( h->pps.deblocking_filter_parameters_present ) {
  3672. tmp= get_ue_golomb(&s->gb);
  3673. if(tmp > 2){
  3674. av_log(s->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp);
  3675. return -1;
  3676. }
  3677. h->deblocking_filter= tmp;
  3678. if(h->deblocking_filter < 2)
  3679. h->deblocking_filter^= 1; // 1<->0
  3680. if( h->deblocking_filter ) {
  3681. h->slice_alpha_c0_offset = get_se_golomb(&s->gb) << 1;
  3682. h->slice_beta_offset = get_se_golomb(&s->gb) << 1;
  3683. }
  3684. }
  3685. if( s->avctx->skip_loop_filter >= AVDISCARD_ALL
  3686. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type_nos != FF_I_TYPE)
  3687. ||(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type_nos == FF_B_TYPE)
  3688. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  3689. h->deblocking_filter= 0;
  3690. if(h->deblocking_filter == 1 && h0->max_contexts > 1) {
  3691. if(s->avctx->flags2 & CODEC_FLAG2_FAST) {
  3692. /* Cheat slightly for speed:
  3693. Do not bother to deblock across slices. */
  3694. h->deblocking_filter = 2;
  3695. } else {
  3696. h0->max_contexts = 1;
  3697. if(!h0->single_decode_warning) {
  3698. av_log(s->avctx, AV_LOG_INFO, "Cannot parallelize deblocking type 1, decoding such frames in sequential order\n");
  3699. h0->single_decode_warning = 1;
  3700. }
  3701. if(h != h0)
  3702. return 1; // deblocking switched inside frame
  3703. }
  3704. }
  3705. #if 0 //FMO
  3706. if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
  3707. slice_group_change_cycle= get_bits(&s->gb, ?);
  3708. #endif
  3709. h0->last_slice_type = slice_type;
  3710. h->slice_num = ++h0->current_slice;
  3711. for(j=0; j<2; j++){
  3712. int *ref2frm= h->ref2frm[h->slice_num&15][j];
  3713. ref2frm[0]=
  3714. ref2frm[1]= -1;
  3715. for(i=0; i<48; i++)
  3716. ref2frm[i+2]= 4*h->ref_list[j][i].frame_num
  3717. +(h->ref_list[j][i].reference&3);
  3718. }
  3719. h->emu_edge_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
  3720. h->emu_edge_height= (FRAME_MBAFF || FIELD_PICTURE) ? 0 : h->emu_edge_width;
  3721. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  3722. av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
  3723. h->slice_num,
  3724. (s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"),
  3725. first_mb_in_slice,
  3726. av_get_pict_type_char(h->slice_type),
  3727. pps_id, h->frame_num,
  3728. s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
  3729. h->ref_count[0], h->ref_count[1],
  3730. s->qscale,
  3731. h->deblocking_filter, h->slice_alpha_c0_offset/2, h->slice_beta_offset/2,
  3732. h->use_weight,
  3733. h->use_weight==1 && h->use_weight_chroma ? "c" : "",
  3734. h->slice_type == FF_B_TYPE ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : ""
  3735. );
  3736. }
  3737. return 0;
  3738. }
  3739. /**
  3740. *
  3741. */
  3742. static inline int get_level_prefix(GetBitContext *gb){
  3743. unsigned int buf;
  3744. int log;
  3745. OPEN_READER(re, gb);
  3746. UPDATE_CACHE(re, gb);
  3747. buf=GET_CACHE(re, gb);
  3748. log= 32 - av_log2(buf);
  3749. #ifdef TRACE
  3750. print_bin(buf>>(32-log), log);
  3751. av_log(NULL, AV_LOG_DEBUG, "%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
  3752. #endif
  3753. LAST_SKIP_BITS(re, gb, log);
  3754. CLOSE_READER(re, gb);
  3755. return log-1;
  3756. }
  3757. static inline int get_dct8x8_allowed(H264Context *h){
  3758. int i;
  3759. for(i=0; i<4; i++){
  3760. if(!IS_SUB_8X8(h->sub_mb_type[i])
  3761. || (!h->sps.direct_8x8_inference_flag && IS_DIRECT(h->sub_mb_type[i])))
  3762. return 0;
  3763. }
  3764. return 1;
  3765. }
  3766. /**
  3767. * decodes a residual block.
  3768. * @param n block index
  3769. * @param scantable scantable
  3770. * @param max_coeff number of coefficients in the block
  3771. * @return <0 if an error occurred
  3772. */
  3773. static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff){
  3774. MpegEncContext * const s = &h->s;
  3775. static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
  3776. int level[16];
  3777. int zeros_left, coeff_num, coeff_token, total_coeff, i, j, trailing_ones, run_before;
  3778. //FIXME put trailing_onex into the context
  3779. if(n == CHROMA_DC_BLOCK_INDEX){
  3780. coeff_token= get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
  3781. total_coeff= coeff_token>>2;
  3782. }else{
  3783. if(n == LUMA_DC_BLOCK_INDEX){
  3784. total_coeff= pred_non_zero_count(h, 0);
  3785. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  3786. total_coeff= coeff_token>>2;
  3787. }else{
  3788. total_coeff= pred_non_zero_count(h, n);
  3789. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  3790. total_coeff= coeff_token>>2;
  3791. h->non_zero_count_cache[ scan8[n] ]= total_coeff;
  3792. }
  3793. }
  3794. //FIXME set last_non_zero?
  3795. if(total_coeff==0)
  3796. return 0;
  3797. if(total_coeff > (unsigned)max_coeff) {
  3798. av_log(h->s.avctx, AV_LOG_ERROR, "corrupted macroblock %d %d (total_coeff=%d)\n", s->mb_x, s->mb_y, total_coeff);
  3799. return -1;
  3800. }
  3801. trailing_ones= coeff_token&3;
  3802. tprintf(h->s.avctx, "trailing:%d, total:%d\n", trailing_ones, total_coeff);
  3803. assert(total_coeff<=16);
  3804. for(i=0; i<trailing_ones; i++){
  3805. level[i]= 1 - 2*get_bits1(gb);
  3806. }
  3807. if(i<total_coeff) {
  3808. int level_code, mask;
  3809. int suffix_length = total_coeff > 10 && trailing_ones < 3;
  3810. int prefix= get_level_prefix(gb);
  3811. //first coefficient has suffix_length equal to 0 or 1
  3812. if(prefix<14){ //FIXME try to build a large unified VLC table for all this
  3813. if(suffix_length)
  3814. level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
  3815. else
  3816. level_code= (prefix<<suffix_length); //part
  3817. }else if(prefix==14){
  3818. if(suffix_length)
  3819. level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
  3820. else
  3821. level_code= prefix + get_bits(gb, 4); //part
  3822. }else{
  3823. level_code= (15<<suffix_length) + get_bits(gb, prefix-3); //part
  3824. if(suffix_length==0) level_code+=15; //FIXME doesn't make (much)sense
  3825. if(prefix>=16)
  3826. level_code += (1<<(prefix-3))-4096;
  3827. }
  3828. if(trailing_ones < 3) level_code += 2;
  3829. suffix_length = 1;
  3830. if(level_code > 5)
  3831. suffix_length++;
  3832. mask= -(level_code&1);
  3833. level[i]= (((2+level_code)>>1) ^ mask) - mask;
  3834. i++;
  3835. //remaining coefficients have suffix_length > 0
  3836. for(;i<total_coeff;i++) {
  3837. static const int suffix_limit[7] = {0,5,11,23,47,95,INT_MAX };
  3838. prefix = get_level_prefix(gb);
  3839. if(prefix<15){
  3840. level_code = (prefix<<suffix_length) + get_bits(gb, suffix_length);
  3841. }else{
  3842. level_code = (15<<suffix_length) + get_bits(gb, prefix-3);
  3843. if(prefix>=16)
  3844. level_code += (1<<(prefix-3))-4096;
  3845. }
  3846. mask= -(level_code&1);
  3847. level[i]= (((2+level_code)>>1) ^ mask) - mask;
  3848. if(level_code > suffix_limit[suffix_length])
  3849. suffix_length++;
  3850. }
  3851. }
  3852. if(total_coeff == max_coeff)
  3853. zeros_left=0;
  3854. else{
  3855. if(n == CHROMA_DC_BLOCK_INDEX)
  3856. zeros_left= get_vlc2(gb, chroma_dc_total_zeros_vlc[ total_coeff-1 ].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
  3857. else
  3858. zeros_left= get_vlc2(gb, total_zeros_vlc[ total_coeff-1 ].table, TOTAL_ZEROS_VLC_BITS, 1);
  3859. }
  3860. coeff_num = zeros_left + total_coeff - 1;
  3861. j = scantable[coeff_num];
  3862. if(n > 24){
  3863. block[j] = level[0];
  3864. for(i=1;i<total_coeff;i++) {
  3865. if(zeros_left <= 0)
  3866. run_before = 0;
  3867. else if(zeros_left < 7){
  3868. run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
  3869. }else{
  3870. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
  3871. }
  3872. zeros_left -= run_before;
  3873. coeff_num -= 1 + run_before;
  3874. j= scantable[ coeff_num ];
  3875. block[j]= level[i];
  3876. }
  3877. }else{
  3878. block[j] = (level[0] * qmul[j] + 32)>>6;
  3879. for(i=1;i<total_coeff;i++) {
  3880. if(zeros_left <= 0)
  3881. run_before = 0;
  3882. else if(zeros_left < 7){
  3883. run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
  3884. }else{
  3885. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
  3886. }
  3887. zeros_left -= run_before;
  3888. coeff_num -= 1 + run_before;
  3889. j= scantable[ coeff_num ];
  3890. block[j]= (level[i] * qmul[j] + 32)>>6;
  3891. }
  3892. }
  3893. if(zeros_left<0){
  3894. av_log(h->s.avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", s->mb_x, s->mb_y);
  3895. return -1;
  3896. }
  3897. return 0;
  3898. }
  3899. static void predict_field_decoding_flag(H264Context *h){
  3900. MpegEncContext * const s = &h->s;
  3901. const int mb_xy= h->mb_xy;
  3902. int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
  3903. ? s->current_picture.mb_type[mb_xy-1]
  3904. : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
  3905. ? s->current_picture.mb_type[mb_xy-s->mb_stride]
  3906. : 0;
  3907. h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
  3908. }
  3909. /**
  3910. * decodes a P_SKIP or B_SKIP macroblock
  3911. */
  3912. static void decode_mb_skip(H264Context *h){
  3913. MpegEncContext * const s = &h->s;
  3914. const int mb_xy= h->mb_xy;
  3915. int mb_type=0;
  3916. memset(h->non_zero_count[mb_xy], 0, 16);
  3917. memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
  3918. if(MB_FIELD)
  3919. mb_type|= MB_TYPE_INTERLACED;
  3920. if( h->slice_type_nos == FF_B_TYPE )
  3921. {
  3922. // just for fill_caches. pred_direct_motion will set the real mb_type
  3923. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
  3924. fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
  3925. pred_direct_motion(h, &mb_type);
  3926. mb_type|= MB_TYPE_SKIP;
  3927. }
  3928. else
  3929. {
  3930. int mx, my;
  3931. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
  3932. fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
  3933. pred_pskip_motion(h, &mx, &my);
  3934. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
  3935. fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
  3936. }
  3937. write_back_motion(h, mb_type);
  3938. s->current_picture.mb_type[mb_xy]= mb_type;
  3939. s->current_picture.qscale_table[mb_xy]= s->qscale;
  3940. h->slice_table[ mb_xy ]= h->slice_num;
  3941. h->prev_mb_skipped= 1;
  3942. }
  3943. /**
  3944. * decodes a macroblock
  3945. * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  3946. */
  3947. static int decode_mb_cavlc(H264Context *h){
  3948. MpegEncContext * const s = &h->s;
  3949. int mb_xy;
  3950. int partition_count;
  3951. unsigned int mb_type, cbp;
  3952. int dct8x8_allowed= h->pps.transform_8x8_mode;
  3953. mb_xy = h->mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  3954. s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?
  3955. tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
  3956. cbp = 0; /* avoid warning. FIXME: find a solution without slowing
  3957. down the code */
  3958. if(h->slice_type_nos != FF_I_TYPE){
  3959. if(s->mb_skip_run==-1)
  3960. s->mb_skip_run= get_ue_golomb(&s->gb);
  3961. if (s->mb_skip_run--) {
  3962. if(FRAME_MBAFF && (s->mb_y&1) == 0){
  3963. if(s->mb_skip_run==0)
  3964. h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb);
  3965. else
  3966. predict_field_decoding_flag(h);
  3967. }
  3968. decode_mb_skip(h);
  3969. return 0;
  3970. }
  3971. }
  3972. if(FRAME_MBAFF){
  3973. if( (s->mb_y&1) == 0 )
  3974. h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb);
  3975. }else
  3976. h->mb_field_decoding_flag= (s->picture_structure!=PICT_FRAME);
  3977. h->prev_mb_skipped= 0;
  3978. mb_type= get_ue_golomb(&s->gb);
  3979. if(h->slice_type_nos == FF_B_TYPE){
  3980. if(mb_type < 23){
  3981. partition_count= b_mb_type_info[mb_type].partition_count;
  3982. mb_type= b_mb_type_info[mb_type].type;
  3983. }else{
  3984. mb_type -= 23;
  3985. goto decode_intra_mb;
  3986. }
  3987. }else if(h->slice_type_nos == FF_P_TYPE){
  3988. if(mb_type < 5){
  3989. partition_count= p_mb_type_info[mb_type].partition_count;
  3990. mb_type= p_mb_type_info[mb_type].type;
  3991. }else{
  3992. mb_type -= 5;
  3993. goto decode_intra_mb;
  3994. }
  3995. }else{
  3996. assert(h->slice_type_nos == FF_I_TYPE);
  3997. if(h->slice_type == FF_SI_TYPE && mb_type)
  3998. mb_type--;
  3999. decode_intra_mb:
  4000. if(mb_type > 25){
  4001. av_log(h->s.avctx, AV_LOG_ERROR, "mb_type %d in %c slice too large at %d %d\n", mb_type, av_get_pict_type_char(h->slice_type), s->mb_x, s->mb_y);
  4002. return -1;
  4003. }
  4004. partition_count=0;
  4005. cbp= i_mb_type_info[mb_type].cbp;
  4006. h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
  4007. mb_type= i_mb_type_info[mb_type].type;
  4008. }
  4009. if(MB_FIELD)
  4010. mb_type |= MB_TYPE_INTERLACED;
  4011. h->slice_table[ mb_xy ]= h->slice_num;
  4012. if(IS_INTRA_PCM(mb_type)){
  4013. unsigned int x, y;
  4014. // We assume these blocks are very rare so we do not optimize it.
  4015. align_get_bits(&s->gb);
  4016. // The pixels are stored in the same order as levels in h->mb array.
  4017. for(y=0; y<16; y++){
  4018. const int index= 4*(y&3) + 32*((y>>2)&1) + 128*(y>>3);
  4019. for(x=0; x<16; x++){
  4020. tprintf(s->avctx, "LUMA ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4021. h->mb[index + (x&3) + 16*((x>>2)&1) + 64*(x>>3)]= get_bits(&s->gb, 8);
  4022. }
  4023. }
  4024. for(y=0; y<8; y++){
  4025. const int index= 256 + 4*(y&3) + 32*(y>>2);
  4026. for(x=0; x<8; x++){
  4027. tprintf(s->avctx, "CHROMA U ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4028. h->mb[index + (x&3) + 16*(x>>2)]= get_bits(&s->gb, 8);
  4029. }
  4030. }
  4031. for(y=0; y<8; y++){
  4032. const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
  4033. for(x=0; x<8; x++){
  4034. tprintf(s->avctx, "CHROMA V ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4035. h->mb[index + (x&3) + 16*(x>>2)]= get_bits(&s->gb, 8);
  4036. }
  4037. }
  4038. // In deblocking, the quantizer is 0
  4039. s->current_picture.qscale_table[mb_xy]= 0;
  4040. // All coeffs are present
  4041. memset(h->non_zero_count[mb_xy], 16, 16);
  4042. s->current_picture.mb_type[mb_xy]= mb_type;
  4043. return 0;
  4044. }
  4045. if(MB_MBAFF){
  4046. h->ref_count[0] <<= 1;
  4047. h->ref_count[1] <<= 1;
  4048. }
  4049. fill_caches(h, mb_type, 0);
  4050. //mb_pred
  4051. if(IS_INTRA(mb_type)){
  4052. int pred_mode;
  4053. // init_top_left_availability(h);
  4054. if(IS_INTRA4x4(mb_type)){
  4055. int i;
  4056. int di = 1;
  4057. if(dct8x8_allowed && get_bits1(&s->gb)){
  4058. mb_type |= MB_TYPE_8x8DCT;
  4059. di = 4;
  4060. }
  4061. // fill_intra4x4_pred_table(h);
  4062. for(i=0; i<16; i+=di){
  4063. int mode= pred_intra_mode(h, i);
  4064. if(!get_bits1(&s->gb)){
  4065. const int rem_mode= get_bits(&s->gb, 3);
  4066. mode = rem_mode + (rem_mode >= mode);
  4067. }
  4068. if(di==4)
  4069. fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
  4070. else
  4071. h->intra4x4_pred_mode_cache[ scan8[i] ] = mode;
  4072. }
  4073. write_back_intra_pred_mode(h);
  4074. if( check_intra4x4_pred_mode(h) < 0)
  4075. return -1;
  4076. }else{
  4077. h->intra16x16_pred_mode= check_intra_pred_mode(h, h->intra16x16_pred_mode);
  4078. if(h->intra16x16_pred_mode < 0)
  4079. return -1;
  4080. }
  4081. pred_mode= check_intra_pred_mode(h, get_ue_golomb(&s->gb));
  4082. if(pred_mode < 0)
  4083. return -1;
  4084. h->chroma_pred_mode= pred_mode;
  4085. }else if(partition_count==4){
  4086. int i, j, sub_partition_count[4], list, ref[2][4];
  4087. if(h->slice_type_nos == FF_B_TYPE){
  4088. for(i=0; i<4; i++){
  4089. h->sub_mb_type[i]= get_ue_golomb(&s->gb);
  4090. if(h->sub_mb_type[i] >=13){
  4091. av_log(h->s.avctx, AV_LOG_ERROR, "B sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
  4092. return -1;
  4093. }
  4094. sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  4095. h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  4096. }
  4097. if( IS_DIRECT(h->sub_mb_type[0]) || IS_DIRECT(h->sub_mb_type[1])
  4098. || IS_DIRECT(h->sub_mb_type[2]) || IS_DIRECT(h->sub_mb_type[3])) {
  4099. pred_direct_motion(h, &mb_type);
  4100. h->ref_cache[0][scan8[4]] =
  4101. h->ref_cache[1][scan8[4]] =
  4102. h->ref_cache[0][scan8[12]] =
  4103. h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
  4104. }
  4105. }else{
  4106. assert(h->slice_type_nos == FF_P_TYPE); //FIXME SP correct ?
  4107. for(i=0; i<4; i++){
  4108. h->sub_mb_type[i]= get_ue_golomb(&s->gb);
  4109. if(h->sub_mb_type[i] >=4){
  4110. av_log(h->s.avctx, AV_LOG_ERROR, "P sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
  4111. return -1;
  4112. }
  4113. sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  4114. h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  4115. }
  4116. }
  4117. for(list=0; list<h->list_count; list++){
  4118. int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
  4119. for(i=0; i<4; i++){
  4120. if(IS_DIRECT(h->sub_mb_type[i])) continue;
  4121. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  4122. unsigned int tmp = get_te0_golomb(&s->gb, ref_count); //FIXME init to 0 before and skip?
  4123. if(tmp>=ref_count){
  4124. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", tmp);
  4125. return -1;
  4126. }
  4127. ref[list][i]= tmp;
  4128. }else{
  4129. //FIXME
  4130. ref[list][i] = -1;
  4131. }
  4132. }
  4133. }
  4134. if(dct8x8_allowed)
  4135. dct8x8_allowed = get_dct8x8_allowed(h);
  4136. for(list=0; list<h->list_count; list++){
  4137. for(i=0; i<4; i++){
  4138. if(IS_DIRECT(h->sub_mb_type[i])) {
  4139. h->ref_cache[list][ scan8[4*i] ] = h->ref_cache[list][ scan8[4*i]+1 ];
  4140. continue;
  4141. }
  4142. h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ]=
  4143. h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  4144. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  4145. const int sub_mb_type= h->sub_mb_type[i];
  4146. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  4147. for(j=0; j<sub_partition_count[i]; j++){
  4148. int mx, my;
  4149. const int index= 4*i + block_width*j;
  4150. int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
  4151. pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my);
  4152. mx += get_se_golomb(&s->gb);
  4153. my += get_se_golomb(&s->gb);
  4154. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4155. if(IS_SUB_8X8(sub_mb_type)){
  4156. mv_cache[ 1 ][0]=
  4157. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  4158. mv_cache[ 1 ][1]=
  4159. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  4160. }else if(IS_SUB_8X4(sub_mb_type)){
  4161. mv_cache[ 1 ][0]= mx;
  4162. mv_cache[ 1 ][1]= my;
  4163. }else if(IS_SUB_4X8(sub_mb_type)){
  4164. mv_cache[ 8 ][0]= mx;
  4165. mv_cache[ 8 ][1]= my;
  4166. }
  4167. mv_cache[ 0 ][0]= mx;
  4168. mv_cache[ 0 ][1]= my;
  4169. }
  4170. }else{
  4171. uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
  4172. p[0] = p[1]=
  4173. p[8] = p[9]= 0;
  4174. }
  4175. }
  4176. }
  4177. }else if(IS_DIRECT(mb_type)){
  4178. pred_direct_motion(h, &mb_type);
  4179. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  4180. }else{
  4181. int list, mx, my, i;
  4182. //FIXME we should set ref_idx_l? to 0 if we use that later ...
  4183. if(IS_16X16(mb_type)){
  4184. for(list=0; list<h->list_count; list++){
  4185. unsigned int val;
  4186. if(IS_DIR(mb_type, 0, list)){
  4187. val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4188. if(val >= h->ref_count[list]){
  4189. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  4190. return -1;
  4191. }
  4192. }else
  4193. val= LIST_NOT_USED&0xFF;
  4194. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
  4195. }
  4196. for(list=0; list<h->list_count; list++){
  4197. unsigned int val;
  4198. if(IS_DIR(mb_type, 0, list)){
  4199. pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my);
  4200. mx += get_se_golomb(&s->gb);
  4201. my += get_se_golomb(&s->gb);
  4202. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4203. val= pack16to32(mx,my);
  4204. }else
  4205. val=0;
  4206. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, val, 4);
  4207. }
  4208. }
  4209. else if(IS_16X8(mb_type)){
  4210. for(list=0; list<h->list_count; list++){
  4211. for(i=0; i<2; i++){
  4212. unsigned int val;
  4213. if(IS_DIR(mb_type, i, list)){
  4214. val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4215. if(val >= h->ref_count[list]){
  4216. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  4217. return -1;
  4218. }
  4219. }else
  4220. val= LIST_NOT_USED&0xFF;
  4221. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
  4222. }
  4223. }
  4224. for(list=0; list<h->list_count; list++){
  4225. for(i=0; i<2; i++){
  4226. unsigned int val;
  4227. if(IS_DIR(mb_type, i, list)){
  4228. pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my);
  4229. mx += get_se_golomb(&s->gb);
  4230. my += get_se_golomb(&s->gb);
  4231. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4232. val= pack16to32(mx,my);
  4233. }else
  4234. val=0;
  4235. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 4);
  4236. }
  4237. }
  4238. }else{
  4239. assert(IS_8X16(mb_type));
  4240. for(list=0; list<h->list_count; list++){
  4241. for(i=0; i<2; i++){
  4242. unsigned int val;
  4243. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  4244. val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4245. if(val >= h->ref_count[list]){
  4246. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  4247. return -1;
  4248. }
  4249. }else
  4250. val= LIST_NOT_USED&0xFF;
  4251. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
  4252. }
  4253. }
  4254. for(list=0; list<h->list_count; list++){
  4255. for(i=0; i<2; i++){
  4256. unsigned int val;
  4257. if(IS_DIR(mb_type, i, list)){
  4258. pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
  4259. mx += get_se_golomb(&s->gb);
  4260. my += get_se_golomb(&s->gb);
  4261. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4262. val= pack16to32(mx,my);
  4263. }else
  4264. val=0;
  4265. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 4);
  4266. }
  4267. }
  4268. }
  4269. }
  4270. if(IS_INTER(mb_type))
  4271. write_back_motion(h, mb_type);
  4272. if(!IS_INTRA16x16(mb_type)){
  4273. cbp= get_ue_golomb(&s->gb);
  4274. if(cbp > 47){
  4275. av_log(h->s.avctx, AV_LOG_ERROR, "cbp too large (%u) at %d %d\n", cbp, s->mb_x, s->mb_y);
  4276. return -1;
  4277. }
  4278. if(IS_INTRA4x4(mb_type))
  4279. cbp= golomb_to_intra4x4_cbp[cbp];
  4280. else
  4281. cbp= golomb_to_inter_cbp[cbp];
  4282. }
  4283. h->cbp = cbp;
  4284. if(dct8x8_allowed && (cbp&15) && !IS_INTRA(mb_type)){
  4285. if(get_bits1(&s->gb)){
  4286. mb_type |= MB_TYPE_8x8DCT;
  4287. h->cbp_table[mb_xy]= cbp;
  4288. }
  4289. }
  4290. s->current_picture.mb_type[mb_xy]= mb_type;
  4291. if(cbp || IS_INTRA16x16(mb_type)){
  4292. int i8x8, i4x4, chroma_idx;
  4293. int dquant;
  4294. GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr;
  4295. const uint8_t *scan, *scan8x8, *dc_scan;
  4296. // fill_non_zero_count_cache(h);
  4297. if(IS_INTERLACED(mb_type)){
  4298. scan8x8= s->qscale ? h->field_scan8x8_cavlc : h->field_scan8x8_cavlc_q0;
  4299. scan= s->qscale ? h->field_scan : h->field_scan_q0;
  4300. dc_scan= luma_dc_field_scan;
  4301. }else{
  4302. scan8x8= s->qscale ? h->zigzag_scan8x8_cavlc : h->zigzag_scan8x8_cavlc_q0;
  4303. scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  4304. dc_scan= luma_dc_zigzag_scan;
  4305. }
  4306. dquant= get_se_golomb(&s->gb);
  4307. if( dquant > 25 || dquant < -26 ){
  4308. av_log(h->s.avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, s->mb_x, s->mb_y);
  4309. return -1;
  4310. }
  4311. s->qscale += dquant;
  4312. if(((unsigned)s->qscale) > 51){
  4313. if(s->qscale<0) s->qscale+= 52;
  4314. else s->qscale-= 52;
  4315. }
  4316. h->chroma_qp[0]= get_chroma_qp(h, 0, s->qscale);
  4317. h->chroma_qp[1]= get_chroma_qp(h, 1, s->qscale);
  4318. if(IS_INTRA16x16(mb_type)){
  4319. if( decode_residual(h, h->intra_gb_ptr, h->mb, LUMA_DC_BLOCK_INDEX, dc_scan, h->dequant4_coeff[0][s->qscale], 16) < 0){
  4320. return -1; //FIXME continue if partitioned and other return -1 too
  4321. }
  4322. assert((cbp&15) == 0 || (cbp&15) == 15);
  4323. if(cbp&15){
  4324. for(i8x8=0; i8x8<4; i8x8++){
  4325. for(i4x4=0; i4x4<4; i4x4++){
  4326. const int index= i4x4 + 4*i8x8;
  4327. if( decode_residual(h, h->intra_gb_ptr, h->mb + 16*index, index, scan + 1, h->dequant4_coeff[0][s->qscale], 15) < 0 ){
  4328. return -1;
  4329. }
  4330. }
  4331. }
  4332. }else{
  4333. fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
  4334. }
  4335. }else{
  4336. for(i8x8=0; i8x8<4; i8x8++){
  4337. if(cbp & (1<<i8x8)){
  4338. if(IS_8x8DCT(mb_type)){
  4339. DCTELEM *buf = &h->mb[64*i8x8];
  4340. uint8_t *nnz;
  4341. for(i4x4=0; i4x4<4; i4x4++){
  4342. if( decode_residual(h, gb, buf, i4x4+4*i8x8, scan8x8+16*i4x4,
  4343. h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 16) <0 )
  4344. return -1;
  4345. }
  4346. nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  4347. nnz[0] += nnz[1] + nnz[8] + nnz[9];
  4348. }else{
  4349. for(i4x4=0; i4x4<4; i4x4++){
  4350. const int index= i4x4 + 4*i8x8;
  4351. if( decode_residual(h, gb, h->mb + 16*index, index, scan, h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale], 16) <0 ){
  4352. return -1;
  4353. }
  4354. }
  4355. }
  4356. }else{
  4357. uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  4358. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  4359. }
  4360. }
  4361. }
  4362. if(cbp&0x30){
  4363. for(chroma_idx=0; chroma_idx<2; chroma_idx++)
  4364. if( decode_residual(h, gb, h->mb + 256 + 16*4*chroma_idx, CHROMA_DC_BLOCK_INDEX, chroma_dc_scan, NULL, 4) < 0){
  4365. return -1;
  4366. }
  4367. }
  4368. if(cbp&0x20){
  4369. for(chroma_idx=0; chroma_idx<2; chroma_idx++){
  4370. const uint32_t *qmul = h->dequant4_coeff[chroma_idx+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp[chroma_idx]];
  4371. for(i4x4=0; i4x4<4; i4x4++){
  4372. const int index= 16 + 4*chroma_idx + i4x4;
  4373. if( decode_residual(h, gb, h->mb + 16*index, index, scan + 1, qmul, 15) < 0){
  4374. return -1;
  4375. }
  4376. }
  4377. }
  4378. }else{
  4379. uint8_t * const nnz= &h->non_zero_count_cache[0];
  4380. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  4381. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  4382. }
  4383. }else{
  4384. uint8_t * const nnz= &h->non_zero_count_cache[0];
  4385. fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
  4386. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  4387. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  4388. }
  4389. s->current_picture.qscale_table[mb_xy]= s->qscale;
  4390. write_back_non_zero_count(h);
  4391. if(MB_MBAFF){
  4392. h->ref_count[0] >>= 1;
  4393. h->ref_count[1] >>= 1;
  4394. }
  4395. return 0;
  4396. }
  4397. static int decode_cabac_field_decoding_flag(H264Context *h) {
  4398. MpegEncContext * const s = &h->s;
  4399. const int mb_x = s->mb_x;
  4400. const int mb_y = s->mb_y & ~1;
  4401. const int mba_xy = mb_x - 1 + mb_y *s->mb_stride;
  4402. const int mbb_xy = mb_x + (mb_y-2)*s->mb_stride;
  4403. unsigned int ctx = 0;
  4404. if( h->slice_table[mba_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) ) {
  4405. ctx += 1;
  4406. }
  4407. if( h->slice_table[mbb_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) ) {
  4408. ctx += 1;
  4409. }
  4410. return get_cabac_noinline( &h->cabac, &h->cabac_state[70 + ctx] );
  4411. }
  4412. static int decode_cabac_intra_mb_type(H264Context *h, int ctx_base, int intra_slice) {
  4413. uint8_t *state= &h->cabac_state[ctx_base];
  4414. int mb_type;
  4415. if(intra_slice){
  4416. MpegEncContext * const s = &h->s;
  4417. const int mba_xy = h->left_mb_xy[0];
  4418. const int mbb_xy = h->top_mb_xy;
  4419. int ctx=0;
  4420. if( h->slice_table[mba_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mba_xy] ) )
  4421. ctx++;
  4422. if( h->slice_table[mbb_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mbb_xy] ) )
  4423. ctx++;
  4424. if( get_cabac_noinline( &h->cabac, &state[ctx] ) == 0 )
  4425. return 0; /* I4x4 */
  4426. state += 2;
  4427. }else{
  4428. if( get_cabac_noinline( &h->cabac, &state[0] ) == 0 )
  4429. return 0; /* I4x4 */
  4430. }
  4431. if( get_cabac_terminate( &h->cabac ) )
  4432. return 25; /* PCM */
  4433. mb_type = 1; /* I16x16 */
  4434. mb_type += 12 * get_cabac_noinline( &h->cabac, &state[1] ); /* cbp_luma != 0 */
  4435. if( get_cabac_noinline( &h->cabac, &state[2] ) ) /* cbp_chroma */
  4436. mb_type += 4 + 4 * get_cabac_noinline( &h->cabac, &state[2+intra_slice] );
  4437. mb_type += 2 * get_cabac_noinline( &h->cabac, &state[3+intra_slice] );
  4438. mb_type += 1 * get_cabac_noinline( &h->cabac, &state[3+2*intra_slice] );
  4439. return mb_type;
  4440. }
  4441. static int decode_cabac_mb_type( H264Context *h ) {
  4442. MpegEncContext * const s = &h->s;
  4443. if( h->slice_type_nos == FF_I_TYPE ) {
  4444. return decode_cabac_intra_mb_type(h, 3, 1);
  4445. } else if( h->slice_type_nos == FF_P_TYPE ) {
  4446. if( get_cabac_noinline( &h->cabac, &h->cabac_state[14] ) == 0 ) {
  4447. /* P-type */
  4448. if( get_cabac_noinline( &h->cabac, &h->cabac_state[15] ) == 0 ) {
  4449. /* P_L0_D16x16, P_8x8 */
  4450. return 3 * get_cabac_noinline( &h->cabac, &h->cabac_state[16] );
  4451. } else {
  4452. /* P_L0_D8x16, P_L0_D16x8 */
  4453. return 2 - get_cabac_noinline( &h->cabac, &h->cabac_state[17] );
  4454. }
  4455. } else {
  4456. return decode_cabac_intra_mb_type(h, 17, 0) + 5;
  4457. }
  4458. } else if( h->slice_type_nos == FF_B_TYPE ) {
  4459. const int mba_xy = h->left_mb_xy[0];
  4460. const int mbb_xy = h->top_mb_xy;
  4461. int ctx = 0;
  4462. int bits;
  4463. if( h->slice_table[mba_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mba_xy] ) )
  4464. ctx++;
  4465. if( h->slice_table[mbb_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mbb_xy] ) )
  4466. ctx++;
  4467. if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+ctx] ) )
  4468. return 0; /* B_Direct_16x16 */
  4469. if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+3] ) ) {
  4470. return 1 + get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ); /* B_L[01]_16x16 */
  4471. }
  4472. bits = get_cabac_noinline( &h->cabac, &h->cabac_state[27+4] ) << 3;
  4473. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 2;
  4474. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 1;
  4475. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] );
  4476. if( bits < 8 )
  4477. return bits + 3; /* B_Bi_16x16 through B_L1_L0_16x8 */
  4478. else if( bits == 13 ) {
  4479. return decode_cabac_intra_mb_type(h, 32, 0) + 23;
  4480. } else if( bits == 14 )
  4481. return 11; /* B_L1_L0_8x16 */
  4482. else if( bits == 15 )
  4483. return 22; /* B_8x8 */
  4484. bits= ( bits<<1 ) | get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] );
  4485. return bits - 4; /* B_L0_Bi_* through B_Bi_Bi_* */
  4486. } else {
  4487. /* TODO SI/SP frames? */
  4488. return -1;
  4489. }
  4490. }
  4491. static int decode_cabac_mb_skip( H264Context *h, int mb_x, int mb_y ) {
  4492. MpegEncContext * const s = &h->s;
  4493. int mba_xy, mbb_xy;
  4494. int ctx = 0;
  4495. if(FRAME_MBAFF){ //FIXME merge with the stuff in fill_caches?
  4496. int mb_xy = mb_x + (mb_y&~1)*s->mb_stride;
  4497. mba_xy = mb_xy - 1;
  4498. if( (mb_y&1)
  4499. && h->slice_table[mba_xy] == h->slice_num
  4500. && MB_FIELD == !!IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) )
  4501. mba_xy += s->mb_stride;
  4502. if( MB_FIELD ){
  4503. mbb_xy = mb_xy - s->mb_stride;
  4504. if( !(mb_y&1)
  4505. && h->slice_table[mbb_xy] == h->slice_num
  4506. && IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) )
  4507. mbb_xy -= s->mb_stride;
  4508. }else
  4509. mbb_xy = mb_x + (mb_y-1)*s->mb_stride;
  4510. }else{
  4511. int mb_xy = h->mb_xy;
  4512. mba_xy = mb_xy - 1;
  4513. mbb_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
  4514. }
  4515. if( h->slice_table[mba_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mba_xy] ))
  4516. ctx++;
  4517. if( h->slice_table[mbb_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mbb_xy] ))
  4518. ctx++;
  4519. if( h->slice_type_nos == FF_B_TYPE )
  4520. ctx += 13;
  4521. return get_cabac_noinline( &h->cabac, &h->cabac_state[11+ctx] );
  4522. }
  4523. static int decode_cabac_mb_intra4x4_pred_mode( H264Context *h, int pred_mode ) {
  4524. int mode = 0;
  4525. if( get_cabac( &h->cabac, &h->cabac_state[68] ) )
  4526. return pred_mode;
  4527. mode += 1 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4528. mode += 2 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4529. mode += 4 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4530. if( mode >= pred_mode )
  4531. return mode + 1;
  4532. else
  4533. return mode;
  4534. }
  4535. static int decode_cabac_mb_chroma_pre_mode( H264Context *h) {
  4536. const int mba_xy = h->left_mb_xy[0];
  4537. const int mbb_xy = h->top_mb_xy;
  4538. int ctx = 0;
  4539. /* No need to test for IS_INTRA4x4 and IS_INTRA16x16, as we set chroma_pred_mode_table to 0 */
  4540. if( h->slice_table[mba_xy] == h->slice_num && h->chroma_pred_mode_table[mba_xy] != 0 )
  4541. ctx++;
  4542. if( h->slice_table[mbb_xy] == h->slice_num && h->chroma_pred_mode_table[mbb_xy] != 0 )
  4543. ctx++;
  4544. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+ctx] ) == 0 )
  4545. return 0;
  4546. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+3] ) == 0 )
  4547. return 1;
  4548. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+3] ) == 0 )
  4549. return 2;
  4550. else
  4551. return 3;
  4552. }
  4553. static int decode_cabac_mb_cbp_luma( H264Context *h) {
  4554. int cbp_b, cbp_a, ctx, cbp = 0;
  4555. cbp_a = h->slice_table[h->left_mb_xy[0]] == h->slice_num ? h->left_cbp : -1;
  4556. cbp_b = h->slice_table[h->top_mb_xy] == h->slice_num ? h->top_cbp : -1;
  4557. ctx = !(cbp_a & 0x02) + 2 * !(cbp_b & 0x04);
  4558. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]);
  4559. ctx = !(cbp & 0x01) + 2 * !(cbp_b & 0x08);
  4560. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]) << 1;
  4561. ctx = !(cbp_a & 0x08) + 2 * !(cbp & 0x01);
  4562. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]) << 2;
  4563. ctx = !(cbp & 0x04) + 2 * !(cbp & 0x02);
  4564. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]) << 3;
  4565. return cbp;
  4566. }
  4567. static int decode_cabac_mb_cbp_chroma( H264Context *h) {
  4568. int ctx;
  4569. int cbp_a, cbp_b;
  4570. cbp_a = (h->left_cbp>>4)&0x03;
  4571. cbp_b = (h-> top_cbp>>4)&0x03;
  4572. ctx = 0;
  4573. if( cbp_a > 0 ) ctx++;
  4574. if( cbp_b > 0 ) ctx += 2;
  4575. if( get_cabac_noinline( &h->cabac, &h->cabac_state[77 + ctx] ) == 0 )
  4576. return 0;
  4577. ctx = 4;
  4578. if( cbp_a == 2 ) ctx++;
  4579. if( cbp_b == 2 ) ctx += 2;
  4580. return 1 + get_cabac_noinline( &h->cabac, &h->cabac_state[77 + ctx] );
  4581. }
  4582. static int decode_cabac_mb_dqp( H264Context *h) {
  4583. int ctx = 0;
  4584. int val = 0;
  4585. if( h->last_qscale_diff != 0 )
  4586. ctx++;
  4587. while( get_cabac_noinline( &h->cabac, &h->cabac_state[60 + ctx] ) ) {
  4588. if( ctx < 2 )
  4589. ctx = 2;
  4590. else
  4591. ctx = 3;
  4592. val++;
  4593. if(val > 102) //prevent infinite loop
  4594. return INT_MIN;
  4595. }
  4596. if( val&0x01 )
  4597. return (val + 1)/2;
  4598. else
  4599. return -(val + 1)/2;
  4600. }
  4601. static int decode_cabac_p_mb_sub_type( H264Context *h ) {
  4602. if( get_cabac( &h->cabac, &h->cabac_state[21] ) )
  4603. return 0; /* 8x8 */
  4604. if( !get_cabac( &h->cabac, &h->cabac_state[22] ) )
  4605. return 1; /* 8x4 */
  4606. if( get_cabac( &h->cabac, &h->cabac_state[23] ) )
  4607. return 2; /* 4x8 */
  4608. return 3; /* 4x4 */
  4609. }
  4610. static int decode_cabac_b_mb_sub_type( H264Context *h ) {
  4611. int type;
  4612. if( !get_cabac( &h->cabac, &h->cabac_state[36] ) )
  4613. return 0; /* B_Direct_8x8 */
  4614. if( !get_cabac( &h->cabac, &h->cabac_state[37] ) )
  4615. return 1 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L0_8x8, B_L1_8x8 */
  4616. type = 3;
  4617. if( get_cabac( &h->cabac, &h->cabac_state[38] ) ) {
  4618. if( get_cabac( &h->cabac, &h->cabac_state[39] ) )
  4619. return 11 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L1_4x4, B_Bi_4x4 */
  4620. type += 4;
  4621. }
  4622. type += 2*get_cabac( &h->cabac, &h->cabac_state[39] );
  4623. type += get_cabac( &h->cabac, &h->cabac_state[39] );
  4624. return type;
  4625. }
  4626. static inline int decode_cabac_mb_transform_size( H264Context *h ) {
  4627. return get_cabac_noinline( &h->cabac, &h->cabac_state[399 + h->neighbor_transform_size] );
  4628. }
  4629. static int decode_cabac_mb_ref( H264Context *h, int list, int n ) {
  4630. int refa = h->ref_cache[list][scan8[n] - 1];
  4631. int refb = h->ref_cache[list][scan8[n] - 8];
  4632. int ref = 0;
  4633. int ctx = 0;
  4634. if( h->slice_type_nos == FF_B_TYPE) {
  4635. if( refa > 0 && !h->direct_cache[scan8[n] - 1] )
  4636. ctx++;
  4637. if( refb > 0 && !h->direct_cache[scan8[n] - 8] )
  4638. ctx += 2;
  4639. } else {
  4640. if( refa > 0 )
  4641. ctx++;
  4642. if( refb > 0 )
  4643. ctx += 2;
  4644. }
  4645. while( get_cabac( &h->cabac, &h->cabac_state[54+ctx] ) ) {
  4646. ref++;
  4647. if( ctx < 4 )
  4648. ctx = 4;
  4649. else
  4650. ctx = 5;
  4651. if(ref >= 32 /*h->ref_list[list]*/){
  4652. av_log(h->s.avctx, AV_LOG_ERROR, "overflow in decode_cabac_mb_ref\n");
  4653. return 0; //FIXME we should return -1 and check the return everywhere
  4654. }
  4655. }
  4656. return ref;
  4657. }
  4658. static int decode_cabac_mb_mvd( H264Context *h, int list, int n, int l ) {
  4659. int amvd = abs( h->mvd_cache[list][scan8[n] - 1][l] ) +
  4660. abs( h->mvd_cache[list][scan8[n] - 8][l] );
  4661. int ctxbase = (l == 0) ? 40 : 47;
  4662. int ctx, mvd;
  4663. if( amvd < 3 )
  4664. ctx = 0;
  4665. else if( amvd > 32 )
  4666. ctx = 2;
  4667. else
  4668. ctx = 1;
  4669. if(!get_cabac(&h->cabac, &h->cabac_state[ctxbase+ctx]))
  4670. return 0;
  4671. mvd= 1;
  4672. ctx= 3;
  4673. while( mvd < 9 && get_cabac( &h->cabac, &h->cabac_state[ctxbase+ctx] ) ) {
  4674. mvd++;
  4675. if( ctx < 6 )
  4676. ctx++;
  4677. }
  4678. if( mvd >= 9 ) {
  4679. int k = 3;
  4680. while( get_cabac_bypass( &h->cabac ) ) {
  4681. mvd += 1 << k;
  4682. k++;
  4683. if(k>24){
  4684. av_log(h->s.avctx, AV_LOG_ERROR, "overflow in decode_cabac_mb_mvd\n");
  4685. return INT_MIN;
  4686. }
  4687. }
  4688. while( k-- ) {
  4689. if( get_cabac_bypass( &h->cabac ) )
  4690. mvd += 1 << k;
  4691. }
  4692. }
  4693. return get_cabac_bypass_sign( &h->cabac, -mvd );
  4694. }
  4695. static av_always_inline int get_cabac_cbf_ctx( H264Context *h, int cat, int idx, int is_dc ) {
  4696. int nza, nzb;
  4697. int ctx = 0;
  4698. if( is_dc ) {
  4699. if( cat == 0 ) {
  4700. nza = h->left_cbp&0x100;
  4701. nzb = h-> top_cbp&0x100;
  4702. } else {
  4703. nza = (h->left_cbp>>(6+idx))&0x01;
  4704. nzb = (h-> top_cbp>>(6+idx))&0x01;
  4705. }
  4706. } else {
  4707. if( cat == 4 ) {
  4708. nza = h->non_zero_count_cache[scan8[16+idx] - 1];
  4709. nzb = h->non_zero_count_cache[scan8[16+idx] - 8];
  4710. } else {
  4711. assert(cat == 1 || cat == 2);
  4712. nza = h->non_zero_count_cache[scan8[idx] - 1];
  4713. nzb = h->non_zero_count_cache[scan8[idx] - 8];
  4714. }
  4715. }
  4716. if( nza > 0 )
  4717. ctx++;
  4718. if( nzb > 0 )
  4719. ctx += 2;
  4720. return ctx + 4 * cat;
  4721. }
  4722. DECLARE_ASM_CONST(1, uint8_t, last_coeff_flag_offset_8x8[63]) = {
  4723. 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  4724. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  4725. 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  4726. 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8
  4727. };
  4728. static av_always_inline void decode_cabac_residual_internal( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff, int is_dc ) {
  4729. static const int significant_coeff_flag_offset[2][6] = {
  4730. { 105+0, 105+15, 105+29, 105+44, 105+47, 402 },
  4731. { 277+0, 277+15, 277+29, 277+44, 277+47, 436 }
  4732. };
  4733. static const int last_coeff_flag_offset[2][6] = {
  4734. { 166+0, 166+15, 166+29, 166+44, 166+47, 417 },
  4735. { 338+0, 338+15, 338+29, 338+44, 338+47, 451 }
  4736. };
  4737. static const int coeff_abs_level_m1_offset[6] = {
  4738. 227+0, 227+10, 227+20, 227+30, 227+39, 426
  4739. };
  4740. static const uint8_t significant_coeff_flag_offset_8x8[2][63] = {
  4741. { 0, 1, 2, 3, 4, 5, 5, 4, 4, 3, 3, 4, 4, 4, 5, 5,
  4742. 4, 4, 4, 4, 3, 3, 6, 7, 7, 7, 8, 9,10, 9, 8, 7,
  4743. 7, 6,11,12,13,11, 6, 7, 8, 9,14,10, 9, 8, 6,11,
  4744. 12,13,11, 6, 9,14,10, 9,11,12,13,11,14,10,12 },
  4745. { 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 7, 7, 8, 4, 5,
  4746. 6, 9,10,10, 8,11,12,11, 9, 9,10,10, 8,11,12,11,
  4747. 9, 9,10,10, 8,11,12,11, 9, 9,10,10, 8,13,13, 9,
  4748. 9,10,10, 8,13,13, 9, 9,10,10,14,14,14,14,14 }
  4749. };
  4750. /* node ctx: 0..3: abslevel1 (with abslevelgt1 == 0).
  4751. * 4..7: abslevelgt1 + 3 (and abslevel1 doesn't matter).
  4752. * map node ctx => cabac ctx for level=1 */
  4753. static const uint8_t coeff_abs_level1_ctx[8] = { 1, 2, 3, 4, 0, 0, 0, 0 };
  4754. /* map node ctx => cabac ctx for level>1 */
  4755. static const uint8_t coeff_abs_levelgt1_ctx[8] = { 5, 5, 5, 5, 6, 7, 8, 9 };
  4756. static const uint8_t coeff_abs_level_transition[2][8] = {
  4757. /* update node ctx after decoding a level=1 */
  4758. { 1, 2, 3, 3, 4, 5, 6, 7 },
  4759. /* update node ctx after decoding a level>1 */
  4760. { 4, 4, 4, 4, 5, 6, 7, 7 }
  4761. };
  4762. int index[64];
  4763. int av_unused last;
  4764. int coeff_count = 0;
  4765. int node_ctx = 0;
  4766. uint8_t *significant_coeff_ctx_base;
  4767. uint8_t *last_coeff_ctx_base;
  4768. uint8_t *abs_level_m1_ctx_base;
  4769. #ifndef ARCH_X86
  4770. #define CABAC_ON_STACK
  4771. #endif
  4772. #ifdef CABAC_ON_STACK
  4773. #define CC &cc
  4774. CABACContext cc;
  4775. cc.range = h->cabac.range;
  4776. cc.low = h->cabac.low;
  4777. cc.bytestream= h->cabac.bytestream;
  4778. #else
  4779. #define CC &h->cabac
  4780. #endif
  4781. /* cat: 0-> DC 16x16 n = 0
  4782. * 1-> AC 16x16 n = luma4x4idx
  4783. * 2-> Luma4x4 n = luma4x4idx
  4784. * 3-> DC Chroma n = iCbCr
  4785. * 4-> AC Chroma n = 4 * iCbCr + chroma4x4idx
  4786. * 5-> Luma8x8 n = 4 * luma8x8idx
  4787. */
  4788. /* read coded block flag */
  4789. if( is_dc || cat != 5 ) {
  4790. if( get_cabac( CC, &h->cabac_state[85 + get_cabac_cbf_ctx( h, cat, n, is_dc ) ] ) == 0 ) {
  4791. if( !is_dc ) {
  4792. if( cat == 4 )
  4793. h->non_zero_count_cache[scan8[16+n]] = 0;
  4794. else
  4795. h->non_zero_count_cache[scan8[n]] = 0;
  4796. }
  4797. #ifdef CABAC_ON_STACK
  4798. h->cabac.range = cc.range ;
  4799. h->cabac.low = cc.low ;
  4800. h->cabac.bytestream= cc.bytestream;
  4801. #endif
  4802. return;
  4803. }
  4804. }
  4805. significant_coeff_ctx_base = h->cabac_state
  4806. + significant_coeff_flag_offset[MB_FIELD][cat];
  4807. last_coeff_ctx_base = h->cabac_state
  4808. + last_coeff_flag_offset[MB_FIELD][cat];
  4809. abs_level_m1_ctx_base = h->cabac_state
  4810. + coeff_abs_level_m1_offset[cat];
  4811. if( !is_dc && cat == 5 ) {
  4812. #define DECODE_SIGNIFICANCE( coefs, sig_off, last_off ) \
  4813. for(last= 0; last < coefs; last++) { \
  4814. uint8_t *sig_ctx = significant_coeff_ctx_base + sig_off; \
  4815. if( get_cabac( CC, sig_ctx )) { \
  4816. uint8_t *last_ctx = last_coeff_ctx_base + last_off; \
  4817. index[coeff_count++] = last; \
  4818. if( get_cabac( CC, last_ctx ) ) { \
  4819. last= max_coeff; \
  4820. break; \
  4821. } \
  4822. } \
  4823. }\
  4824. if( last == max_coeff -1 ) {\
  4825. index[coeff_count++] = last;\
  4826. }
  4827. const uint8_t *sig_off = significant_coeff_flag_offset_8x8[MB_FIELD];
  4828. #if defined(ARCH_X86) && defined(HAVE_7REGS) && defined(HAVE_EBX_AVAILABLE) && !defined(BROKEN_RELOCATIONS)
  4829. coeff_count= decode_significance_8x8_x86(CC, significant_coeff_ctx_base, index, sig_off);
  4830. } else {
  4831. coeff_count= decode_significance_x86(CC, max_coeff, significant_coeff_ctx_base, index);
  4832. #else
  4833. DECODE_SIGNIFICANCE( 63, sig_off[last], last_coeff_flag_offset_8x8[last] );
  4834. } else {
  4835. DECODE_SIGNIFICANCE( max_coeff - 1, last, last );
  4836. #endif
  4837. }
  4838. assert(coeff_count > 0);
  4839. if( is_dc ) {
  4840. if( cat == 0 )
  4841. h->cbp_table[h->mb_xy] |= 0x100;
  4842. else
  4843. h->cbp_table[h->mb_xy] |= 0x40 << n;
  4844. } else {
  4845. if( cat == 5 )
  4846. fill_rectangle(&h->non_zero_count_cache[scan8[n]], 2, 2, 8, coeff_count, 1);
  4847. else if( cat == 4 )
  4848. h->non_zero_count_cache[scan8[16+n]] = coeff_count;
  4849. else {
  4850. assert( cat == 1 || cat == 2 );
  4851. h->non_zero_count_cache[scan8[n]] = coeff_count;
  4852. }
  4853. }
  4854. while( coeff_count-- ) {
  4855. uint8_t *ctx = coeff_abs_level1_ctx[node_ctx] + abs_level_m1_ctx_base;
  4856. int j= scantable[index[coeff_count]];
  4857. if( get_cabac( CC, ctx ) == 0 ) {
  4858. node_ctx = coeff_abs_level_transition[0][node_ctx];
  4859. if( is_dc ) {
  4860. block[j] = get_cabac_bypass_sign( CC, -1);
  4861. }else{
  4862. block[j] = (get_cabac_bypass_sign( CC, -qmul[j]) + 32) >> 6;
  4863. }
  4864. } else {
  4865. int coeff_abs = 2;
  4866. ctx = coeff_abs_levelgt1_ctx[node_ctx] + abs_level_m1_ctx_base;
  4867. node_ctx = coeff_abs_level_transition[1][node_ctx];
  4868. while( coeff_abs < 15 && get_cabac( CC, ctx ) ) {
  4869. coeff_abs++;
  4870. }
  4871. if( coeff_abs >= 15 ) {
  4872. int j = 0;
  4873. while( get_cabac_bypass( CC ) ) {
  4874. j++;
  4875. }
  4876. coeff_abs=1;
  4877. while( j-- ) {
  4878. coeff_abs += coeff_abs + get_cabac_bypass( CC );
  4879. }
  4880. coeff_abs+= 14;
  4881. }
  4882. if( is_dc ) {
  4883. block[j] = get_cabac_bypass_sign( CC, -coeff_abs );
  4884. }else{
  4885. block[j] = (get_cabac_bypass_sign( CC, -coeff_abs ) * qmul[j] + 32) >> 6;
  4886. }
  4887. }
  4888. }
  4889. #ifdef CABAC_ON_STACK
  4890. h->cabac.range = cc.range ;
  4891. h->cabac.low = cc.low ;
  4892. h->cabac.bytestream= cc.bytestream;
  4893. #endif
  4894. }
  4895. #ifndef CONFIG_SMALL
  4896. static void decode_cabac_residual_dc( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff ) {
  4897. decode_cabac_residual_internal(h, block, cat, n, scantable, qmul, max_coeff, 1);
  4898. }
  4899. static void decode_cabac_residual_nondc( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff ) {
  4900. decode_cabac_residual_internal(h, block, cat, n, scantable, qmul, max_coeff, 0);
  4901. }
  4902. #endif
  4903. static void decode_cabac_residual( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff ) {
  4904. #ifdef CONFIG_SMALL
  4905. decode_cabac_residual_internal(h, block, cat, n, scantable, qmul, max_coeff, cat == 0 || cat == 3);
  4906. #else
  4907. if( cat == 0 || cat == 3 ) decode_cabac_residual_dc(h, block, cat, n, scantable, qmul, max_coeff);
  4908. else decode_cabac_residual_nondc(h, block, cat, n, scantable, qmul, max_coeff);
  4909. #endif
  4910. }
  4911. static inline void compute_mb_neighbors(H264Context *h)
  4912. {
  4913. MpegEncContext * const s = &h->s;
  4914. const int mb_xy = h->mb_xy;
  4915. h->top_mb_xy = mb_xy - s->mb_stride;
  4916. h->left_mb_xy[0] = mb_xy - 1;
  4917. if(FRAME_MBAFF){
  4918. const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
  4919. const int top_pair_xy = pair_xy - s->mb_stride;
  4920. const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
  4921. const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
  4922. const int curr_mb_frame_flag = !MB_FIELD;
  4923. const int bottom = (s->mb_y & 1);
  4924. if (bottom
  4925. ? !curr_mb_frame_flag // bottom macroblock
  4926. : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
  4927. ) {
  4928. h->top_mb_xy -= s->mb_stride;
  4929. }
  4930. if (left_mb_frame_flag != curr_mb_frame_flag) {
  4931. h->left_mb_xy[0] = pair_xy - 1;
  4932. }
  4933. } else if (FIELD_PICTURE) {
  4934. h->top_mb_xy -= s->mb_stride;
  4935. }
  4936. return;
  4937. }
  4938. /**
  4939. * decodes a macroblock
  4940. * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  4941. */
  4942. static int decode_mb_cabac(H264Context *h) {
  4943. MpegEncContext * const s = &h->s;
  4944. int mb_xy;
  4945. int mb_type, partition_count, cbp = 0;
  4946. int dct8x8_allowed= h->pps.transform_8x8_mode;
  4947. mb_xy = h->mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  4948. s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?)
  4949. tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
  4950. if( h->slice_type_nos != FF_I_TYPE ) {
  4951. int skip;
  4952. /* a skipped mb needs the aff flag from the following mb */
  4953. if( FRAME_MBAFF && s->mb_x==0 && (s->mb_y&1)==0 )
  4954. predict_field_decoding_flag(h);
  4955. if( FRAME_MBAFF && (s->mb_y&1)==1 && h->prev_mb_skipped )
  4956. skip = h->next_mb_skipped;
  4957. else
  4958. skip = decode_cabac_mb_skip( h, s->mb_x, s->mb_y );
  4959. /* read skip flags */
  4960. if( skip ) {
  4961. if( FRAME_MBAFF && (s->mb_y&1)==0 ){
  4962. s->current_picture.mb_type[mb_xy] = MB_TYPE_SKIP;
  4963. h->next_mb_skipped = decode_cabac_mb_skip( h, s->mb_x, s->mb_y+1 );
  4964. if(h->next_mb_skipped)
  4965. predict_field_decoding_flag(h);
  4966. else
  4967. h->mb_mbaff = h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
  4968. }
  4969. decode_mb_skip(h);
  4970. h->cbp_table[mb_xy] = 0;
  4971. h->chroma_pred_mode_table[mb_xy] = 0;
  4972. h->last_qscale_diff = 0;
  4973. return 0;
  4974. }
  4975. }
  4976. if(FRAME_MBAFF){
  4977. if( (s->mb_y&1) == 0 )
  4978. h->mb_mbaff =
  4979. h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
  4980. }else
  4981. h->mb_field_decoding_flag= (s->picture_structure!=PICT_FRAME);
  4982. h->prev_mb_skipped = 0;
  4983. compute_mb_neighbors(h);
  4984. if( ( mb_type = decode_cabac_mb_type( h ) ) < 0 ) {
  4985. av_log( h->s.avctx, AV_LOG_ERROR, "decode_cabac_mb_type failed\n" );
  4986. return -1;
  4987. }
  4988. if( h->slice_type_nos == FF_B_TYPE ) {
  4989. if( mb_type < 23 ){
  4990. partition_count= b_mb_type_info[mb_type].partition_count;
  4991. mb_type= b_mb_type_info[mb_type].type;
  4992. }else{
  4993. mb_type -= 23;
  4994. goto decode_intra_mb;
  4995. }
  4996. } else if( h->slice_type_nos == FF_P_TYPE ) {
  4997. if( mb_type < 5) {
  4998. partition_count= p_mb_type_info[mb_type].partition_count;
  4999. mb_type= p_mb_type_info[mb_type].type;
  5000. } else {
  5001. mb_type -= 5;
  5002. goto decode_intra_mb;
  5003. }
  5004. } else {
  5005. if(h->slice_type == FF_SI_TYPE && mb_type)
  5006. mb_type--;
  5007. assert(h->slice_type_nos == FF_I_TYPE);
  5008. decode_intra_mb:
  5009. partition_count = 0;
  5010. cbp= i_mb_type_info[mb_type].cbp;
  5011. h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
  5012. mb_type= i_mb_type_info[mb_type].type;
  5013. }
  5014. if(MB_FIELD)
  5015. mb_type |= MB_TYPE_INTERLACED;
  5016. h->slice_table[ mb_xy ]= h->slice_num;
  5017. if(IS_INTRA_PCM(mb_type)) {
  5018. const uint8_t *ptr;
  5019. unsigned int x, y;
  5020. // We assume these blocks are very rare so we do not optimize it.
  5021. // FIXME The two following lines get the bitstream position in the cabac
  5022. // decode, I think it should be done by a function in cabac.h (or cabac.c).
  5023. ptr= h->cabac.bytestream;
  5024. if(h->cabac.low&0x1) ptr--;
  5025. if(CABAC_BITS==16){
  5026. if(h->cabac.low&0x1FF) ptr--;
  5027. }
  5028. // The pixels are stored in the same order as levels in h->mb array.
  5029. for(y=0; y<16; y++){
  5030. const int index= 4*(y&3) + 32*((y>>2)&1) + 128*(y>>3);
  5031. for(x=0; x<16; x++){
  5032. tprintf(s->avctx, "LUMA ICPM LEVEL (%3d)\n", *ptr);
  5033. h->mb[index + (x&3) + 16*((x>>2)&1) + 64*(x>>3)]= *ptr++;
  5034. }
  5035. }
  5036. for(y=0; y<8; y++){
  5037. const int index= 256 + 4*(y&3) + 32*(y>>2);
  5038. for(x=0; x<8; x++){
  5039. tprintf(s->avctx, "CHROMA U ICPM LEVEL (%3d)\n", *ptr);
  5040. h->mb[index + (x&3) + 16*(x>>2)]= *ptr++;
  5041. }
  5042. }
  5043. for(y=0; y<8; y++){
  5044. const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
  5045. for(x=0; x<8; x++){
  5046. tprintf(s->avctx, "CHROMA V ICPM LEVEL (%3d)\n", *ptr);
  5047. h->mb[index + (x&3) + 16*(x>>2)]= *ptr++;
  5048. }
  5049. }
  5050. ff_init_cabac_decoder(&h->cabac, ptr, h->cabac.bytestream_end - ptr);
  5051. // All blocks are present
  5052. h->cbp_table[mb_xy] = 0x1ef;
  5053. h->chroma_pred_mode_table[mb_xy] = 0;
  5054. // In deblocking, the quantizer is 0
  5055. s->current_picture.qscale_table[mb_xy]= 0;
  5056. // All coeffs are present
  5057. memset(h->non_zero_count[mb_xy], 16, 16);
  5058. s->current_picture.mb_type[mb_xy]= mb_type;
  5059. h->last_qscale_diff = 0;
  5060. return 0;
  5061. }
  5062. if(MB_MBAFF){
  5063. h->ref_count[0] <<= 1;
  5064. h->ref_count[1] <<= 1;
  5065. }
  5066. fill_caches(h, mb_type, 0);
  5067. if( IS_INTRA( mb_type ) ) {
  5068. int i, pred_mode;
  5069. if( IS_INTRA4x4( mb_type ) ) {
  5070. if( dct8x8_allowed && decode_cabac_mb_transform_size( h ) ) {
  5071. mb_type |= MB_TYPE_8x8DCT;
  5072. for( i = 0; i < 16; i+=4 ) {
  5073. int pred = pred_intra_mode( h, i );
  5074. int mode = decode_cabac_mb_intra4x4_pred_mode( h, pred );
  5075. fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
  5076. }
  5077. } else {
  5078. for( i = 0; i < 16; i++ ) {
  5079. int pred = pred_intra_mode( h, i );
  5080. h->intra4x4_pred_mode_cache[ scan8[i] ] = decode_cabac_mb_intra4x4_pred_mode( h, pred );
  5081. //av_log( s->avctx, AV_LOG_ERROR, "i4x4 pred=%d mode=%d\n", pred, h->intra4x4_pred_mode_cache[ scan8[i] ] );
  5082. }
  5083. }
  5084. write_back_intra_pred_mode(h);
  5085. if( check_intra4x4_pred_mode(h) < 0 ) return -1;
  5086. } else {
  5087. h->intra16x16_pred_mode= check_intra_pred_mode( h, h->intra16x16_pred_mode );
  5088. if( h->intra16x16_pred_mode < 0 ) return -1;
  5089. }
  5090. h->chroma_pred_mode_table[mb_xy] =
  5091. pred_mode = decode_cabac_mb_chroma_pre_mode( h );
  5092. pred_mode= check_intra_pred_mode( h, pred_mode );
  5093. if( pred_mode < 0 ) return -1;
  5094. h->chroma_pred_mode= pred_mode;
  5095. } else if( partition_count == 4 ) {
  5096. int i, j, sub_partition_count[4], list, ref[2][4];
  5097. if( h->slice_type_nos == FF_B_TYPE ) {
  5098. for( i = 0; i < 4; i++ ) {
  5099. h->sub_mb_type[i] = decode_cabac_b_mb_sub_type( h );
  5100. sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  5101. h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  5102. }
  5103. if( IS_DIRECT(h->sub_mb_type[0] | h->sub_mb_type[1] |
  5104. h->sub_mb_type[2] | h->sub_mb_type[3]) ) {
  5105. pred_direct_motion(h, &mb_type);
  5106. h->ref_cache[0][scan8[4]] =
  5107. h->ref_cache[1][scan8[4]] =
  5108. h->ref_cache[0][scan8[12]] =
  5109. h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
  5110. if( h->ref_count[0] > 1 || h->ref_count[1] > 1 ) {
  5111. for( i = 0; i < 4; i++ )
  5112. if( IS_DIRECT(h->sub_mb_type[i]) )
  5113. fill_rectangle( &h->direct_cache[scan8[4*i]], 2, 2, 8, 1, 1 );
  5114. }
  5115. }
  5116. } else {
  5117. for( i = 0; i < 4; i++ ) {
  5118. h->sub_mb_type[i] = decode_cabac_p_mb_sub_type( h );
  5119. sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  5120. h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  5121. }
  5122. }
  5123. for( list = 0; list < h->list_count; list++ ) {
  5124. for( i = 0; i < 4; i++ ) {
  5125. if(IS_DIRECT(h->sub_mb_type[i])) continue;
  5126. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  5127. if( h->ref_count[list] > 1 )
  5128. ref[list][i] = decode_cabac_mb_ref( h, list, 4*i );
  5129. else
  5130. ref[list][i] = 0;
  5131. } else {
  5132. ref[list][i] = -1;
  5133. }
  5134. h->ref_cache[list][ scan8[4*i]+1 ]=
  5135. h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  5136. }
  5137. }
  5138. if(dct8x8_allowed)
  5139. dct8x8_allowed = get_dct8x8_allowed(h);
  5140. for(list=0; list<h->list_count; list++){
  5141. for(i=0; i<4; i++){
  5142. h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ];
  5143. if(IS_DIRECT(h->sub_mb_type[i])){
  5144. fill_rectangle(h->mvd_cache[list][scan8[4*i]], 2, 2, 8, 0, 4);
  5145. continue;
  5146. }
  5147. if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){
  5148. const int sub_mb_type= h->sub_mb_type[i];
  5149. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  5150. for(j=0; j<sub_partition_count[i]; j++){
  5151. int mpx, mpy;
  5152. int mx, my;
  5153. const int index= 4*i + block_width*j;
  5154. int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
  5155. int16_t (* mvd_cache)[2]= &h->mvd_cache[list][ scan8[index] ];
  5156. pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mpx, &mpy);
  5157. mx = mpx + decode_cabac_mb_mvd( h, list, index, 0 );
  5158. my = mpy + decode_cabac_mb_mvd( h, list, index, 1 );
  5159. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5160. if(IS_SUB_8X8(sub_mb_type)){
  5161. mv_cache[ 1 ][0]=
  5162. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  5163. mv_cache[ 1 ][1]=
  5164. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  5165. mvd_cache[ 1 ][0]=
  5166. mvd_cache[ 8 ][0]= mvd_cache[ 9 ][0]= mx - mpx;
  5167. mvd_cache[ 1 ][1]=
  5168. mvd_cache[ 8 ][1]= mvd_cache[ 9 ][1]= my - mpy;
  5169. }else if(IS_SUB_8X4(sub_mb_type)){
  5170. mv_cache[ 1 ][0]= mx;
  5171. mv_cache[ 1 ][1]= my;
  5172. mvd_cache[ 1 ][0]= mx - mpx;
  5173. mvd_cache[ 1 ][1]= my - mpy;
  5174. }else if(IS_SUB_4X8(sub_mb_type)){
  5175. mv_cache[ 8 ][0]= mx;
  5176. mv_cache[ 8 ][1]= my;
  5177. mvd_cache[ 8 ][0]= mx - mpx;
  5178. mvd_cache[ 8 ][1]= my - mpy;
  5179. }
  5180. mv_cache[ 0 ][0]= mx;
  5181. mv_cache[ 0 ][1]= my;
  5182. mvd_cache[ 0 ][0]= mx - mpx;
  5183. mvd_cache[ 0 ][1]= my - mpy;
  5184. }
  5185. }else{
  5186. uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
  5187. uint32_t *pd= (uint32_t *)&h->mvd_cache[list][ scan8[4*i] ][0];
  5188. p[0] = p[1] = p[8] = p[9] = 0;
  5189. pd[0]= pd[1]= pd[8]= pd[9]= 0;
  5190. }
  5191. }
  5192. }
  5193. } else if( IS_DIRECT(mb_type) ) {
  5194. pred_direct_motion(h, &mb_type);
  5195. fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4);
  5196. fill_rectangle(h->mvd_cache[1][scan8[0]], 4, 4, 8, 0, 4);
  5197. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  5198. } else {
  5199. int list, mx, my, i, mpx, mpy;
  5200. if(IS_16X16(mb_type)){
  5201. for(list=0; list<h->list_count; list++){
  5202. if(IS_DIR(mb_type, 0, list)){
  5203. const int ref = h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 0 ) : 0;
  5204. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, ref, 1);
  5205. }else
  5206. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1); //FIXME factorize and the other fill_rect below too
  5207. }
  5208. for(list=0; list<h->list_count; list++){
  5209. if(IS_DIR(mb_type, 0, list)){
  5210. pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mpx, &mpy);
  5211. mx = mpx + decode_cabac_mb_mvd( h, list, 0, 0 );
  5212. my = mpy + decode_cabac_mb_mvd( h, list, 0, 1 );
  5213. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5214. fill_rectangle(h->mvd_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
  5215. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
  5216. }else
  5217. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, 0, 4);
  5218. }
  5219. }
  5220. else if(IS_16X8(mb_type)){
  5221. for(list=0; list<h->list_count; list++){
  5222. for(i=0; i<2; i++){
  5223. if(IS_DIR(mb_type, i, list)){
  5224. const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 8*i ) : 0;
  5225. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, ref, 1);
  5226. }else
  5227. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, (LIST_NOT_USED&0xFF), 1);
  5228. }
  5229. }
  5230. for(list=0; list<h->list_count; list++){
  5231. for(i=0; i<2; i++){
  5232. if(IS_DIR(mb_type, i, list)){
  5233. pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mpx, &mpy);
  5234. mx = mpx + decode_cabac_mb_mvd( h, list, 8*i, 0 );
  5235. my = mpy + decode_cabac_mb_mvd( h, list, 8*i, 1 );
  5236. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5237. fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx-mpx,my-mpy), 4);
  5238. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4);
  5239. }else{
  5240. fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
  5241. fill_rectangle(h-> mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
  5242. }
  5243. }
  5244. }
  5245. }else{
  5246. assert(IS_8X16(mb_type));
  5247. for(list=0; list<h->list_count; list++){
  5248. for(i=0; i<2; i++){
  5249. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  5250. const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 4*i ) : 0;
  5251. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, ref, 1);
  5252. }else
  5253. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, (LIST_NOT_USED&0xFF), 1);
  5254. }
  5255. }
  5256. for(list=0; list<h->list_count; list++){
  5257. for(i=0; i<2; i++){
  5258. if(IS_DIR(mb_type, i, list)){
  5259. pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mpx, &mpy);
  5260. mx = mpx + decode_cabac_mb_mvd( h, list, 4*i, 0 );
  5261. my = mpy + decode_cabac_mb_mvd( h, list, 4*i, 1 );
  5262. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5263. fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
  5264. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4);
  5265. }else{
  5266. fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
  5267. fill_rectangle(h-> mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
  5268. }
  5269. }
  5270. }
  5271. }
  5272. }
  5273. if( IS_INTER( mb_type ) ) {
  5274. h->chroma_pred_mode_table[mb_xy] = 0;
  5275. write_back_motion( h, mb_type );
  5276. }
  5277. if( !IS_INTRA16x16( mb_type ) ) {
  5278. cbp = decode_cabac_mb_cbp_luma( h );
  5279. cbp |= decode_cabac_mb_cbp_chroma( h ) << 4;
  5280. }
  5281. h->cbp_table[mb_xy] = h->cbp = cbp;
  5282. if( dct8x8_allowed && (cbp&15) && !IS_INTRA( mb_type ) ) {
  5283. if( decode_cabac_mb_transform_size( h ) )
  5284. mb_type |= MB_TYPE_8x8DCT;
  5285. }
  5286. s->current_picture.mb_type[mb_xy]= mb_type;
  5287. if( cbp || IS_INTRA16x16( mb_type ) ) {
  5288. const uint8_t *scan, *scan8x8, *dc_scan;
  5289. const uint32_t *qmul;
  5290. int dqp;
  5291. if(IS_INTERLACED(mb_type)){
  5292. scan8x8= s->qscale ? h->field_scan8x8 : h->field_scan8x8_q0;
  5293. scan= s->qscale ? h->field_scan : h->field_scan_q0;
  5294. dc_scan= luma_dc_field_scan;
  5295. }else{
  5296. scan8x8= s->qscale ? h->zigzag_scan8x8 : h->zigzag_scan8x8_q0;
  5297. scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  5298. dc_scan= luma_dc_zigzag_scan;
  5299. }
  5300. h->last_qscale_diff = dqp = decode_cabac_mb_dqp( h );
  5301. if( dqp == INT_MIN ){
  5302. av_log(h->s.avctx, AV_LOG_ERROR, "cabac decode of qscale diff failed at %d %d\n", s->mb_x, s->mb_y);
  5303. return -1;
  5304. }
  5305. s->qscale += dqp;
  5306. if(((unsigned)s->qscale) > 51){
  5307. if(s->qscale<0) s->qscale+= 52;
  5308. else s->qscale-= 52;
  5309. }
  5310. h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
  5311. h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
  5312. if( IS_INTRA16x16( mb_type ) ) {
  5313. int i;
  5314. //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 DC\n" );
  5315. decode_cabac_residual( h, h->mb, 0, 0, dc_scan, NULL, 16);
  5316. if( cbp&15 ) {
  5317. qmul = h->dequant4_coeff[0][s->qscale];
  5318. for( i = 0; i < 16; i++ ) {
  5319. //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 AC:%d\n", i );
  5320. decode_cabac_residual(h, h->mb + 16*i, 1, i, scan + 1, qmul, 15);
  5321. }
  5322. } else {
  5323. fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
  5324. }
  5325. } else {
  5326. int i8x8, i4x4;
  5327. for( i8x8 = 0; i8x8 < 4; i8x8++ ) {
  5328. if( cbp & (1<<i8x8) ) {
  5329. if( IS_8x8DCT(mb_type) ) {
  5330. decode_cabac_residual(h, h->mb + 64*i8x8, 5, 4*i8x8,
  5331. scan8x8, h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 64);
  5332. } else {
  5333. qmul = h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale];
  5334. for( i4x4 = 0; i4x4 < 4; i4x4++ ) {
  5335. const int index = 4*i8x8 + i4x4;
  5336. //av_log( s->avctx, AV_LOG_ERROR, "Luma4x4: %d\n", index );
  5337. //START_TIMER
  5338. decode_cabac_residual(h, h->mb + 16*index, 2, index, scan, qmul, 16);
  5339. //STOP_TIMER("decode_residual")
  5340. }
  5341. }
  5342. } else {
  5343. uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  5344. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  5345. }
  5346. }
  5347. }
  5348. if( cbp&0x30 ){
  5349. int c;
  5350. for( c = 0; c < 2; c++ ) {
  5351. //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-DC\n",c );
  5352. decode_cabac_residual(h, h->mb + 256 + 16*4*c, 3, c, chroma_dc_scan, NULL, 4);
  5353. }
  5354. }
  5355. if( cbp&0x20 ) {
  5356. int c, i;
  5357. for( c = 0; c < 2; c++ ) {
  5358. qmul = h->dequant4_coeff[c+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp[c]];
  5359. for( i = 0; i < 4; i++ ) {
  5360. const int index = 16 + 4 * c + i;
  5361. //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-AC %d\n",c, index - 16 );
  5362. decode_cabac_residual(h, h->mb + 16*index, 4, index - 16, scan + 1, qmul, 15);
  5363. }
  5364. }
  5365. } else {
  5366. uint8_t * const nnz= &h->non_zero_count_cache[0];
  5367. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  5368. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  5369. }
  5370. } else {
  5371. uint8_t * const nnz= &h->non_zero_count_cache[0];
  5372. fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
  5373. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  5374. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  5375. h->last_qscale_diff = 0;
  5376. }
  5377. s->current_picture.qscale_table[mb_xy]= s->qscale;
  5378. write_back_non_zero_count(h);
  5379. if(MB_MBAFF){
  5380. h->ref_count[0] >>= 1;
  5381. h->ref_count[1] >>= 1;
  5382. }
  5383. return 0;
  5384. }
  5385. static void filter_mb_edgev( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5386. int i, d;
  5387. const int index_a = qp + h->slice_alpha_c0_offset;
  5388. const int alpha = (alpha_table+52)[index_a];
  5389. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5390. if( bS[0] < 4 ) {
  5391. int8_t tc[4];
  5392. for(i=0; i<4; i++)
  5393. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] : -1;
  5394. h->s.dsp.h264_h_loop_filter_luma(pix, stride, alpha, beta, tc);
  5395. } else {
  5396. /* 16px edge length, because bS=4 is triggered by being at
  5397. * the edge of an intra MB, so all 4 bS are the same */
  5398. for( d = 0; d < 16; d++ ) {
  5399. const int p0 = pix[-1];
  5400. const int p1 = pix[-2];
  5401. const int p2 = pix[-3];
  5402. const int q0 = pix[0];
  5403. const int q1 = pix[1];
  5404. const int q2 = pix[2];
  5405. if( FFABS( p0 - q0 ) < alpha &&
  5406. FFABS( p1 - p0 ) < beta &&
  5407. FFABS( q1 - q0 ) < beta ) {
  5408. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5409. if( FFABS( p2 - p0 ) < beta)
  5410. {
  5411. const int p3 = pix[-4];
  5412. /* p0', p1', p2' */
  5413. pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5414. pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5415. pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5416. } else {
  5417. /* p0' */
  5418. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5419. }
  5420. if( FFABS( q2 - q0 ) < beta)
  5421. {
  5422. const int q3 = pix[3];
  5423. /* q0', q1', q2' */
  5424. pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5425. pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5426. pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5427. } else {
  5428. /* q0' */
  5429. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5430. }
  5431. }else{
  5432. /* p0', q0' */
  5433. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5434. pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5435. }
  5436. tprintf(h->s.avctx, "filter_mb_edgev i:%d d:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, p2, p1, p0, q0, q1, q2, pix[-2], pix[-1], pix[0], pix[1]);
  5437. }
  5438. pix += stride;
  5439. }
  5440. }
  5441. }
  5442. static void filter_mb_edgecv( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5443. int i;
  5444. const int index_a = qp + h->slice_alpha_c0_offset;
  5445. const int alpha = (alpha_table+52)[index_a];
  5446. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5447. if( bS[0] < 4 ) {
  5448. int8_t tc[4];
  5449. for(i=0; i<4; i++)
  5450. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] + 1 : 0;
  5451. h->s.dsp.h264_h_loop_filter_chroma(pix, stride, alpha, beta, tc);
  5452. } else {
  5453. h->s.dsp.h264_h_loop_filter_chroma_intra(pix, stride, alpha, beta);
  5454. }
  5455. }
  5456. static void filter_mb_mbaff_edgev( H264Context *h, uint8_t *pix, int stride, int16_t bS[8], int qp[2] ) {
  5457. int i;
  5458. for( i = 0; i < 16; i++, pix += stride) {
  5459. int index_a;
  5460. int alpha;
  5461. int beta;
  5462. int qp_index;
  5463. int bS_index = (i >> 1);
  5464. if (!MB_FIELD) {
  5465. bS_index &= ~1;
  5466. bS_index |= (i & 1);
  5467. }
  5468. if( bS[bS_index] == 0 ) {
  5469. continue;
  5470. }
  5471. qp_index = MB_FIELD ? (i >> 3) : (i & 1);
  5472. index_a = qp[qp_index] + h->slice_alpha_c0_offset;
  5473. alpha = (alpha_table+52)[index_a];
  5474. beta = (beta_table+52)[qp[qp_index] + h->slice_beta_offset];
  5475. if( bS[bS_index] < 4 ) {
  5476. const int tc0 = (tc0_table+52)[index_a][bS[bS_index] - 1];
  5477. const int p0 = pix[-1];
  5478. const int p1 = pix[-2];
  5479. const int p2 = pix[-3];
  5480. const int q0 = pix[0];
  5481. const int q1 = pix[1];
  5482. const int q2 = pix[2];
  5483. if( FFABS( p0 - q0 ) < alpha &&
  5484. FFABS( p1 - p0 ) < beta &&
  5485. FFABS( q1 - q0 ) < beta ) {
  5486. int tc = tc0;
  5487. int i_delta;
  5488. if( FFABS( p2 - p0 ) < beta ) {
  5489. pix[-2] = p1 + av_clip( ( p2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( p1 << 1 ) ) >> 1, -tc0, tc0 );
  5490. tc++;
  5491. }
  5492. if( FFABS( q2 - q0 ) < beta ) {
  5493. pix[1] = q1 + av_clip( ( q2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( q1 << 1 ) ) >> 1, -tc0, tc0 );
  5494. tc++;
  5495. }
  5496. i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  5497. pix[-1] = av_clip_uint8( p0 + i_delta ); /* p0' */
  5498. pix[0] = av_clip_uint8( q0 - i_delta ); /* q0' */
  5499. tprintf(h->s.avctx, "filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
  5500. }
  5501. }else{
  5502. const int p0 = pix[-1];
  5503. const int p1 = pix[-2];
  5504. const int p2 = pix[-3];
  5505. const int q0 = pix[0];
  5506. const int q1 = pix[1];
  5507. const int q2 = pix[2];
  5508. if( FFABS( p0 - q0 ) < alpha &&
  5509. FFABS( p1 - p0 ) < beta &&
  5510. FFABS( q1 - q0 ) < beta ) {
  5511. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5512. if( FFABS( p2 - p0 ) < beta)
  5513. {
  5514. const int p3 = pix[-4];
  5515. /* p0', p1', p2' */
  5516. pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5517. pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5518. pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5519. } else {
  5520. /* p0' */
  5521. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5522. }
  5523. if( FFABS( q2 - q0 ) < beta)
  5524. {
  5525. const int q3 = pix[3];
  5526. /* q0', q1', q2' */
  5527. pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5528. pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5529. pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5530. } else {
  5531. /* q0' */
  5532. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5533. }
  5534. }else{
  5535. /* p0', q0' */
  5536. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5537. pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5538. }
  5539. tprintf(h->s.avctx, "filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, p2, p1, p0, q0, q1, q2, pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
  5540. }
  5541. }
  5542. }
  5543. }
  5544. static void filter_mb_mbaff_edgecv( H264Context *h, uint8_t *pix, int stride, int16_t bS[8], int qp[2] ) {
  5545. int i;
  5546. for( i = 0; i < 8; i++, pix += stride) {
  5547. int index_a;
  5548. int alpha;
  5549. int beta;
  5550. int qp_index;
  5551. int bS_index = i;
  5552. if( bS[bS_index] == 0 ) {
  5553. continue;
  5554. }
  5555. qp_index = MB_FIELD ? (i >> 2) : (i & 1);
  5556. index_a = qp[qp_index] + h->slice_alpha_c0_offset;
  5557. alpha = (alpha_table+52)[index_a];
  5558. beta = (beta_table+52)[qp[qp_index] + h->slice_beta_offset];
  5559. if( bS[bS_index] < 4 ) {
  5560. const int tc = (tc0_table+52)[index_a][bS[bS_index] - 1] + 1;
  5561. const int p0 = pix[-1];
  5562. const int p1 = pix[-2];
  5563. const int q0 = pix[0];
  5564. const int q1 = pix[1];
  5565. if( FFABS( p0 - q0 ) < alpha &&
  5566. FFABS( p1 - p0 ) < beta &&
  5567. FFABS( q1 - q0 ) < beta ) {
  5568. const int i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  5569. pix[-1] = av_clip_uint8( p0 + i_delta ); /* p0' */
  5570. pix[0] = av_clip_uint8( q0 - i_delta ); /* q0' */
  5571. tprintf(h->s.avctx, "filter_mb_mbaff_edgecv i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
  5572. }
  5573. }else{
  5574. const int p0 = pix[-1];
  5575. const int p1 = pix[-2];
  5576. const int q0 = pix[0];
  5577. const int q1 = pix[1];
  5578. if( FFABS( p0 - q0 ) < alpha &&
  5579. FFABS( p1 - p0 ) < beta &&
  5580. FFABS( q1 - q0 ) < beta ) {
  5581. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2; /* p0' */
  5582. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2; /* q0' */
  5583. tprintf(h->s.avctx, "filter_mb_mbaff_edgecv i:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, pix[-3], p1, p0, q0, q1, pix[2], pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
  5584. }
  5585. }
  5586. }
  5587. }
  5588. static void filter_mb_edgeh( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5589. int i, d;
  5590. const int index_a = qp + h->slice_alpha_c0_offset;
  5591. const int alpha = (alpha_table+52)[index_a];
  5592. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5593. const int pix_next = stride;
  5594. if( bS[0] < 4 ) {
  5595. int8_t tc[4];
  5596. for(i=0; i<4; i++)
  5597. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] : -1;
  5598. h->s.dsp.h264_v_loop_filter_luma(pix, stride, alpha, beta, tc);
  5599. } else {
  5600. /* 16px edge length, see filter_mb_edgev */
  5601. for( d = 0; d < 16; d++ ) {
  5602. const int p0 = pix[-1*pix_next];
  5603. const int p1 = pix[-2*pix_next];
  5604. const int p2 = pix[-3*pix_next];
  5605. const int q0 = pix[0];
  5606. const int q1 = pix[1*pix_next];
  5607. const int q2 = pix[2*pix_next];
  5608. if( FFABS( p0 - q0 ) < alpha &&
  5609. FFABS( p1 - p0 ) < beta &&
  5610. FFABS( q1 - q0 ) < beta ) {
  5611. const int p3 = pix[-4*pix_next];
  5612. const int q3 = pix[ 3*pix_next];
  5613. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5614. if( FFABS( p2 - p0 ) < beta) {
  5615. /* p0', p1', p2' */
  5616. pix[-1*pix_next] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5617. pix[-2*pix_next] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5618. pix[-3*pix_next] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5619. } else {
  5620. /* p0' */
  5621. pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5622. }
  5623. if( FFABS( q2 - q0 ) < beta) {
  5624. /* q0', q1', q2' */
  5625. pix[0*pix_next] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5626. pix[1*pix_next] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5627. pix[2*pix_next] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5628. } else {
  5629. /* q0' */
  5630. pix[0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5631. }
  5632. }else{
  5633. /* p0', q0' */
  5634. pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5635. pix[ 0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5636. }
  5637. tprintf(h->s.avctx, "filter_mb_edgeh i:%d d:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, qp, index_a, alpha, beta, bS[i], p2, p1, p0, q0, q1, q2, pix[-2*pix_next], pix[-pix_next], pix[0], pix[pix_next]);
  5638. }
  5639. pix++;
  5640. }
  5641. }
  5642. }
  5643. static void filter_mb_edgech( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5644. int i;
  5645. const int index_a = qp + h->slice_alpha_c0_offset;
  5646. const int alpha = (alpha_table+52)[index_a];
  5647. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5648. if( bS[0] < 4 ) {
  5649. int8_t tc[4];
  5650. for(i=0; i<4; i++)
  5651. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] + 1 : 0;
  5652. h->s.dsp.h264_v_loop_filter_chroma(pix, stride, alpha, beta, tc);
  5653. } else {
  5654. h->s.dsp.h264_v_loop_filter_chroma_intra(pix, stride, alpha, beta);
  5655. }
  5656. }
  5657. static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
  5658. MpegEncContext * const s = &h->s;
  5659. int mb_y_firstrow = s->picture_structure == PICT_BOTTOM_FIELD;
  5660. int mb_xy, mb_type;
  5661. int qp, qp0, qp1, qpc, qpc0, qpc1, qp_thresh;
  5662. mb_xy = h->mb_xy;
  5663. if(mb_x==0 || mb_y==mb_y_firstrow || !s->dsp.h264_loop_filter_strength || h->pps.chroma_qp_diff ||
  5664. 1 ||
  5665. (h->deblocking_filter == 2 && (h->slice_table[mb_xy] != h->slice_table[h->top_mb_xy] ||
  5666. h->slice_table[mb_xy] != h->slice_table[mb_xy - 1]))) {
  5667. filter_mb(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize);
  5668. return;
  5669. }
  5670. assert(!FRAME_MBAFF);
  5671. mb_type = s->current_picture.mb_type[mb_xy];
  5672. qp = s->current_picture.qscale_table[mb_xy];
  5673. qp0 = s->current_picture.qscale_table[mb_xy-1];
  5674. qp1 = s->current_picture.qscale_table[h->top_mb_xy];
  5675. qpc = get_chroma_qp( h, 0, qp );
  5676. qpc0 = get_chroma_qp( h, 0, qp0 );
  5677. qpc1 = get_chroma_qp( h, 0, qp1 );
  5678. qp0 = (qp + qp0 + 1) >> 1;
  5679. qp1 = (qp + qp1 + 1) >> 1;
  5680. qpc0 = (qpc + qpc0 + 1) >> 1;
  5681. qpc1 = (qpc + qpc1 + 1) >> 1;
  5682. qp_thresh = 15 - h->slice_alpha_c0_offset;
  5683. if(qp <= qp_thresh && qp0 <= qp_thresh && qp1 <= qp_thresh &&
  5684. qpc <= qp_thresh && qpc0 <= qp_thresh && qpc1 <= qp_thresh)
  5685. return;
  5686. if( IS_INTRA(mb_type) ) {
  5687. int16_t bS4[4] = {4,4,4,4};
  5688. int16_t bS3[4] = {3,3,3,3};
  5689. int16_t *bSH = FIELD_PICTURE ? bS3 : bS4;
  5690. if( IS_8x8DCT(mb_type) ) {
  5691. filter_mb_edgev( h, &img_y[4*0], linesize, bS4, qp0 );
  5692. filter_mb_edgev( h, &img_y[4*2], linesize, bS3, qp );
  5693. filter_mb_edgeh( h, &img_y[4*0*linesize], linesize, bSH, qp1 );
  5694. filter_mb_edgeh( h, &img_y[4*2*linesize], linesize, bS3, qp );
  5695. } else {
  5696. filter_mb_edgev( h, &img_y[4*0], linesize, bS4, qp0 );
  5697. filter_mb_edgev( h, &img_y[4*1], linesize, bS3, qp );
  5698. filter_mb_edgev( h, &img_y[4*2], linesize, bS3, qp );
  5699. filter_mb_edgev( h, &img_y[4*3], linesize, bS3, qp );
  5700. filter_mb_edgeh( h, &img_y[4*0*linesize], linesize, bSH, qp1 );
  5701. filter_mb_edgeh( h, &img_y[4*1*linesize], linesize, bS3, qp );
  5702. filter_mb_edgeh( h, &img_y[4*2*linesize], linesize, bS3, qp );
  5703. filter_mb_edgeh( h, &img_y[4*3*linesize], linesize, bS3, qp );
  5704. }
  5705. filter_mb_edgecv( h, &img_cb[2*0], uvlinesize, bS4, qpc0 );
  5706. filter_mb_edgecv( h, &img_cb[2*2], uvlinesize, bS3, qpc );
  5707. filter_mb_edgecv( h, &img_cr[2*0], uvlinesize, bS4, qpc0 );
  5708. filter_mb_edgecv( h, &img_cr[2*2], uvlinesize, bS3, qpc );
  5709. filter_mb_edgech( h, &img_cb[2*0*uvlinesize], uvlinesize, bSH, qpc1 );
  5710. filter_mb_edgech( h, &img_cb[2*2*uvlinesize], uvlinesize, bS3, qpc );
  5711. filter_mb_edgech( h, &img_cr[2*0*uvlinesize], uvlinesize, bSH, qpc1 );
  5712. filter_mb_edgech( h, &img_cr[2*2*uvlinesize], uvlinesize, bS3, qpc );
  5713. return;
  5714. } else {
  5715. DECLARE_ALIGNED_8(int16_t, bS[2][4][4]);
  5716. uint64_t (*bSv)[4] = (uint64_t(*)[4])bS;
  5717. int edges;
  5718. if( IS_8x8DCT(mb_type) && (h->cbp&7) == 7 ) {
  5719. edges = 4;
  5720. bSv[0][0] = bSv[0][2] = bSv[1][0] = bSv[1][2] = 0x0002000200020002ULL;
  5721. } else {
  5722. int mask_edge1 = (mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16)) ? 3 :
  5723. (mb_type & MB_TYPE_16x8) ? 1 : 0;
  5724. int mask_edge0 = (mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16))
  5725. && (s->current_picture.mb_type[mb_xy-1] & (MB_TYPE_16x16 | MB_TYPE_8x16))
  5726. ? 3 : 0;
  5727. int step = IS_8x8DCT(mb_type) ? 2 : 1;
  5728. edges = (mb_type & MB_TYPE_16x16) && !(h->cbp & 15) ? 1 : 4;
  5729. s->dsp.h264_loop_filter_strength( bS, h->non_zero_count_cache, h->ref_cache, h->mv_cache,
  5730. (h->slice_type_nos == FF_B_TYPE), edges, step, mask_edge0, mask_edge1, FIELD_PICTURE);
  5731. }
  5732. if( IS_INTRA(s->current_picture.mb_type[mb_xy-1]) )
  5733. bSv[0][0] = 0x0004000400040004ULL;
  5734. if( IS_INTRA(s->current_picture.mb_type[h->top_mb_xy]) )
  5735. bSv[1][0] = FIELD_PICTURE ? 0x0003000300030003ULL : 0x0004000400040004ULL;
  5736. #define FILTER(hv,dir,edge)\
  5737. if(bSv[dir][edge]) {\
  5738. filter_mb_edge##hv( h, &img_y[4*edge*(dir?linesize:1)], linesize, bS[dir][edge], edge ? qp : qp##dir );\
  5739. if(!(edge&1)) {\
  5740. filter_mb_edgec##hv( h, &img_cb[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir );\
  5741. filter_mb_edgec##hv( h, &img_cr[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir );\
  5742. }\
  5743. }
  5744. if( edges == 1 ) {
  5745. FILTER(v,0,0);
  5746. FILTER(h,1,0);
  5747. } else if( IS_8x8DCT(mb_type) ) {
  5748. FILTER(v,0,0);
  5749. FILTER(v,0,2);
  5750. FILTER(h,1,0);
  5751. FILTER(h,1,2);
  5752. } else {
  5753. FILTER(v,0,0);
  5754. FILTER(v,0,1);
  5755. FILTER(v,0,2);
  5756. FILTER(v,0,3);
  5757. FILTER(h,1,0);
  5758. FILTER(h,1,1);
  5759. FILTER(h,1,2);
  5760. FILTER(h,1,3);
  5761. }
  5762. #undef FILTER
  5763. }
  5764. }
  5765. static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
  5766. MpegEncContext * const s = &h->s;
  5767. const int mb_xy= mb_x + mb_y*s->mb_stride;
  5768. const int mb_type = s->current_picture.mb_type[mb_xy];
  5769. const int mvy_limit = IS_INTERLACED(mb_type) ? 2 : 4;
  5770. int first_vertical_edge_done = 0;
  5771. int dir;
  5772. //for sufficiently low qp, filtering wouldn't do anything
  5773. //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
  5774. if(!FRAME_MBAFF){
  5775. int qp_thresh = 15 - h->slice_alpha_c0_offset - FFMAX3(0, h->pps.chroma_qp_index_offset[0], h->pps.chroma_qp_index_offset[1]);
  5776. int qp = s->current_picture.qscale_table[mb_xy];
  5777. if(qp <= qp_thresh
  5778. && (mb_x == 0 || ((qp + s->current_picture.qscale_table[mb_xy-1] + 1)>>1) <= qp_thresh)
  5779. && (mb_y == 0 || ((qp + s->current_picture.qscale_table[h->top_mb_xy] + 1)>>1) <= qp_thresh)){
  5780. return;
  5781. }
  5782. }
  5783. // CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
  5784. if(!h->pps.cabac && h->pps.transform_8x8_mode){
  5785. int top_type, left_type[2];
  5786. top_type = s->current_picture.mb_type[h->top_mb_xy] ;
  5787. left_type[0] = s->current_picture.mb_type[h->left_mb_xy[0]];
  5788. left_type[1] = s->current_picture.mb_type[h->left_mb_xy[1]];
  5789. if(IS_8x8DCT(top_type)){
  5790. h->non_zero_count_cache[4+8*0]=
  5791. h->non_zero_count_cache[5+8*0]= h->cbp_table[h->top_mb_xy] & 4;
  5792. h->non_zero_count_cache[6+8*0]=
  5793. h->non_zero_count_cache[7+8*0]= h->cbp_table[h->top_mb_xy] & 8;
  5794. }
  5795. if(IS_8x8DCT(left_type[0])){
  5796. h->non_zero_count_cache[3+8*1]=
  5797. h->non_zero_count_cache[3+8*2]= h->cbp_table[h->left_mb_xy[0]]&2; //FIXME check MBAFF
  5798. }
  5799. if(IS_8x8DCT(left_type[1])){
  5800. h->non_zero_count_cache[3+8*3]=
  5801. h->non_zero_count_cache[3+8*4]= h->cbp_table[h->left_mb_xy[1]]&8; //FIXME check MBAFF
  5802. }
  5803. if(IS_8x8DCT(mb_type)){
  5804. h->non_zero_count_cache[scan8[0 ]]= h->non_zero_count_cache[scan8[1 ]]=
  5805. h->non_zero_count_cache[scan8[2 ]]= h->non_zero_count_cache[scan8[3 ]]= h->cbp_table[mb_xy] & 1;
  5806. h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]=
  5807. h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp_table[mb_xy] & 2;
  5808. h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]=
  5809. h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp_table[mb_xy] & 4;
  5810. h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]=
  5811. h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp_table[mb_xy] & 8;
  5812. }
  5813. }
  5814. if (FRAME_MBAFF
  5815. // left mb is in picture
  5816. && h->slice_table[mb_xy-1] != 255
  5817. // and current and left pair do not have the same interlaced type
  5818. && (IS_INTERLACED(mb_type) != IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]))
  5819. // and left mb is in the same slice if deblocking_filter == 2
  5820. && (h->deblocking_filter!=2 || h->slice_table[mb_xy-1] == h->slice_table[mb_xy])) {
  5821. /* First vertical edge is different in MBAFF frames
  5822. * There are 8 different bS to compute and 2 different Qp
  5823. */
  5824. const int pair_xy = mb_x + (mb_y&~1)*s->mb_stride;
  5825. const int left_mb_xy[2] = { pair_xy-1, pair_xy-1+s->mb_stride };
  5826. int16_t bS[8];
  5827. int qp[2];
  5828. int bqp[2];
  5829. int rqp[2];
  5830. int mb_qp, mbn0_qp, mbn1_qp;
  5831. int i;
  5832. first_vertical_edge_done = 1;
  5833. if( IS_INTRA(mb_type) )
  5834. bS[0] = bS[1] = bS[2] = bS[3] = bS[4] = bS[5] = bS[6] = bS[7] = 4;
  5835. else {
  5836. for( i = 0; i < 8; i++ ) {
  5837. int mbn_xy = MB_FIELD ? left_mb_xy[i>>2] : left_mb_xy[i&1];
  5838. if( IS_INTRA( s->current_picture.mb_type[mbn_xy] ) )
  5839. bS[i] = 4;
  5840. else if( h->non_zero_count_cache[12+8*(i>>1)] != 0 ||
  5841. /* FIXME: with 8x8dct + cavlc, should check cbp instead of nnz */
  5842. h->non_zero_count[mbn_xy][MB_FIELD ? i&3 : (i>>2)+(mb_y&1)*2] )
  5843. bS[i] = 2;
  5844. else
  5845. bS[i] = 1;
  5846. }
  5847. }
  5848. mb_qp = s->current_picture.qscale_table[mb_xy];
  5849. mbn0_qp = s->current_picture.qscale_table[left_mb_xy[0]];
  5850. mbn1_qp = s->current_picture.qscale_table[left_mb_xy[1]];
  5851. qp[0] = ( mb_qp + mbn0_qp + 1 ) >> 1;
  5852. bqp[0] = ( get_chroma_qp( h, 0, mb_qp ) +
  5853. get_chroma_qp( h, 0, mbn0_qp ) + 1 ) >> 1;
  5854. rqp[0] = ( get_chroma_qp( h, 1, mb_qp ) +
  5855. get_chroma_qp( h, 1, mbn0_qp ) + 1 ) >> 1;
  5856. qp[1] = ( mb_qp + mbn1_qp + 1 ) >> 1;
  5857. bqp[1] = ( get_chroma_qp( h, 0, mb_qp ) +
  5858. get_chroma_qp( h, 0, mbn1_qp ) + 1 ) >> 1;
  5859. rqp[1] = ( get_chroma_qp( h, 1, mb_qp ) +
  5860. get_chroma_qp( h, 1, mbn1_qp ) + 1 ) >> 1;
  5861. /* Filter edge */
  5862. tprintf(s->avctx, "filter mb:%d/%d MBAFF, QPy:%d/%d, QPb:%d/%d QPr:%d/%d ls:%d uvls:%d", mb_x, mb_y, qp[0], qp[1], bqp[0], bqp[1], rqp[0], rqp[1], linesize, uvlinesize);
  5863. { int i; for (i = 0; i < 8; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  5864. filter_mb_mbaff_edgev ( h, &img_y [0], linesize, bS, qp );
  5865. filter_mb_mbaff_edgecv( h, &img_cb[0], uvlinesize, bS, bqp );
  5866. filter_mb_mbaff_edgecv( h, &img_cr[0], uvlinesize, bS, rqp );
  5867. }
  5868. /* dir : 0 -> vertical edge, 1 -> horizontal edge */
  5869. for( dir = 0; dir < 2; dir++ )
  5870. {
  5871. int edge;
  5872. const int mbm_xy = dir == 0 ? mb_xy -1 : h->top_mb_xy;
  5873. const int mbm_type = s->current_picture.mb_type[mbm_xy];
  5874. int (*ref2frm) [48+2] = h->ref2frm[ h->slice_num &15 ];
  5875. int (*ref2frmm)[48+2] = h->ref2frm[ h->slice_table[mbm_xy]&15 ];
  5876. int start = h->slice_table[mbm_xy] == 255 ? 1 : 0;
  5877. const int edges = (mb_type & (MB_TYPE_16x16|MB_TYPE_SKIP))
  5878. == (MB_TYPE_16x16|MB_TYPE_SKIP) ? 1 : 4;
  5879. // how often to recheck mv-based bS when iterating between edges
  5880. const int mask_edge = (mb_type & (MB_TYPE_16x16 | (MB_TYPE_16x8 << dir))) ? 3 :
  5881. (mb_type & (MB_TYPE_8x16 >> dir)) ? 1 : 0;
  5882. // how often to recheck mv-based bS when iterating along each edge
  5883. const int mask_par0 = mb_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir));
  5884. if (first_vertical_edge_done) {
  5885. start = 1;
  5886. first_vertical_edge_done = 0;
  5887. }
  5888. if (h->deblocking_filter==2 && h->slice_table[mbm_xy] != h->slice_table[mb_xy])
  5889. start = 1;
  5890. if (FRAME_MBAFF && (dir == 1) && ((mb_y&1) == 0) && start == 0
  5891. && !IS_INTERLACED(mb_type)
  5892. && IS_INTERLACED(mbm_type)
  5893. ) {
  5894. // This is a special case in the norm where the filtering must
  5895. // be done twice (one each of the field) even if we are in a
  5896. // frame macroblock.
  5897. //
  5898. static const int nnz_idx[4] = {4,5,6,3};
  5899. unsigned int tmp_linesize = 2 * linesize;
  5900. unsigned int tmp_uvlinesize = 2 * uvlinesize;
  5901. int mbn_xy = mb_xy - 2 * s->mb_stride;
  5902. int qp;
  5903. int i, j;
  5904. int16_t bS[4];
  5905. for(j=0; j<2; j++, mbn_xy += s->mb_stride){
  5906. if( IS_INTRA(mb_type) ||
  5907. IS_INTRA(s->current_picture.mb_type[mbn_xy]) ) {
  5908. bS[0] = bS[1] = bS[2] = bS[3] = 3;
  5909. } else {
  5910. const uint8_t *mbn_nnz = h->non_zero_count[mbn_xy];
  5911. for( i = 0; i < 4; i++ ) {
  5912. if( h->non_zero_count_cache[scan8[0]+i] != 0 ||
  5913. mbn_nnz[nnz_idx[i]] != 0 )
  5914. bS[i] = 2;
  5915. else
  5916. bS[i] = 1;
  5917. }
  5918. }
  5919. // Do not use s->qscale as luma quantizer because it has not the same
  5920. // value in IPCM macroblocks.
  5921. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
  5922. tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, tmp_linesize, tmp_uvlinesize);
  5923. { int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  5924. filter_mb_edgeh( h, &img_y[j*linesize], tmp_linesize, bS, qp );
  5925. filter_mb_edgech( h, &img_cb[j*uvlinesize], tmp_uvlinesize, bS,
  5926. ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  5927. filter_mb_edgech( h, &img_cr[j*uvlinesize], tmp_uvlinesize, bS,
  5928. ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  5929. }
  5930. start = 1;
  5931. }
  5932. /* Calculate bS */
  5933. for( edge = start; edge < edges; edge++ ) {
  5934. /* mbn_xy: neighbor macroblock */
  5935. const int mbn_xy = edge > 0 ? mb_xy : mbm_xy;
  5936. const int mbn_type = s->current_picture.mb_type[mbn_xy];
  5937. int (*ref2frmn)[48+2] = edge > 0 ? ref2frm : ref2frmm;
  5938. int16_t bS[4];
  5939. int qp;
  5940. if( (edge&1) && IS_8x8DCT(mb_type) )
  5941. continue;
  5942. if( IS_INTRA(mb_type) ||
  5943. IS_INTRA(mbn_type) ) {
  5944. int value;
  5945. if (edge == 0) {
  5946. if ( (!IS_INTERLACED(mb_type) && !IS_INTERLACED(mbm_type))
  5947. || ((FRAME_MBAFF || (s->picture_structure != PICT_FRAME)) && (dir == 0))
  5948. ) {
  5949. value = 4;
  5950. } else {
  5951. value = 3;
  5952. }
  5953. } else {
  5954. value = 3;
  5955. }
  5956. bS[0] = bS[1] = bS[2] = bS[3] = value;
  5957. } else {
  5958. int i, l;
  5959. int mv_done;
  5960. if( edge & mask_edge ) {
  5961. bS[0] = bS[1] = bS[2] = bS[3] = 0;
  5962. mv_done = 1;
  5963. }
  5964. else if( FRAME_MBAFF && IS_INTERLACED(mb_type ^ mbn_type)) {
  5965. bS[0] = bS[1] = bS[2] = bS[3] = 1;
  5966. mv_done = 1;
  5967. }
  5968. else if( mask_par0 && (edge || (mbn_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir)))) ) {
  5969. int b_idx= 8 + 4 + edge * (dir ? 8:1);
  5970. int bn_idx= b_idx - (dir ? 8:1);
  5971. int v = 0;
  5972. for( l = 0; !v && l < 1 + (h->slice_type_nos == FF_B_TYPE); l++ ) {
  5973. v |= ref2frm[l][h->ref_cache[l][b_idx]+2] != ref2frmn[l][h->ref_cache[l][bn_idx]+2] ||
  5974. FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
  5975. FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= mvy_limit;
  5976. }
  5977. if(h->slice_type_nos == FF_B_TYPE && v){
  5978. v=0;
  5979. for( l = 0; !v && l < 2; l++ ) {
  5980. int ln= 1-l;
  5981. v |= ref2frm[l][h->ref_cache[l][b_idx]+2] != ref2frmn[ln][h->ref_cache[ln][bn_idx]+2] ||
  5982. FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[ln][bn_idx][0] ) >= 4 ||
  5983. FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[ln][bn_idx][1] ) >= mvy_limit;
  5984. }
  5985. }
  5986. bS[0] = bS[1] = bS[2] = bS[3] = v;
  5987. mv_done = 1;
  5988. }
  5989. else
  5990. mv_done = 0;
  5991. for( i = 0; i < 4; i++ ) {
  5992. int x = dir == 0 ? edge : i;
  5993. int y = dir == 0 ? i : edge;
  5994. int b_idx= 8 + 4 + x + 8*y;
  5995. int bn_idx= b_idx - (dir ? 8:1);
  5996. if( h->non_zero_count_cache[b_idx] != 0 ||
  5997. h->non_zero_count_cache[bn_idx] != 0 ) {
  5998. bS[i] = 2;
  5999. }
  6000. else if(!mv_done)
  6001. {
  6002. bS[i] = 0;
  6003. for( l = 0; l < 1 + (h->slice_type_nos == FF_B_TYPE); l++ ) {
  6004. if( ref2frm[l][h->ref_cache[l][b_idx]+2] != ref2frmn[l][h->ref_cache[l][bn_idx]+2] ||
  6005. FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
  6006. FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= mvy_limit ) {
  6007. bS[i] = 1;
  6008. break;
  6009. }
  6010. }
  6011. if(h->slice_type_nos == FF_B_TYPE && bS[i]){
  6012. bS[i] = 0;
  6013. for( l = 0; l < 2; l++ ) {
  6014. int ln= 1-l;
  6015. if( ref2frm[l][h->ref_cache[l][b_idx]+2] != ref2frmn[ln][h->ref_cache[ln][bn_idx]+2] ||
  6016. FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[ln][bn_idx][0] ) >= 4 ||
  6017. FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[ln][bn_idx][1] ) >= mvy_limit ) {
  6018. bS[i] = 1;
  6019. break;
  6020. }
  6021. }
  6022. }
  6023. }
  6024. }
  6025. if(bS[0]+bS[1]+bS[2]+bS[3] == 0)
  6026. continue;
  6027. }
  6028. /* Filter edge */
  6029. // Do not use s->qscale as luma quantizer because it has not the same
  6030. // value in IPCM macroblocks.
  6031. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
  6032. //tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d, QPc:%d, QPcn:%d\n", mb_x, mb_y, dir, edge, qp, h->chroma_qp, s->current_picture.qscale_table[mbn_xy]);
  6033. tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, linesize, uvlinesize);
  6034. { int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  6035. if( dir == 0 ) {
  6036. filter_mb_edgev( h, &img_y[4*edge], linesize, bS, qp );
  6037. if( (edge&1) == 0 ) {
  6038. filter_mb_edgecv( h, &img_cb[2*edge], uvlinesize, bS,
  6039. ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  6040. filter_mb_edgecv( h, &img_cr[2*edge], uvlinesize, bS,
  6041. ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  6042. }
  6043. } else {
  6044. filter_mb_edgeh( h, &img_y[4*edge*linesize], linesize, bS, qp );
  6045. if( (edge&1) == 0 ) {
  6046. filter_mb_edgech( h, &img_cb[2*edge*uvlinesize], uvlinesize, bS,
  6047. ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  6048. filter_mb_edgech( h, &img_cr[2*edge*uvlinesize], uvlinesize, bS,
  6049. ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  6050. }
  6051. }
  6052. }
  6053. }
  6054. }
  6055. static int decode_slice(struct AVCodecContext *avctx, H264Context *h){
  6056. MpegEncContext * const s = &h->s;
  6057. const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
  6058. s->mb_skip_run= -1;
  6059. if( h->pps.cabac ) {
  6060. int i;
  6061. /* realign */
  6062. align_get_bits( &s->gb );
  6063. /* init cabac */
  6064. ff_init_cabac_states( &h->cabac);
  6065. ff_init_cabac_decoder( &h->cabac,
  6066. s->gb.buffer + get_bits_count(&s->gb)/8,
  6067. ( s->gb.size_in_bits - get_bits_count(&s->gb) + 7)/8);
  6068. /* calculate pre-state */
  6069. for( i= 0; i < 460; i++ ) {
  6070. int pre;
  6071. if( h->slice_type_nos == FF_I_TYPE )
  6072. pre = av_clip( ((cabac_context_init_I[i][0] * s->qscale) >>4 ) + cabac_context_init_I[i][1], 1, 126 );
  6073. else
  6074. pre = av_clip( ((cabac_context_init_PB[h->cabac_init_idc][i][0] * s->qscale) >>4 ) + cabac_context_init_PB[h->cabac_init_idc][i][1], 1, 126 );
  6075. if( pre <= 63 )
  6076. h->cabac_state[i] = 2 * ( 63 - pre ) + 0;
  6077. else
  6078. h->cabac_state[i] = 2 * ( pre - 64 ) + 1;
  6079. }
  6080. for(;;){
  6081. //START_TIMER
  6082. int ret = decode_mb_cabac(h);
  6083. int eos;
  6084. //STOP_TIMER("decode_mb_cabac")
  6085. if(ret>=0) hl_decode_mb(h);
  6086. if( ret >= 0 && FRAME_MBAFF ) { //FIXME optimal? or let mb_decode decode 16x32 ?
  6087. s->mb_y++;
  6088. if(ret>=0) ret = decode_mb_cabac(h);
  6089. if(ret>=0) hl_decode_mb(h);
  6090. s->mb_y--;
  6091. }
  6092. eos = get_cabac_terminate( &h->cabac );
  6093. if( ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 2) {
  6094. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d, bytestream (%td)\n", s->mb_x, s->mb_y, h->cabac.bytestream_end - h->cabac.bytestream);
  6095. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6096. return -1;
  6097. }
  6098. if( ++s->mb_x >= s->mb_width ) {
  6099. s->mb_x = 0;
  6100. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6101. ++s->mb_y;
  6102. if(FIELD_OR_MBAFF_PICTURE) {
  6103. ++s->mb_y;
  6104. }
  6105. }
  6106. if( eos || s->mb_y >= s->mb_height ) {
  6107. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6108. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6109. return 0;
  6110. }
  6111. }
  6112. } else {
  6113. for(;;){
  6114. int ret = decode_mb_cavlc(h);
  6115. if(ret>=0) hl_decode_mb(h);
  6116. if(ret>=0 && FRAME_MBAFF){ //FIXME optimal? or let mb_decode decode 16x32 ?
  6117. s->mb_y++;
  6118. ret = decode_mb_cavlc(h);
  6119. if(ret>=0) hl_decode_mb(h);
  6120. s->mb_y--;
  6121. }
  6122. if(ret<0){
  6123. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  6124. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6125. return -1;
  6126. }
  6127. if(++s->mb_x >= s->mb_width){
  6128. s->mb_x=0;
  6129. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6130. ++s->mb_y;
  6131. if(FIELD_OR_MBAFF_PICTURE) {
  6132. ++s->mb_y;
  6133. }
  6134. if(s->mb_y >= s->mb_height){
  6135. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6136. if(get_bits_count(&s->gb) == s->gb.size_in_bits ) {
  6137. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6138. return 0;
  6139. }else{
  6140. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6141. return -1;
  6142. }
  6143. }
  6144. }
  6145. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
  6146. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6147. if(get_bits_count(&s->gb) == s->gb.size_in_bits ){
  6148. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6149. return 0;
  6150. }else{
  6151. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6152. return -1;
  6153. }
  6154. }
  6155. }
  6156. }
  6157. #if 0
  6158. for(;s->mb_y < s->mb_height; s->mb_y++){
  6159. for(;s->mb_x < s->mb_width; s->mb_x++){
  6160. int ret= decode_mb(h);
  6161. hl_decode_mb(h);
  6162. if(ret<0){
  6163. av_log(s->avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  6164. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6165. return -1;
  6166. }
  6167. if(++s->mb_x >= s->mb_width){
  6168. s->mb_x=0;
  6169. if(++s->mb_y >= s->mb_height){
  6170. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  6171. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6172. return 0;
  6173. }else{
  6174. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6175. return -1;
  6176. }
  6177. }
  6178. }
  6179. if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){
  6180. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  6181. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6182. return 0;
  6183. }else{
  6184. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6185. return -1;
  6186. }
  6187. }
  6188. }
  6189. s->mb_x=0;
  6190. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6191. }
  6192. #endif
  6193. return -1; //not reached
  6194. }
  6195. static int decode_unregistered_user_data(H264Context *h, int size){
  6196. MpegEncContext * const s = &h->s;
  6197. uint8_t user_data[16+256];
  6198. int e, build, i;
  6199. if(size<16)
  6200. return -1;
  6201. for(i=0; i<sizeof(user_data)-1 && i<size; i++){
  6202. user_data[i]= get_bits(&s->gb, 8);
  6203. }
  6204. user_data[i]= 0;
  6205. e= sscanf(user_data+16, "x264 - core %d"/*%s - H.264/MPEG-4 AVC codec - Copyleft 2005 - http://www.videolan.org/x264.html*/, &build);
  6206. if(e==1 && build>=0)
  6207. h->x264_build= build;
  6208. if(s->avctx->debug & FF_DEBUG_BUGS)
  6209. av_log(s->avctx, AV_LOG_DEBUG, "user data:\"%s\"\n", user_data+16);
  6210. for(; i<size; i++)
  6211. skip_bits(&s->gb, 8);
  6212. return 0;
  6213. }
  6214. static int decode_sei(H264Context *h){
  6215. MpegEncContext * const s = &h->s;
  6216. while(get_bits_count(&s->gb) + 16 < s->gb.size_in_bits){
  6217. int size, type;
  6218. type=0;
  6219. do{
  6220. type+= show_bits(&s->gb, 8);
  6221. }while(get_bits(&s->gb, 8) == 255);
  6222. size=0;
  6223. do{
  6224. size+= show_bits(&s->gb, 8);
  6225. }while(get_bits(&s->gb, 8) == 255);
  6226. switch(type){
  6227. case 5:
  6228. if(decode_unregistered_user_data(h, size) < 0)
  6229. return -1;
  6230. break;
  6231. default:
  6232. skip_bits(&s->gb, 8*size);
  6233. }
  6234. //FIXME check bits here
  6235. align_get_bits(&s->gb);
  6236. }
  6237. return 0;
  6238. }
  6239. static inline void decode_hrd_parameters(H264Context *h, SPS *sps){
  6240. MpegEncContext * const s = &h->s;
  6241. int cpb_count, i;
  6242. cpb_count = get_ue_golomb(&s->gb) + 1;
  6243. get_bits(&s->gb, 4); /* bit_rate_scale */
  6244. get_bits(&s->gb, 4); /* cpb_size_scale */
  6245. for(i=0; i<cpb_count; i++){
  6246. get_ue_golomb(&s->gb); /* bit_rate_value_minus1 */
  6247. get_ue_golomb(&s->gb); /* cpb_size_value_minus1 */
  6248. get_bits1(&s->gb); /* cbr_flag */
  6249. }
  6250. get_bits(&s->gb, 5); /* initial_cpb_removal_delay_length_minus1 */
  6251. get_bits(&s->gb, 5); /* cpb_removal_delay_length_minus1 */
  6252. get_bits(&s->gb, 5); /* dpb_output_delay_length_minus1 */
  6253. get_bits(&s->gb, 5); /* time_offset_length */
  6254. }
  6255. static inline int decode_vui_parameters(H264Context *h, SPS *sps){
  6256. MpegEncContext * const s = &h->s;
  6257. int aspect_ratio_info_present_flag;
  6258. unsigned int aspect_ratio_idc;
  6259. int nal_hrd_parameters_present_flag, vcl_hrd_parameters_present_flag;
  6260. aspect_ratio_info_present_flag= get_bits1(&s->gb);
  6261. if( aspect_ratio_info_present_flag ) {
  6262. aspect_ratio_idc= get_bits(&s->gb, 8);
  6263. if( aspect_ratio_idc == EXTENDED_SAR ) {
  6264. sps->sar.num= get_bits(&s->gb, 16);
  6265. sps->sar.den= get_bits(&s->gb, 16);
  6266. }else if(aspect_ratio_idc < sizeof(pixel_aspect)/sizeof(*pixel_aspect)){
  6267. sps->sar= pixel_aspect[aspect_ratio_idc];
  6268. }else{
  6269. av_log(h->s.avctx, AV_LOG_ERROR, "illegal aspect ratio\n");
  6270. return -1;
  6271. }
  6272. }else{
  6273. sps->sar.num=
  6274. sps->sar.den= 0;
  6275. }
  6276. // s->avctx->aspect_ratio= sar_width*s->width / (float)(s->height*sar_height);
  6277. if(get_bits1(&s->gb)){ /* overscan_info_present_flag */
  6278. get_bits1(&s->gb); /* overscan_appropriate_flag */
  6279. }
  6280. if(get_bits1(&s->gb)){ /* video_signal_type_present_flag */
  6281. get_bits(&s->gb, 3); /* video_format */
  6282. get_bits1(&s->gb); /* video_full_range_flag */
  6283. if(get_bits1(&s->gb)){ /* colour_description_present_flag */
  6284. get_bits(&s->gb, 8); /* colour_primaries */
  6285. get_bits(&s->gb, 8); /* transfer_characteristics */
  6286. get_bits(&s->gb, 8); /* matrix_coefficients */
  6287. }
  6288. }
  6289. if(get_bits1(&s->gb)){ /* chroma_location_info_present_flag */
  6290. get_ue_golomb(&s->gb); /* chroma_sample_location_type_top_field */
  6291. get_ue_golomb(&s->gb); /* chroma_sample_location_type_bottom_field */
  6292. }
  6293. sps->timing_info_present_flag = get_bits1(&s->gb);
  6294. if(sps->timing_info_present_flag){
  6295. sps->num_units_in_tick = get_bits_long(&s->gb, 32);
  6296. sps->time_scale = get_bits_long(&s->gb, 32);
  6297. sps->fixed_frame_rate_flag = get_bits1(&s->gb);
  6298. }
  6299. nal_hrd_parameters_present_flag = get_bits1(&s->gb);
  6300. if(nal_hrd_parameters_present_flag)
  6301. decode_hrd_parameters(h, sps);
  6302. vcl_hrd_parameters_present_flag = get_bits1(&s->gb);
  6303. if(vcl_hrd_parameters_present_flag)
  6304. decode_hrd_parameters(h, sps);
  6305. if(nal_hrd_parameters_present_flag || vcl_hrd_parameters_present_flag)
  6306. get_bits1(&s->gb); /* low_delay_hrd_flag */
  6307. get_bits1(&s->gb); /* pic_struct_present_flag */
  6308. sps->bitstream_restriction_flag = get_bits1(&s->gb);
  6309. if(sps->bitstream_restriction_flag){
  6310. unsigned int num_reorder_frames;
  6311. get_bits1(&s->gb); /* motion_vectors_over_pic_boundaries_flag */
  6312. get_ue_golomb(&s->gb); /* max_bytes_per_pic_denom */
  6313. get_ue_golomb(&s->gb); /* max_bits_per_mb_denom */
  6314. get_ue_golomb(&s->gb); /* log2_max_mv_length_horizontal */
  6315. get_ue_golomb(&s->gb); /* log2_max_mv_length_vertical */
  6316. num_reorder_frames= get_ue_golomb(&s->gb);
  6317. get_ue_golomb(&s->gb); /*max_dec_frame_buffering*/
  6318. if(num_reorder_frames > 16 /*max_dec_frame_buffering || max_dec_frame_buffering > 16*/){
  6319. av_log(h->s.avctx, AV_LOG_ERROR, "illegal num_reorder_frames %d\n", num_reorder_frames);
  6320. return -1;
  6321. }
  6322. sps->num_reorder_frames= num_reorder_frames;
  6323. }
  6324. return 0;
  6325. }
  6326. static void decode_scaling_list(H264Context *h, uint8_t *factors, int size,
  6327. const uint8_t *jvt_list, const uint8_t *fallback_list){
  6328. MpegEncContext * const s = &h->s;
  6329. int i, last = 8, next = 8;
  6330. const uint8_t *scan = size == 16 ? zigzag_scan : zigzag_scan8x8;
  6331. if(!get_bits1(&s->gb)) /* matrix not written, we use the predicted one */
  6332. memcpy(factors, fallback_list, size*sizeof(uint8_t));
  6333. else
  6334. for(i=0;i<size;i++){
  6335. if(next)
  6336. next = (last + get_se_golomb(&s->gb)) & 0xff;
  6337. if(!i && !next){ /* matrix not written, we use the preset one */
  6338. memcpy(factors, jvt_list, size*sizeof(uint8_t));
  6339. break;
  6340. }
  6341. last = factors[scan[i]] = next ? next : last;
  6342. }
  6343. }
  6344. static void decode_scaling_matrices(H264Context *h, SPS *sps, PPS *pps, int is_sps,
  6345. uint8_t (*scaling_matrix4)[16], uint8_t (*scaling_matrix8)[64]){
  6346. MpegEncContext * const s = &h->s;
  6347. int fallback_sps = !is_sps && sps->scaling_matrix_present;
  6348. const uint8_t *fallback[4] = {
  6349. fallback_sps ? sps->scaling_matrix4[0] : default_scaling4[0],
  6350. fallback_sps ? sps->scaling_matrix4[3] : default_scaling4[1],
  6351. fallback_sps ? sps->scaling_matrix8[0] : default_scaling8[0],
  6352. fallback_sps ? sps->scaling_matrix8[1] : default_scaling8[1]
  6353. };
  6354. if(get_bits1(&s->gb)){
  6355. sps->scaling_matrix_present |= is_sps;
  6356. decode_scaling_list(h,scaling_matrix4[0],16,default_scaling4[0],fallback[0]); // Intra, Y
  6357. decode_scaling_list(h,scaling_matrix4[1],16,default_scaling4[0],scaling_matrix4[0]); // Intra, Cr
  6358. decode_scaling_list(h,scaling_matrix4[2],16,default_scaling4[0],scaling_matrix4[1]); // Intra, Cb
  6359. decode_scaling_list(h,scaling_matrix4[3],16,default_scaling4[1],fallback[1]); // Inter, Y
  6360. decode_scaling_list(h,scaling_matrix4[4],16,default_scaling4[1],scaling_matrix4[3]); // Inter, Cr
  6361. decode_scaling_list(h,scaling_matrix4[5],16,default_scaling4[1],scaling_matrix4[4]); // Inter, Cb
  6362. if(is_sps || pps->transform_8x8_mode){
  6363. decode_scaling_list(h,scaling_matrix8[0],64,default_scaling8[0],fallback[2]); // Intra, Y
  6364. decode_scaling_list(h,scaling_matrix8[1],64,default_scaling8[1],fallback[3]); // Inter, Y
  6365. }
  6366. } else if(fallback_sps) {
  6367. memcpy(scaling_matrix4, sps->scaling_matrix4, 6*16*sizeof(uint8_t));
  6368. memcpy(scaling_matrix8, sps->scaling_matrix8, 2*64*sizeof(uint8_t));
  6369. }
  6370. }
  6371. /**
  6372. * Returns and optionally allocates SPS / PPS structures in the supplied array 'vec'
  6373. */
  6374. static void *
  6375. alloc_parameter_set(H264Context *h, void **vec, const unsigned int id, const unsigned int max,
  6376. const size_t size, const char *name)
  6377. {
  6378. if(id>=max) {
  6379. av_log(h->s.avctx, AV_LOG_ERROR, "%s_id (%d) out of range\n", name, id);
  6380. return NULL;
  6381. }
  6382. if(!vec[id]) {
  6383. vec[id] = av_mallocz(size);
  6384. if(vec[id] == NULL)
  6385. av_log(h->s.avctx, AV_LOG_ERROR, "cannot allocate memory for %s\n", name);
  6386. }
  6387. return vec[id];
  6388. }
  6389. static inline int decode_seq_parameter_set(H264Context *h){
  6390. MpegEncContext * const s = &h->s;
  6391. int profile_idc, level_idc;
  6392. unsigned int sps_id, tmp, mb_width, mb_height;
  6393. int i;
  6394. SPS *sps;
  6395. profile_idc= get_bits(&s->gb, 8);
  6396. get_bits1(&s->gb); //constraint_set0_flag
  6397. get_bits1(&s->gb); //constraint_set1_flag
  6398. get_bits1(&s->gb); //constraint_set2_flag
  6399. get_bits1(&s->gb); //constraint_set3_flag
  6400. get_bits(&s->gb, 4); // reserved
  6401. level_idc= get_bits(&s->gb, 8);
  6402. sps_id= get_ue_golomb(&s->gb);
  6403. sps = alloc_parameter_set(h, (void **)h->sps_buffers, sps_id, MAX_SPS_COUNT, sizeof(SPS), "sps");
  6404. if(sps == NULL)
  6405. return -1;
  6406. sps->profile_idc= profile_idc;
  6407. sps->level_idc= level_idc;
  6408. if(sps->profile_idc >= 100){ //high profile
  6409. if(get_ue_golomb(&s->gb) == 3) //chroma_format_idc
  6410. get_bits1(&s->gb); //residual_color_transform_flag
  6411. get_ue_golomb(&s->gb); //bit_depth_luma_minus8
  6412. get_ue_golomb(&s->gb); //bit_depth_chroma_minus8
  6413. sps->transform_bypass = get_bits1(&s->gb);
  6414. decode_scaling_matrices(h, sps, NULL, 1, sps->scaling_matrix4, sps->scaling_matrix8);
  6415. }else
  6416. sps->scaling_matrix_present = 0;
  6417. sps->log2_max_frame_num= get_ue_golomb(&s->gb) + 4;
  6418. sps->poc_type= get_ue_golomb(&s->gb);
  6419. if(sps->poc_type == 0){ //FIXME #define
  6420. sps->log2_max_poc_lsb= get_ue_golomb(&s->gb) + 4;
  6421. } else if(sps->poc_type == 1){//FIXME #define
  6422. sps->delta_pic_order_always_zero_flag= get_bits1(&s->gb);
  6423. sps->offset_for_non_ref_pic= get_se_golomb(&s->gb);
  6424. sps->offset_for_top_to_bottom_field= get_se_golomb(&s->gb);
  6425. tmp= get_ue_golomb(&s->gb);
  6426. if(tmp >= sizeof(sps->offset_for_ref_frame) / sizeof(sps->offset_for_ref_frame[0])){
  6427. av_log(h->s.avctx, AV_LOG_ERROR, "poc_cycle_length overflow %u\n", tmp);
  6428. return -1;
  6429. }
  6430. sps->poc_cycle_length= tmp;
  6431. for(i=0; i<sps->poc_cycle_length; i++)
  6432. sps->offset_for_ref_frame[i]= get_se_golomb(&s->gb);
  6433. }else if(sps->poc_type != 2){
  6434. av_log(h->s.avctx, AV_LOG_ERROR, "illegal POC type %d\n", sps->poc_type);
  6435. return -1;
  6436. }
  6437. tmp= get_ue_golomb(&s->gb);
  6438. if(tmp > MAX_PICTURE_COUNT-2 || tmp >= 32){
  6439. av_log(h->s.avctx, AV_LOG_ERROR, "too many reference frames\n");
  6440. return -1;
  6441. }
  6442. sps->ref_frame_count= tmp;
  6443. sps->gaps_in_frame_num_allowed_flag= get_bits1(&s->gb);
  6444. mb_width= get_ue_golomb(&s->gb) + 1;
  6445. mb_height= get_ue_golomb(&s->gb) + 1;
  6446. if(mb_width >= INT_MAX/16 || mb_height >= INT_MAX/16 ||
  6447. avcodec_check_dimensions(NULL, 16*mb_width, 16*mb_height)){
  6448. av_log(h->s.avctx, AV_LOG_ERROR, "mb_width/height overflow\n");
  6449. return -1;
  6450. }
  6451. sps->mb_width = mb_width;
  6452. sps->mb_height= mb_height;
  6453. sps->frame_mbs_only_flag= get_bits1(&s->gb);
  6454. if(!sps->frame_mbs_only_flag)
  6455. sps->mb_aff= get_bits1(&s->gb);
  6456. else
  6457. sps->mb_aff= 0;
  6458. sps->direct_8x8_inference_flag= get_bits1(&s->gb);
  6459. #ifndef ALLOW_INTERLACE
  6460. if(sps->mb_aff)
  6461. av_log(h->s.avctx, AV_LOG_ERROR, "MBAFF support not included; enable it at compile-time.\n");
  6462. #endif
  6463. if(!sps->direct_8x8_inference_flag && sps->mb_aff)
  6464. av_log(h->s.avctx, AV_LOG_ERROR, "MBAFF + !direct_8x8_inference is not implemented\n");
  6465. sps->crop= get_bits1(&s->gb);
  6466. if(sps->crop){
  6467. sps->crop_left = get_ue_golomb(&s->gb);
  6468. sps->crop_right = get_ue_golomb(&s->gb);
  6469. sps->crop_top = get_ue_golomb(&s->gb);
  6470. sps->crop_bottom= get_ue_golomb(&s->gb);
  6471. if(sps->crop_left || sps->crop_top){
  6472. av_log(h->s.avctx, AV_LOG_ERROR, "insane cropping not completely supported, this could look slightly wrong ...\n");
  6473. }
  6474. if(sps->crop_right >= 8 || sps->crop_bottom >= (8>> !h->sps.frame_mbs_only_flag)){
  6475. av_log(h->s.avctx, AV_LOG_ERROR, "brainfart cropping not supported, this could look slightly wrong ...\n");
  6476. }
  6477. }else{
  6478. sps->crop_left =
  6479. sps->crop_right =
  6480. sps->crop_top =
  6481. sps->crop_bottom= 0;
  6482. }
  6483. sps->vui_parameters_present_flag= get_bits1(&s->gb);
  6484. if( sps->vui_parameters_present_flag )
  6485. decode_vui_parameters(h, sps);
  6486. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  6487. av_log(h->s.avctx, AV_LOG_DEBUG, "sps:%u profile:%d/%d poc:%d ref:%d %dx%d %s %s crop:%d/%d/%d/%d %s\n",
  6488. sps_id, sps->profile_idc, sps->level_idc,
  6489. sps->poc_type,
  6490. sps->ref_frame_count,
  6491. sps->mb_width, sps->mb_height,
  6492. sps->frame_mbs_only_flag ? "FRM" : (sps->mb_aff ? "MB-AFF" : "PIC-AFF"),
  6493. sps->direct_8x8_inference_flag ? "8B8" : "",
  6494. sps->crop_left, sps->crop_right,
  6495. sps->crop_top, sps->crop_bottom,
  6496. sps->vui_parameters_present_flag ? "VUI" : ""
  6497. );
  6498. }
  6499. return 0;
  6500. }
  6501. static void
  6502. build_qp_table(PPS *pps, int t, int index)
  6503. {
  6504. int i;
  6505. for(i = 0; i < 52; i++)
  6506. pps->chroma_qp_table[t][i] = chroma_qp[av_clip(i + index, 0, 51)];
  6507. }
  6508. static inline int decode_picture_parameter_set(H264Context *h, int bit_length){
  6509. MpegEncContext * const s = &h->s;
  6510. unsigned int tmp, pps_id= get_ue_golomb(&s->gb);
  6511. PPS *pps;
  6512. pps = alloc_parameter_set(h, (void **)h->pps_buffers, pps_id, MAX_PPS_COUNT, sizeof(PPS), "pps");
  6513. if(pps == NULL)
  6514. return -1;
  6515. tmp= get_ue_golomb(&s->gb);
  6516. if(tmp>=MAX_SPS_COUNT || h->sps_buffers[tmp] == NULL){
  6517. av_log(h->s.avctx, AV_LOG_ERROR, "sps_id out of range\n");
  6518. return -1;
  6519. }
  6520. pps->sps_id= tmp;
  6521. pps->cabac= get_bits1(&s->gb);
  6522. pps->pic_order_present= get_bits1(&s->gb);
  6523. pps->slice_group_count= get_ue_golomb(&s->gb) + 1;
  6524. if(pps->slice_group_count > 1 ){
  6525. pps->mb_slice_group_map_type= get_ue_golomb(&s->gb);
  6526. av_log(h->s.avctx, AV_LOG_ERROR, "FMO not supported\n");
  6527. switch(pps->mb_slice_group_map_type){
  6528. case 0:
  6529. #if 0
  6530. | for( i = 0; i <= num_slice_groups_minus1; i++ ) | | |
  6531. | run_length[ i ] |1 |ue(v) |
  6532. #endif
  6533. break;
  6534. case 2:
  6535. #if 0
  6536. | for( i = 0; i < num_slice_groups_minus1; i++ ) | | |
  6537. |{ | | |
  6538. | top_left_mb[ i ] |1 |ue(v) |
  6539. | bottom_right_mb[ i ] |1 |ue(v) |
  6540. | } | | |
  6541. #endif
  6542. break;
  6543. case 3:
  6544. case 4:
  6545. case 5:
  6546. #if 0
  6547. | slice_group_change_direction_flag |1 |u(1) |
  6548. | slice_group_change_rate_minus1 |1 |ue(v) |
  6549. #endif
  6550. break;
  6551. case 6:
  6552. #if 0
  6553. | slice_group_id_cnt_minus1 |1 |ue(v) |
  6554. | for( i = 0; i <= slice_group_id_cnt_minus1; i++ | | |
  6555. |) | | |
  6556. | slice_group_id[ i ] |1 |u(v) |
  6557. #endif
  6558. break;
  6559. }
  6560. }
  6561. pps->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  6562. pps->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  6563. if(pps->ref_count[0]-1 > 32-1 || pps->ref_count[1]-1 > 32-1){
  6564. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow (pps)\n");
  6565. pps->ref_count[0]= pps->ref_count[1]= 1;
  6566. return -1;
  6567. }
  6568. pps->weighted_pred= get_bits1(&s->gb);
  6569. pps->weighted_bipred_idc= get_bits(&s->gb, 2);
  6570. pps->init_qp= get_se_golomb(&s->gb) + 26;
  6571. pps->init_qs= get_se_golomb(&s->gb) + 26;
  6572. pps->chroma_qp_index_offset[0]= get_se_golomb(&s->gb);
  6573. pps->deblocking_filter_parameters_present= get_bits1(&s->gb);
  6574. pps->constrained_intra_pred= get_bits1(&s->gb);
  6575. pps->redundant_pic_cnt_present = get_bits1(&s->gb);
  6576. pps->transform_8x8_mode= 0;
  6577. h->dequant_coeff_pps= -1; //contents of sps/pps can change even if id doesn't, so reinit
  6578. memset(pps->scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  6579. memset(pps->scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  6580. if(get_bits_count(&s->gb) < bit_length){
  6581. pps->transform_8x8_mode= get_bits1(&s->gb);
  6582. decode_scaling_matrices(h, h->sps_buffers[pps->sps_id], pps, 0, pps->scaling_matrix4, pps->scaling_matrix8);
  6583. pps->chroma_qp_index_offset[1]= get_se_golomb(&s->gb); //second_chroma_qp_index_offset
  6584. } else {
  6585. pps->chroma_qp_index_offset[1]= pps->chroma_qp_index_offset[0];
  6586. }
  6587. build_qp_table(pps, 0, pps->chroma_qp_index_offset[0]);
  6588. build_qp_table(pps, 1, pps->chroma_qp_index_offset[1]);
  6589. if(pps->chroma_qp_index_offset[0] != pps->chroma_qp_index_offset[1])
  6590. h->pps.chroma_qp_diff= 1;
  6591. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  6592. av_log(h->s.avctx, AV_LOG_DEBUG, "pps:%u sps:%u %s slice_groups:%d ref:%d/%d %s qp:%d/%d/%d/%d %s %s %s %s\n",
  6593. pps_id, pps->sps_id,
  6594. pps->cabac ? "CABAC" : "CAVLC",
  6595. pps->slice_group_count,
  6596. pps->ref_count[0], pps->ref_count[1],
  6597. pps->weighted_pred ? "weighted" : "",
  6598. pps->init_qp, pps->init_qs, pps->chroma_qp_index_offset[0], pps->chroma_qp_index_offset[1],
  6599. pps->deblocking_filter_parameters_present ? "LPAR" : "",
  6600. pps->constrained_intra_pred ? "CONSTR" : "",
  6601. pps->redundant_pic_cnt_present ? "REDU" : "",
  6602. pps->transform_8x8_mode ? "8x8DCT" : ""
  6603. );
  6604. }
  6605. return 0;
  6606. }
  6607. /**
  6608. * Call decode_slice() for each context.
  6609. *
  6610. * @param h h264 master context
  6611. * @param context_count number of contexts to execute
  6612. */
  6613. static void execute_decode_slices(H264Context *h, int context_count){
  6614. MpegEncContext * const s = &h->s;
  6615. AVCodecContext * const avctx= s->avctx;
  6616. H264Context *hx;
  6617. int i;
  6618. if(context_count == 1) {
  6619. decode_slice(avctx, h);
  6620. } else {
  6621. for(i = 1; i < context_count; i++) {
  6622. hx = h->thread_context[i];
  6623. hx->s.error_resilience = avctx->error_resilience;
  6624. hx->s.error_count = 0;
  6625. }
  6626. avctx->execute(avctx, (void *)decode_slice,
  6627. (void **)h->thread_context, NULL, context_count);
  6628. /* pull back stuff from slices to master context */
  6629. hx = h->thread_context[context_count - 1];
  6630. s->mb_x = hx->s.mb_x;
  6631. s->mb_y = hx->s.mb_y;
  6632. s->dropable = hx->s.dropable;
  6633. s->picture_structure = hx->s.picture_structure;
  6634. for(i = 1; i < context_count; i++)
  6635. h->s.error_count += h->thread_context[i]->s.error_count;
  6636. }
  6637. }
  6638. static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size){
  6639. MpegEncContext * const s = &h->s;
  6640. AVCodecContext * const avctx= s->avctx;
  6641. int buf_index=0;
  6642. H264Context *hx; ///< thread context
  6643. int context_count = 0;
  6644. h->max_contexts = avctx->thread_count;
  6645. #if 0
  6646. int i;
  6647. for(i=0; i<50; i++){
  6648. av_log(NULL, AV_LOG_ERROR,"%02X ", buf[i]);
  6649. }
  6650. #endif
  6651. if(!(s->flags2 & CODEC_FLAG2_CHUNKS)){
  6652. h->current_slice = 0;
  6653. if (!s->first_field)
  6654. s->current_picture_ptr= NULL;
  6655. }
  6656. for(;;){
  6657. int consumed;
  6658. int dst_length;
  6659. int bit_length;
  6660. const uint8_t *ptr;
  6661. int i, nalsize = 0;
  6662. int err;
  6663. if(h->is_avc) {
  6664. if(buf_index >= buf_size) break;
  6665. nalsize = 0;
  6666. for(i = 0; i < h->nal_length_size; i++)
  6667. nalsize = (nalsize << 8) | buf[buf_index++];
  6668. if(nalsize <= 1 || (nalsize+buf_index > buf_size)){
  6669. if(nalsize == 1){
  6670. buf_index++;
  6671. continue;
  6672. }else{
  6673. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize);
  6674. break;
  6675. }
  6676. }
  6677. } else {
  6678. // start code prefix search
  6679. for(; buf_index + 3 < buf_size; buf_index++){
  6680. // This should always succeed in the first iteration.
  6681. if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
  6682. break;
  6683. }
  6684. if(buf_index+3 >= buf_size) break;
  6685. buf_index+=3;
  6686. }
  6687. hx = h->thread_context[context_count];
  6688. ptr= decode_nal(hx, buf + buf_index, &dst_length, &consumed, h->is_avc ? nalsize : buf_size - buf_index);
  6689. if (ptr==NULL || dst_length < 0){
  6690. return -1;
  6691. }
  6692. while(ptr[dst_length - 1] == 0 && dst_length > 0)
  6693. dst_length--;
  6694. bit_length= !dst_length ? 0 : (8*dst_length - decode_rbsp_trailing(h, ptr + dst_length - 1));
  6695. if(s->avctx->debug&FF_DEBUG_STARTCODE){
  6696. av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d at %d/%d length %d\n", hx->nal_unit_type, buf_index, buf_size, dst_length);
  6697. }
  6698. if (h->is_avc && (nalsize != consumed)){
  6699. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize);
  6700. consumed= nalsize;
  6701. }
  6702. buf_index += consumed;
  6703. if( (s->hurry_up == 1 && h->nal_ref_idc == 0) //FIXME do not discard SEI id
  6704. ||(avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  6705. continue;
  6706. again:
  6707. err = 0;
  6708. switch(hx->nal_unit_type){
  6709. case NAL_IDR_SLICE:
  6710. if (h->nal_unit_type != NAL_IDR_SLICE) {
  6711. av_log(h->s.avctx, AV_LOG_ERROR, "Invalid mix of idr and non-idr slices");
  6712. return -1;
  6713. }
  6714. idr(h); //FIXME ensure we don't loose some frames if there is reordering
  6715. case NAL_SLICE:
  6716. init_get_bits(&hx->s.gb, ptr, bit_length);
  6717. hx->intra_gb_ptr=
  6718. hx->inter_gb_ptr= &hx->s.gb;
  6719. hx->s.data_partitioning = 0;
  6720. if((err = decode_slice_header(hx, h)))
  6721. break;
  6722. s->current_picture_ptr->key_frame|= (hx->nal_unit_type == NAL_IDR_SLICE);
  6723. if(hx->redundant_pic_count==0 && hx->s.hurry_up < 5
  6724. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  6725. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=FF_B_TYPE)
  6726. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==FF_I_TYPE)
  6727. && avctx->skip_frame < AVDISCARD_ALL)
  6728. context_count++;
  6729. break;
  6730. case NAL_DPA:
  6731. init_get_bits(&hx->s.gb, ptr, bit_length);
  6732. hx->intra_gb_ptr=
  6733. hx->inter_gb_ptr= NULL;
  6734. hx->s.data_partitioning = 1;
  6735. err = decode_slice_header(hx, h);
  6736. break;
  6737. case NAL_DPB:
  6738. init_get_bits(&hx->intra_gb, ptr, bit_length);
  6739. hx->intra_gb_ptr= &hx->intra_gb;
  6740. break;
  6741. case NAL_DPC:
  6742. init_get_bits(&hx->inter_gb, ptr, bit_length);
  6743. hx->inter_gb_ptr= &hx->inter_gb;
  6744. if(hx->redundant_pic_count==0 && hx->intra_gb_ptr && hx->s.data_partitioning
  6745. && s->context_initialized
  6746. && s->hurry_up < 5
  6747. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  6748. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=FF_B_TYPE)
  6749. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==FF_I_TYPE)
  6750. && avctx->skip_frame < AVDISCARD_ALL)
  6751. context_count++;
  6752. break;
  6753. case NAL_SEI:
  6754. init_get_bits(&s->gb, ptr, bit_length);
  6755. decode_sei(h);
  6756. break;
  6757. case NAL_SPS:
  6758. init_get_bits(&s->gb, ptr, bit_length);
  6759. decode_seq_parameter_set(h);
  6760. if(s->flags& CODEC_FLAG_LOW_DELAY)
  6761. s->low_delay=1;
  6762. if(avctx->has_b_frames < 2)
  6763. avctx->has_b_frames= !s->low_delay;
  6764. break;
  6765. case NAL_PPS:
  6766. init_get_bits(&s->gb, ptr, bit_length);
  6767. decode_picture_parameter_set(h, bit_length);
  6768. break;
  6769. case NAL_AUD:
  6770. case NAL_END_SEQUENCE:
  6771. case NAL_END_STREAM:
  6772. case NAL_FILLER_DATA:
  6773. case NAL_SPS_EXT:
  6774. case NAL_AUXILIARY_SLICE:
  6775. break;
  6776. default:
  6777. av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", h->nal_unit_type, bit_length);
  6778. }
  6779. if(context_count == h->max_contexts) {
  6780. execute_decode_slices(h, context_count);
  6781. context_count = 0;
  6782. }
  6783. if (err < 0)
  6784. av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
  6785. else if(err == 1) {
  6786. /* Slice could not be decoded in parallel mode, copy down
  6787. * NAL unit stuff to context 0 and restart. Note that
  6788. * rbsp_buffer is not transferred, but since we no longer
  6789. * run in parallel mode this should not be an issue. */
  6790. h->nal_unit_type = hx->nal_unit_type;
  6791. h->nal_ref_idc = hx->nal_ref_idc;
  6792. hx = h;
  6793. goto again;
  6794. }
  6795. }
  6796. if(context_count)
  6797. execute_decode_slices(h, context_count);
  6798. return buf_index;
  6799. }
  6800. /**
  6801. * returns the number of bytes consumed for building the current frame
  6802. */
  6803. static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
  6804. if(pos==0) pos=1; //avoid infinite loops (i doubt that is needed but ...)
  6805. if(pos+10>buf_size) pos=buf_size; // oops ;)
  6806. return pos;
  6807. }
  6808. static int decode_frame(AVCodecContext *avctx,
  6809. void *data, int *data_size,
  6810. const uint8_t *buf, int buf_size)
  6811. {
  6812. H264Context *h = avctx->priv_data;
  6813. MpegEncContext *s = &h->s;
  6814. AVFrame *pict = data;
  6815. int buf_index;
  6816. s->flags= avctx->flags;
  6817. s->flags2= avctx->flags2;
  6818. /* end of stream, output what is still in the buffers */
  6819. if (buf_size == 0) {
  6820. Picture *out;
  6821. int i, out_idx;
  6822. //FIXME factorize this with the output code below
  6823. out = h->delayed_pic[0];
  6824. out_idx = 0;
  6825. for(i=1; h->delayed_pic[i] && h->delayed_pic[i]->poc; i++)
  6826. if(h->delayed_pic[i]->poc < out->poc){
  6827. out = h->delayed_pic[i];
  6828. out_idx = i;
  6829. }
  6830. for(i=out_idx; h->delayed_pic[i]; i++)
  6831. h->delayed_pic[i] = h->delayed_pic[i+1];
  6832. if(out){
  6833. *data_size = sizeof(AVFrame);
  6834. *pict= *(AVFrame*)out;
  6835. }
  6836. return 0;
  6837. }
  6838. if(h->is_avc && !h->got_avcC) {
  6839. int i, cnt, nalsize;
  6840. unsigned char *p = avctx->extradata;
  6841. if(avctx->extradata_size < 7) {
  6842. av_log(avctx, AV_LOG_ERROR, "avcC too short\n");
  6843. return -1;
  6844. }
  6845. if(*p != 1) {
  6846. av_log(avctx, AV_LOG_ERROR, "Unknown avcC version %d\n", *p);
  6847. return -1;
  6848. }
  6849. /* sps and pps in the avcC always have length coded with 2 bytes,
  6850. so put a fake nal_length_size = 2 while parsing them */
  6851. h->nal_length_size = 2;
  6852. // Decode sps from avcC
  6853. cnt = *(p+5) & 0x1f; // Number of sps
  6854. p += 6;
  6855. for (i = 0; i < cnt; i++) {
  6856. nalsize = AV_RB16(p) + 2;
  6857. if(decode_nal_units(h, p, nalsize) < 0) {
  6858. av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i);
  6859. return -1;
  6860. }
  6861. p += nalsize;
  6862. }
  6863. // Decode pps from avcC
  6864. cnt = *(p++); // Number of pps
  6865. for (i = 0; i < cnt; i++) {
  6866. nalsize = AV_RB16(p) + 2;
  6867. if(decode_nal_units(h, p, nalsize) != nalsize) {
  6868. av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i);
  6869. return -1;
  6870. }
  6871. p += nalsize;
  6872. }
  6873. // Now store right nal length size, that will be use to parse all other nals
  6874. h->nal_length_size = ((*(((char*)(avctx->extradata))+4))&0x03)+1;
  6875. // Do not reparse avcC
  6876. h->got_avcC = 1;
  6877. }
  6878. if(avctx->frame_number==0 && !h->is_avc && s->avctx->extradata_size){
  6879. if(decode_nal_units(h, s->avctx->extradata, s->avctx->extradata_size) < 0)
  6880. return -1;
  6881. }
  6882. buf_index=decode_nal_units(h, buf, buf_size);
  6883. if(buf_index < 0)
  6884. return -1;
  6885. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) && !s->current_picture_ptr){
  6886. if (avctx->skip_frame >= AVDISCARD_NONREF || s->hurry_up) return 0;
  6887. av_log(avctx, AV_LOG_ERROR, "no frame!\n");
  6888. return -1;
  6889. }
  6890. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) || (s->mb_y >= s->mb_height && s->mb_height)){
  6891. Picture *out = s->current_picture_ptr;
  6892. Picture *cur = s->current_picture_ptr;
  6893. int i, pics, cross_idr, out_of_order, out_idx;
  6894. s->mb_y= 0;
  6895. s->current_picture_ptr->qscale_type= FF_QSCALE_TYPE_H264;
  6896. s->current_picture_ptr->pict_type= s->pict_type;
  6897. if(!s->dropable) {
  6898. execute_ref_pic_marking(h, h->mmco, h->mmco_index);
  6899. h->prev_poc_msb= h->poc_msb;
  6900. h->prev_poc_lsb= h->poc_lsb;
  6901. }
  6902. h->prev_frame_num_offset= h->frame_num_offset;
  6903. h->prev_frame_num= h->frame_num;
  6904. /*
  6905. * FIXME: Error handling code does not seem to support interlaced
  6906. * when slices span multiple rows
  6907. * The ff_er_add_slice calls don't work right for bottom
  6908. * fields; they cause massive erroneous error concealing
  6909. * Error marking covers both fields (top and bottom).
  6910. * This causes a mismatched s->error_count
  6911. * and a bad error table. Further, the error count goes to
  6912. * INT_MAX when called for bottom field, because mb_y is
  6913. * past end by one (callers fault) and resync_mb_y != 0
  6914. * causes problems for the first MB line, too.
  6915. */
  6916. if (!FIELD_PICTURE)
  6917. ff_er_frame_end(s);
  6918. MPV_frame_end(s);
  6919. if (cur->field_poc[0]==INT_MAX || cur->field_poc[1]==INT_MAX) {
  6920. /* Wait for second field. */
  6921. *data_size = 0;
  6922. } else {
  6923. cur->interlaced_frame = FIELD_OR_MBAFF_PICTURE;
  6924. /* Derive top_field_first from field pocs. */
  6925. cur->top_field_first = cur->field_poc[0] < cur->field_poc[1];
  6926. //FIXME do something with unavailable reference frames
  6927. /* Sort B-frames into display order */
  6928. if(h->sps.bitstream_restriction_flag
  6929. && s->avctx->has_b_frames < h->sps.num_reorder_frames){
  6930. s->avctx->has_b_frames = h->sps.num_reorder_frames;
  6931. s->low_delay = 0;
  6932. }
  6933. if( s->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT
  6934. && !h->sps.bitstream_restriction_flag){
  6935. s->avctx->has_b_frames= MAX_DELAYED_PIC_COUNT;
  6936. s->low_delay= 0;
  6937. }
  6938. pics = 0;
  6939. while(h->delayed_pic[pics]) pics++;
  6940. assert(pics <= MAX_DELAYED_PIC_COUNT);
  6941. h->delayed_pic[pics++] = cur;
  6942. if(cur->reference == 0)
  6943. cur->reference = DELAYED_PIC_REF;
  6944. out = h->delayed_pic[0];
  6945. out_idx = 0;
  6946. for(i=1; h->delayed_pic[i] && h->delayed_pic[i]->poc; i++)
  6947. if(h->delayed_pic[i]->poc < out->poc){
  6948. out = h->delayed_pic[i];
  6949. out_idx = i;
  6950. }
  6951. cross_idr = !h->delayed_pic[0]->poc || !!h->delayed_pic[i];
  6952. out_of_order = !cross_idr && out->poc < h->outputed_poc;
  6953. if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames >= h->sps.num_reorder_frames)
  6954. { }
  6955. else if((out_of_order && pics-1 == s->avctx->has_b_frames && s->avctx->has_b_frames < MAX_DELAYED_PIC_COUNT)
  6956. || (s->low_delay &&
  6957. ((!cross_idr && out->poc > h->outputed_poc + 2)
  6958. || cur->pict_type == FF_B_TYPE)))
  6959. {
  6960. s->low_delay = 0;
  6961. s->avctx->has_b_frames++;
  6962. }
  6963. if(out_of_order || pics > s->avctx->has_b_frames){
  6964. out->reference &= ~DELAYED_PIC_REF;
  6965. for(i=out_idx; h->delayed_pic[i]; i++)
  6966. h->delayed_pic[i] = h->delayed_pic[i+1];
  6967. }
  6968. if(!out_of_order && pics > s->avctx->has_b_frames){
  6969. *data_size = sizeof(AVFrame);
  6970. h->outputed_poc = out->poc;
  6971. *pict= *(AVFrame*)out;
  6972. }else{
  6973. av_log(avctx, AV_LOG_DEBUG, "no picture\n");
  6974. }
  6975. }
  6976. }
  6977. assert(pict->data[0] || !*data_size);
  6978. ff_print_debug_info(s, pict);
  6979. //printf("out %d\n", (int)pict->data[0]);
  6980. #if 0 //?
  6981. /* Return the Picture timestamp as the frame number */
  6982. /* we subtract 1 because it is added on utils.c */
  6983. avctx->frame_number = s->picture_number - 1;
  6984. #endif
  6985. return get_consumed_bytes(s, buf_index, buf_size);
  6986. }
  6987. #if 0
  6988. static inline void fill_mb_avail(H264Context *h){
  6989. MpegEncContext * const s = &h->s;
  6990. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  6991. if(s->mb_y){
  6992. h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
  6993. h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num;
  6994. h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
  6995. }else{
  6996. h->mb_avail[0]=
  6997. h->mb_avail[1]=
  6998. h->mb_avail[2]= 0;
  6999. }
  7000. h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
  7001. h->mb_avail[4]= 1; //FIXME move out
  7002. h->mb_avail[5]= 0; //FIXME move out
  7003. }
  7004. #endif
  7005. #ifdef TEST
  7006. #undef printf
  7007. #undef random
  7008. #define COUNT 8000
  7009. #define SIZE (COUNT*40)
  7010. int main(void){
  7011. int i;
  7012. uint8_t temp[SIZE];
  7013. PutBitContext pb;
  7014. GetBitContext gb;
  7015. // int int_temp[10000];
  7016. DSPContext dsp;
  7017. AVCodecContext avctx;
  7018. dsputil_init(&dsp, &avctx);
  7019. init_put_bits(&pb, temp, SIZE);
  7020. printf("testing unsigned exp golomb\n");
  7021. for(i=0; i<COUNT; i++){
  7022. START_TIMER
  7023. set_ue_golomb(&pb, i);
  7024. STOP_TIMER("set_ue_golomb");
  7025. }
  7026. flush_put_bits(&pb);
  7027. init_get_bits(&gb, temp, 8*SIZE);
  7028. for(i=0; i<COUNT; i++){
  7029. int j, s;
  7030. s= show_bits(&gb, 24);
  7031. START_TIMER
  7032. j= get_ue_golomb(&gb);
  7033. if(j != i){
  7034. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  7035. // return -1;
  7036. }
  7037. STOP_TIMER("get_ue_golomb");
  7038. }
  7039. init_put_bits(&pb, temp, SIZE);
  7040. printf("testing signed exp golomb\n");
  7041. for(i=0; i<COUNT; i++){
  7042. START_TIMER
  7043. set_se_golomb(&pb, i - COUNT/2);
  7044. STOP_TIMER("set_se_golomb");
  7045. }
  7046. flush_put_bits(&pb);
  7047. init_get_bits(&gb, temp, 8*SIZE);
  7048. for(i=0; i<COUNT; i++){
  7049. int j, s;
  7050. s= show_bits(&gb, 24);
  7051. START_TIMER
  7052. j= get_se_golomb(&gb);
  7053. if(j != i - COUNT/2){
  7054. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  7055. // return -1;
  7056. }
  7057. STOP_TIMER("get_se_golomb");
  7058. }
  7059. #if 0
  7060. printf("testing 4x4 (I)DCT\n");
  7061. DCTELEM block[16];
  7062. uint8_t src[16], ref[16];
  7063. uint64_t error= 0, max_error=0;
  7064. for(i=0; i<COUNT; i++){
  7065. int j;
  7066. // printf("%d %d %d\n", r1, r2, (r2-r1)*16);
  7067. for(j=0; j<16; j++){
  7068. ref[j]= random()%255;
  7069. src[j]= random()%255;
  7070. }
  7071. h264_diff_dct_c(block, src, ref, 4);
  7072. //normalize
  7073. for(j=0; j<16; j++){
  7074. // printf("%d ", block[j]);
  7075. block[j]= block[j]*4;
  7076. if(j&1) block[j]= (block[j]*4 + 2)/5;
  7077. if(j&4) block[j]= (block[j]*4 + 2)/5;
  7078. }
  7079. // printf("\n");
  7080. s->dsp.h264_idct_add(ref, block, 4);
  7081. /* for(j=0; j<16; j++){
  7082. printf("%d ", ref[j]);
  7083. }
  7084. printf("\n");*/
  7085. for(j=0; j<16; j++){
  7086. int diff= FFABS(src[j] - ref[j]);
  7087. error+= diff*diff;
  7088. max_error= FFMAX(max_error, diff);
  7089. }
  7090. }
  7091. printf("error=%f max_error=%d\n", ((float)error)/COUNT/16, (int)max_error );
  7092. printf("testing quantizer\n");
  7093. for(qp=0; qp<52; qp++){
  7094. for(i=0; i<16; i++)
  7095. src1_block[i]= src2_block[i]= random()%255;
  7096. }
  7097. printf("Testing NAL layer\n");
  7098. uint8_t bitstream[COUNT];
  7099. uint8_t nal[COUNT*2];
  7100. H264Context h;
  7101. memset(&h, 0, sizeof(H264Context));
  7102. for(i=0; i<COUNT; i++){
  7103. int zeros= i;
  7104. int nal_length;
  7105. int consumed;
  7106. int out_length;
  7107. uint8_t *out;
  7108. int j;
  7109. for(j=0; j<COUNT; j++){
  7110. bitstream[j]= (random() % 255) + 1;
  7111. }
  7112. for(j=0; j<zeros; j++){
  7113. int pos= random() % COUNT;
  7114. while(bitstream[pos] == 0){
  7115. pos++;
  7116. pos %= COUNT;
  7117. }
  7118. bitstream[pos]=0;
  7119. }
  7120. START_TIMER
  7121. nal_length= encode_nal(&h, nal, bitstream, COUNT, COUNT*2);
  7122. if(nal_length<0){
  7123. printf("encoding failed\n");
  7124. return -1;
  7125. }
  7126. out= decode_nal(&h, nal, &out_length, &consumed, nal_length);
  7127. STOP_TIMER("NAL")
  7128. if(out_length != COUNT){
  7129. printf("incorrect length %d %d\n", out_length, COUNT);
  7130. return -1;
  7131. }
  7132. if(consumed != nal_length){
  7133. printf("incorrect consumed length %d %d\n", nal_length, consumed);
  7134. return -1;
  7135. }
  7136. if(memcmp(bitstream, out, COUNT)){
  7137. printf("mismatch\n");
  7138. return -1;
  7139. }
  7140. }
  7141. #endif
  7142. printf("Testing RBSP\n");
  7143. return 0;
  7144. }
  7145. #endif /* TEST */
  7146. static av_cold int decode_end(AVCodecContext *avctx)
  7147. {
  7148. H264Context *h = avctx->priv_data;
  7149. MpegEncContext *s = &h->s;
  7150. av_freep(&h->rbsp_buffer[0]);
  7151. av_freep(&h->rbsp_buffer[1]);
  7152. free_tables(h); //FIXME cleanup init stuff perhaps
  7153. MPV_common_end(s);
  7154. // memset(h, 0, sizeof(H264Context));
  7155. return 0;
  7156. }
  7157. AVCodec h264_decoder = {
  7158. "h264",
  7159. CODEC_TYPE_VIDEO,
  7160. CODEC_ID_H264,
  7161. sizeof(H264Context),
  7162. decode_init,
  7163. NULL,
  7164. decode_end,
  7165. decode_frame,
  7166. /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  7167. .flush= flush_dpb,
  7168. .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"),
  7169. };
  7170. #include "svq3.c"