You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

970 lines
32KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The FFmpeg Project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "avcodec.h"
  35. #include "wma.h"
  36. #undef NDEBUG
  37. #include <assert.h>
  38. #define EXPVLCBITS 8
  39. #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
  40. #define HGAINVLCBITS 9
  41. #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
  42. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
  43. #ifdef TRACE
  44. static void dump_floats(WMACodecContext *s, const char *name, int prec, const float *tab, int n)
  45. {
  46. int i;
  47. tprintf(s->avctx, "%s[%d]:\n", name, n);
  48. for(i=0;i<n;i++) {
  49. if ((i & 7) == 0)
  50. tprintf(s->avctx, "%4d: ", i);
  51. tprintf(s->avctx, " %8.*f", prec, tab[i]);
  52. if ((i & 7) == 7)
  53. tprintf(s->avctx, "\n");
  54. }
  55. if ((i & 7) != 0)
  56. tprintf(s->avctx, "\n");
  57. }
  58. #endif
  59. static int wma_decode_init(AVCodecContext * avctx)
  60. {
  61. WMACodecContext *s = avctx->priv_data;
  62. int i, flags2;
  63. uint8_t *extradata;
  64. s->avctx = avctx;
  65. /* extract flag infos */
  66. flags2 = 0;
  67. extradata = avctx->extradata;
  68. if (avctx->codec->id == AV_CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
  69. flags2 = AV_RL16(extradata+2);
  70. } else if (avctx->codec->id == AV_CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
  71. flags2 = AV_RL16(extradata+4);
  72. }
  73. s->use_exp_vlc = flags2 & 0x0001;
  74. s->use_bit_reservoir = flags2 & 0x0002;
  75. s->use_variable_block_len = flags2 & 0x0004;
  76. if(avctx->codec->id == AV_CODEC_ID_WMAV2 && avctx->extradata_size >= 8){
  77. if(AV_RL16(extradata+4)==0xd && s->use_variable_block_len){
  78. av_log(avctx, AV_LOG_WARNING, "Disabling use_variable_block_len, if this fails contact the ffmpeg developers and send us the file\n");
  79. s->use_variable_block_len= 0; // this fixes issue1503
  80. }
  81. }
  82. if(ff_wma_init(avctx, flags2)<0)
  83. return -1;
  84. /* init MDCT */
  85. for(i = 0; i < s->nb_block_sizes; i++)
  86. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0 / 32768.0);
  87. if (s->use_noise_coding) {
  88. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  89. ff_wma_hgain_huffbits, 1, 1,
  90. ff_wma_hgain_huffcodes, 2, 2, 0);
  91. }
  92. if (s->use_exp_vlc) {
  93. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_aac_scalefactor_bits), //FIXME move out of context
  94. ff_aac_scalefactor_bits, 1, 1,
  95. ff_aac_scalefactor_code, 4, 4, 0);
  96. } else {
  97. wma_lsp_to_curve_init(s, s->frame_len);
  98. }
  99. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  100. avcodec_get_frame_defaults(&s->frame);
  101. avctx->coded_frame = &s->frame;
  102. return 0;
  103. }
  104. /**
  105. * compute x^-0.25 with an exponent and mantissa table. We use linear
  106. * interpolation to reduce the mantissa table size at a small speed
  107. * expense (linear interpolation approximately doubles the number of
  108. * bits of precision).
  109. */
  110. static inline float pow_m1_4(WMACodecContext *s, float x)
  111. {
  112. union {
  113. float f;
  114. unsigned int v;
  115. } u, t;
  116. unsigned int e, m;
  117. float a, b;
  118. u.f = x;
  119. e = u.v >> 23;
  120. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  121. /* build interpolation scale: 1 <= t < 2. */
  122. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  123. a = s->lsp_pow_m_table1[m];
  124. b = s->lsp_pow_m_table2[m];
  125. return s->lsp_pow_e_table[e] * (a + b * t.f);
  126. }
  127. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
  128. {
  129. float wdel, a, b;
  130. int i, e, m;
  131. wdel = M_PI / frame_len;
  132. for(i=0;i<frame_len;i++)
  133. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  134. /* tables for x^-0.25 computation */
  135. for(i=0;i<256;i++) {
  136. e = i - 126;
  137. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  138. }
  139. /* NOTE: these two tables are needed to avoid two operations in
  140. pow_m1_4 */
  141. b = 1.0;
  142. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
  143. m = (1 << LSP_POW_BITS) + i;
  144. a = (float)m * (0.5 / (1 << LSP_POW_BITS));
  145. a = pow(a, -0.25);
  146. s->lsp_pow_m_table1[i] = 2 * a - b;
  147. s->lsp_pow_m_table2[i] = b - a;
  148. b = a;
  149. }
  150. }
  151. /**
  152. * NOTE: We use the same code as Vorbis here
  153. * @todo optimize it further with SSE/3Dnow
  154. */
  155. static void wma_lsp_to_curve(WMACodecContext *s,
  156. float *out, float *val_max_ptr,
  157. int n, float *lsp)
  158. {
  159. int i, j;
  160. float p, q, w, v, val_max;
  161. val_max = 0;
  162. for(i=0;i<n;i++) {
  163. p = 0.5f;
  164. q = 0.5f;
  165. w = s->lsp_cos_table[i];
  166. for(j=1;j<NB_LSP_COEFS;j+=2){
  167. q *= w - lsp[j - 1];
  168. p *= w - lsp[j];
  169. }
  170. p *= p * (2.0f - w);
  171. q *= q * (2.0f + w);
  172. v = p + q;
  173. v = pow_m1_4(s, v);
  174. if (v > val_max)
  175. val_max = v;
  176. out[i] = v;
  177. }
  178. *val_max_ptr = val_max;
  179. }
  180. /**
  181. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  182. */
  183. static void decode_exp_lsp(WMACodecContext *s, int ch)
  184. {
  185. float lsp_coefs[NB_LSP_COEFS];
  186. int val, i;
  187. for(i = 0; i < NB_LSP_COEFS; i++) {
  188. if (i == 0 || i >= 8)
  189. val = get_bits(&s->gb, 3);
  190. else
  191. val = get_bits(&s->gb, 4);
  192. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  193. }
  194. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  195. s->block_len, lsp_coefs);
  196. }
  197. /** pow(10, i / 16.0) for i in -60..95 */
  198. static const float pow_tab[] = {
  199. 1.7782794100389e-04, 2.0535250264571e-04,
  200. 2.3713737056617e-04, 2.7384196342644e-04,
  201. 3.1622776601684e-04, 3.6517412725484e-04,
  202. 4.2169650342858e-04, 4.8696752516586e-04,
  203. 5.6234132519035e-04, 6.4938163157621e-04,
  204. 7.4989420933246e-04, 8.6596432336006e-04,
  205. 1.0000000000000e-03, 1.1547819846895e-03,
  206. 1.3335214321633e-03, 1.5399265260595e-03,
  207. 1.7782794100389e-03, 2.0535250264571e-03,
  208. 2.3713737056617e-03, 2.7384196342644e-03,
  209. 3.1622776601684e-03, 3.6517412725484e-03,
  210. 4.2169650342858e-03, 4.8696752516586e-03,
  211. 5.6234132519035e-03, 6.4938163157621e-03,
  212. 7.4989420933246e-03, 8.6596432336006e-03,
  213. 1.0000000000000e-02, 1.1547819846895e-02,
  214. 1.3335214321633e-02, 1.5399265260595e-02,
  215. 1.7782794100389e-02, 2.0535250264571e-02,
  216. 2.3713737056617e-02, 2.7384196342644e-02,
  217. 3.1622776601684e-02, 3.6517412725484e-02,
  218. 4.2169650342858e-02, 4.8696752516586e-02,
  219. 5.6234132519035e-02, 6.4938163157621e-02,
  220. 7.4989420933246e-02, 8.6596432336007e-02,
  221. 1.0000000000000e-01, 1.1547819846895e-01,
  222. 1.3335214321633e-01, 1.5399265260595e-01,
  223. 1.7782794100389e-01, 2.0535250264571e-01,
  224. 2.3713737056617e-01, 2.7384196342644e-01,
  225. 3.1622776601684e-01, 3.6517412725484e-01,
  226. 4.2169650342858e-01, 4.8696752516586e-01,
  227. 5.6234132519035e-01, 6.4938163157621e-01,
  228. 7.4989420933246e-01, 8.6596432336007e-01,
  229. 1.0000000000000e+00, 1.1547819846895e+00,
  230. 1.3335214321633e+00, 1.5399265260595e+00,
  231. 1.7782794100389e+00, 2.0535250264571e+00,
  232. 2.3713737056617e+00, 2.7384196342644e+00,
  233. 3.1622776601684e+00, 3.6517412725484e+00,
  234. 4.2169650342858e+00, 4.8696752516586e+00,
  235. 5.6234132519035e+00, 6.4938163157621e+00,
  236. 7.4989420933246e+00, 8.6596432336007e+00,
  237. 1.0000000000000e+01, 1.1547819846895e+01,
  238. 1.3335214321633e+01, 1.5399265260595e+01,
  239. 1.7782794100389e+01, 2.0535250264571e+01,
  240. 2.3713737056617e+01, 2.7384196342644e+01,
  241. 3.1622776601684e+01, 3.6517412725484e+01,
  242. 4.2169650342858e+01, 4.8696752516586e+01,
  243. 5.6234132519035e+01, 6.4938163157621e+01,
  244. 7.4989420933246e+01, 8.6596432336007e+01,
  245. 1.0000000000000e+02, 1.1547819846895e+02,
  246. 1.3335214321633e+02, 1.5399265260595e+02,
  247. 1.7782794100389e+02, 2.0535250264571e+02,
  248. 2.3713737056617e+02, 2.7384196342644e+02,
  249. 3.1622776601684e+02, 3.6517412725484e+02,
  250. 4.2169650342858e+02, 4.8696752516586e+02,
  251. 5.6234132519035e+02, 6.4938163157621e+02,
  252. 7.4989420933246e+02, 8.6596432336007e+02,
  253. 1.0000000000000e+03, 1.1547819846895e+03,
  254. 1.3335214321633e+03, 1.5399265260595e+03,
  255. 1.7782794100389e+03, 2.0535250264571e+03,
  256. 2.3713737056617e+03, 2.7384196342644e+03,
  257. 3.1622776601684e+03, 3.6517412725484e+03,
  258. 4.2169650342858e+03, 4.8696752516586e+03,
  259. 5.6234132519035e+03, 6.4938163157621e+03,
  260. 7.4989420933246e+03, 8.6596432336007e+03,
  261. 1.0000000000000e+04, 1.1547819846895e+04,
  262. 1.3335214321633e+04, 1.5399265260595e+04,
  263. 1.7782794100389e+04, 2.0535250264571e+04,
  264. 2.3713737056617e+04, 2.7384196342644e+04,
  265. 3.1622776601684e+04, 3.6517412725484e+04,
  266. 4.2169650342858e+04, 4.8696752516586e+04,
  267. 5.6234132519035e+04, 6.4938163157621e+04,
  268. 7.4989420933246e+04, 8.6596432336007e+04,
  269. 1.0000000000000e+05, 1.1547819846895e+05,
  270. 1.3335214321633e+05, 1.5399265260595e+05,
  271. 1.7782794100389e+05, 2.0535250264571e+05,
  272. 2.3713737056617e+05, 2.7384196342644e+05,
  273. 3.1622776601684e+05, 3.6517412725484e+05,
  274. 4.2169650342858e+05, 4.8696752516586e+05,
  275. 5.6234132519035e+05, 6.4938163157621e+05,
  276. 7.4989420933246e+05, 8.6596432336007e+05,
  277. };
  278. /**
  279. * decode exponents coded with VLC codes
  280. */
  281. static int decode_exp_vlc(WMACodecContext *s, int ch)
  282. {
  283. int last_exp, n, code;
  284. const uint16_t *ptr;
  285. float v, max_scale;
  286. uint32_t *q, *q_end, iv;
  287. const float *ptab = pow_tab + 60;
  288. const uint32_t *iptab = (const uint32_t*)ptab;
  289. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  290. q = (uint32_t *)s->exponents[ch];
  291. q_end = q + s->block_len;
  292. max_scale = 0;
  293. if (s->version == 1) {
  294. last_exp = get_bits(&s->gb, 5) + 10;
  295. v = ptab[last_exp];
  296. iv = iptab[last_exp];
  297. max_scale = v;
  298. n = *ptr++;
  299. switch (n & 3) do {
  300. case 0: *q++ = iv;
  301. case 3: *q++ = iv;
  302. case 2: *q++ = iv;
  303. case 1: *q++ = iv;
  304. } while ((n -= 4) > 0);
  305. }else
  306. last_exp = 36;
  307. while (q < q_end) {
  308. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  309. if (code < 0){
  310. av_log(s->avctx, AV_LOG_ERROR, "Exponent vlc invalid\n");
  311. return -1;
  312. }
  313. /* NOTE: this offset is the same as MPEG4 AAC ! */
  314. last_exp += code - 60;
  315. if ((unsigned)last_exp + 60 >= FF_ARRAY_ELEMS(pow_tab)) {
  316. av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
  317. last_exp);
  318. return -1;
  319. }
  320. v = ptab[last_exp];
  321. iv = iptab[last_exp];
  322. if (v > max_scale)
  323. max_scale = v;
  324. n = *ptr++;
  325. switch (n & 3) do {
  326. case 0: *q++ = iv;
  327. case 3: *q++ = iv;
  328. case 2: *q++ = iv;
  329. case 1: *q++ = iv;
  330. } while ((n -= 4) > 0);
  331. }
  332. s->max_exponent[ch] = max_scale;
  333. return 0;
  334. }
  335. /**
  336. * Apply MDCT window and add into output.
  337. *
  338. * We ensure that when the windows overlap their squared sum
  339. * is always 1 (MDCT reconstruction rule).
  340. */
  341. static void wma_window(WMACodecContext *s, float *out)
  342. {
  343. float *in = s->output;
  344. int block_len, bsize, n;
  345. /* left part */
  346. if (s->block_len_bits <= s->prev_block_len_bits) {
  347. block_len = s->block_len;
  348. bsize = s->frame_len_bits - s->block_len_bits;
  349. s->dsp.vector_fmul_add(out, in, s->windows[bsize],
  350. out, block_len);
  351. } else {
  352. block_len = 1 << s->prev_block_len_bits;
  353. n = (s->block_len - block_len) / 2;
  354. bsize = s->frame_len_bits - s->prev_block_len_bits;
  355. s->dsp.vector_fmul_add(out+n, in+n, s->windows[bsize],
  356. out+n, block_len);
  357. memcpy(out+n+block_len, in+n+block_len, n*sizeof(float));
  358. }
  359. out += s->block_len;
  360. in += s->block_len;
  361. /* right part */
  362. if (s->block_len_bits <= s->next_block_len_bits) {
  363. block_len = s->block_len;
  364. bsize = s->frame_len_bits - s->block_len_bits;
  365. s->dsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  366. } else {
  367. block_len = 1 << s->next_block_len_bits;
  368. n = (s->block_len - block_len) / 2;
  369. bsize = s->frame_len_bits - s->next_block_len_bits;
  370. memcpy(out, in, n*sizeof(float));
  371. s->dsp.vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
  372. memset(out+n+block_len, 0, n*sizeof(float));
  373. }
  374. }
  375. /**
  376. * @return 0 if OK. 1 if last block of frame. return -1 if
  377. * unrecorrable error.
  378. */
  379. static int wma_decode_block(WMACodecContext *s)
  380. {
  381. int n, v, a, ch, bsize;
  382. int coef_nb_bits, total_gain;
  383. int nb_coefs[MAX_CHANNELS];
  384. float mdct_norm;
  385. FFTContext *mdct;
  386. #ifdef TRACE
  387. tprintf(s->avctx, "***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
  388. #endif
  389. /* compute current block length */
  390. if (s->use_variable_block_len) {
  391. n = av_log2(s->nb_block_sizes - 1) + 1;
  392. if (s->reset_block_lengths) {
  393. s->reset_block_lengths = 0;
  394. v = get_bits(&s->gb, n);
  395. if (v >= s->nb_block_sizes){
  396. av_log(s->avctx, AV_LOG_ERROR, "prev_block_len_bits %d out of range\n", s->frame_len_bits - v);
  397. return -1;
  398. }
  399. s->prev_block_len_bits = s->frame_len_bits - v;
  400. v = get_bits(&s->gb, n);
  401. if (v >= s->nb_block_sizes){
  402. av_log(s->avctx, AV_LOG_ERROR, "block_len_bits %d out of range\n", s->frame_len_bits - v);
  403. return -1;
  404. }
  405. s->block_len_bits = s->frame_len_bits - v;
  406. } else {
  407. /* update block lengths */
  408. s->prev_block_len_bits = s->block_len_bits;
  409. s->block_len_bits = s->next_block_len_bits;
  410. }
  411. v = get_bits(&s->gb, n);
  412. if (v >= s->nb_block_sizes){
  413. av_log(s->avctx, AV_LOG_ERROR, "next_block_len_bits %d out of range\n", s->frame_len_bits - v);
  414. return -1;
  415. }
  416. s->next_block_len_bits = s->frame_len_bits - v;
  417. } else {
  418. /* fixed block len */
  419. s->next_block_len_bits = s->frame_len_bits;
  420. s->prev_block_len_bits = s->frame_len_bits;
  421. s->block_len_bits = s->frame_len_bits;
  422. }
  423. if (s->frame_len_bits - s->block_len_bits >= s->nb_block_sizes){
  424. av_log(s->avctx, AV_LOG_ERROR, "block_len_bits not initialized to a valid value\n");
  425. return -1;
  426. }
  427. /* now check if the block length is coherent with the frame length */
  428. s->block_len = 1 << s->block_len_bits;
  429. if ((s->block_pos + s->block_len) > s->frame_len){
  430. av_log(s->avctx, AV_LOG_ERROR, "frame_len overflow\n");
  431. return -1;
  432. }
  433. if (s->nb_channels == 2) {
  434. s->ms_stereo = get_bits1(&s->gb);
  435. }
  436. v = 0;
  437. for(ch = 0; ch < s->nb_channels; ch++) {
  438. a = get_bits1(&s->gb);
  439. s->channel_coded[ch] = a;
  440. v |= a;
  441. }
  442. bsize = s->frame_len_bits - s->block_len_bits;
  443. /* if no channel coded, no need to go further */
  444. /* XXX: fix potential framing problems */
  445. if (!v)
  446. goto next;
  447. /* read total gain and extract corresponding number of bits for
  448. coef escape coding */
  449. total_gain = 1;
  450. for(;;) {
  451. a = get_bits(&s->gb, 7);
  452. total_gain += a;
  453. if (a != 127)
  454. break;
  455. }
  456. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  457. /* compute number of coefficients */
  458. n = s->coefs_end[bsize] - s->coefs_start;
  459. for(ch = 0; ch < s->nb_channels; ch++)
  460. nb_coefs[ch] = n;
  461. /* complex coding */
  462. if (s->use_noise_coding) {
  463. for(ch = 0; ch < s->nb_channels; ch++) {
  464. if (s->channel_coded[ch]) {
  465. int i, n, a;
  466. n = s->exponent_high_sizes[bsize];
  467. for(i=0;i<n;i++) {
  468. a = get_bits1(&s->gb);
  469. s->high_band_coded[ch][i] = a;
  470. /* if noise coding, the coefficients are not transmitted */
  471. if (a)
  472. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  473. }
  474. }
  475. }
  476. for(ch = 0; ch < s->nb_channels; ch++) {
  477. if (s->channel_coded[ch]) {
  478. int i, n, val, code;
  479. n = s->exponent_high_sizes[bsize];
  480. val = (int)0x80000000;
  481. for(i=0;i<n;i++) {
  482. if (s->high_band_coded[ch][i]) {
  483. if (val == (int)0x80000000) {
  484. val = get_bits(&s->gb, 7) - 19;
  485. } else {
  486. code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
  487. if (code < 0){
  488. av_log(s->avctx, AV_LOG_ERROR, "hgain vlc invalid\n");
  489. return -1;
  490. }
  491. val += code - 18;
  492. }
  493. s->high_band_values[ch][i] = val;
  494. }
  495. }
  496. }
  497. }
  498. }
  499. /* exponents can be reused in short blocks. */
  500. if ((s->block_len_bits == s->frame_len_bits) ||
  501. get_bits1(&s->gb)) {
  502. for(ch = 0; ch < s->nb_channels; ch++) {
  503. if (s->channel_coded[ch]) {
  504. if (s->use_exp_vlc) {
  505. if (decode_exp_vlc(s, ch) < 0)
  506. return -1;
  507. } else {
  508. decode_exp_lsp(s, ch);
  509. }
  510. s->exponents_bsize[ch] = bsize;
  511. }
  512. }
  513. }
  514. /* parse spectral coefficients : just RLE encoding */
  515. for(ch = 0; ch < s->nb_channels; ch++) {
  516. if (s->channel_coded[ch]) {
  517. int tindex;
  518. WMACoef* ptr = &s->coefs1[ch][0];
  519. /* special VLC tables are used for ms stereo because
  520. there is potentially less energy there */
  521. tindex = (ch == 1 && s->ms_stereo);
  522. memset(ptr, 0, s->block_len * sizeof(WMACoef));
  523. ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
  524. s->level_table[tindex], s->run_table[tindex],
  525. 0, ptr, 0, nb_coefs[ch],
  526. s->block_len, s->frame_len_bits, coef_nb_bits);
  527. }
  528. if (s->version == 1 && s->nb_channels >= 2) {
  529. align_get_bits(&s->gb);
  530. }
  531. }
  532. /* normalize */
  533. {
  534. int n4 = s->block_len / 2;
  535. mdct_norm = 1.0 / (float)n4;
  536. if (s->version == 1) {
  537. mdct_norm *= sqrt(n4);
  538. }
  539. }
  540. /* finally compute the MDCT coefficients */
  541. for(ch = 0; ch < s->nb_channels; ch++) {
  542. if (s->channel_coded[ch]) {
  543. WMACoef *coefs1;
  544. float *coefs, *exponents, mult, mult1, noise;
  545. int i, j, n, n1, last_high_band, esize;
  546. float exp_power[HIGH_BAND_MAX_SIZE];
  547. coefs1 = s->coefs1[ch];
  548. exponents = s->exponents[ch];
  549. esize = s->exponents_bsize[ch];
  550. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  551. mult *= mdct_norm;
  552. coefs = s->coefs[ch];
  553. if (s->use_noise_coding) {
  554. mult1 = mult;
  555. /* very low freqs : noise */
  556. for(i = 0;i < s->coefs_start; i++) {
  557. *coefs++ = s->noise_table[s->noise_index] *
  558. exponents[i<<bsize>>esize] * mult1;
  559. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  560. }
  561. n1 = s->exponent_high_sizes[bsize];
  562. /* compute power of high bands */
  563. exponents = s->exponents[ch] +
  564. (s->high_band_start[bsize]<<bsize>>esize);
  565. last_high_band = 0; /* avoid warning */
  566. for(j=0;j<n1;j++) {
  567. n = s->exponent_high_bands[s->frame_len_bits -
  568. s->block_len_bits][j];
  569. if (s->high_band_coded[ch][j]) {
  570. float e2, v;
  571. e2 = 0;
  572. for(i = 0;i < n; i++) {
  573. v = exponents[i<<bsize>>esize];
  574. e2 += v * v;
  575. }
  576. exp_power[j] = e2 / n;
  577. last_high_band = j;
  578. tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
  579. }
  580. exponents += n<<bsize>>esize;
  581. }
  582. /* main freqs and high freqs */
  583. exponents = s->exponents[ch] + (s->coefs_start<<bsize>>esize);
  584. for(j=-1;j<n1;j++) {
  585. if (j < 0) {
  586. n = s->high_band_start[bsize] -
  587. s->coefs_start;
  588. } else {
  589. n = s->exponent_high_bands[s->frame_len_bits -
  590. s->block_len_bits][j];
  591. }
  592. if (j >= 0 && s->high_band_coded[ch][j]) {
  593. /* use noise with specified power */
  594. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  595. /* XXX: use a table */
  596. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  597. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  598. mult1 *= mdct_norm;
  599. for(i = 0;i < n; i++) {
  600. noise = s->noise_table[s->noise_index];
  601. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  602. *coefs++ = noise *
  603. exponents[i<<bsize>>esize] * mult1;
  604. }
  605. exponents += n<<bsize>>esize;
  606. } else {
  607. /* coded values + small noise */
  608. for(i = 0;i < n; i++) {
  609. noise = s->noise_table[s->noise_index];
  610. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  611. *coefs++ = ((*coefs1++) + noise) *
  612. exponents[i<<bsize>>esize] * mult;
  613. }
  614. exponents += n<<bsize>>esize;
  615. }
  616. }
  617. /* very high freqs : noise */
  618. n = s->block_len - s->coefs_end[bsize];
  619. mult1 = mult * exponents[((-1<<bsize))>>esize];
  620. for(i = 0; i < n; i++) {
  621. *coefs++ = s->noise_table[s->noise_index] * mult1;
  622. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  623. }
  624. } else {
  625. /* XXX: optimize more */
  626. for(i = 0;i < s->coefs_start; i++)
  627. *coefs++ = 0.0;
  628. n = nb_coefs[ch];
  629. for(i = 0;i < n; i++) {
  630. *coefs++ = coefs1[i] * exponents[i<<bsize>>esize] * mult;
  631. }
  632. n = s->block_len - s->coefs_end[bsize];
  633. for(i = 0;i < n; i++)
  634. *coefs++ = 0.0;
  635. }
  636. }
  637. }
  638. #ifdef TRACE
  639. for(ch = 0; ch < s->nb_channels; ch++) {
  640. if (s->channel_coded[ch]) {
  641. dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
  642. dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
  643. }
  644. }
  645. #endif
  646. if (s->ms_stereo && s->channel_coded[1]) {
  647. /* nominal case for ms stereo: we do it before mdct */
  648. /* no need to optimize this case because it should almost
  649. never happen */
  650. if (!s->channel_coded[0]) {
  651. tprintf(s->avctx, "rare ms-stereo case happened\n");
  652. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  653. s->channel_coded[0] = 1;
  654. }
  655. s->dsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
  656. }
  657. next:
  658. mdct = &s->mdct_ctx[bsize];
  659. for(ch = 0; ch < s->nb_channels; ch++) {
  660. int n4, index;
  661. n4 = s->block_len / 2;
  662. if(s->channel_coded[ch]){
  663. mdct->imdct_calc(mdct, s->output, s->coefs[ch]);
  664. }else if(!(s->ms_stereo && ch==1))
  665. memset(s->output, 0, sizeof(s->output));
  666. /* multiply by the window and add in the frame */
  667. index = (s->frame_len / 2) + s->block_pos - n4;
  668. wma_window(s, &s->frame_out[ch][index]);
  669. }
  670. /* update block number */
  671. s->block_num++;
  672. s->block_pos += s->block_len;
  673. if (s->block_pos >= s->frame_len)
  674. return 1;
  675. else
  676. return 0;
  677. }
  678. /* decode a frame of frame_len samples */
  679. static int wma_decode_frame(WMACodecContext *s, float **samples,
  680. int samples_offset)
  681. {
  682. int ret, ch;
  683. #ifdef TRACE
  684. tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
  685. #endif
  686. /* read each block */
  687. s->block_num = 0;
  688. s->block_pos = 0;
  689. for(;;) {
  690. ret = wma_decode_block(s);
  691. if (ret < 0)
  692. return -1;
  693. if (ret)
  694. break;
  695. }
  696. for (ch = 0; ch < s->nb_channels; ch++) {
  697. /* copy current block to output */
  698. memcpy(samples[ch] + samples_offset, s->frame_out[ch],
  699. s->frame_len * sizeof(*s->frame_out[ch]));
  700. /* prepare for next block */
  701. memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
  702. s->frame_len * sizeof(*s->frame_out[ch]));
  703. #ifdef TRACE
  704. dump_floats(s, "samples", 6, samples[ch] + samples_offset, s->frame_len);
  705. #endif
  706. }
  707. return 0;
  708. }
  709. static int wma_decode_superframe(AVCodecContext *avctx, void *data,
  710. int *got_frame_ptr, AVPacket *avpkt)
  711. {
  712. const uint8_t *buf = avpkt->data;
  713. int buf_size = avpkt->size;
  714. WMACodecContext *s = avctx->priv_data;
  715. int nb_frames, bit_offset, i, pos, len, ret;
  716. uint8_t *q;
  717. float **samples;
  718. int samples_offset;
  719. tprintf(avctx, "***decode_superframe:\n");
  720. if(buf_size==0){
  721. s->last_superframe_len = 0;
  722. return 0;
  723. }
  724. if (buf_size < s->block_align) {
  725. av_log(avctx, AV_LOG_ERROR,
  726. "Input packet size too small (%d < %d)\n",
  727. buf_size, s->block_align);
  728. return AVERROR_INVALIDDATA;
  729. }
  730. if(s->block_align)
  731. buf_size = s->block_align;
  732. init_get_bits(&s->gb, buf, buf_size*8);
  733. if (s->use_bit_reservoir) {
  734. /* read super frame header */
  735. skip_bits(&s->gb, 4); /* super frame index */
  736. nb_frames = get_bits(&s->gb, 4) - (s->last_superframe_len <= 0);
  737. } else {
  738. nb_frames = 1;
  739. }
  740. /* get output buffer */
  741. s->frame.nb_samples = nb_frames * s->frame_len;
  742. if ((ret = avctx->get_buffer(avctx, &s->frame)) < 0) {
  743. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  744. return ret;
  745. }
  746. samples = (float **)s->frame.extended_data;
  747. samples_offset = 0;
  748. if (s->use_bit_reservoir) {
  749. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  750. if (bit_offset > get_bits_left(&s->gb)) {
  751. av_log(avctx, AV_LOG_ERROR,
  752. "Invalid last frame bit offset %d > buf size %d (%d)\n",
  753. bit_offset, get_bits_left(&s->gb), buf_size);
  754. goto fail;
  755. }
  756. if (s->last_superframe_len > 0) {
  757. /* add bit_offset bits to last frame */
  758. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  759. MAX_CODED_SUPERFRAME_SIZE)
  760. goto fail;
  761. q = s->last_superframe + s->last_superframe_len;
  762. len = bit_offset;
  763. while (len > 7) {
  764. *q++ = (get_bits)(&s->gb, 8);
  765. len -= 8;
  766. }
  767. if (len > 0) {
  768. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  769. }
  770. memset(q, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  771. /* XXX: bit_offset bits into last frame */
  772. init_get_bits(&s->gb, s->last_superframe, s->last_superframe_len * 8 + bit_offset);
  773. /* skip unused bits */
  774. if (s->last_bitoffset > 0)
  775. skip_bits(&s->gb, s->last_bitoffset);
  776. /* this frame is stored in the last superframe and in the
  777. current one */
  778. if (wma_decode_frame(s, samples, samples_offset) < 0)
  779. goto fail;
  780. samples_offset += s->frame_len;
  781. nb_frames--;
  782. }
  783. /* read each frame starting from bit_offset */
  784. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  785. if (pos >= MAX_CODED_SUPERFRAME_SIZE * 8 || pos > buf_size * 8)
  786. return AVERROR_INVALIDDATA;
  787. init_get_bits(&s->gb, buf + (pos >> 3), (buf_size - (pos >> 3))*8);
  788. len = pos & 7;
  789. if (len > 0)
  790. skip_bits(&s->gb, len);
  791. s->reset_block_lengths = 1;
  792. for(i=0;i<nb_frames;i++) {
  793. if (wma_decode_frame(s, samples, samples_offset) < 0)
  794. goto fail;
  795. samples_offset += s->frame_len;
  796. }
  797. /* we copy the end of the frame in the last frame buffer */
  798. pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  799. s->last_bitoffset = pos & 7;
  800. pos >>= 3;
  801. len = buf_size - pos;
  802. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  803. av_log(s->avctx, AV_LOG_ERROR, "len %d invalid\n", len);
  804. goto fail;
  805. }
  806. s->last_superframe_len = len;
  807. memcpy(s->last_superframe, buf + pos, len);
  808. } else {
  809. /* single frame decode */
  810. if (wma_decode_frame(s, samples, samples_offset) < 0)
  811. goto fail;
  812. samples_offset += s->frame_len;
  813. }
  814. av_dlog(s->avctx, "%d %d %d %d outbytes:%td eaten:%d\n",
  815. s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len,
  816. (int8_t *)samples - (int8_t *)data, s->block_align);
  817. *got_frame_ptr = 1;
  818. *(AVFrame *)data = s->frame;
  819. return buf_size;
  820. fail:
  821. /* when error, we reset the bit reservoir */
  822. s->last_superframe_len = 0;
  823. return -1;
  824. }
  825. static av_cold void flush(AVCodecContext *avctx)
  826. {
  827. WMACodecContext *s = avctx->priv_data;
  828. s->last_bitoffset=
  829. s->last_superframe_len= 0;
  830. }
  831. #if CONFIG_WMAV1_DECODER
  832. AVCodec ff_wmav1_decoder = {
  833. .name = "wmav1",
  834. .type = AVMEDIA_TYPE_AUDIO,
  835. .id = AV_CODEC_ID_WMAV1,
  836. .priv_data_size = sizeof(WMACodecContext),
  837. .init = wma_decode_init,
  838. .close = ff_wma_end,
  839. .decode = wma_decode_superframe,
  840. .flush = flush,
  841. .capabilities = CODEC_CAP_DR1,
  842. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  843. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  844. AV_SAMPLE_FMT_NONE },
  845. };
  846. #endif
  847. #if CONFIG_WMAV2_DECODER
  848. AVCodec ff_wmav2_decoder = {
  849. .name = "wmav2",
  850. .type = AVMEDIA_TYPE_AUDIO,
  851. .id = AV_CODEC_ID_WMAV2,
  852. .priv_data_size = sizeof(WMACodecContext),
  853. .init = wma_decode_init,
  854. .close = ff_wma_end,
  855. .decode = wma_decode_superframe,
  856. .flush = flush,
  857. .capabilities = CODEC_CAP_DR1,
  858. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  859. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  860. AV_SAMPLE_FMT_NONE },
  861. };
  862. #endif