You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3452 lines
133KB

  1. /*
  2. * HEVC video Decoder
  3. *
  4. * Copyright (C) 2012 - 2013 Guillaume Martres
  5. * Copyright (C) 2012 - 2013 Mickael Raulet
  6. * Copyright (C) 2012 - 2013 Gildas Cocherel
  7. * Copyright (C) 2012 - 2013 Wassim Hamidouche
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/display.h"
  28. #include "libavutil/internal.h"
  29. #include "libavutil/mastering_display_metadata.h"
  30. #include "libavutil/md5.h"
  31. #include "libavutil/opt.h"
  32. #include "libavutil/pixdesc.h"
  33. #include "libavutil/stereo3d.h"
  34. #include "bswapdsp.h"
  35. #include "bytestream.h"
  36. #include "cabac_functions.h"
  37. #include "golomb.h"
  38. #include "hevc.h"
  39. #include "hevc_data.h"
  40. #include "hevcdec.h"
  41. #include "profiles.h"
  42. const uint8_t ff_hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 };
  43. /**
  44. * NOTE: Each function hls_foo correspond to the function foo in the
  45. * specification (HLS stands for High Level Syntax).
  46. */
  47. /**
  48. * Section 5.7
  49. */
  50. /* free everything allocated by pic_arrays_init() */
  51. static void pic_arrays_free(HEVCContext *s)
  52. {
  53. av_freep(&s->sao);
  54. av_freep(&s->deblock);
  55. av_freep(&s->skip_flag);
  56. av_freep(&s->tab_ct_depth);
  57. av_freep(&s->tab_ipm);
  58. av_freep(&s->cbf_luma);
  59. av_freep(&s->is_pcm);
  60. av_freep(&s->qp_y_tab);
  61. av_freep(&s->tab_slice_address);
  62. av_freep(&s->filter_slice_edges);
  63. av_freep(&s->horizontal_bs);
  64. av_freep(&s->vertical_bs);
  65. av_freep(&s->sh.entry_point_offset);
  66. av_freep(&s->sh.size);
  67. av_freep(&s->sh.offset);
  68. av_buffer_pool_uninit(&s->tab_mvf_pool);
  69. av_buffer_pool_uninit(&s->rpl_tab_pool);
  70. }
  71. /* allocate arrays that depend on frame dimensions */
  72. static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
  73. {
  74. int log2_min_cb_size = sps->log2_min_cb_size;
  75. int width = sps->width;
  76. int height = sps->height;
  77. int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) *
  78. ((height >> log2_min_cb_size) + 1);
  79. int ctb_count = sps->ctb_width * sps->ctb_height;
  80. int min_pu_size = sps->min_pu_width * sps->min_pu_height;
  81. s->bs_width = (width >> 2) + 1;
  82. s->bs_height = (height >> 2) + 1;
  83. s->sao = av_mallocz_array(ctb_count, sizeof(*s->sao));
  84. s->deblock = av_mallocz_array(ctb_count, sizeof(*s->deblock));
  85. if (!s->sao || !s->deblock)
  86. goto fail;
  87. s->skip_flag = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  88. s->tab_ct_depth = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  89. if (!s->skip_flag || !s->tab_ct_depth)
  90. goto fail;
  91. s->cbf_luma = av_malloc_array(sps->min_tb_width, sps->min_tb_height);
  92. s->tab_ipm = av_mallocz(min_pu_size);
  93. s->is_pcm = av_malloc_array(sps->min_pu_width + 1, sps->min_pu_height + 1);
  94. if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
  95. goto fail;
  96. s->filter_slice_edges = av_mallocz(ctb_count);
  97. s->tab_slice_address = av_malloc_array(pic_size_in_ctb,
  98. sizeof(*s->tab_slice_address));
  99. s->qp_y_tab = av_malloc_array(pic_size_in_ctb,
  100. sizeof(*s->qp_y_tab));
  101. if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
  102. goto fail;
  103. s->horizontal_bs = av_mallocz_array(s->bs_width, s->bs_height);
  104. s->vertical_bs = av_mallocz_array(s->bs_width, s->bs_height);
  105. if (!s->horizontal_bs || !s->vertical_bs)
  106. goto fail;
  107. s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
  108. av_buffer_allocz);
  109. s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
  110. av_buffer_allocz);
  111. if (!s->tab_mvf_pool || !s->rpl_tab_pool)
  112. goto fail;
  113. return 0;
  114. fail:
  115. pic_arrays_free(s);
  116. return AVERROR(ENOMEM);
  117. }
  118. static int pred_weight_table(HEVCContext *s, GetBitContext *gb)
  119. {
  120. int i = 0;
  121. int j = 0;
  122. uint8_t luma_weight_l0_flag[16];
  123. uint8_t chroma_weight_l0_flag[16];
  124. uint8_t luma_weight_l1_flag[16];
  125. uint8_t chroma_weight_l1_flag[16];
  126. int luma_log2_weight_denom;
  127. luma_log2_weight_denom = get_ue_golomb_long(gb);
  128. if (luma_log2_weight_denom < 0 || luma_log2_weight_denom > 7) {
  129. av_log(s->avctx, AV_LOG_ERROR, "luma_log2_weight_denom %d is invalid\n", luma_log2_weight_denom);
  130. return AVERROR_INVALIDDATA;
  131. }
  132. s->sh.luma_log2_weight_denom = av_clip_uintp2(luma_log2_weight_denom, 3);
  133. if (s->ps.sps->chroma_format_idc != 0) {
  134. int64_t chroma_log2_weight_denom = luma_log2_weight_denom + (int64_t)get_se_golomb(gb);
  135. if (chroma_log2_weight_denom < 0 || chroma_log2_weight_denom > 7) {
  136. av_log(s->avctx, AV_LOG_ERROR, "chroma_log2_weight_denom %"PRId64" is invalid\n", chroma_log2_weight_denom);
  137. return AVERROR_INVALIDDATA;
  138. }
  139. s->sh.chroma_log2_weight_denom = chroma_log2_weight_denom;
  140. }
  141. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  142. luma_weight_l0_flag[i] = get_bits1(gb);
  143. if (!luma_weight_l0_flag[i]) {
  144. s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
  145. s->sh.luma_offset_l0[i] = 0;
  146. }
  147. }
  148. if (s->ps.sps->chroma_format_idc != 0) {
  149. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  150. chroma_weight_l0_flag[i] = get_bits1(gb);
  151. } else {
  152. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  153. chroma_weight_l0_flag[i] = 0;
  154. }
  155. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  156. if (luma_weight_l0_flag[i]) {
  157. int delta_luma_weight_l0 = get_se_golomb(gb);
  158. s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
  159. s->sh.luma_offset_l0[i] = get_se_golomb(gb);
  160. }
  161. if (chroma_weight_l0_flag[i]) {
  162. for (j = 0; j < 2; j++) {
  163. int delta_chroma_weight_l0 = get_se_golomb(gb);
  164. int delta_chroma_offset_l0 = get_se_golomb(gb);
  165. if ( (int8_t)delta_chroma_weight_l0 != delta_chroma_weight_l0
  166. || delta_chroma_offset_l0 < -(1<<17) || delta_chroma_offset_l0 > (1<<17)) {
  167. return AVERROR_INVALIDDATA;
  168. }
  169. s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
  170. s->sh.chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
  171. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  172. }
  173. } else {
  174. s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  175. s->sh.chroma_offset_l0[i][0] = 0;
  176. s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  177. s->sh.chroma_offset_l0[i][1] = 0;
  178. }
  179. }
  180. if (s->sh.slice_type == HEVC_SLICE_B) {
  181. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  182. luma_weight_l1_flag[i] = get_bits1(gb);
  183. if (!luma_weight_l1_flag[i]) {
  184. s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
  185. s->sh.luma_offset_l1[i] = 0;
  186. }
  187. }
  188. if (s->ps.sps->chroma_format_idc != 0) {
  189. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  190. chroma_weight_l1_flag[i] = get_bits1(gb);
  191. } else {
  192. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  193. chroma_weight_l1_flag[i] = 0;
  194. }
  195. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  196. if (luma_weight_l1_flag[i]) {
  197. int delta_luma_weight_l1 = get_se_golomb(gb);
  198. s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
  199. s->sh.luma_offset_l1[i] = get_se_golomb(gb);
  200. }
  201. if (chroma_weight_l1_flag[i]) {
  202. for (j = 0; j < 2; j++) {
  203. int delta_chroma_weight_l1 = get_se_golomb(gb);
  204. int delta_chroma_offset_l1 = get_se_golomb(gb);
  205. if ( (int8_t)delta_chroma_weight_l1 != delta_chroma_weight_l1
  206. || delta_chroma_offset_l1 < -(1<<17) || delta_chroma_offset_l1 > (1<<17)) {
  207. return AVERROR_INVALIDDATA;
  208. }
  209. s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
  210. s->sh.chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
  211. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  212. }
  213. } else {
  214. s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  215. s->sh.chroma_offset_l1[i][0] = 0;
  216. s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  217. s->sh.chroma_offset_l1[i][1] = 0;
  218. }
  219. }
  220. }
  221. return 0;
  222. }
  223. static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
  224. {
  225. const HEVCSPS *sps = s->ps.sps;
  226. int max_poc_lsb = 1 << sps->log2_max_poc_lsb;
  227. int prev_delta_msb = 0;
  228. unsigned int nb_sps = 0, nb_sh;
  229. int i;
  230. rps->nb_refs = 0;
  231. if (!sps->long_term_ref_pics_present_flag)
  232. return 0;
  233. if (sps->num_long_term_ref_pics_sps > 0)
  234. nb_sps = get_ue_golomb_long(gb);
  235. nb_sh = get_ue_golomb_long(gb);
  236. if (nb_sps > sps->num_long_term_ref_pics_sps)
  237. return AVERROR_INVALIDDATA;
  238. if (nb_sh + (uint64_t)nb_sps > FF_ARRAY_ELEMS(rps->poc))
  239. return AVERROR_INVALIDDATA;
  240. rps->nb_refs = nb_sh + nb_sps;
  241. for (i = 0; i < rps->nb_refs; i++) {
  242. uint8_t delta_poc_msb_present;
  243. if (i < nb_sps) {
  244. uint8_t lt_idx_sps = 0;
  245. if (sps->num_long_term_ref_pics_sps > 1)
  246. lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
  247. rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
  248. rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
  249. } else {
  250. rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb);
  251. rps->used[i] = get_bits1(gb);
  252. }
  253. delta_poc_msb_present = get_bits1(gb);
  254. if (delta_poc_msb_present) {
  255. int64_t delta = get_ue_golomb_long(gb);
  256. int64_t poc;
  257. if (i && i != nb_sps)
  258. delta += prev_delta_msb;
  259. poc = rps->poc[i] + s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
  260. if (poc != (int32_t)poc)
  261. return AVERROR_INVALIDDATA;
  262. rps->poc[i] = poc;
  263. prev_delta_msb = delta;
  264. }
  265. }
  266. return 0;
  267. }
  268. static void export_stream_params(AVCodecContext *avctx, const HEVCParamSets *ps,
  269. const HEVCSPS *sps)
  270. {
  271. const HEVCVPS *vps = (const HEVCVPS*)ps->vps_list[sps->vps_id]->data;
  272. unsigned int num = 0, den = 0;
  273. avctx->pix_fmt = sps->pix_fmt;
  274. avctx->coded_width = sps->width;
  275. avctx->coded_height = sps->height;
  276. avctx->width = sps->output_width;
  277. avctx->height = sps->output_height;
  278. avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
  279. avctx->profile = sps->ptl.general_ptl.profile_idc;
  280. avctx->level = sps->ptl.general_ptl.level_idc;
  281. ff_set_sar(avctx, sps->vui.sar);
  282. if (sps->vui.video_signal_type_present_flag)
  283. avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
  284. : AVCOL_RANGE_MPEG;
  285. else
  286. avctx->color_range = AVCOL_RANGE_MPEG;
  287. if (sps->vui.colour_description_present_flag) {
  288. avctx->color_primaries = sps->vui.colour_primaries;
  289. avctx->color_trc = sps->vui.transfer_characteristic;
  290. avctx->colorspace = sps->vui.matrix_coeffs;
  291. } else {
  292. avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
  293. avctx->color_trc = AVCOL_TRC_UNSPECIFIED;
  294. avctx->colorspace = AVCOL_SPC_UNSPECIFIED;
  295. }
  296. if (vps->vps_timing_info_present_flag) {
  297. num = vps->vps_num_units_in_tick;
  298. den = vps->vps_time_scale;
  299. } else if (sps->vui.vui_timing_info_present_flag) {
  300. num = sps->vui.vui_num_units_in_tick;
  301. den = sps->vui.vui_time_scale;
  302. }
  303. if (num != 0 && den != 0)
  304. av_reduce(&avctx->framerate.den, &avctx->framerate.num,
  305. num, den, 1 << 30);
  306. }
  307. static int set_sps(HEVCContext *s, const HEVCSPS *sps, enum AVPixelFormat pix_fmt)
  308. {
  309. #define HWACCEL_MAX (CONFIG_HEVC_DXVA2_HWACCEL + CONFIG_HEVC_D3D11VA_HWACCEL + CONFIG_HEVC_VAAPI_HWACCEL + CONFIG_HEVC_VDPAU_HWACCEL)
  310. enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
  311. int ret, i;
  312. pic_arrays_free(s);
  313. s->ps.sps = NULL;
  314. s->ps.vps = NULL;
  315. if (!sps)
  316. return 0;
  317. ret = pic_arrays_init(s, sps);
  318. if (ret < 0)
  319. goto fail;
  320. export_stream_params(s->avctx, &s->ps, sps);
  321. switch (sps->pix_fmt) {
  322. case AV_PIX_FMT_YUV420P:
  323. case AV_PIX_FMT_YUVJ420P:
  324. #if CONFIG_HEVC_DXVA2_HWACCEL
  325. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  326. #endif
  327. #if CONFIG_HEVC_D3D11VA_HWACCEL
  328. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  329. #endif
  330. #if CONFIG_HEVC_VAAPI_HWACCEL
  331. *fmt++ = AV_PIX_FMT_VAAPI;
  332. #endif
  333. #if CONFIG_HEVC_VDPAU_HWACCEL
  334. *fmt++ = AV_PIX_FMT_VDPAU;
  335. #endif
  336. break;
  337. case AV_PIX_FMT_YUV420P10:
  338. #if CONFIG_HEVC_DXVA2_HWACCEL
  339. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  340. #endif
  341. #if CONFIG_HEVC_D3D11VA_HWACCEL
  342. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  343. #endif
  344. #if CONFIG_HEVC_VAAPI_HWACCEL
  345. *fmt++ = AV_PIX_FMT_VAAPI;
  346. #endif
  347. break;
  348. }
  349. if (pix_fmt == AV_PIX_FMT_NONE) {
  350. *fmt++ = sps->pix_fmt;
  351. *fmt = AV_PIX_FMT_NONE;
  352. ret = ff_thread_get_format(s->avctx, pix_fmts);
  353. if (ret < 0)
  354. goto fail;
  355. s->avctx->pix_fmt = ret;
  356. }
  357. else {
  358. s->avctx->pix_fmt = pix_fmt;
  359. }
  360. ff_hevc_pred_init(&s->hpc, sps->bit_depth);
  361. ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
  362. ff_videodsp_init (&s->vdsp, sps->bit_depth);
  363. for (i = 0; i < 3; i++) {
  364. av_freep(&s->sao_pixel_buffer_h[i]);
  365. av_freep(&s->sao_pixel_buffer_v[i]);
  366. }
  367. if (sps->sao_enabled && !s->avctx->hwaccel) {
  368. int c_count = (sps->chroma_format_idc != 0) ? 3 : 1;
  369. int c_idx;
  370. for(c_idx = 0; c_idx < c_count; c_idx++) {
  371. int w = sps->width >> sps->hshift[c_idx];
  372. int h = sps->height >> sps->vshift[c_idx];
  373. s->sao_pixel_buffer_h[c_idx] =
  374. av_malloc((w * 2 * sps->ctb_height) <<
  375. sps->pixel_shift);
  376. s->sao_pixel_buffer_v[c_idx] =
  377. av_malloc((h * 2 * sps->ctb_width) <<
  378. sps->pixel_shift);
  379. }
  380. }
  381. s->ps.sps = sps;
  382. s->ps.vps = (HEVCVPS*) s->ps.vps_list[s->ps.sps->vps_id]->data;
  383. return 0;
  384. fail:
  385. pic_arrays_free(s);
  386. s->ps.sps = NULL;
  387. return ret;
  388. }
  389. static int hls_slice_header(HEVCContext *s)
  390. {
  391. GetBitContext *gb = &s->HEVClc->gb;
  392. SliceHeader *sh = &s->sh;
  393. int i, ret;
  394. // Coded parameters
  395. sh->first_slice_in_pic_flag = get_bits1(gb);
  396. if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
  397. s->seq_decode = (s->seq_decode + 1) & 0xff;
  398. s->max_ra = INT_MAX;
  399. if (IS_IDR(s))
  400. ff_hevc_clear_refs(s);
  401. }
  402. sh->no_output_of_prior_pics_flag = 0;
  403. if (IS_IRAP(s))
  404. sh->no_output_of_prior_pics_flag = get_bits1(gb);
  405. sh->pps_id = get_ue_golomb_long(gb);
  406. if (sh->pps_id >= HEVC_MAX_PPS_COUNT || !s->ps.pps_list[sh->pps_id]) {
  407. av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
  408. return AVERROR_INVALIDDATA;
  409. }
  410. if (!sh->first_slice_in_pic_flag &&
  411. s->ps.pps != (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data) {
  412. av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
  413. return AVERROR_INVALIDDATA;
  414. }
  415. s->ps.pps = (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data;
  416. if (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos == 1)
  417. sh->no_output_of_prior_pics_flag = 1;
  418. if (s->ps.sps != (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data) {
  419. const HEVCSPS* last_sps = s->ps.sps;
  420. s->ps.sps = (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data;
  421. if (last_sps && IS_IRAP(s) && s->nal_unit_type != HEVC_NAL_CRA_NUT) {
  422. if (s->ps.sps->width != last_sps->width || s->ps.sps->height != last_sps->height ||
  423. s->ps.sps->temporal_layer[s->ps.sps->max_sub_layers - 1].max_dec_pic_buffering !=
  424. last_sps->temporal_layer[last_sps->max_sub_layers - 1].max_dec_pic_buffering)
  425. sh->no_output_of_prior_pics_flag = 0;
  426. }
  427. ff_hevc_clear_refs(s);
  428. ret = set_sps(s, s->ps.sps, AV_PIX_FMT_NONE);
  429. if (ret < 0)
  430. return ret;
  431. s->seq_decode = (s->seq_decode + 1) & 0xff;
  432. s->max_ra = INT_MAX;
  433. }
  434. sh->dependent_slice_segment_flag = 0;
  435. if (!sh->first_slice_in_pic_flag) {
  436. int slice_address_length;
  437. if (s->ps.pps->dependent_slice_segments_enabled_flag)
  438. sh->dependent_slice_segment_flag = get_bits1(gb);
  439. slice_address_length = av_ceil_log2(s->ps.sps->ctb_width *
  440. s->ps.sps->ctb_height);
  441. sh->slice_segment_addr = get_bitsz(gb, slice_address_length);
  442. if (sh->slice_segment_addr >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  443. av_log(s->avctx, AV_LOG_ERROR,
  444. "Invalid slice segment address: %u.\n",
  445. sh->slice_segment_addr);
  446. return AVERROR_INVALIDDATA;
  447. }
  448. if (!sh->dependent_slice_segment_flag) {
  449. sh->slice_addr = sh->slice_segment_addr;
  450. s->slice_idx++;
  451. }
  452. } else {
  453. sh->slice_segment_addr = sh->slice_addr = 0;
  454. s->slice_idx = 0;
  455. s->slice_initialized = 0;
  456. }
  457. if (!sh->dependent_slice_segment_flag) {
  458. s->slice_initialized = 0;
  459. for (i = 0; i < s->ps.pps->num_extra_slice_header_bits; i++)
  460. skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
  461. sh->slice_type = get_ue_golomb_long(gb);
  462. if (!(sh->slice_type == HEVC_SLICE_I ||
  463. sh->slice_type == HEVC_SLICE_P ||
  464. sh->slice_type == HEVC_SLICE_B)) {
  465. av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
  466. sh->slice_type);
  467. return AVERROR_INVALIDDATA;
  468. }
  469. if (IS_IRAP(s) && sh->slice_type != HEVC_SLICE_I) {
  470. av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
  471. return AVERROR_INVALIDDATA;
  472. }
  473. // when flag is not present, picture is inferred to be output
  474. sh->pic_output_flag = 1;
  475. if (s->ps.pps->output_flag_present_flag)
  476. sh->pic_output_flag = get_bits1(gb);
  477. if (s->ps.sps->separate_colour_plane_flag)
  478. sh->colour_plane_id = get_bits(gb, 2);
  479. if (!IS_IDR(s)) {
  480. int poc, pos;
  481. sh->pic_order_cnt_lsb = get_bits(gb, s->ps.sps->log2_max_poc_lsb);
  482. poc = ff_hevc_compute_poc(s, sh->pic_order_cnt_lsb);
  483. if (!sh->first_slice_in_pic_flag && poc != s->poc) {
  484. av_log(s->avctx, AV_LOG_WARNING,
  485. "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
  486. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  487. return AVERROR_INVALIDDATA;
  488. poc = s->poc;
  489. }
  490. s->poc = poc;
  491. sh->short_term_ref_pic_set_sps_flag = get_bits1(gb);
  492. pos = get_bits_left(gb);
  493. if (!sh->short_term_ref_pic_set_sps_flag) {
  494. ret = ff_hevc_decode_short_term_rps(gb, s->avctx, &sh->slice_rps, s->ps.sps, 1);
  495. if (ret < 0)
  496. return ret;
  497. sh->short_term_rps = &sh->slice_rps;
  498. } else {
  499. int numbits, rps_idx;
  500. if (!s->ps.sps->nb_st_rps) {
  501. av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
  502. return AVERROR_INVALIDDATA;
  503. }
  504. numbits = av_ceil_log2(s->ps.sps->nb_st_rps);
  505. rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
  506. sh->short_term_rps = &s->ps.sps->st_rps[rps_idx];
  507. }
  508. sh->short_term_ref_pic_set_size = pos - get_bits_left(gb);
  509. pos = get_bits_left(gb);
  510. ret = decode_lt_rps(s, &sh->long_term_rps, gb);
  511. if (ret < 0) {
  512. av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
  513. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  514. return AVERROR_INVALIDDATA;
  515. }
  516. sh->long_term_ref_pic_set_size = pos - get_bits_left(gb);
  517. if (s->ps.sps->sps_temporal_mvp_enabled_flag)
  518. sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
  519. else
  520. sh->slice_temporal_mvp_enabled_flag = 0;
  521. } else {
  522. s->sh.short_term_rps = NULL;
  523. s->poc = 0;
  524. }
  525. /* 8.3.1 */
  526. if (sh->first_slice_in_pic_flag && s->temporal_id == 0 &&
  527. s->nal_unit_type != HEVC_NAL_TRAIL_N &&
  528. s->nal_unit_type != HEVC_NAL_TSA_N &&
  529. s->nal_unit_type != HEVC_NAL_STSA_N &&
  530. s->nal_unit_type != HEVC_NAL_RADL_N &&
  531. s->nal_unit_type != HEVC_NAL_RADL_R &&
  532. s->nal_unit_type != HEVC_NAL_RASL_N &&
  533. s->nal_unit_type != HEVC_NAL_RASL_R)
  534. s->pocTid0 = s->poc;
  535. if (s->ps.sps->sao_enabled) {
  536. sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
  537. if (s->ps.sps->chroma_format_idc) {
  538. sh->slice_sample_adaptive_offset_flag[1] =
  539. sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
  540. }
  541. } else {
  542. sh->slice_sample_adaptive_offset_flag[0] = 0;
  543. sh->slice_sample_adaptive_offset_flag[1] = 0;
  544. sh->slice_sample_adaptive_offset_flag[2] = 0;
  545. }
  546. sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
  547. if (sh->slice_type == HEVC_SLICE_P || sh->slice_type == HEVC_SLICE_B) {
  548. int nb_refs;
  549. sh->nb_refs[L0] = s->ps.pps->num_ref_idx_l0_default_active;
  550. if (sh->slice_type == HEVC_SLICE_B)
  551. sh->nb_refs[L1] = s->ps.pps->num_ref_idx_l1_default_active;
  552. if (get_bits1(gb)) { // num_ref_idx_active_override_flag
  553. sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
  554. if (sh->slice_type == HEVC_SLICE_B)
  555. sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
  556. }
  557. if (sh->nb_refs[L0] > HEVC_MAX_REFS || sh->nb_refs[L1] > HEVC_MAX_REFS) {
  558. av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
  559. sh->nb_refs[L0], sh->nb_refs[L1]);
  560. return AVERROR_INVALIDDATA;
  561. }
  562. sh->rpl_modification_flag[0] = 0;
  563. sh->rpl_modification_flag[1] = 0;
  564. nb_refs = ff_hevc_frame_nb_refs(s);
  565. if (!nb_refs) {
  566. av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
  567. return AVERROR_INVALIDDATA;
  568. }
  569. if (s->ps.pps->lists_modification_present_flag && nb_refs > 1) {
  570. sh->rpl_modification_flag[0] = get_bits1(gb);
  571. if (sh->rpl_modification_flag[0]) {
  572. for (i = 0; i < sh->nb_refs[L0]; i++)
  573. sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
  574. }
  575. if (sh->slice_type == HEVC_SLICE_B) {
  576. sh->rpl_modification_flag[1] = get_bits1(gb);
  577. if (sh->rpl_modification_flag[1] == 1)
  578. for (i = 0; i < sh->nb_refs[L1]; i++)
  579. sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
  580. }
  581. }
  582. if (sh->slice_type == HEVC_SLICE_B)
  583. sh->mvd_l1_zero_flag = get_bits1(gb);
  584. if (s->ps.pps->cabac_init_present_flag)
  585. sh->cabac_init_flag = get_bits1(gb);
  586. else
  587. sh->cabac_init_flag = 0;
  588. sh->collocated_ref_idx = 0;
  589. if (sh->slice_temporal_mvp_enabled_flag) {
  590. sh->collocated_list = L0;
  591. if (sh->slice_type == HEVC_SLICE_B)
  592. sh->collocated_list = !get_bits1(gb);
  593. if (sh->nb_refs[sh->collocated_list] > 1) {
  594. sh->collocated_ref_idx = get_ue_golomb_long(gb);
  595. if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
  596. av_log(s->avctx, AV_LOG_ERROR,
  597. "Invalid collocated_ref_idx: %d.\n",
  598. sh->collocated_ref_idx);
  599. return AVERROR_INVALIDDATA;
  600. }
  601. }
  602. }
  603. if ((s->ps.pps->weighted_pred_flag && sh->slice_type == HEVC_SLICE_P) ||
  604. (s->ps.pps->weighted_bipred_flag && sh->slice_type == HEVC_SLICE_B)) {
  605. int ret = pred_weight_table(s, gb);
  606. if (ret < 0)
  607. return ret;
  608. }
  609. sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
  610. if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
  611. av_log(s->avctx, AV_LOG_ERROR,
  612. "Invalid number of merging MVP candidates: %d.\n",
  613. sh->max_num_merge_cand);
  614. return AVERROR_INVALIDDATA;
  615. }
  616. }
  617. sh->slice_qp_delta = get_se_golomb(gb);
  618. if (s->ps.pps->pic_slice_level_chroma_qp_offsets_present_flag) {
  619. sh->slice_cb_qp_offset = get_se_golomb(gb);
  620. sh->slice_cr_qp_offset = get_se_golomb(gb);
  621. } else {
  622. sh->slice_cb_qp_offset = 0;
  623. sh->slice_cr_qp_offset = 0;
  624. }
  625. if (s->ps.pps->chroma_qp_offset_list_enabled_flag)
  626. sh->cu_chroma_qp_offset_enabled_flag = get_bits1(gb);
  627. else
  628. sh->cu_chroma_qp_offset_enabled_flag = 0;
  629. if (s->ps.pps->deblocking_filter_control_present_flag) {
  630. int deblocking_filter_override_flag = 0;
  631. if (s->ps.pps->deblocking_filter_override_enabled_flag)
  632. deblocking_filter_override_flag = get_bits1(gb);
  633. if (deblocking_filter_override_flag) {
  634. sh->disable_deblocking_filter_flag = get_bits1(gb);
  635. if (!sh->disable_deblocking_filter_flag) {
  636. sh->beta_offset = get_se_golomb(gb) * 2;
  637. sh->tc_offset = get_se_golomb(gb) * 2;
  638. }
  639. } else {
  640. sh->disable_deblocking_filter_flag = s->ps.pps->disable_dbf;
  641. sh->beta_offset = s->ps.pps->beta_offset;
  642. sh->tc_offset = s->ps.pps->tc_offset;
  643. }
  644. } else {
  645. sh->disable_deblocking_filter_flag = 0;
  646. sh->beta_offset = 0;
  647. sh->tc_offset = 0;
  648. }
  649. if (s->ps.pps->seq_loop_filter_across_slices_enabled_flag &&
  650. (sh->slice_sample_adaptive_offset_flag[0] ||
  651. sh->slice_sample_adaptive_offset_flag[1] ||
  652. !sh->disable_deblocking_filter_flag)) {
  653. sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
  654. } else {
  655. sh->slice_loop_filter_across_slices_enabled_flag = s->ps.pps->seq_loop_filter_across_slices_enabled_flag;
  656. }
  657. } else if (!s->slice_initialized) {
  658. av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
  659. return AVERROR_INVALIDDATA;
  660. }
  661. sh->num_entry_point_offsets = 0;
  662. if (s->ps.pps->tiles_enabled_flag || s->ps.pps->entropy_coding_sync_enabled_flag) {
  663. unsigned num_entry_point_offsets = get_ue_golomb_long(gb);
  664. // It would be possible to bound this tighter but this here is simpler
  665. if (num_entry_point_offsets > get_bits_left(gb)) {
  666. av_log(s->avctx, AV_LOG_ERROR, "num_entry_point_offsets %d is invalid\n", num_entry_point_offsets);
  667. return AVERROR_INVALIDDATA;
  668. }
  669. sh->num_entry_point_offsets = num_entry_point_offsets;
  670. if (sh->num_entry_point_offsets > 0) {
  671. int offset_len = get_ue_golomb_long(gb) + 1;
  672. if (offset_len < 1 || offset_len > 32) {
  673. sh->num_entry_point_offsets = 0;
  674. av_log(s->avctx, AV_LOG_ERROR, "offset_len %d is invalid\n", offset_len);
  675. return AVERROR_INVALIDDATA;
  676. }
  677. av_freep(&sh->entry_point_offset);
  678. av_freep(&sh->offset);
  679. av_freep(&sh->size);
  680. sh->entry_point_offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(unsigned));
  681. sh->offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  682. sh->size = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  683. if (!sh->entry_point_offset || !sh->offset || !sh->size) {
  684. sh->num_entry_point_offsets = 0;
  685. av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n");
  686. return AVERROR(ENOMEM);
  687. }
  688. for (i = 0; i < sh->num_entry_point_offsets; i++) {
  689. unsigned val = get_bits_long(gb, offset_len);
  690. sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size
  691. }
  692. if (s->threads_number > 1 && (s->ps.pps->num_tile_rows > 1 || s->ps.pps->num_tile_columns > 1)) {
  693. s->enable_parallel_tiles = 0; // TODO: you can enable tiles in parallel here
  694. s->threads_number = 1;
  695. } else
  696. s->enable_parallel_tiles = 0;
  697. } else
  698. s->enable_parallel_tiles = 0;
  699. }
  700. if (s->ps.pps->slice_header_extension_present_flag) {
  701. unsigned int length = get_ue_golomb_long(gb);
  702. if (length*8LL > get_bits_left(gb)) {
  703. av_log(s->avctx, AV_LOG_ERROR, "too many slice_header_extension_data_bytes\n");
  704. return AVERROR_INVALIDDATA;
  705. }
  706. for (i = 0; i < length; i++)
  707. skip_bits(gb, 8); // slice_header_extension_data_byte
  708. }
  709. // Inferred parameters
  710. sh->slice_qp = 26U + s->ps.pps->pic_init_qp_minus26 + sh->slice_qp_delta;
  711. if (sh->slice_qp > 51 ||
  712. sh->slice_qp < -s->ps.sps->qp_bd_offset) {
  713. av_log(s->avctx, AV_LOG_ERROR,
  714. "The slice_qp %d is outside the valid range "
  715. "[%d, 51].\n",
  716. sh->slice_qp,
  717. -s->ps.sps->qp_bd_offset);
  718. return AVERROR_INVALIDDATA;
  719. }
  720. sh->slice_ctb_addr_rs = sh->slice_segment_addr;
  721. if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
  722. av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
  723. return AVERROR_INVALIDDATA;
  724. }
  725. if (get_bits_left(gb) < 0) {
  726. av_log(s->avctx, AV_LOG_ERROR,
  727. "Overread slice header by %d bits\n", -get_bits_left(gb));
  728. return AVERROR_INVALIDDATA;
  729. }
  730. s->HEVClc->first_qp_group = !s->sh.dependent_slice_segment_flag;
  731. if (!s->ps.pps->cu_qp_delta_enabled_flag)
  732. s->HEVClc->qp_y = s->sh.slice_qp;
  733. s->slice_initialized = 1;
  734. s->HEVClc->tu.cu_qp_offset_cb = 0;
  735. s->HEVClc->tu.cu_qp_offset_cr = 0;
  736. return 0;
  737. }
  738. #define CTB(tab, x, y) ((tab)[(y) * s->ps.sps->ctb_width + (x)])
  739. #define SET_SAO(elem, value) \
  740. do { \
  741. if (!sao_merge_up_flag && !sao_merge_left_flag) \
  742. sao->elem = value; \
  743. else if (sao_merge_left_flag) \
  744. sao->elem = CTB(s->sao, rx-1, ry).elem; \
  745. else if (sao_merge_up_flag) \
  746. sao->elem = CTB(s->sao, rx, ry-1).elem; \
  747. else \
  748. sao->elem = 0; \
  749. } while (0)
  750. static void hls_sao_param(HEVCContext *s, int rx, int ry)
  751. {
  752. HEVCLocalContext *lc = s->HEVClc;
  753. int sao_merge_left_flag = 0;
  754. int sao_merge_up_flag = 0;
  755. SAOParams *sao = &CTB(s->sao, rx, ry);
  756. int c_idx, i;
  757. if (s->sh.slice_sample_adaptive_offset_flag[0] ||
  758. s->sh.slice_sample_adaptive_offset_flag[1]) {
  759. if (rx > 0) {
  760. if (lc->ctb_left_flag)
  761. sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
  762. }
  763. if (ry > 0 && !sao_merge_left_flag) {
  764. if (lc->ctb_up_flag)
  765. sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
  766. }
  767. }
  768. for (c_idx = 0; c_idx < (s->ps.sps->chroma_format_idc ? 3 : 1); c_idx++) {
  769. int log2_sao_offset_scale = c_idx == 0 ? s->ps.pps->log2_sao_offset_scale_luma :
  770. s->ps.pps->log2_sao_offset_scale_chroma;
  771. if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
  772. sao->type_idx[c_idx] = SAO_NOT_APPLIED;
  773. continue;
  774. }
  775. if (c_idx == 2) {
  776. sao->type_idx[2] = sao->type_idx[1];
  777. sao->eo_class[2] = sao->eo_class[1];
  778. } else {
  779. SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
  780. }
  781. if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
  782. continue;
  783. for (i = 0; i < 4; i++)
  784. SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
  785. if (sao->type_idx[c_idx] == SAO_BAND) {
  786. for (i = 0; i < 4; i++) {
  787. if (sao->offset_abs[c_idx][i]) {
  788. SET_SAO(offset_sign[c_idx][i],
  789. ff_hevc_sao_offset_sign_decode(s));
  790. } else {
  791. sao->offset_sign[c_idx][i] = 0;
  792. }
  793. }
  794. SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
  795. } else if (c_idx != 2) {
  796. SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
  797. }
  798. // Inferred parameters
  799. sao->offset_val[c_idx][0] = 0;
  800. for (i = 0; i < 4; i++) {
  801. sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i];
  802. if (sao->type_idx[c_idx] == SAO_EDGE) {
  803. if (i > 1)
  804. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  805. } else if (sao->offset_sign[c_idx][i]) {
  806. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  807. }
  808. sao->offset_val[c_idx][i + 1] *= 1 << log2_sao_offset_scale;
  809. }
  810. }
  811. }
  812. #undef SET_SAO
  813. #undef CTB
  814. static int hls_cross_component_pred(HEVCContext *s, int idx) {
  815. HEVCLocalContext *lc = s->HEVClc;
  816. int log2_res_scale_abs_plus1 = ff_hevc_log2_res_scale_abs(s, idx);
  817. if (log2_res_scale_abs_plus1 != 0) {
  818. int res_scale_sign_flag = ff_hevc_res_scale_sign_flag(s, idx);
  819. lc->tu.res_scale_val = (1 << (log2_res_scale_abs_plus1 - 1)) *
  820. (1 - 2 * res_scale_sign_flag);
  821. } else {
  822. lc->tu.res_scale_val = 0;
  823. }
  824. return 0;
  825. }
  826. static int hls_transform_unit(HEVCContext *s, int x0, int y0,
  827. int xBase, int yBase, int cb_xBase, int cb_yBase,
  828. int log2_cb_size, int log2_trafo_size,
  829. int blk_idx, int cbf_luma, int *cbf_cb, int *cbf_cr)
  830. {
  831. HEVCLocalContext *lc = s->HEVClc;
  832. const int log2_trafo_size_c = log2_trafo_size - s->ps.sps->hshift[1];
  833. int i;
  834. if (lc->cu.pred_mode == MODE_INTRA) {
  835. int trafo_size = 1 << log2_trafo_size;
  836. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
  837. s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
  838. }
  839. if (cbf_luma || cbf_cb[0] || cbf_cr[0] ||
  840. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  841. int scan_idx = SCAN_DIAG;
  842. int scan_idx_c = SCAN_DIAG;
  843. int cbf_chroma = cbf_cb[0] || cbf_cr[0] ||
  844. (s->ps.sps->chroma_format_idc == 2 &&
  845. (cbf_cb[1] || cbf_cr[1]));
  846. if (s->ps.pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
  847. lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
  848. if (lc->tu.cu_qp_delta != 0)
  849. if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
  850. lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
  851. lc->tu.is_cu_qp_delta_coded = 1;
  852. if (lc->tu.cu_qp_delta < -(26 + s->ps.sps->qp_bd_offset / 2) ||
  853. lc->tu.cu_qp_delta > (25 + s->ps.sps->qp_bd_offset / 2)) {
  854. av_log(s->avctx, AV_LOG_ERROR,
  855. "The cu_qp_delta %d is outside the valid range "
  856. "[%d, %d].\n",
  857. lc->tu.cu_qp_delta,
  858. -(26 + s->ps.sps->qp_bd_offset / 2),
  859. (25 + s->ps.sps->qp_bd_offset / 2));
  860. return AVERROR_INVALIDDATA;
  861. }
  862. ff_hevc_set_qPy(s, cb_xBase, cb_yBase, log2_cb_size);
  863. }
  864. if (s->sh.cu_chroma_qp_offset_enabled_flag && cbf_chroma &&
  865. !lc->cu.cu_transquant_bypass_flag && !lc->tu.is_cu_chroma_qp_offset_coded) {
  866. int cu_chroma_qp_offset_flag = ff_hevc_cu_chroma_qp_offset_flag(s);
  867. if (cu_chroma_qp_offset_flag) {
  868. int cu_chroma_qp_offset_idx = 0;
  869. if (s->ps.pps->chroma_qp_offset_list_len_minus1 > 0) {
  870. cu_chroma_qp_offset_idx = ff_hevc_cu_chroma_qp_offset_idx(s);
  871. av_log(s->avctx, AV_LOG_ERROR,
  872. "cu_chroma_qp_offset_idx not yet tested.\n");
  873. }
  874. lc->tu.cu_qp_offset_cb = s->ps.pps->cb_qp_offset_list[cu_chroma_qp_offset_idx];
  875. lc->tu.cu_qp_offset_cr = s->ps.pps->cr_qp_offset_list[cu_chroma_qp_offset_idx];
  876. } else {
  877. lc->tu.cu_qp_offset_cb = 0;
  878. lc->tu.cu_qp_offset_cr = 0;
  879. }
  880. lc->tu.is_cu_chroma_qp_offset_coded = 1;
  881. }
  882. if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
  883. if (lc->tu.intra_pred_mode >= 6 &&
  884. lc->tu.intra_pred_mode <= 14) {
  885. scan_idx = SCAN_VERT;
  886. } else if (lc->tu.intra_pred_mode >= 22 &&
  887. lc->tu.intra_pred_mode <= 30) {
  888. scan_idx = SCAN_HORIZ;
  889. }
  890. if (lc->tu.intra_pred_mode_c >= 6 &&
  891. lc->tu.intra_pred_mode_c <= 14) {
  892. scan_idx_c = SCAN_VERT;
  893. } else if (lc->tu.intra_pred_mode_c >= 22 &&
  894. lc->tu.intra_pred_mode_c <= 30) {
  895. scan_idx_c = SCAN_HORIZ;
  896. }
  897. }
  898. lc->tu.cross_pf = 0;
  899. if (cbf_luma)
  900. ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
  901. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  902. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  903. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  904. lc->tu.cross_pf = (s->ps.pps->cross_component_prediction_enabled_flag && cbf_luma &&
  905. (lc->cu.pred_mode == MODE_INTER ||
  906. (lc->tu.chroma_mode_c == 4)));
  907. if (lc->tu.cross_pf) {
  908. hls_cross_component_pred(s, 0);
  909. }
  910. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  911. if (lc->cu.pred_mode == MODE_INTRA) {
  912. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  913. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 1);
  914. }
  915. if (cbf_cb[i])
  916. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  917. log2_trafo_size_c, scan_idx_c, 1);
  918. else
  919. if (lc->tu.cross_pf) {
  920. ptrdiff_t stride = s->frame->linesize[1];
  921. int hshift = s->ps.sps->hshift[1];
  922. int vshift = s->ps.sps->vshift[1];
  923. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  924. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  925. int size = 1 << log2_trafo_size_c;
  926. uint8_t *dst = &s->frame->data[1][(y0 >> vshift) * stride +
  927. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  928. for (i = 0; i < (size * size); i++) {
  929. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  930. }
  931. s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
  932. }
  933. }
  934. if (lc->tu.cross_pf) {
  935. hls_cross_component_pred(s, 1);
  936. }
  937. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  938. if (lc->cu.pred_mode == MODE_INTRA) {
  939. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  940. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 2);
  941. }
  942. if (cbf_cr[i])
  943. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  944. log2_trafo_size_c, scan_idx_c, 2);
  945. else
  946. if (lc->tu.cross_pf) {
  947. ptrdiff_t stride = s->frame->linesize[2];
  948. int hshift = s->ps.sps->hshift[2];
  949. int vshift = s->ps.sps->vshift[2];
  950. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  951. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  952. int size = 1 << log2_trafo_size_c;
  953. uint8_t *dst = &s->frame->data[2][(y0 >> vshift) * stride +
  954. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  955. for (i = 0; i < (size * size); i++) {
  956. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  957. }
  958. s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
  959. }
  960. }
  961. } else if (s->ps.sps->chroma_format_idc && blk_idx == 3) {
  962. int trafo_size_h = 1 << (log2_trafo_size + 1);
  963. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  964. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  965. if (lc->cu.pred_mode == MODE_INTRA) {
  966. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  967. trafo_size_h, trafo_size_v);
  968. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 1);
  969. }
  970. if (cbf_cb[i])
  971. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  972. log2_trafo_size, scan_idx_c, 1);
  973. }
  974. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  975. if (lc->cu.pred_mode == MODE_INTRA) {
  976. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  977. trafo_size_h, trafo_size_v);
  978. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 2);
  979. }
  980. if (cbf_cr[i])
  981. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  982. log2_trafo_size, scan_idx_c, 2);
  983. }
  984. }
  985. } else if (s->ps.sps->chroma_format_idc && lc->cu.pred_mode == MODE_INTRA) {
  986. if (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3) {
  987. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  988. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  989. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size_h, trafo_size_v);
  990. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 1);
  991. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 2);
  992. if (s->ps.sps->chroma_format_idc == 2) {
  993. ff_hevc_set_neighbour_available(s, x0, y0 + (1 << log2_trafo_size_c),
  994. trafo_size_h, trafo_size_v);
  995. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 1);
  996. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 2);
  997. }
  998. } else if (blk_idx == 3) {
  999. int trafo_size_h = 1 << (log2_trafo_size + 1);
  1000. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  1001. ff_hevc_set_neighbour_available(s, xBase, yBase,
  1002. trafo_size_h, trafo_size_v);
  1003. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
  1004. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
  1005. if (s->ps.sps->chroma_format_idc == 2) {
  1006. ff_hevc_set_neighbour_available(s, xBase, yBase + (1 << (log2_trafo_size)),
  1007. trafo_size_h, trafo_size_v);
  1008. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 1);
  1009. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 2);
  1010. }
  1011. }
  1012. }
  1013. return 0;
  1014. }
  1015. static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1016. {
  1017. int cb_size = 1 << log2_cb_size;
  1018. int log2_min_pu_size = s->ps.sps->log2_min_pu_size;
  1019. int min_pu_width = s->ps.sps->min_pu_width;
  1020. int x_end = FFMIN(x0 + cb_size, s->ps.sps->width);
  1021. int y_end = FFMIN(y0 + cb_size, s->ps.sps->height);
  1022. int i, j;
  1023. for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
  1024. for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
  1025. s->is_pcm[i + j * min_pu_width] = 2;
  1026. }
  1027. static int hls_transform_tree(HEVCContext *s, int x0, int y0,
  1028. int xBase, int yBase, int cb_xBase, int cb_yBase,
  1029. int log2_cb_size, int log2_trafo_size,
  1030. int trafo_depth, int blk_idx,
  1031. const int *base_cbf_cb, const int *base_cbf_cr)
  1032. {
  1033. HEVCLocalContext *lc = s->HEVClc;
  1034. uint8_t split_transform_flag;
  1035. int cbf_cb[2];
  1036. int cbf_cr[2];
  1037. int ret;
  1038. cbf_cb[0] = base_cbf_cb[0];
  1039. cbf_cb[1] = base_cbf_cb[1];
  1040. cbf_cr[0] = base_cbf_cr[0];
  1041. cbf_cr[1] = base_cbf_cr[1];
  1042. if (lc->cu.intra_split_flag) {
  1043. if (trafo_depth == 1) {
  1044. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
  1045. if (s->ps.sps->chroma_format_idc == 3) {
  1046. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[blk_idx];
  1047. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[blk_idx];
  1048. } else {
  1049. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1050. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1051. }
  1052. }
  1053. } else {
  1054. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[0];
  1055. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1056. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1057. }
  1058. if (log2_trafo_size <= s->ps.sps->log2_max_trafo_size &&
  1059. log2_trafo_size > s->ps.sps->log2_min_tb_size &&
  1060. trafo_depth < lc->cu.max_trafo_depth &&
  1061. !(lc->cu.intra_split_flag && trafo_depth == 0)) {
  1062. split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
  1063. } else {
  1064. int inter_split = s->ps.sps->max_transform_hierarchy_depth_inter == 0 &&
  1065. lc->cu.pred_mode == MODE_INTER &&
  1066. lc->cu.part_mode != PART_2Nx2N &&
  1067. trafo_depth == 0;
  1068. split_transform_flag = log2_trafo_size > s->ps.sps->log2_max_trafo_size ||
  1069. (lc->cu.intra_split_flag && trafo_depth == 0) ||
  1070. inter_split;
  1071. }
  1072. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  1073. if (trafo_depth == 0 || cbf_cb[0]) {
  1074. cbf_cb[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1075. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1076. cbf_cb[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1077. }
  1078. }
  1079. if (trafo_depth == 0 || cbf_cr[0]) {
  1080. cbf_cr[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1081. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1082. cbf_cr[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1083. }
  1084. }
  1085. }
  1086. if (split_transform_flag) {
  1087. const int trafo_size_split = 1 << (log2_trafo_size - 1);
  1088. const int x1 = x0 + trafo_size_split;
  1089. const int y1 = y0 + trafo_size_split;
  1090. #define SUBDIVIDE(x, y, idx) \
  1091. do { \
  1092. ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
  1093. log2_trafo_size - 1, trafo_depth + 1, idx, \
  1094. cbf_cb, cbf_cr); \
  1095. if (ret < 0) \
  1096. return ret; \
  1097. } while (0)
  1098. SUBDIVIDE(x0, y0, 0);
  1099. SUBDIVIDE(x1, y0, 1);
  1100. SUBDIVIDE(x0, y1, 2);
  1101. SUBDIVIDE(x1, y1, 3);
  1102. #undef SUBDIVIDE
  1103. } else {
  1104. int min_tu_size = 1 << s->ps.sps->log2_min_tb_size;
  1105. int log2_min_tu_size = s->ps.sps->log2_min_tb_size;
  1106. int min_tu_width = s->ps.sps->min_tb_width;
  1107. int cbf_luma = 1;
  1108. if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
  1109. cbf_cb[0] || cbf_cr[0] ||
  1110. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  1111. cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
  1112. }
  1113. ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
  1114. log2_cb_size, log2_trafo_size,
  1115. blk_idx, cbf_luma, cbf_cb, cbf_cr);
  1116. if (ret < 0)
  1117. return ret;
  1118. // TODO: store cbf_luma somewhere else
  1119. if (cbf_luma) {
  1120. int i, j;
  1121. for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
  1122. for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
  1123. int x_tu = (x0 + j) >> log2_min_tu_size;
  1124. int y_tu = (y0 + i) >> log2_min_tu_size;
  1125. s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
  1126. }
  1127. }
  1128. if (!s->sh.disable_deblocking_filter_flag) {
  1129. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
  1130. if (s->ps.pps->transquant_bypass_enable_flag &&
  1131. lc->cu.cu_transquant_bypass_flag)
  1132. set_deblocking_bypass(s, x0, y0, log2_trafo_size);
  1133. }
  1134. }
  1135. return 0;
  1136. }
  1137. static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1138. {
  1139. HEVCLocalContext *lc = s->HEVClc;
  1140. GetBitContext gb;
  1141. int cb_size = 1 << log2_cb_size;
  1142. ptrdiff_t stride0 = s->frame->linesize[0];
  1143. ptrdiff_t stride1 = s->frame->linesize[1];
  1144. ptrdiff_t stride2 = s->frame->linesize[2];
  1145. uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->ps.sps->pixel_shift)];
  1146. uint8_t *dst1 = &s->frame->data[1][(y0 >> s->ps.sps->vshift[1]) * stride1 + ((x0 >> s->ps.sps->hshift[1]) << s->ps.sps->pixel_shift)];
  1147. uint8_t *dst2 = &s->frame->data[2][(y0 >> s->ps.sps->vshift[2]) * stride2 + ((x0 >> s->ps.sps->hshift[2]) << s->ps.sps->pixel_shift)];
  1148. int length = cb_size * cb_size * s->ps.sps->pcm.bit_depth +
  1149. (((cb_size >> s->ps.sps->hshift[1]) * (cb_size >> s->ps.sps->vshift[1])) +
  1150. ((cb_size >> s->ps.sps->hshift[2]) * (cb_size >> s->ps.sps->vshift[2]))) *
  1151. s->ps.sps->pcm.bit_depth_chroma;
  1152. const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
  1153. int ret;
  1154. if (!s->sh.disable_deblocking_filter_flag)
  1155. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1156. ret = init_get_bits(&gb, pcm, length);
  1157. if (ret < 0)
  1158. return ret;
  1159. s->hevcdsp.put_pcm(dst0, stride0, cb_size, cb_size, &gb, s->ps.sps->pcm.bit_depth);
  1160. if (s->ps.sps->chroma_format_idc) {
  1161. s->hevcdsp.put_pcm(dst1, stride1,
  1162. cb_size >> s->ps.sps->hshift[1],
  1163. cb_size >> s->ps.sps->vshift[1],
  1164. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1165. s->hevcdsp.put_pcm(dst2, stride2,
  1166. cb_size >> s->ps.sps->hshift[2],
  1167. cb_size >> s->ps.sps->vshift[2],
  1168. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1169. }
  1170. return 0;
  1171. }
  1172. /**
  1173. * 8.5.3.2.2.1 Luma sample unidirectional interpolation process
  1174. *
  1175. * @param s HEVC decoding context
  1176. * @param dst target buffer for block data at block position
  1177. * @param dststride stride of the dst buffer
  1178. * @param ref reference picture buffer at origin (0, 0)
  1179. * @param mv motion vector (relative to block position) to get pixel data from
  1180. * @param x_off horizontal position of block from origin (0, 0)
  1181. * @param y_off vertical position of block from origin (0, 0)
  1182. * @param block_w width of block
  1183. * @param block_h height of block
  1184. * @param luma_weight weighting factor applied to the luma prediction
  1185. * @param luma_offset additive offset applied to the luma prediction value
  1186. */
  1187. static void luma_mc_uni(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1188. AVFrame *ref, const Mv *mv, int x_off, int y_off,
  1189. int block_w, int block_h, int luma_weight, int luma_offset)
  1190. {
  1191. HEVCLocalContext *lc = s->HEVClc;
  1192. uint8_t *src = ref->data[0];
  1193. ptrdiff_t srcstride = ref->linesize[0];
  1194. int pic_width = s->ps.sps->width;
  1195. int pic_height = s->ps.sps->height;
  1196. int mx = mv->x & 3;
  1197. int my = mv->y & 3;
  1198. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1199. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1200. int idx = ff_hevc_pel_weight[block_w];
  1201. x_off += mv->x >> 2;
  1202. y_off += mv->y >> 2;
  1203. src += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1204. if (x_off < QPEL_EXTRA_BEFORE || y_off < QPEL_EXTRA_AFTER ||
  1205. x_off >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1206. y_off >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1207. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1208. int offset = QPEL_EXTRA_BEFORE * srcstride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1209. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1210. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
  1211. edge_emu_stride, srcstride,
  1212. block_w + QPEL_EXTRA,
  1213. block_h + QPEL_EXTRA,
  1214. x_off - QPEL_EXTRA_BEFORE, y_off - QPEL_EXTRA_BEFORE,
  1215. pic_width, pic_height);
  1216. src = lc->edge_emu_buffer + buf_offset;
  1217. srcstride = edge_emu_stride;
  1218. }
  1219. if (!weight_flag)
  1220. s->hevcdsp.put_hevc_qpel_uni[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1221. block_h, mx, my, block_w);
  1222. else
  1223. s->hevcdsp.put_hevc_qpel_uni_w[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1224. block_h, s->sh.luma_log2_weight_denom,
  1225. luma_weight, luma_offset, mx, my, block_w);
  1226. }
  1227. /**
  1228. * 8.5.3.2.2.1 Luma sample bidirectional interpolation process
  1229. *
  1230. * @param s HEVC decoding context
  1231. * @param dst target buffer for block data at block position
  1232. * @param dststride stride of the dst buffer
  1233. * @param ref0 reference picture0 buffer at origin (0, 0)
  1234. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1235. * @param x_off horizontal position of block from origin (0, 0)
  1236. * @param y_off vertical position of block from origin (0, 0)
  1237. * @param block_w width of block
  1238. * @param block_h height of block
  1239. * @param ref1 reference picture1 buffer at origin (0, 0)
  1240. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1241. * @param current_mv current motion vector structure
  1242. */
  1243. static void luma_mc_bi(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1244. AVFrame *ref0, const Mv *mv0, int x_off, int y_off,
  1245. int block_w, int block_h, AVFrame *ref1, const Mv *mv1, struct MvField *current_mv)
  1246. {
  1247. HEVCLocalContext *lc = s->HEVClc;
  1248. ptrdiff_t src0stride = ref0->linesize[0];
  1249. ptrdiff_t src1stride = ref1->linesize[0];
  1250. int pic_width = s->ps.sps->width;
  1251. int pic_height = s->ps.sps->height;
  1252. int mx0 = mv0->x & 3;
  1253. int my0 = mv0->y & 3;
  1254. int mx1 = mv1->x & 3;
  1255. int my1 = mv1->y & 3;
  1256. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1257. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1258. int x_off0 = x_off + (mv0->x >> 2);
  1259. int y_off0 = y_off + (mv0->y >> 2);
  1260. int x_off1 = x_off + (mv1->x >> 2);
  1261. int y_off1 = y_off + (mv1->y >> 2);
  1262. int idx = ff_hevc_pel_weight[block_w];
  1263. uint8_t *src0 = ref0->data[0] + y_off0 * src0stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1264. uint8_t *src1 = ref1->data[0] + y_off1 * src1stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1265. if (x_off0 < QPEL_EXTRA_BEFORE || y_off0 < QPEL_EXTRA_AFTER ||
  1266. x_off0 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1267. y_off0 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1268. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1269. int offset = QPEL_EXTRA_BEFORE * src0stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1270. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1271. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset,
  1272. edge_emu_stride, src0stride,
  1273. block_w + QPEL_EXTRA,
  1274. block_h + QPEL_EXTRA,
  1275. x_off0 - QPEL_EXTRA_BEFORE, y_off0 - QPEL_EXTRA_BEFORE,
  1276. pic_width, pic_height);
  1277. src0 = lc->edge_emu_buffer + buf_offset;
  1278. src0stride = edge_emu_stride;
  1279. }
  1280. if (x_off1 < QPEL_EXTRA_BEFORE || y_off1 < QPEL_EXTRA_AFTER ||
  1281. x_off1 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1282. y_off1 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1283. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1284. int offset = QPEL_EXTRA_BEFORE * src1stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1285. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1286. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src1 - offset,
  1287. edge_emu_stride, src1stride,
  1288. block_w + QPEL_EXTRA,
  1289. block_h + QPEL_EXTRA,
  1290. x_off1 - QPEL_EXTRA_BEFORE, y_off1 - QPEL_EXTRA_BEFORE,
  1291. pic_width, pic_height);
  1292. src1 = lc->edge_emu_buffer2 + buf_offset;
  1293. src1stride = edge_emu_stride;
  1294. }
  1295. s->hevcdsp.put_hevc_qpel[idx][!!my0][!!mx0](lc->tmp, src0, src0stride,
  1296. block_h, mx0, my0, block_w);
  1297. if (!weight_flag)
  1298. s->hevcdsp.put_hevc_qpel_bi[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1299. block_h, mx1, my1, block_w);
  1300. else
  1301. s->hevcdsp.put_hevc_qpel_bi_w[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1302. block_h, s->sh.luma_log2_weight_denom,
  1303. s->sh.luma_weight_l0[current_mv->ref_idx[0]],
  1304. s->sh.luma_weight_l1[current_mv->ref_idx[1]],
  1305. s->sh.luma_offset_l0[current_mv->ref_idx[0]],
  1306. s->sh.luma_offset_l1[current_mv->ref_idx[1]],
  1307. mx1, my1, block_w);
  1308. }
  1309. /**
  1310. * 8.5.3.2.2.2 Chroma sample uniprediction interpolation process
  1311. *
  1312. * @param s HEVC decoding context
  1313. * @param dst1 target buffer for block data at block position (U plane)
  1314. * @param dst2 target buffer for block data at block position (V plane)
  1315. * @param dststride stride of the dst1 and dst2 buffers
  1316. * @param ref reference picture buffer at origin (0, 0)
  1317. * @param mv motion vector (relative to block position) to get pixel data from
  1318. * @param x_off horizontal position of block from origin (0, 0)
  1319. * @param y_off vertical position of block from origin (0, 0)
  1320. * @param block_w width of block
  1321. * @param block_h height of block
  1322. * @param chroma_weight weighting factor applied to the chroma prediction
  1323. * @param chroma_offset additive offset applied to the chroma prediction value
  1324. */
  1325. static void chroma_mc_uni(HEVCContext *s, uint8_t *dst0,
  1326. ptrdiff_t dststride, uint8_t *src0, ptrdiff_t srcstride, int reflist,
  1327. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int chroma_weight, int chroma_offset)
  1328. {
  1329. HEVCLocalContext *lc = s->HEVClc;
  1330. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1331. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1332. const Mv *mv = &current_mv->mv[reflist];
  1333. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1334. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1335. int idx = ff_hevc_pel_weight[block_w];
  1336. int hshift = s->ps.sps->hshift[1];
  1337. int vshift = s->ps.sps->vshift[1];
  1338. intptr_t mx = av_mod_uintp2(mv->x, 2 + hshift);
  1339. intptr_t my = av_mod_uintp2(mv->y, 2 + vshift);
  1340. intptr_t _mx = mx << (1 - hshift);
  1341. intptr_t _my = my << (1 - vshift);
  1342. x_off += mv->x >> (2 + hshift);
  1343. y_off += mv->y >> (2 + vshift);
  1344. src0 += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1345. if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
  1346. x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1347. y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1348. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1349. int offset0 = EPEL_EXTRA_BEFORE * (srcstride + (1 << s->ps.sps->pixel_shift));
  1350. int buf_offset0 = EPEL_EXTRA_BEFORE *
  1351. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1352. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset0,
  1353. edge_emu_stride, srcstride,
  1354. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1355. x_off - EPEL_EXTRA_BEFORE,
  1356. y_off - EPEL_EXTRA_BEFORE,
  1357. pic_width, pic_height);
  1358. src0 = lc->edge_emu_buffer + buf_offset0;
  1359. srcstride = edge_emu_stride;
  1360. }
  1361. if (!weight_flag)
  1362. s->hevcdsp.put_hevc_epel_uni[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1363. block_h, _mx, _my, block_w);
  1364. else
  1365. s->hevcdsp.put_hevc_epel_uni_w[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1366. block_h, s->sh.chroma_log2_weight_denom,
  1367. chroma_weight, chroma_offset, _mx, _my, block_w);
  1368. }
  1369. /**
  1370. * 8.5.3.2.2.2 Chroma sample bidirectional interpolation process
  1371. *
  1372. * @param s HEVC decoding context
  1373. * @param dst target buffer for block data at block position
  1374. * @param dststride stride of the dst buffer
  1375. * @param ref0 reference picture0 buffer at origin (0, 0)
  1376. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1377. * @param x_off horizontal position of block from origin (0, 0)
  1378. * @param y_off vertical position of block from origin (0, 0)
  1379. * @param block_w width of block
  1380. * @param block_h height of block
  1381. * @param ref1 reference picture1 buffer at origin (0, 0)
  1382. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1383. * @param current_mv current motion vector structure
  1384. * @param cidx chroma component(cb, cr)
  1385. */
  1386. static void chroma_mc_bi(HEVCContext *s, uint8_t *dst0, ptrdiff_t dststride, AVFrame *ref0, AVFrame *ref1,
  1387. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int cidx)
  1388. {
  1389. HEVCLocalContext *lc = s->HEVClc;
  1390. uint8_t *src1 = ref0->data[cidx+1];
  1391. uint8_t *src2 = ref1->data[cidx+1];
  1392. ptrdiff_t src1stride = ref0->linesize[cidx+1];
  1393. ptrdiff_t src2stride = ref1->linesize[cidx+1];
  1394. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1395. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1396. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1397. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1398. Mv *mv0 = &current_mv->mv[0];
  1399. Mv *mv1 = &current_mv->mv[1];
  1400. int hshift = s->ps.sps->hshift[1];
  1401. int vshift = s->ps.sps->vshift[1];
  1402. intptr_t mx0 = av_mod_uintp2(mv0->x, 2 + hshift);
  1403. intptr_t my0 = av_mod_uintp2(mv0->y, 2 + vshift);
  1404. intptr_t mx1 = av_mod_uintp2(mv1->x, 2 + hshift);
  1405. intptr_t my1 = av_mod_uintp2(mv1->y, 2 + vshift);
  1406. intptr_t _mx0 = mx0 << (1 - hshift);
  1407. intptr_t _my0 = my0 << (1 - vshift);
  1408. intptr_t _mx1 = mx1 << (1 - hshift);
  1409. intptr_t _my1 = my1 << (1 - vshift);
  1410. int x_off0 = x_off + (mv0->x >> (2 + hshift));
  1411. int y_off0 = y_off + (mv0->y >> (2 + vshift));
  1412. int x_off1 = x_off + (mv1->x >> (2 + hshift));
  1413. int y_off1 = y_off + (mv1->y >> (2 + vshift));
  1414. int idx = ff_hevc_pel_weight[block_w];
  1415. src1 += y_off0 * src1stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1416. src2 += y_off1 * src2stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1417. if (x_off0 < EPEL_EXTRA_BEFORE || y_off0 < EPEL_EXTRA_AFTER ||
  1418. x_off0 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1419. y_off0 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1420. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1421. int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->ps.sps->pixel_shift));
  1422. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1423. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1424. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
  1425. edge_emu_stride, src1stride,
  1426. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1427. x_off0 - EPEL_EXTRA_BEFORE,
  1428. y_off0 - EPEL_EXTRA_BEFORE,
  1429. pic_width, pic_height);
  1430. src1 = lc->edge_emu_buffer + buf_offset1;
  1431. src1stride = edge_emu_stride;
  1432. }
  1433. if (x_off1 < EPEL_EXTRA_BEFORE || y_off1 < EPEL_EXTRA_AFTER ||
  1434. x_off1 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1435. y_off1 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1436. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1437. int offset1 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->ps.sps->pixel_shift));
  1438. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1439. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1440. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src2 - offset1,
  1441. edge_emu_stride, src2stride,
  1442. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1443. x_off1 - EPEL_EXTRA_BEFORE,
  1444. y_off1 - EPEL_EXTRA_BEFORE,
  1445. pic_width, pic_height);
  1446. src2 = lc->edge_emu_buffer2 + buf_offset1;
  1447. src2stride = edge_emu_stride;
  1448. }
  1449. s->hevcdsp.put_hevc_epel[idx][!!my0][!!mx0](lc->tmp, src1, src1stride,
  1450. block_h, _mx0, _my0, block_w);
  1451. if (!weight_flag)
  1452. s->hevcdsp.put_hevc_epel_bi[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1453. src2, src2stride, lc->tmp,
  1454. block_h, _mx1, _my1, block_w);
  1455. else
  1456. s->hevcdsp.put_hevc_epel_bi_w[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1457. src2, src2stride, lc->tmp,
  1458. block_h,
  1459. s->sh.chroma_log2_weight_denom,
  1460. s->sh.chroma_weight_l0[current_mv->ref_idx[0]][cidx],
  1461. s->sh.chroma_weight_l1[current_mv->ref_idx[1]][cidx],
  1462. s->sh.chroma_offset_l0[current_mv->ref_idx[0]][cidx],
  1463. s->sh.chroma_offset_l1[current_mv->ref_idx[1]][cidx],
  1464. _mx1, _my1, block_w);
  1465. }
  1466. static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
  1467. const Mv *mv, int y0, int height)
  1468. {
  1469. int y = FFMAX(0, (mv->y >> 2) + y0 + height + 9);
  1470. if (s->threads_type == FF_THREAD_FRAME )
  1471. ff_thread_await_progress(&ref->tf, y, 0);
  1472. }
  1473. static void hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW,
  1474. int nPbH, int log2_cb_size, int part_idx,
  1475. int merge_idx, MvField *mv)
  1476. {
  1477. HEVCLocalContext *lc = s->HEVClc;
  1478. enum InterPredIdc inter_pred_idc = PRED_L0;
  1479. int mvp_flag;
  1480. ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
  1481. mv->pred_flag = 0;
  1482. if (s->sh.slice_type == HEVC_SLICE_B)
  1483. inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
  1484. if (inter_pred_idc != PRED_L1) {
  1485. if (s->sh.nb_refs[L0])
  1486. mv->ref_idx[0]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
  1487. mv->pred_flag = PF_L0;
  1488. ff_hevc_hls_mvd_coding(s, x0, y0, 0);
  1489. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1490. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1491. part_idx, merge_idx, mv, mvp_flag, 0);
  1492. mv->mv[0].x += lc->pu.mvd.x;
  1493. mv->mv[0].y += lc->pu.mvd.y;
  1494. }
  1495. if (inter_pred_idc != PRED_L0) {
  1496. if (s->sh.nb_refs[L1])
  1497. mv->ref_idx[1]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
  1498. if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
  1499. AV_ZERO32(&lc->pu.mvd);
  1500. } else {
  1501. ff_hevc_hls_mvd_coding(s, x0, y0, 1);
  1502. }
  1503. mv->pred_flag += PF_L1;
  1504. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1505. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1506. part_idx, merge_idx, mv, mvp_flag, 1);
  1507. mv->mv[1].x += lc->pu.mvd.x;
  1508. mv->mv[1].y += lc->pu.mvd.y;
  1509. }
  1510. }
  1511. static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
  1512. int nPbW, int nPbH,
  1513. int log2_cb_size, int partIdx, int idx)
  1514. {
  1515. #define POS(c_idx, x, y) \
  1516. &s->frame->data[c_idx][((y) >> s->ps.sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
  1517. (((x) >> s->ps.sps->hshift[c_idx]) << s->ps.sps->pixel_shift)]
  1518. HEVCLocalContext *lc = s->HEVClc;
  1519. int merge_idx = 0;
  1520. struct MvField current_mv = {{{ 0 }}};
  1521. int min_pu_width = s->ps.sps->min_pu_width;
  1522. MvField *tab_mvf = s->ref->tab_mvf;
  1523. RefPicList *refPicList = s->ref->refPicList;
  1524. HEVCFrame *ref0 = NULL, *ref1 = NULL;
  1525. uint8_t *dst0 = POS(0, x0, y0);
  1526. uint8_t *dst1 = POS(1, x0, y0);
  1527. uint8_t *dst2 = POS(2, x0, y0);
  1528. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1529. int min_cb_width = s->ps.sps->min_cb_width;
  1530. int x_cb = x0 >> log2_min_cb_size;
  1531. int y_cb = y0 >> log2_min_cb_size;
  1532. int x_pu, y_pu;
  1533. int i, j;
  1534. int skip_flag = SAMPLE_CTB(s->skip_flag, x_cb, y_cb);
  1535. if (!skip_flag)
  1536. lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
  1537. if (skip_flag || lc->pu.merge_flag) {
  1538. if (s->sh.max_num_merge_cand > 1)
  1539. merge_idx = ff_hevc_merge_idx_decode(s);
  1540. else
  1541. merge_idx = 0;
  1542. ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1543. partIdx, merge_idx, &current_mv);
  1544. } else {
  1545. hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1546. partIdx, merge_idx, &current_mv);
  1547. }
  1548. x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1549. y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1550. for (j = 0; j < nPbH >> s->ps.sps->log2_min_pu_size; j++)
  1551. for (i = 0; i < nPbW >> s->ps.sps->log2_min_pu_size; i++)
  1552. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
  1553. if (current_mv.pred_flag & PF_L0) {
  1554. ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
  1555. if (!ref0)
  1556. return;
  1557. hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
  1558. }
  1559. if (current_mv.pred_flag & PF_L1) {
  1560. ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
  1561. if (!ref1)
  1562. return;
  1563. hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
  1564. }
  1565. if (current_mv.pred_flag == PF_L0) {
  1566. int x0_c = x0 >> s->ps.sps->hshift[1];
  1567. int y0_c = y0 >> s->ps.sps->vshift[1];
  1568. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1569. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1570. luma_mc_uni(s, dst0, s->frame->linesize[0], ref0->frame,
  1571. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1572. s->sh.luma_weight_l0[current_mv.ref_idx[0]],
  1573. s->sh.luma_offset_l0[current_mv.ref_idx[0]]);
  1574. if (s->ps.sps->chroma_format_idc) {
  1575. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref0->frame->data[1], ref0->frame->linesize[1],
  1576. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1577. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0]);
  1578. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref0->frame->data[2], ref0->frame->linesize[2],
  1579. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1580. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1]);
  1581. }
  1582. } else if (current_mv.pred_flag == PF_L1) {
  1583. int x0_c = x0 >> s->ps.sps->hshift[1];
  1584. int y0_c = y0 >> s->ps.sps->vshift[1];
  1585. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1586. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1587. luma_mc_uni(s, dst0, s->frame->linesize[0], ref1->frame,
  1588. &current_mv.mv[1], x0, y0, nPbW, nPbH,
  1589. s->sh.luma_weight_l1[current_mv.ref_idx[1]],
  1590. s->sh.luma_offset_l1[current_mv.ref_idx[1]]);
  1591. if (s->ps.sps->chroma_format_idc) {
  1592. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref1->frame->data[1], ref1->frame->linesize[1],
  1593. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1594. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0]);
  1595. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref1->frame->data[2], ref1->frame->linesize[2],
  1596. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1597. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1]);
  1598. }
  1599. } else if (current_mv.pred_flag == PF_BI) {
  1600. int x0_c = x0 >> s->ps.sps->hshift[1];
  1601. int y0_c = y0 >> s->ps.sps->vshift[1];
  1602. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1603. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1604. luma_mc_bi(s, dst0, s->frame->linesize[0], ref0->frame,
  1605. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1606. ref1->frame, &current_mv.mv[1], &current_mv);
  1607. if (s->ps.sps->chroma_format_idc) {
  1608. chroma_mc_bi(s, dst1, s->frame->linesize[1], ref0->frame, ref1->frame,
  1609. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 0);
  1610. chroma_mc_bi(s, dst2, s->frame->linesize[2], ref0->frame, ref1->frame,
  1611. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 1);
  1612. }
  1613. }
  1614. }
  1615. /**
  1616. * 8.4.1
  1617. */
  1618. static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
  1619. int prev_intra_luma_pred_flag)
  1620. {
  1621. HEVCLocalContext *lc = s->HEVClc;
  1622. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1623. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1624. int min_pu_width = s->ps.sps->min_pu_width;
  1625. int size_in_pus = pu_size >> s->ps.sps->log2_min_pu_size;
  1626. int x0b = av_mod_uintp2(x0, s->ps.sps->log2_ctb_size);
  1627. int y0b = av_mod_uintp2(y0, s->ps.sps->log2_ctb_size);
  1628. int cand_up = (lc->ctb_up_flag || y0b) ?
  1629. s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
  1630. int cand_left = (lc->ctb_left_flag || x0b) ?
  1631. s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC;
  1632. int y_ctb = (y0 >> (s->ps.sps->log2_ctb_size)) << (s->ps.sps->log2_ctb_size);
  1633. MvField *tab_mvf = s->ref->tab_mvf;
  1634. int intra_pred_mode;
  1635. int candidate[3];
  1636. int i, j;
  1637. // intra_pred_mode prediction does not cross vertical CTB boundaries
  1638. if ((y0 - 1) < y_ctb)
  1639. cand_up = INTRA_DC;
  1640. if (cand_left == cand_up) {
  1641. if (cand_left < 2) {
  1642. candidate[0] = INTRA_PLANAR;
  1643. candidate[1] = INTRA_DC;
  1644. candidate[2] = INTRA_ANGULAR_26;
  1645. } else {
  1646. candidate[0] = cand_left;
  1647. candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
  1648. candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
  1649. }
  1650. } else {
  1651. candidate[0] = cand_left;
  1652. candidate[1] = cand_up;
  1653. if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
  1654. candidate[2] = INTRA_PLANAR;
  1655. } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
  1656. candidate[2] = INTRA_DC;
  1657. } else {
  1658. candidate[2] = INTRA_ANGULAR_26;
  1659. }
  1660. }
  1661. if (prev_intra_luma_pred_flag) {
  1662. intra_pred_mode = candidate[lc->pu.mpm_idx];
  1663. } else {
  1664. if (candidate[0] > candidate[1])
  1665. FFSWAP(uint8_t, candidate[0], candidate[1]);
  1666. if (candidate[0] > candidate[2])
  1667. FFSWAP(uint8_t, candidate[0], candidate[2]);
  1668. if (candidate[1] > candidate[2])
  1669. FFSWAP(uint8_t, candidate[1], candidate[2]);
  1670. intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
  1671. for (i = 0; i < 3; i++)
  1672. if (intra_pred_mode >= candidate[i])
  1673. intra_pred_mode++;
  1674. }
  1675. /* write the intra prediction units into the mv array */
  1676. if (!size_in_pus)
  1677. size_in_pus = 1;
  1678. for (i = 0; i < size_in_pus; i++) {
  1679. memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
  1680. intra_pred_mode, size_in_pus);
  1681. for (j = 0; j < size_in_pus; j++) {
  1682. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag = PF_INTRA;
  1683. }
  1684. }
  1685. return intra_pred_mode;
  1686. }
  1687. static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
  1688. int log2_cb_size, int ct_depth)
  1689. {
  1690. int length = (1 << log2_cb_size) >> s->ps.sps->log2_min_cb_size;
  1691. int x_cb = x0 >> s->ps.sps->log2_min_cb_size;
  1692. int y_cb = y0 >> s->ps.sps->log2_min_cb_size;
  1693. int y;
  1694. for (y = 0; y < length; y++)
  1695. memset(&s->tab_ct_depth[(y_cb + y) * s->ps.sps->min_cb_width + x_cb],
  1696. ct_depth, length);
  1697. }
  1698. static const uint8_t tab_mode_idx[] = {
  1699. 0, 1, 2, 2, 2, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20,
  1700. 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29, 30, 31};
  1701. static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
  1702. int log2_cb_size)
  1703. {
  1704. HEVCLocalContext *lc = s->HEVClc;
  1705. static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
  1706. uint8_t prev_intra_luma_pred_flag[4];
  1707. int split = lc->cu.part_mode == PART_NxN;
  1708. int pb_size = (1 << log2_cb_size) >> split;
  1709. int side = split + 1;
  1710. int chroma_mode;
  1711. int i, j;
  1712. for (i = 0; i < side; i++)
  1713. for (j = 0; j < side; j++)
  1714. prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
  1715. for (i = 0; i < side; i++) {
  1716. for (j = 0; j < side; j++) {
  1717. if (prev_intra_luma_pred_flag[2 * i + j])
  1718. lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
  1719. else
  1720. lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
  1721. lc->pu.intra_pred_mode[2 * i + j] =
  1722. luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
  1723. prev_intra_luma_pred_flag[2 * i + j]);
  1724. }
  1725. }
  1726. if (s->ps.sps->chroma_format_idc == 3) {
  1727. for (i = 0; i < side; i++) {
  1728. for (j = 0; j < side; j++) {
  1729. lc->pu.chroma_mode_c[2 * i + j] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1730. if (chroma_mode != 4) {
  1731. if (lc->pu.intra_pred_mode[2 * i + j] == intra_chroma_table[chroma_mode])
  1732. lc->pu.intra_pred_mode_c[2 * i + j] = 34;
  1733. else
  1734. lc->pu.intra_pred_mode_c[2 * i + j] = intra_chroma_table[chroma_mode];
  1735. } else {
  1736. lc->pu.intra_pred_mode_c[2 * i + j] = lc->pu.intra_pred_mode[2 * i + j];
  1737. }
  1738. }
  1739. }
  1740. } else if (s->ps.sps->chroma_format_idc == 2) {
  1741. int mode_idx;
  1742. lc->pu.chroma_mode_c[0] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1743. if (chroma_mode != 4) {
  1744. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1745. mode_idx = 34;
  1746. else
  1747. mode_idx = intra_chroma_table[chroma_mode];
  1748. } else {
  1749. mode_idx = lc->pu.intra_pred_mode[0];
  1750. }
  1751. lc->pu.intra_pred_mode_c[0] = tab_mode_idx[mode_idx];
  1752. } else if (s->ps.sps->chroma_format_idc != 0) {
  1753. chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1754. if (chroma_mode != 4) {
  1755. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1756. lc->pu.intra_pred_mode_c[0] = 34;
  1757. else
  1758. lc->pu.intra_pred_mode_c[0] = intra_chroma_table[chroma_mode];
  1759. } else {
  1760. lc->pu.intra_pred_mode_c[0] = lc->pu.intra_pred_mode[0];
  1761. }
  1762. }
  1763. }
  1764. static void intra_prediction_unit_default_value(HEVCContext *s,
  1765. int x0, int y0,
  1766. int log2_cb_size)
  1767. {
  1768. HEVCLocalContext *lc = s->HEVClc;
  1769. int pb_size = 1 << log2_cb_size;
  1770. int size_in_pus = pb_size >> s->ps.sps->log2_min_pu_size;
  1771. int min_pu_width = s->ps.sps->min_pu_width;
  1772. MvField *tab_mvf = s->ref->tab_mvf;
  1773. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1774. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1775. int j, k;
  1776. if (size_in_pus == 0)
  1777. size_in_pus = 1;
  1778. for (j = 0; j < size_in_pus; j++)
  1779. memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
  1780. if (lc->cu.pred_mode == MODE_INTRA)
  1781. for (j = 0; j < size_in_pus; j++)
  1782. for (k = 0; k < size_in_pus; k++)
  1783. tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].pred_flag = PF_INTRA;
  1784. }
  1785. static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1786. {
  1787. int cb_size = 1 << log2_cb_size;
  1788. HEVCLocalContext *lc = s->HEVClc;
  1789. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1790. int length = cb_size >> log2_min_cb_size;
  1791. int min_cb_width = s->ps.sps->min_cb_width;
  1792. int x_cb = x0 >> log2_min_cb_size;
  1793. int y_cb = y0 >> log2_min_cb_size;
  1794. int idx = log2_cb_size - 2;
  1795. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  1796. int x, y, ret;
  1797. lc->cu.x = x0;
  1798. lc->cu.y = y0;
  1799. lc->cu.pred_mode = MODE_INTRA;
  1800. lc->cu.part_mode = PART_2Nx2N;
  1801. lc->cu.intra_split_flag = 0;
  1802. SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
  1803. for (x = 0; x < 4; x++)
  1804. lc->pu.intra_pred_mode[x] = 1;
  1805. if (s->ps.pps->transquant_bypass_enable_flag) {
  1806. lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
  1807. if (lc->cu.cu_transquant_bypass_flag)
  1808. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1809. } else
  1810. lc->cu.cu_transquant_bypass_flag = 0;
  1811. if (s->sh.slice_type != HEVC_SLICE_I) {
  1812. uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
  1813. x = y_cb * min_cb_width + x_cb;
  1814. for (y = 0; y < length; y++) {
  1815. memset(&s->skip_flag[x], skip_flag, length);
  1816. x += min_cb_width;
  1817. }
  1818. lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
  1819. } else {
  1820. x = y_cb * min_cb_width + x_cb;
  1821. for (y = 0; y < length; y++) {
  1822. memset(&s->skip_flag[x], 0, length);
  1823. x += min_cb_width;
  1824. }
  1825. }
  1826. if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
  1827. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1828. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1829. if (!s->sh.disable_deblocking_filter_flag)
  1830. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1831. } else {
  1832. int pcm_flag = 0;
  1833. if (s->sh.slice_type != HEVC_SLICE_I)
  1834. lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
  1835. if (lc->cu.pred_mode != MODE_INTRA ||
  1836. log2_cb_size == s->ps.sps->log2_min_cb_size) {
  1837. lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size);
  1838. lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
  1839. lc->cu.pred_mode == MODE_INTRA;
  1840. }
  1841. if (lc->cu.pred_mode == MODE_INTRA) {
  1842. if (lc->cu.part_mode == PART_2Nx2N && s->ps.sps->pcm_enabled_flag &&
  1843. log2_cb_size >= s->ps.sps->pcm.log2_min_pcm_cb_size &&
  1844. log2_cb_size <= s->ps.sps->pcm.log2_max_pcm_cb_size) {
  1845. pcm_flag = ff_hevc_pcm_flag_decode(s);
  1846. }
  1847. if (pcm_flag) {
  1848. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1849. ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
  1850. if (s->ps.sps->pcm.loop_filter_disable_flag)
  1851. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1852. if (ret < 0)
  1853. return ret;
  1854. } else {
  1855. intra_prediction_unit(s, x0, y0, log2_cb_size);
  1856. }
  1857. } else {
  1858. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1859. switch (lc->cu.part_mode) {
  1860. case PART_2Nx2N:
  1861. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1862. break;
  1863. case PART_2NxN:
  1864. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0, idx);
  1865. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1, idx);
  1866. break;
  1867. case PART_Nx2N:
  1868. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0, idx - 1);
  1869. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1, idx - 1);
  1870. break;
  1871. case PART_2NxnU:
  1872. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0, idx);
  1873. hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1, idx);
  1874. break;
  1875. case PART_2NxnD:
  1876. hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0, idx);
  1877. hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1, idx);
  1878. break;
  1879. case PART_nLx2N:
  1880. hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size, 0, idx - 2);
  1881. hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1, idx - 2);
  1882. break;
  1883. case PART_nRx2N:
  1884. hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0, idx - 2);
  1885. hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1, idx - 2);
  1886. break;
  1887. case PART_NxN:
  1888. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0, idx - 1);
  1889. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1, idx - 1);
  1890. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2, idx - 1);
  1891. hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3, idx - 1);
  1892. break;
  1893. }
  1894. }
  1895. if (!pcm_flag) {
  1896. int rqt_root_cbf = 1;
  1897. if (lc->cu.pred_mode != MODE_INTRA &&
  1898. !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
  1899. rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
  1900. }
  1901. if (rqt_root_cbf) {
  1902. const static int cbf[2] = { 0 };
  1903. lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
  1904. s->ps.sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
  1905. s->ps.sps->max_transform_hierarchy_depth_inter;
  1906. ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
  1907. log2_cb_size,
  1908. log2_cb_size, 0, 0, cbf, cbf);
  1909. if (ret < 0)
  1910. return ret;
  1911. } else {
  1912. if (!s->sh.disable_deblocking_filter_flag)
  1913. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1914. }
  1915. }
  1916. }
  1917. if (s->ps.pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
  1918. ff_hevc_set_qPy(s, x0, y0, log2_cb_size);
  1919. x = y_cb * min_cb_width + x_cb;
  1920. for (y = 0; y < length; y++) {
  1921. memset(&s->qp_y_tab[x], lc->qp_y, length);
  1922. x += min_cb_width;
  1923. }
  1924. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  1925. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) {
  1926. lc->qPy_pred = lc->qp_y;
  1927. }
  1928. set_ct_depth(s, x0, y0, log2_cb_size, lc->ct_depth);
  1929. return 0;
  1930. }
  1931. static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
  1932. int log2_cb_size, int cb_depth)
  1933. {
  1934. HEVCLocalContext *lc = s->HEVClc;
  1935. const int cb_size = 1 << log2_cb_size;
  1936. int ret;
  1937. int split_cu;
  1938. lc->ct_depth = cb_depth;
  1939. if (x0 + cb_size <= s->ps.sps->width &&
  1940. y0 + cb_size <= s->ps.sps->height &&
  1941. log2_cb_size > s->ps.sps->log2_min_cb_size) {
  1942. split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
  1943. } else {
  1944. split_cu = (log2_cb_size > s->ps.sps->log2_min_cb_size);
  1945. }
  1946. if (s->ps.pps->cu_qp_delta_enabled_flag &&
  1947. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth) {
  1948. lc->tu.is_cu_qp_delta_coded = 0;
  1949. lc->tu.cu_qp_delta = 0;
  1950. }
  1951. if (s->sh.cu_chroma_qp_offset_enabled_flag &&
  1952. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_chroma_qp_offset_depth) {
  1953. lc->tu.is_cu_chroma_qp_offset_coded = 0;
  1954. }
  1955. if (split_cu) {
  1956. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  1957. const int cb_size_split = cb_size >> 1;
  1958. const int x1 = x0 + cb_size_split;
  1959. const int y1 = y0 + cb_size_split;
  1960. int more_data = 0;
  1961. more_data = hls_coding_quadtree(s, x0, y0, log2_cb_size - 1, cb_depth + 1);
  1962. if (more_data < 0)
  1963. return more_data;
  1964. if (more_data && x1 < s->ps.sps->width) {
  1965. more_data = hls_coding_quadtree(s, x1, y0, log2_cb_size - 1, cb_depth + 1);
  1966. if (more_data < 0)
  1967. return more_data;
  1968. }
  1969. if (more_data && y1 < s->ps.sps->height) {
  1970. more_data = hls_coding_quadtree(s, x0, y1, log2_cb_size - 1, cb_depth + 1);
  1971. if (more_data < 0)
  1972. return more_data;
  1973. }
  1974. if (more_data && x1 < s->ps.sps->width &&
  1975. y1 < s->ps.sps->height) {
  1976. more_data = hls_coding_quadtree(s, x1, y1, log2_cb_size - 1, cb_depth + 1);
  1977. if (more_data < 0)
  1978. return more_data;
  1979. }
  1980. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  1981. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0)
  1982. lc->qPy_pred = lc->qp_y;
  1983. if (more_data)
  1984. return ((x1 + cb_size_split) < s->ps.sps->width ||
  1985. (y1 + cb_size_split) < s->ps.sps->height);
  1986. else
  1987. return 0;
  1988. } else {
  1989. ret = hls_coding_unit(s, x0, y0, log2_cb_size);
  1990. if (ret < 0)
  1991. return ret;
  1992. if ((!((x0 + cb_size) %
  1993. (1 << (s->ps.sps->log2_ctb_size))) ||
  1994. (x0 + cb_size >= s->ps.sps->width)) &&
  1995. (!((y0 + cb_size) %
  1996. (1 << (s->ps.sps->log2_ctb_size))) ||
  1997. (y0 + cb_size >= s->ps.sps->height))) {
  1998. int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(s);
  1999. return !end_of_slice_flag;
  2000. } else {
  2001. return 1;
  2002. }
  2003. }
  2004. return 0;
  2005. }
  2006. static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
  2007. int ctb_addr_ts)
  2008. {
  2009. HEVCLocalContext *lc = s->HEVClc;
  2010. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  2011. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2012. int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
  2013. s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
  2014. if (s->ps.pps->entropy_coding_sync_enabled_flag) {
  2015. if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
  2016. lc->first_qp_group = 1;
  2017. lc->end_of_tiles_x = s->ps.sps->width;
  2018. } else if (s->ps.pps->tiles_enabled_flag) {
  2019. if (ctb_addr_ts && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[ctb_addr_ts - 1]) {
  2020. int idxX = s->ps.pps->col_idxX[x_ctb >> s->ps.sps->log2_ctb_size];
  2021. lc->end_of_tiles_x = x_ctb + (s->ps.pps->column_width[idxX] << s->ps.sps->log2_ctb_size);
  2022. lc->first_qp_group = 1;
  2023. }
  2024. } else {
  2025. lc->end_of_tiles_x = s->ps.sps->width;
  2026. }
  2027. lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->ps.sps->height);
  2028. lc->boundary_flags = 0;
  2029. if (s->ps.pps->tiles_enabled_flag) {
  2030. if (x_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
  2031. lc->boundary_flags |= BOUNDARY_LEFT_TILE;
  2032. if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1])
  2033. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2034. if (y_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->ps.sps->ctb_width]])
  2035. lc->boundary_flags |= BOUNDARY_UPPER_TILE;
  2036. if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->ps.sps->ctb_width])
  2037. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2038. } else {
  2039. if (ctb_addr_in_slice <= 0)
  2040. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2041. if (ctb_addr_in_slice < s->ps.sps->ctb_width)
  2042. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2043. }
  2044. lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
  2045. lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= s->ps.sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
  2046. lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->ps.sps->ctb_width]]));
  2047. lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->ps.sps->ctb_width]]));
  2048. }
  2049. static int hls_decode_entry(AVCodecContext *avctxt, void *isFilterThread)
  2050. {
  2051. HEVCContext *s = avctxt->priv_data;
  2052. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  2053. int more_data = 1;
  2054. int x_ctb = 0;
  2055. int y_ctb = 0;
  2056. int ctb_addr_ts = s->ps.pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
  2057. if (!ctb_addr_ts && s->sh.dependent_slice_segment_flag) {
  2058. av_log(s->avctx, AV_LOG_ERROR, "Impossible initial tile.\n");
  2059. return AVERROR_INVALIDDATA;
  2060. }
  2061. if (s->sh.dependent_slice_segment_flag) {
  2062. int prev_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts - 1];
  2063. if (s->tab_slice_address[prev_rs] != s->sh.slice_addr) {
  2064. av_log(s->avctx, AV_LOG_ERROR, "Previous slice segment missing\n");
  2065. return AVERROR_INVALIDDATA;
  2066. }
  2067. }
  2068. while (more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2069. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2070. x_ctb = (ctb_addr_rs % ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2071. y_ctb = (ctb_addr_rs / ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2072. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2073. ff_hevc_cabac_init(s, ctb_addr_ts);
  2074. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2075. s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
  2076. s->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset;
  2077. s->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag;
  2078. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2079. if (more_data < 0) {
  2080. s->tab_slice_address[ctb_addr_rs] = -1;
  2081. return more_data;
  2082. }
  2083. ctb_addr_ts++;
  2084. ff_hevc_save_states(s, ctb_addr_ts);
  2085. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2086. }
  2087. if (x_ctb + ctb_size >= s->ps.sps->width &&
  2088. y_ctb + ctb_size >= s->ps.sps->height)
  2089. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2090. return ctb_addr_ts;
  2091. }
  2092. static int hls_slice_data(HEVCContext *s)
  2093. {
  2094. int arg[2];
  2095. int ret[2];
  2096. arg[0] = 0;
  2097. arg[1] = 1;
  2098. s->avctx->execute(s->avctx, hls_decode_entry, arg, ret , 1, sizeof(int));
  2099. return ret[0];
  2100. }
  2101. static int hls_decode_entry_wpp(AVCodecContext *avctxt, void *input_ctb_row, int job, int self_id)
  2102. {
  2103. HEVCContext *s1 = avctxt->priv_data, *s;
  2104. HEVCLocalContext *lc;
  2105. int ctb_size = 1<< s1->ps.sps->log2_ctb_size;
  2106. int more_data = 1;
  2107. int *ctb_row_p = input_ctb_row;
  2108. int ctb_row = ctb_row_p[job];
  2109. int ctb_addr_rs = s1->sh.slice_ctb_addr_rs + ctb_row * ((s1->ps.sps->width + ctb_size - 1) >> s1->ps.sps->log2_ctb_size);
  2110. int ctb_addr_ts = s1->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs];
  2111. int thread = ctb_row % s1->threads_number;
  2112. int ret;
  2113. s = s1->sList[self_id];
  2114. lc = s->HEVClc;
  2115. if(ctb_row) {
  2116. ret = init_get_bits8(&lc->gb, s->data + s->sh.offset[ctb_row - 1], s->sh.size[ctb_row - 1]);
  2117. if (ret < 0)
  2118. return ret;
  2119. ff_init_cabac_decoder(&lc->cc, s->data + s->sh.offset[(ctb_row)-1], s->sh.size[ctb_row - 1]);
  2120. }
  2121. while(more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2122. int x_ctb = (ctb_addr_rs % s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2123. int y_ctb = (ctb_addr_rs / s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2124. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2125. ff_thread_await_progress2(s->avctx, ctb_row, thread, SHIFT_CTB_WPP);
  2126. if (atomic_load(&s1->wpp_err)) {
  2127. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2128. return 0;
  2129. }
  2130. ff_hevc_cabac_init(s, ctb_addr_ts);
  2131. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2132. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2133. if (more_data < 0) {
  2134. s->tab_slice_address[ctb_addr_rs] = -1;
  2135. atomic_store(&s1->wpp_err, 1);
  2136. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2137. return more_data;
  2138. }
  2139. ctb_addr_ts++;
  2140. ff_hevc_save_states(s, ctb_addr_ts);
  2141. ff_thread_report_progress2(s->avctx, ctb_row, thread, 1);
  2142. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2143. if (!more_data && (x_ctb+ctb_size) < s->ps.sps->width && ctb_row != s->sh.num_entry_point_offsets) {
  2144. atomic_store(&s1->wpp_err, 1);
  2145. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2146. return 0;
  2147. }
  2148. if ((x_ctb+ctb_size) >= s->ps.sps->width && (y_ctb+ctb_size) >= s->ps.sps->height ) {
  2149. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2150. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2151. return ctb_addr_ts;
  2152. }
  2153. ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2154. x_ctb+=ctb_size;
  2155. if(x_ctb >= s->ps.sps->width) {
  2156. break;
  2157. }
  2158. }
  2159. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2160. return 0;
  2161. }
  2162. static int hls_slice_data_wpp(HEVCContext *s, const H2645NAL *nal)
  2163. {
  2164. const uint8_t *data = nal->data;
  2165. int length = nal->size;
  2166. HEVCLocalContext *lc = s->HEVClc;
  2167. int *ret = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2168. int *arg = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2169. int64_t offset;
  2170. int64_t startheader, cmpt = 0;
  2171. int i, j, res = 0;
  2172. if (!ret || !arg) {
  2173. av_free(ret);
  2174. av_free(arg);
  2175. return AVERROR(ENOMEM);
  2176. }
  2177. if (s->sh.slice_ctb_addr_rs + s->sh.num_entry_point_offsets * s->ps.sps->ctb_width >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  2178. av_log(s->avctx, AV_LOG_ERROR, "WPP ctb addresses are wrong (%d %d %d %d)\n",
  2179. s->sh.slice_ctb_addr_rs, s->sh.num_entry_point_offsets,
  2180. s->ps.sps->ctb_width, s->ps.sps->ctb_height
  2181. );
  2182. res = AVERROR_INVALIDDATA;
  2183. goto error;
  2184. }
  2185. ff_alloc_entries(s->avctx, s->sh.num_entry_point_offsets + 1);
  2186. if (!s->sList[1]) {
  2187. for (i = 1; i < s->threads_number; i++) {
  2188. s->sList[i] = av_malloc(sizeof(HEVCContext));
  2189. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2190. s->HEVClcList[i] = av_mallocz(sizeof(HEVCLocalContext));
  2191. s->sList[i]->HEVClc = s->HEVClcList[i];
  2192. }
  2193. }
  2194. offset = (lc->gb.index >> 3);
  2195. for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < nal->skipped_bytes; j++) {
  2196. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2197. startheader--;
  2198. cmpt++;
  2199. }
  2200. }
  2201. for (i = 1; i < s->sh.num_entry_point_offsets; i++) {
  2202. offset += (s->sh.entry_point_offset[i - 1] - cmpt);
  2203. for (j = 0, cmpt = 0, startheader = offset
  2204. + s->sh.entry_point_offset[i]; j < nal->skipped_bytes; j++) {
  2205. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2206. startheader--;
  2207. cmpt++;
  2208. }
  2209. }
  2210. s->sh.size[i - 1] = s->sh.entry_point_offset[i] - cmpt;
  2211. s->sh.offset[i - 1] = offset;
  2212. }
  2213. if (s->sh.num_entry_point_offsets != 0) {
  2214. offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt;
  2215. if (length < offset) {
  2216. av_log(s->avctx, AV_LOG_ERROR, "entry_point_offset table is corrupted\n");
  2217. res = AVERROR_INVALIDDATA;
  2218. goto error;
  2219. }
  2220. s->sh.size[s->sh.num_entry_point_offsets - 1] = length - offset;
  2221. s->sh.offset[s->sh.num_entry_point_offsets - 1] = offset;
  2222. }
  2223. s->data = data;
  2224. for (i = 1; i < s->threads_number; i++) {
  2225. s->sList[i]->HEVClc->first_qp_group = 1;
  2226. s->sList[i]->HEVClc->qp_y = s->sList[0]->HEVClc->qp_y;
  2227. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2228. s->sList[i]->HEVClc = s->HEVClcList[i];
  2229. }
  2230. atomic_store(&s->wpp_err, 0);
  2231. ff_reset_entries(s->avctx);
  2232. for (i = 0; i <= s->sh.num_entry_point_offsets; i++) {
  2233. arg[i] = i;
  2234. ret[i] = 0;
  2235. }
  2236. if (s->ps.pps->entropy_coding_sync_enabled_flag)
  2237. s->avctx->execute2(s->avctx, hls_decode_entry_wpp, arg, ret, s->sh.num_entry_point_offsets + 1);
  2238. for (i = 0; i <= s->sh.num_entry_point_offsets; i++)
  2239. res += ret[i];
  2240. error:
  2241. av_free(ret);
  2242. av_free(arg);
  2243. return res;
  2244. }
  2245. static int set_side_data(HEVCContext *s)
  2246. {
  2247. AVFrame *out = s->ref->frame;
  2248. if (s->sei_frame_packing_present &&
  2249. s->frame_packing_arrangement_type >= 3 &&
  2250. s->frame_packing_arrangement_type <= 5 &&
  2251. s->content_interpretation_type > 0 &&
  2252. s->content_interpretation_type < 3) {
  2253. AVStereo3D *stereo = av_stereo3d_create_side_data(out);
  2254. if (!stereo)
  2255. return AVERROR(ENOMEM);
  2256. switch (s->frame_packing_arrangement_type) {
  2257. case 3:
  2258. if (s->quincunx_subsampling)
  2259. stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
  2260. else
  2261. stereo->type = AV_STEREO3D_SIDEBYSIDE;
  2262. break;
  2263. case 4:
  2264. stereo->type = AV_STEREO3D_TOPBOTTOM;
  2265. break;
  2266. case 5:
  2267. stereo->type = AV_STEREO3D_FRAMESEQUENCE;
  2268. break;
  2269. }
  2270. if (s->content_interpretation_type == 2)
  2271. stereo->flags = AV_STEREO3D_FLAG_INVERT;
  2272. }
  2273. if (s->sei_display_orientation_present &&
  2274. (s->sei_anticlockwise_rotation || s->sei_hflip || s->sei_vflip)) {
  2275. double angle = s->sei_anticlockwise_rotation * 360 / (double) (1 << 16);
  2276. AVFrameSideData *rotation = av_frame_new_side_data(out,
  2277. AV_FRAME_DATA_DISPLAYMATRIX,
  2278. sizeof(int32_t) * 9);
  2279. if (!rotation)
  2280. return AVERROR(ENOMEM);
  2281. av_display_rotation_set((int32_t *)rotation->data, angle);
  2282. av_display_matrix_flip((int32_t *)rotation->data,
  2283. s->sei_hflip, s->sei_vflip);
  2284. }
  2285. // Decrement the mastering display flag when IRAP frame has no_rasl_output_flag=1
  2286. // so the side data persists for the entire coded video sequence.
  2287. if (s->sei_mastering_display_info_present > 0 &&
  2288. IS_IRAP(s) && s->no_rasl_output_flag) {
  2289. s->sei_mastering_display_info_present--;
  2290. }
  2291. if (s->sei_mastering_display_info_present) {
  2292. // HEVC uses a g,b,r ordering, which we convert to a more natural r,g,b
  2293. const int mapping[3] = {2, 0, 1};
  2294. const int chroma_den = 50000;
  2295. const int luma_den = 10000;
  2296. int i;
  2297. AVMasteringDisplayMetadata *metadata =
  2298. av_mastering_display_metadata_create_side_data(out);
  2299. if (!metadata)
  2300. return AVERROR(ENOMEM);
  2301. for (i = 0; i < 3; i++) {
  2302. const int j = mapping[i];
  2303. metadata->display_primaries[i][0].num = s->display_primaries[j][0];
  2304. metadata->display_primaries[i][0].den = chroma_den;
  2305. metadata->display_primaries[i][1].num = s->display_primaries[j][1];
  2306. metadata->display_primaries[i][1].den = chroma_den;
  2307. }
  2308. metadata->white_point[0].num = s->white_point[0];
  2309. metadata->white_point[0].den = chroma_den;
  2310. metadata->white_point[1].num = s->white_point[1];
  2311. metadata->white_point[1].den = chroma_den;
  2312. metadata->max_luminance.num = s->max_mastering_luminance;
  2313. metadata->max_luminance.den = luma_den;
  2314. metadata->min_luminance.num = s->min_mastering_luminance;
  2315. metadata->min_luminance.den = luma_den;
  2316. metadata->has_luminance = 1;
  2317. metadata->has_primaries = 1;
  2318. av_log(s->avctx, AV_LOG_DEBUG, "Mastering Display Metadata:\n");
  2319. av_log(s->avctx, AV_LOG_DEBUG,
  2320. "r(%5.4f,%5.4f) g(%5.4f,%5.4f) b(%5.4f %5.4f) wp(%5.4f, %5.4f)\n",
  2321. av_q2d(metadata->display_primaries[0][0]),
  2322. av_q2d(metadata->display_primaries[0][1]),
  2323. av_q2d(metadata->display_primaries[1][0]),
  2324. av_q2d(metadata->display_primaries[1][1]),
  2325. av_q2d(metadata->display_primaries[2][0]),
  2326. av_q2d(metadata->display_primaries[2][1]),
  2327. av_q2d(metadata->white_point[0]), av_q2d(metadata->white_point[1]));
  2328. av_log(s->avctx, AV_LOG_DEBUG,
  2329. "min_luminance=%f, max_luminance=%f\n",
  2330. av_q2d(metadata->min_luminance), av_q2d(metadata->max_luminance));
  2331. }
  2332. if (s->a53_caption) {
  2333. AVFrameSideData* sd = av_frame_new_side_data(out,
  2334. AV_FRAME_DATA_A53_CC,
  2335. s->a53_caption_size);
  2336. if (sd)
  2337. memcpy(sd->data, s->a53_caption, s->a53_caption_size);
  2338. av_freep(&s->a53_caption);
  2339. s->a53_caption_size = 0;
  2340. s->avctx->properties |= FF_CODEC_PROPERTY_CLOSED_CAPTIONS;
  2341. }
  2342. return 0;
  2343. }
  2344. static int hevc_frame_start(HEVCContext *s)
  2345. {
  2346. HEVCLocalContext *lc = s->HEVClc;
  2347. int pic_size_in_ctb = ((s->ps.sps->width >> s->ps.sps->log2_min_cb_size) + 1) *
  2348. ((s->ps.sps->height >> s->ps.sps->log2_min_cb_size) + 1);
  2349. int ret;
  2350. memset(s->horizontal_bs, 0, s->bs_width * s->bs_height);
  2351. memset(s->vertical_bs, 0, s->bs_width * s->bs_height);
  2352. memset(s->cbf_luma, 0, s->ps.sps->min_tb_width * s->ps.sps->min_tb_height);
  2353. memset(s->is_pcm, 0, (s->ps.sps->min_pu_width + 1) * (s->ps.sps->min_pu_height + 1));
  2354. memset(s->tab_slice_address, -1, pic_size_in_ctb * sizeof(*s->tab_slice_address));
  2355. s->is_decoded = 0;
  2356. s->first_nal_type = s->nal_unit_type;
  2357. s->no_rasl_output_flag = IS_IDR(s) || IS_BLA(s) || (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos);
  2358. if (s->ps.pps->tiles_enabled_flag)
  2359. lc->end_of_tiles_x = s->ps.pps->column_width[0] << s->ps.sps->log2_ctb_size;
  2360. ret = ff_hevc_set_new_ref(s, &s->frame, s->poc);
  2361. if (ret < 0)
  2362. goto fail;
  2363. ret = ff_hevc_frame_rps(s);
  2364. if (ret < 0) {
  2365. av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
  2366. goto fail;
  2367. }
  2368. s->ref->frame->key_frame = IS_IRAP(s);
  2369. ret = set_side_data(s);
  2370. if (ret < 0)
  2371. goto fail;
  2372. s->frame->pict_type = 3 - s->sh.slice_type;
  2373. if (!IS_IRAP(s))
  2374. ff_hevc_bump_frame(s);
  2375. av_frame_unref(s->output_frame);
  2376. ret = ff_hevc_output_frame(s, s->output_frame, 0);
  2377. if (ret < 0)
  2378. goto fail;
  2379. if (!s->avctx->hwaccel)
  2380. ff_thread_finish_setup(s->avctx);
  2381. return 0;
  2382. fail:
  2383. if (s->ref)
  2384. ff_hevc_unref_frame(s, s->ref, ~0);
  2385. s->ref = NULL;
  2386. return ret;
  2387. }
  2388. static int decode_nal_unit(HEVCContext *s, const H2645NAL *nal)
  2389. {
  2390. HEVCLocalContext *lc = s->HEVClc;
  2391. GetBitContext *gb = &lc->gb;
  2392. int ctb_addr_ts, ret;
  2393. *gb = nal->gb;
  2394. s->nal_unit_type = nal->type;
  2395. s->temporal_id = nal->temporal_id;
  2396. switch (s->nal_unit_type) {
  2397. case HEVC_NAL_VPS:
  2398. ret = ff_hevc_decode_nal_vps(gb, s->avctx, &s->ps);
  2399. if (ret < 0)
  2400. goto fail;
  2401. break;
  2402. case HEVC_NAL_SPS:
  2403. ret = ff_hevc_decode_nal_sps(gb, s->avctx, &s->ps,
  2404. s->apply_defdispwin);
  2405. if (ret < 0)
  2406. goto fail;
  2407. break;
  2408. case HEVC_NAL_PPS:
  2409. ret = ff_hevc_decode_nal_pps(gb, s->avctx, &s->ps);
  2410. if (ret < 0)
  2411. goto fail;
  2412. break;
  2413. case HEVC_NAL_SEI_PREFIX:
  2414. case HEVC_NAL_SEI_SUFFIX:
  2415. ret = ff_hevc_decode_nal_sei(s);
  2416. if (ret < 0)
  2417. goto fail;
  2418. break;
  2419. case HEVC_NAL_TRAIL_R:
  2420. case HEVC_NAL_TRAIL_N:
  2421. case HEVC_NAL_TSA_N:
  2422. case HEVC_NAL_TSA_R:
  2423. case HEVC_NAL_STSA_N:
  2424. case HEVC_NAL_STSA_R:
  2425. case HEVC_NAL_BLA_W_LP:
  2426. case HEVC_NAL_BLA_W_RADL:
  2427. case HEVC_NAL_BLA_N_LP:
  2428. case HEVC_NAL_IDR_W_RADL:
  2429. case HEVC_NAL_IDR_N_LP:
  2430. case HEVC_NAL_CRA_NUT:
  2431. case HEVC_NAL_RADL_N:
  2432. case HEVC_NAL_RADL_R:
  2433. case HEVC_NAL_RASL_N:
  2434. case HEVC_NAL_RASL_R:
  2435. ret = hls_slice_header(s);
  2436. if (ret < 0)
  2437. return ret;
  2438. if (s->sh.first_slice_in_pic_flag) {
  2439. if (s->max_ra == INT_MAX) {
  2440. if (s->nal_unit_type == HEVC_NAL_CRA_NUT || IS_BLA(s)) {
  2441. s->max_ra = s->poc;
  2442. } else {
  2443. if (IS_IDR(s))
  2444. s->max_ra = INT_MIN;
  2445. }
  2446. }
  2447. if ((s->nal_unit_type == HEVC_NAL_RASL_R || s->nal_unit_type == HEVC_NAL_RASL_N) &&
  2448. s->poc <= s->max_ra) {
  2449. s->is_decoded = 0;
  2450. break;
  2451. } else {
  2452. if (s->nal_unit_type == HEVC_NAL_RASL_R && s->poc > s->max_ra)
  2453. s->max_ra = INT_MIN;
  2454. }
  2455. ret = hevc_frame_start(s);
  2456. if (ret < 0)
  2457. return ret;
  2458. } else if (!s->ref) {
  2459. av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
  2460. goto fail;
  2461. }
  2462. if (s->nal_unit_type != s->first_nal_type) {
  2463. av_log(s->avctx, AV_LOG_ERROR,
  2464. "Non-matching NAL types of the VCL NALUs: %d %d\n",
  2465. s->first_nal_type, s->nal_unit_type);
  2466. return AVERROR_INVALIDDATA;
  2467. }
  2468. if (!s->sh.dependent_slice_segment_flag &&
  2469. s->sh.slice_type != HEVC_SLICE_I) {
  2470. ret = ff_hevc_slice_rpl(s);
  2471. if (ret < 0) {
  2472. av_log(s->avctx, AV_LOG_WARNING,
  2473. "Error constructing the reference lists for the current slice.\n");
  2474. goto fail;
  2475. }
  2476. }
  2477. if (s->sh.first_slice_in_pic_flag && s->avctx->hwaccel) {
  2478. ret = s->avctx->hwaccel->start_frame(s->avctx, NULL, 0);
  2479. if (ret < 0)
  2480. goto fail;
  2481. }
  2482. if (s->avctx->hwaccel) {
  2483. ret = s->avctx->hwaccel->decode_slice(s->avctx, nal->raw_data, nal->raw_size);
  2484. if (ret < 0)
  2485. goto fail;
  2486. } else {
  2487. if (s->threads_number > 1 && s->sh.num_entry_point_offsets > 0)
  2488. ctb_addr_ts = hls_slice_data_wpp(s, nal);
  2489. else
  2490. ctb_addr_ts = hls_slice_data(s);
  2491. if (ctb_addr_ts >= (s->ps.sps->ctb_width * s->ps.sps->ctb_height)) {
  2492. s->is_decoded = 1;
  2493. }
  2494. if (ctb_addr_ts < 0) {
  2495. ret = ctb_addr_ts;
  2496. goto fail;
  2497. }
  2498. }
  2499. break;
  2500. case HEVC_NAL_EOS_NUT:
  2501. case HEVC_NAL_EOB_NUT:
  2502. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2503. s->max_ra = INT_MAX;
  2504. break;
  2505. case HEVC_NAL_AUD:
  2506. case HEVC_NAL_FD_NUT:
  2507. break;
  2508. default:
  2509. av_log(s->avctx, AV_LOG_INFO,
  2510. "Skipping NAL unit %d\n", s->nal_unit_type);
  2511. }
  2512. return 0;
  2513. fail:
  2514. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  2515. return ret;
  2516. return 0;
  2517. }
  2518. static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
  2519. {
  2520. int i, ret = 0;
  2521. s->ref = NULL;
  2522. s->last_eos = s->eos;
  2523. s->eos = 0;
  2524. /* split the input packet into NAL units, so we know the upper bound on the
  2525. * number of slices in the frame */
  2526. ret = ff_h2645_packet_split(&s->pkt, buf, length, s->avctx, s->is_nalff,
  2527. s->nal_length_size, s->avctx->codec_id, 1);
  2528. if (ret < 0) {
  2529. av_log(s->avctx, AV_LOG_ERROR,
  2530. "Error splitting the input into NAL units.\n");
  2531. return ret;
  2532. }
  2533. for (i = 0; i < s->pkt.nb_nals; i++) {
  2534. if (s->pkt.nals[i].type == HEVC_NAL_EOB_NUT ||
  2535. s->pkt.nals[i].type == HEVC_NAL_EOS_NUT)
  2536. s->eos = 1;
  2537. }
  2538. /* decode the NAL units */
  2539. for (i = 0; i < s->pkt.nb_nals; i++) {
  2540. ret = decode_nal_unit(s, &s->pkt.nals[i]);
  2541. if (ret < 0) {
  2542. av_log(s->avctx, AV_LOG_WARNING,
  2543. "Error parsing NAL unit #%d.\n", i);
  2544. goto fail;
  2545. }
  2546. }
  2547. fail:
  2548. if (s->ref && s->threads_type == FF_THREAD_FRAME)
  2549. ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
  2550. return ret;
  2551. }
  2552. static void print_md5(void *log_ctx, int level, uint8_t md5[16])
  2553. {
  2554. int i;
  2555. for (i = 0; i < 16; i++)
  2556. av_log(log_ctx, level, "%02"PRIx8, md5[i]);
  2557. }
  2558. static int verify_md5(HEVCContext *s, AVFrame *frame)
  2559. {
  2560. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
  2561. int pixel_shift;
  2562. int i, j;
  2563. if (!desc)
  2564. return AVERROR(EINVAL);
  2565. pixel_shift = desc->comp[0].depth > 8;
  2566. av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
  2567. s->poc);
  2568. /* the checksums are LE, so we have to byteswap for >8bpp formats
  2569. * on BE arches */
  2570. #if HAVE_BIGENDIAN
  2571. if (pixel_shift && !s->checksum_buf) {
  2572. av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
  2573. FFMAX3(frame->linesize[0], frame->linesize[1],
  2574. frame->linesize[2]));
  2575. if (!s->checksum_buf)
  2576. return AVERROR(ENOMEM);
  2577. }
  2578. #endif
  2579. for (i = 0; frame->data[i]; i++) {
  2580. int width = s->avctx->coded_width;
  2581. int height = s->avctx->coded_height;
  2582. int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width;
  2583. int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
  2584. uint8_t md5[16];
  2585. av_md5_init(s->md5_ctx);
  2586. for (j = 0; j < h; j++) {
  2587. const uint8_t *src = frame->data[i] + j * frame->linesize[i];
  2588. #if HAVE_BIGENDIAN
  2589. if (pixel_shift) {
  2590. s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
  2591. (const uint16_t *) src, w);
  2592. src = s->checksum_buf;
  2593. }
  2594. #endif
  2595. av_md5_update(s->md5_ctx, src, w << pixel_shift);
  2596. }
  2597. av_md5_final(s->md5_ctx, md5);
  2598. if (!memcmp(md5, s->md5[i], 16)) {
  2599. av_log (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
  2600. print_md5(s->avctx, AV_LOG_DEBUG, md5);
  2601. av_log (s->avctx, AV_LOG_DEBUG, "; ");
  2602. } else {
  2603. av_log (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
  2604. print_md5(s->avctx, AV_LOG_ERROR, md5);
  2605. av_log (s->avctx, AV_LOG_ERROR, " != ");
  2606. print_md5(s->avctx, AV_LOG_ERROR, s->md5[i]);
  2607. av_log (s->avctx, AV_LOG_ERROR, "\n");
  2608. return AVERROR_INVALIDDATA;
  2609. }
  2610. }
  2611. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  2612. return 0;
  2613. }
  2614. static int hevc_decode_extradata(HEVCContext *s, uint8_t *buf, int length, int first)
  2615. {
  2616. AVCodecContext *avctx = s->avctx;
  2617. GetByteContext gb;
  2618. int ret, i;
  2619. bytestream2_init(&gb, buf, length);
  2620. if (length > 3 && (buf[0] || buf[1] || buf[2] > 1)) {
  2621. /* It seems the extradata is encoded as hvcC format.
  2622. * Temporarily, we support configurationVersion==0 until 14496-15 3rd
  2623. * is finalized. When finalized, configurationVersion will be 1 and we
  2624. * can recognize hvcC by checking if avctx->extradata[0]==1 or not. */
  2625. int i, j, num_arrays, nal_len_size;
  2626. s->is_nalff = 1;
  2627. bytestream2_skip(&gb, 21);
  2628. nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1;
  2629. num_arrays = bytestream2_get_byte(&gb);
  2630. /* nal units in the hvcC always have length coded with 2 bytes,
  2631. * so put a fake nal_length_size = 2 while parsing them */
  2632. s->nal_length_size = 2;
  2633. /* Decode nal units from hvcC. */
  2634. for (i = 0; i < num_arrays; i++) {
  2635. int type = bytestream2_get_byte(&gb) & 0x3f;
  2636. int cnt = bytestream2_get_be16(&gb);
  2637. for (j = 0; j < cnt; j++) {
  2638. // +2 for the nal size field
  2639. int nalsize = bytestream2_peek_be16(&gb) + 2;
  2640. if (bytestream2_get_bytes_left(&gb) < nalsize) {
  2641. av_log(s->avctx, AV_LOG_ERROR,
  2642. "Invalid NAL unit size in extradata.\n");
  2643. return AVERROR_INVALIDDATA;
  2644. }
  2645. ret = decode_nal_units(s, gb.buffer, nalsize);
  2646. if (ret < 0) {
  2647. av_log(avctx, AV_LOG_ERROR,
  2648. "Decoding nal unit %d %d from hvcC failed\n",
  2649. type, i);
  2650. return ret;
  2651. }
  2652. bytestream2_skip(&gb, nalsize);
  2653. }
  2654. }
  2655. /* Now store right nal length size, that will be used to parse
  2656. * all other nals */
  2657. s->nal_length_size = nal_len_size;
  2658. } else {
  2659. s->is_nalff = 0;
  2660. ret = decode_nal_units(s, buf, length);
  2661. if (ret < 0)
  2662. return ret;
  2663. }
  2664. /* export stream parameters from the first SPS */
  2665. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2666. if (first && s->ps.sps_list[i]) {
  2667. const HEVCSPS *sps = (const HEVCSPS*)s->ps.sps_list[i]->data;
  2668. export_stream_params(s->avctx, &s->ps, sps);
  2669. break;
  2670. }
  2671. }
  2672. return 0;
  2673. }
  2674. static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
  2675. AVPacket *avpkt)
  2676. {
  2677. int ret;
  2678. int new_extradata_size;
  2679. uint8_t *new_extradata;
  2680. HEVCContext *s = avctx->priv_data;
  2681. if (!avpkt->size) {
  2682. ret = ff_hevc_output_frame(s, data, 1);
  2683. if (ret < 0)
  2684. return ret;
  2685. *got_output = ret;
  2686. return 0;
  2687. }
  2688. new_extradata = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA,
  2689. &new_extradata_size);
  2690. if (new_extradata && new_extradata_size > 0) {
  2691. ret = hevc_decode_extradata(s, new_extradata, new_extradata_size, 0);
  2692. if (ret < 0)
  2693. return ret;
  2694. }
  2695. s->ref = NULL;
  2696. ret = decode_nal_units(s, avpkt->data, avpkt->size);
  2697. if (ret < 0)
  2698. return ret;
  2699. if (avctx->hwaccel) {
  2700. if (s->ref && (ret = avctx->hwaccel->end_frame(avctx)) < 0) {
  2701. av_log(avctx, AV_LOG_ERROR,
  2702. "hardware accelerator failed to decode picture\n");
  2703. ff_hevc_unref_frame(s, s->ref, ~0);
  2704. return ret;
  2705. }
  2706. } else {
  2707. /* verify the SEI checksum */
  2708. if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
  2709. s->is_md5) {
  2710. ret = verify_md5(s, s->ref->frame);
  2711. if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
  2712. ff_hevc_unref_frame(s, s->ref, ~0);
  2713. return ret;
  2714. }
  2715. }
  2716. }
  2717. s->is_md5 = 0;
  2718. if (s->is_decoded) {
  2719. av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
  2720. s->is_decoded = 0;
  2721. }
  2722. if (s->output_frame->buf[0]) {
  2723. av_frame_move_ref(data, s->output_frame);
  2724. *got_output = 1;
  2725. }
  2726. return avpkt->size;
  2727. }
  2728. static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
  2729. {
  2730. int ret;
  2731. ret = ff_thread_ref_frame(&dst->tf, &src->tf);
  2732. if (ret < 0)
  2733. return ret;
  2734. dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
  2735. if (!dst->tab_mvf_buf)
  2736. goto fail;
  2737. dst->tab_mvf = src->tab_mvf;
  2738. dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
  2739. if (!dst->rpl_tab_buf)
  2740. goto fail;
  2741. dst->rpl_tab = src->rpl_tab;
  2742. dst->rpl_buf = av_buffer_ref(src->rpl_buf);
  2743. if (!dst->rpl_buf)
  2744. goto fail;
  2745. dst->poc = src->poc;
  2746. dst->ctb_count = src->ctb_count;
  2747. dst->window = src->window;
  2748. dst->flags = src->flags;
  2749. dst->sequence = src->sequence;
  2750. if (src->hwaccel_picture_private) {
  2751. dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf);
  2752. if (!dst->hwaccel_priv_buf)
  2753. goto fail;
  2754. dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data;
  2755. }
  2756. return 0;
  2757. fail:
  2758. ff_hevc_unref_frame(s, dst, ~0);
  2759. return AVERROR(ENOMEM);
  2760. }
  2761. static av_cold int hevc_decode_free(AVCodecContext *avctx)
  2762. {
  2763. HEVCContext *s = avctx->priv_data;
  2764. int i;
  2765. pic_arrays_free(s);
  2766. av_freep(&s->md5_ctx);
  2767. av_freep(&s->cabac_state);
  2768. for (i = 0; i < 3; i++) {
  2769. av_freep(&s->sao_pixel_buffer_h[i]);
  2770. av_freep(&s->sao_pixel_buffer_v[i]);
  2771. }
  2772. av_frame_free(&s->output_frame);
  2773. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2774. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2775. av_frame_free(&s->DPB[i].frame);
  2776. }
  2777. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++)
  2778. av_buffer_unref(&s->ps.vps_list[i]);
  2779. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++)
  2780. av_buffer_unref(&s->ps.sps_list[i]);
  2781. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++)
  2782. av_buffer_unref(&s->ps.pps_list[i]);
  2783. s->ps.sps = NULL;
  2784. s->ps.pps = NULL;
  2785. s->ps.vps = NULL;
  2786. av_freep(&s->sh.entry_point_offset);
  2787. av_freep(&s->sh.offset);
  2788. av_freep(&s->sh.size);
  2789. for (i = 1; i < s->threads_number; i++) {
  2790. HEVCLocalContext *lc = s->HEVClcList[i];
  2791. if (lc) {
  2792. av_freep(&s->HEVClcList[i]);
  2793. av_freep(&s->sList[i]);
  2794. }
  2795. }
  2796. if (s->HEVClc == s->HEVClcList[0])
  2797. s->HEVClc = NULL;
  2798. av_freep(&s->HEVClcList[0]);
  2799. ff_h2645_packet_uninit(&s->pkt);
  2800. return 0;
  2801. }
  2802. static av_cold int hevc_init_context(AVCodecContext *avctx)
  2803. {
  2804. HEVCContext *s = avctx->priv_data;
  2805. int i;
  2806. s->avctx = avctx;
  2807. s->HEVClc = av_mallocz(sizeof(HEVCLocalContext));
  2808. if (!s->HEVClc)
  2809. goto fail;
  2810. s->HEVClcList[0] = s->HEVClc;
  2811. s->sList[0] = s;
  2812. s->cabac_state = av_malloc(HEVC_CONTEXTS);
  2813. if (!s->cabac_state)
  2814. goto fail;
  2815. s->output_frame = av_frame_alloc();
  2816. if (!s->output_frame)
  2817. goto fail;
  2818. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2819. s->DPB[i].frame = av_frame_alloc();
  2820. if (!s->DPB[i].frame)
  2821. goto fail;
  2822. s->DPB[i].tf.f = s->DPB[i].frame;
  2823. }
  2824. s->max_ra = INT_MAX;
  2825. s->md5_ctx = av_md5_alloc();
  2826. if (!s->md5_ctx)
  2827. goto fail;
  2828. ff_bswapdsp_init(&s->bdsp);
  2829. s->context_initialized = 1;
  2830. s->eos = 0;
  2831. ff_hevc_reset_sei(s);
  2832. return 0;
  2833. fail:
  2834. hevc_decode_free(avctx);
  2835. return AVERROR(ENOMEM);
  2836. }
  2837. static int hevc_update_thread_context(AVCodecContext *dst,
  2838. const AVCodecContext *src)
  2839. {
  2840. HEVCContext *s = dst->priv_data;
  2841. HEVCContext *s0 = src->priv_data;
  2842. int i, ret;
  2843. if (!s->context_initialized) {
  2844. ret = hevc_init_context(dst);
  2845. if (ret < 0)
  2846. return ret;
  2847. }
  2848. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2849. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2850. if (s0->DPB[i].frame->buf[0]) {
  2851. ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
  2852. if (ret < 0)
  2853. return ret;
  2854. }
  2855. }
  2856. if (s->ps.sps != s0->ps.sps)
  2857. s->ps.sps = NULL;
  2858. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++) {
  2859. av_buffer_unref(&s->ps.vps_list[i]);
  2860. if (s0->ps.vps_list[i]) {
  2861. s->ps.vps_list[i] = av_buffer_ref(s0->ps.vps_list[i]);
  2862. if (!s->ps.vps_list[i])
  2863. return AVERROR(ENOMEM);
  2864. }
  2865. }
  2866. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2867. av_buffer_unref(&s->ps.sps_list[i]);
  2868. if (s0->ps.sps_list[i]) {
  2869. s->ps.sps_list[i] = av_buffer_ref(s0->ps.sps_list[i]);
  2870. if (!s->ps.sps_list[i])
  2871. return AVERROR(ENOMEM);
  2872. }
  2873. }
  2874. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++) {
  2875. av_buffer_unref(&s->ps.pps_list[i]);
  2876. if (s0->ps.pps_list[i]) {
  2877. s->ps.pps_list[i] = av_buffer_ref(s0->ps.pps_list[i]);
  2878. if (!s->ps.pps_list[i])
  2879. return AVERROR(ENOMEM);
  2880. }
  2881. }
  2882. if (s->ps.sps != s0->ps.sps)
  2883. if ((ret = set_sps(s, s0->ps.sps, src->pix_fmt)) < 0)
  2884. return ret;
  2885. s->seq_decode = s0->seq_decode;
  2886. s->seq_output = s0->seq_output;
  2887. s->pocTid0 = s0->pocTid0;
  2888. s->max_ra = s0->max_ra;
  2889. s->eos = s0->eos;
  2890. s->no_rasl_output_flag = s0->no_rasl_output_flag;
  2891. s->is_nalff = s0->is_nalff;
  2892. s->nal_length_size = s0->nal_length_size;
  2893. s->threads_number = s0->threads_number;
  2894. s->threads_type = s0->threads_type;
  2895. if (s0->eos) {
  2896. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2897. s->max_ra = INT_MAX;
  2898. }
  2899. return 0;
  2900. }
  2901. static av_cold int hevc_decode_init(AVCodecContext *avctx)
  2902. {
  2903. HEVCContext *s = avctx->priv_data;
  2904. int ret;
  2905. avctx->internal->allocate_progress = 1;
  2906. ret = hevc_init_context(avctx);
  2907. if (ret < 0)
  2908. return ret;
  2909. s->enable_parallel_tiles = 0;
  2910. s->picture_struct = 0;
  2911. s->eos = 1;
  2912. atomic_init(&s->wpp_err, 0);
  2913. if(avctx->active_thread_type & FF_THREAD_SLICE)
  2914. s->threads_number = avctx->thread_count;
  2915. else
  2916. s->threads_number = 1;
  2917. if (avctx->extradata_size > 0 && avctx->extradata) {
  2918. ret = hevc_decode_extradata(s, avctx->extradata, avctx->extradata_size, 1);
  2919. if (ret < 0) {
  2920. hevc_decode_free(avctx);
  2921. return ret;
  2922. }
  2923. }
  2924. if((avctx->active_thread_type & FF_THREAD_FRAME) && avctx->thread_count > 1)
  2925. s->threads_type = FF_THREAD_FRAME;
  2926. else
  2927. s->threads_type = FF_THREAD_SLICE;
  2928. return 0;
  2929. }
  2930. static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
  2931. {
  2932. HEVCContext *s = avctx->priv_data;
  2933. int ret;
  2934. memset(s, 0, sizeof(*s));
  2935. ret = hevc_init_context(avctx);
  2936. if (ret < 0)
  2937. return ret;
  2938. return 0;
  2939. }
  2940. static void hevc_decode_flush(AVCodecContext *avctx)
  2941. {
  2942. HEVCContext *s = avctx->priv_data;
  2943. ff_hevc_flush_dpb(s);
  2944. s->max_ra = INT_MAX;
  2945. s->eos = 1;
  2946. }
  2947. #define OFFSET(x) offsetof(HEVCContext, x)
  2948. #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
  2949. static const AVOption options[] = {
  2950. { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
  2951. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  2952. { "strict-displaywin", "stricly apply default display window size", OFFSET(apply_defdispwin),
  2953. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  2954. { NULL },
  2955. };
  2956. static const AVClass hevc_decoder_class = {
  2957. .class_name = "HEVC decoder",
  2958. .item_name = av_default_item_name,
  2959. .option = options,
  2960. .version = LIBAVUTIL_VERSION_INT,
  2961. };
  2962. AVCodec ff_hevc_decoder = {
  2963. .name = "hevc",
  2964. .long_name = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
  2965. .type = AVMEDIA_TYPE_VIDEO,
  2966. .id = AV_CODEC_ID_HEVC,
  2967. .priv_data_size = sizeof(HEVCContext),
  2968. .priv_class = &hevc_decoder_class,
  2969. .init = hevc_decode_init,
  2970. .close = hevc_decode_free,
  2971. .decode = hevc_decode_frame,
  2972. .flush = hevc_decode_flush,
  2973. .update_thread_context = hevc_update_thread_context,
  2974. .init_thread_copy = hevc_init_thread_copy,
  2975. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
  2976. AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS,
  2977. .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
  2978. .profiles = NULL_IF_CONFIG_SMALL(ff_hevc_profiles),
  2979. };