You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

328 lines
10KB

  1. /*
  2. * audio resampling
  3. * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * audio resampling
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #include "libavutil/avassert.h"
  27. #include "avcodec.h"
  28. #include "dsputil.h"
  29. #include "libavutil/common.h"
  30. #if FF_API_AVCODEC_RESAMPLE
  31. #ifndef CONFIG_RESAMPLE_HP
  32. #define FILTER_SHIFT 15
  33. #define FELEM int16_t
  34. #define FELEM2 int32_t
  35. #define FELEML int64_t
  36. #define FELEM_MAX INT16_MAX
  37. #define FELEM_MIN INT16_MIN
  38. #define WINDOW_TYPE 9
  39. #elif !defined(CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE)
  40. #define FILTER_SHIFT 30
  41. #define FELEM int32_t
  42. #define FELEM2 int64_t
  43. #define FELEML int64_t
  44. #define FELEM_MAX INT32_MAX
  45. #define FELEM_MIN INT32_MIN
  46. #define WINDOW_TYPE 12
  47. #else
  48. #define FILTER_SHIFT 0
  49. #define FELEM double
  50. #define FELEM2 double
  51. #define FELEML double
  52. #define WINDOW_TYPE 24
  53. #endif
  54. typedef struct AVResampleContext{
  55. const AVClass *av_class;
  56. FELEM *filter_bank;
  57. int filter_length;
  58. int ideal_dst_incr;
  59. int dst_incr;
  60. int index;
  61. int frac;
  62. int src_incr;
  63. int compensation_distance;
  64. int phase_shift;
  65. int phase_mask;
  66. int linear;
  67. }AVResampleContext;
  68. /**
  69. * 0th order modified bessel function of the first kind.
  70. */
  71. static double bessel(double x){
  72. double v=1;
  73. double lastv=0;
  74. double t=1;
  75. int i;
  76. x= x*x/4;
  77. for(i=1; v != lastv; i++){
  78. lastv=v;
  79. t *= x/(i*i);
  80. v += t;
  81. }
  82. return v;
  83. }
  84. /**
  85. * Build a polyphase filterbank.
  86. * @param factor resampling factor
  87. * @param scale wanted sum of coefficients for each filter
  88. * @param type 0->cubic, 1->blackman nuttall windowed sinc, 2..16->kaiser windowed sinc beta=2..16
  89. * @return 0 on success, negative on error
  90. */
  91. static int build_filter(FELEM *filter, double factor, int tap_count, int phase_count, int scale, int type){
  92. int ph, i;
  93. double x, y, w;
  94. double *tab = av_malloc(tap_count * sizeof(*tab));
  95. const int center= (tap_count-1)/2;
  96. if (!tab)
  97. return AVERROR(ENOMEM);
  98. /* if upsampling, only need to interpolate, no filter */
  99. if (factor > 1.0)
  100. factor = 1.0;
  101. for(ph=0;ph<phase_count;ph++) {
  102. double norm = 0;
  103. for(i=0;i<tap_count;i++) {
  104. x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
  105. if (x == 0) y = 1.0;
  106. else y = sin(x) / x;
  107. switch(type){
  108. case 0:{
  109. const float d= -0.5; //first order derivative = -0.5
  110. x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
  111. if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
  112. else y= d*(-4 + 8*x - 5*x*x + x*x*x);
  113. break;}
  114. case 1:
  115. w = 2.0*x / (factor*tap_count) + M_PI;
  116. y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
  117. break;
  118. default:
  119. w = 2.0*x / (factor*tap_count*M_PI);
  120. y *= bessel(type*sqrt(FFMAX(1-w*w, 0)));
  121. break;
  122. }
  123. tab[i] = y;
  124. norm += y;
  125. }
  126. /* normalize so that an uniform color remains the same */
  127. for(i=0;i<tap_count;i++) {
  128. #ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE
  129. filter[ph * tap_count + i] = tab[i] / norm;
  130. #else
  131. filter[ph * tap_count + i] = av_clip(lrintf(tab[i] * scale / norm), FELEM_MIN, FELEM_MAX);
  132. #endif
  133. }
  134. }
  135. #if 0
  136. {
  137. #define LEN 1024
  138. int j,k;
  139. double sine[LEN + tap_count];
  140. double filtered[LEN];
  141. double maxff=-2, minff=2, maxsf=-2, minsf=2;
  142. for(i=0; i<LEN; i++){
  143. double ss=0, sf=0, ff=0;
  144. for(j=0; j<LEN+tap_count; j++)
  145. sine[j]= cos(i*j*M_PI/LEN);
  146. for(j=0; j<LEN; j++){
  147. double sum=0;
  148. ph=0;
  149. for(k=0; k<tap_count; k++)
  150. sum += filter[ph * tap_count + k] * sine[k+j];
  151. filtered[j]= sum / (1<<FILTER_SHIFT);
  152. ss+= sine[j + center] * sine[j + center];
  153. ff+= filtered[j] * filtered[j];
  154. sf+= sine[j + center] * filtered[j];
  155. }
  156. ss= sqrt(2*ss/LEN);
  157. ff= sqrt(2*ff/LEN);
  158. sf= 2*sf/LEN;
  159. maxff= FFMAX(maxff, ff);
  160. minff= FFMIN(minff, ff);
  161. maxsf= FFMAX(maxsf, sf);
  162. minsf= FFMIN(minsf, sf);
  163. if(i%11==0){
  164. av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
  165. minff=minsf= 2;
  166. maxff=maxsf= -2;
  167. }
  168. }
  169. }
  170. #endif
  171. av_free(tab);
  172. return 0;
  173. }
  174. AVResampleContext *av_resample_init(int out_rate, int in_rate, int filter_size, int phase_shift, int linear, double cutoff){
  175. AVResampleContext *c= av_mallocz(sizeof(AVResampleContext));
  176. double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
  177. int phase_count= 1<<phase_shift;
  178. if (!c)
  179. return NULL;
  180. c->phase_shift= phase_shift;
  181. c->phase_mask= phase_count-1;
  182. c->linear= linear;
  183. c->filter_length= FFMAX((int)ceil(filter_size/factor), 1);
  184. c->filter_bank= av_mallocz(c->filter_length*(phase_count+1)*sizeof(FELEM));
  185. if (!c->filter_bank)
  186. goto error;
  187. if (build_filter(c->filter_bank, factor, c->filter_length, phase_count, 1<<FILTER_SHIFT, WINDOW_TYPE))
  188. goto error;
  189. memcpy(&c->filter_bank[c->filter_length*phase_count+1], c->filter_bank, (c->filter_length-1)*sizeof(FELEM));
  190. c->filter_bank[c->filter_length*phase_count]= c->filter_bank[c->filter_length - 1];
  191. if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2))
  192. goto error;
  193. c->ideal_dst_incr= c->dst_incr;
  194. c->index= -phase_count*((c->filter_length-1)/2);
  195. return c;
  196. error:
  197. av_free(c->filter_bank);
  198. av_free(c);
  199. return NULL;
  200. }
  201. void av_resample_close(AVResampleContext *c){
  202. av_freep(&c->filter_bank);
  203. av_freep(&c);
  204. }
  205. void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){
  206. // sample_delta += (c->ideal_dst_incr - c->dst_incr)*(int64_t)c->compensation_distance / c->ideal_dst_incr;
  207. c->compensation_distance= compensation_distance;
  208. c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
  209. }
  210. int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){
  211. int dst_index, i;
  212. int index= c->index;
  213. int frac= c->frac;
  214. int dst_incr_frac= c->dst_incr % c->src_incr;
  215. int dst_incr= c->dst_incr / c->src_incr;
  216. int compensation_distance= c->compensation_distance;
  217. if(compensation_distance == 0 && c->filter_length == 1 && c->phase_shift==0){
  218. int64_t index2= ((int64_t)index)<<32;
  219. int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
  220. dst_size= FFMIN(dst_size, (src_size-1-index) * (int64_t)c->src_incr / c->dst_incr);
  221. for(dst_index=0; dst_index < dst_size; dst_index++){
  222. dst[dst_index] = src[index2>>32];
  223. index2 += incr;
  224. }
  225. index += dst_index * dst_incr;
  226. index += (frac + dst_index * (int64_t)dst_incr_frac) / c->src_incr;
  227. frac = (frac + dst_index * (int64_t)dst_incr_frac) % c->src_incr;
  228. }else{
  229. for(dst_index=0; dst_index < dst_size; dst_index++){
  230. FELEM *filter= c->filter_bank + c->filter_length*(index & c->phase_mask);
  231. int sample_index= index >> c->phase_shift;
  232. FELEM2 val=0;
  233. if(sample_index < 0){
  234. for(i=0; i<c->filter_length; i++)
  235. val += src[FFABS(sample_index + i) % src_size] * filter[i];
  236. }else if(sample_index + c->filter_length > src_size){
  237. break;
  238. }else if(c->linear){
  239. FELEM2 v2=0;
  240. for(i=0; i<c->filter_length; i++){
  241. val += src[sample_index + i] * (FELEM2)filter[i];
  242. v2 += src[sample_index + i] * (FELEM2)filter[i + c->filter_length];
  243. }
  244. val+=(v2-val)*(FELEML)frac / c->src_incr;
  245. }else{
  246. for(i=0; i<c->filter_length; i++){
  247. val += src[sample_index + i] * (FELEM2)filter[i];
  248. }
  249. }
  250. #ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE
  251. dst[dst_index] = av_clip_int16(lrintf(val));
  252. #else
  253. val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;
  254. dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val;
  255. #endif
  256. frac += dst_incr_frac;
  257. index += dst_incr;
  258. if(frac >= c->src_incr){
  259. frac -= c->src_incr;
  260. index++;
  261. }
  262. if(dst_index + 1 == compensation_distance){
  263. compensation_distance= 0;
  264. dst_incr_frac= c->ideal_dst_incr % c->src_incr;
  265. dst_incr= c->ideal_dst_incr / c->src_incr;
  266. }
  267. }
  268. }
  269. *consumed= FFMAX(index, 0) >> c->phase_shift;
  270. if(index>=0) index &= c->phase_mask;
  271. if(compensation_distance){
  272. compensation_distance -= dst_index;
  273. av_assert2(compensation_distance > 0);
  274. }
  275. if(update_ctx){
  276. c->frac= frac;
  277. c->index= index;
  278. c->dst_incr= dst_incr_frac + c->src_incr*dst_incr;
  279. c->compensation_distance= compensation_distance;
  280. }
  281. #if 0
  282. if(update_ctx && !c->compensation_distance){
  283. #undef rand
  284. av_resample_compensate(c, rand() % (8000*2) - 8000, 8000*2);
  285. av_log(NULL, AV_LOG_DEBUG, "%d %d %d\n", c->dst_incr, c->ideal_dst_incr, c->compensation_distance);
  286. }
  287. #endif
  288. return dst_index;
  289. }
  290. #endif