You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

955 lines
32KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Rate control for video encoders.
  25. */
  26. #include "libavutil/intmath.h"
  27. #include "avcodec.h"
  28. #include "dsputil.h"
  29. #include "ratecontrol.h"
  30. #include "mpegvideo.h"
  31. #include "libavutil/eval.h"
  32. #undef NDEBUG // Always check asserts, the speed effect is far too small to disable them.
  33. #include <assert.h>
  34. #ifndef M_E
  35. #define M_E 2.718281828
  36. #endif
  37. static int init_pass2(MpegEncContext *s);
  38. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num);
  39. void ff_write_pass1_stats(MpegEncContext *s){
  40. snprintf(s->avctx->stats_out, 256, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n",
  41. s->current_picture_ptr->f.display_picture_number, s->current_picture_ptr->f.coded_picture_number, s->pict_type,
  42. s->current_picture.f.quality, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits,
  43. s->f_code, s->b_code, s->current_picture.mc_mb_var_sum, s->current_picture.mb_var_sum, s->i_count, s->skip_count, s->header_bits);
  44. }
  45. static double get_fps(AVCodecContext *avctx){
  46. return 1.0 / av_q2d(avctx->time_base) / FFMAX(avctx->ticks_per_frame, 1);
  47. }
  48. static inline double qp2bits(RateControlEntry *rce, double qp){
  49. if(qp<=0.0){
  50. av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
  51. }
  52. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp;
  53. }
  54. static inline double bits2qp(RateControlEntry *rce, double bits){
  55. if(bits<0.9){
  56. av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
  57. }
  58. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits;
  59. }
  60. int ff_rate_control_init(MpegEncContext *s)
  61. {
  62. RateControlContext *rcc= &s->rc_context;
  63. int i, res;
  64. static const char * const const_names[]={
  65. "PI",
  66. "E",
  67. "iTex",
  68. "pTex",
  69. "tex",
  70. "mv",
  71. "fCode",
  72. "iCount",
  73. "mcVar",
  74. "var",
  75. "isI",
  76. "isP",
  77. "isB",
  78. "avgQP",
  79. "qComp",
  80. /* "lastIQP",
  81. "lastPQP",
  82. "lastBQP",
  83. "nextNonBQP",*/
  84. "avgIITex",
  85. "avgPITex",
  86. "avgPPTex",
  87. "avgBPTex",
  88. "avgTex",
  89. NULL
  90. };
  91. static double (* const func1[])(void *, double)={
  92. (void *)bits2qp,
  93. (void *)qp2bits,
  94. NULL
  95. };
  96. static const char * const func1_names[]={
  97. "bits2qp",
  98. "qp2bits",
  99. NULL
  100. };
  101. emms_c();
  102. if (!s->avctx->rc_max_available_vbv_use && s->avctx->rc_buffer_size) {
  103. if (s->avctx->rc_max_rate) {
  104. s->avctx->rc_max_available_vbv_use = av_clipf(s->avctx->rc_max_rate/(s->avctx->rc_buffer_size*get_fps(s->avctx)), 1.0/0.3, 1.0);
  105. } else
  106. s->avctx->rc_max_available_vbv_use = 1.0;
  107. }
  108. res = av_expr_parse(&rcc->rc_eq_eval, s->avctx->rc_eq ? s->avctx->rc_eq : "tex^qComp", const_names, func1_names, func1, NULL, NULL, 0, s->avctx);
  109. if (res < 0) {
  110. av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\"\n", s->avctx->rc_eq);
  111. return res;
  112. }
  113. for(i=0; i<5; i++){
  114. rcc->pred[i].coeff= FF_QP2LAMBDA * 7.0;
  115. rcc->pred[i].count= 1.0;
  116. rcc->pred[i].decay= 0.4;
  117. rcc->i_cplx_sum [i]=
  118. rcc->p_cplx_sum [i]=
  119. rcc->mv_bits_sum[i]=
  120. rcc->qscale_sum [i]=
  121. rcc->frame_count[i]= 1; // 1 is better because of 1/0 and such
  122. rcc->last_qscale_for[i]=FF_QP2LAMBDA * 5;
  123. }
  124. rcc->buffer_index= s->avctx->rc_initial_buffer_occupancy;
  125. if (!rcc->buffer_index)
  126. rcc->buffer_index = s->avctx->rc_buffer_size * 3 / 4;
  127. if(s->flags&CODEC_FLAG_PASS2){
  128. int i;
  129. char *p;
  130. /* find number of pics */
  131. p= s->avctx->stats_in;
  132. for(i=-1; p; i++){
  133. p= strchr(p+1, ';');
  134. }
  135. i+= s->max_b_frames;
  136. if(i<=0 || i>=INT_MAX / sizeof(RateControlEntry))
  137. return -1;
  138. rcc->entry = av_mallocz(i*sizeof(RateControlEntry));
  139. rcc->num_entries= i;
  140. /* init all to skipped p frames (with b frames we might have a not encoded frame at the end FIXME) */
  141. for(i=0; i<rcc->num_entries; i++){
  142. RateControlEntry *rce= &rcc->entry[i];
  143. rce->pict_type= rce->new_pict_type=AV_PICTURE_TYPE_P;
  144. rce->qscale= rce->new_qscale=FF_QP2LAMBDA * 2;
  145. rce->misc_bits= s->mb_num + 10;
  146. rce->mb_var_sum= s->mb_num*100;
  147. }
  148. /* read stats */
  149. p= s->avctx->stats_in;
  150. for(i=0; i<rcc->num_entries - s->max_b_frames; i++){
  151. RateControlEntry *rce;
  152. int picture_number;
  153. int e;
  154. char *next;
  155. next= strchr(p, ';');
  156. if(next){
  157. (*next)=0; //sscanf in unbelievably slow on looong strings //FIXME copy / do not write
  158. next++;
  159. }
  160. e= sscanf(p, " in:%d ", &picture_number);
  161. assert(picture_number >= 0);
  162. assert(picture_number < rcc->num_entries);
  163. rce= &rcc->entry[picture_number];
  164. e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
  165. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits,
  166. &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count, &rce->skip_count, &rce->header_bits);
  167. if(e!=14){
  168. av_log(s->avctx, AV_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e);
  169. return -1;
  170. }
  171. p= next;
  172. }
  173. if(init_pass2(s) < 0) return -1;
  174. //FIXME maybe move to end
  175. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) {
  176. #if CONFIG_LIBXVID
  177. return ff_xvid_rate_control_init(s);
  178. #else
  179. av_log(s->avctx, AV_LOG_ERROR, "Xvid ratecontrol requires libavcodec compiled with Xvid support.\n");
  180. return -1;
  181. #endif
  182. }
  183. }
  184. if(!(s->flags&CODEC_FLAG_PASS2)){
  185. rcc->short_term_qsum=0.001;
  186. rcc->short_term_qcount=0.001;
  187. rcc->pass1_rc_eq_output_sum= 0.001;
  188. rcc->pass1_wanted_bits=0.001;
  189. if(s->avctx->qblur > 1.0){
  190. av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
  191. return -1;
  192. }
  193. /* init stuff with the user specified complexity */
  194. if(s->avctx->rc_initial_cplx){
  195. for(i=0; i<60*30; i++){
  196. double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num;
  197. RateControlEntry rce;
  198. if (i%((s->gop_size+3)/4)==0) rce.pict_type= AV_PICTURE_TYPE_I;
  199. else if(i%(s->max_b_frames+1)) rce.pict_type= AV_PICTURE_TYPE_B;
  200. else rce.pict_type= AV_PICTURE_TYPE_P;
  201. rce.new_pict_type= rce.pict_type;
  202. rce.mc_mb_var_sum= bits*s->mb_num/100000;
  203. rce.mb_var_sum = s->mb_num;
  204. rce.qscale = FF_QP2LAMBDA * 2;
  205. rce.f_code = 2;
  206. rce.b_code = 1;
  207. rce.misc_bits= 1;
  208. if(s->pict_type== AV_PICTURE_TYPE_I){
  209. rce.i_count = s->mb_num;
  210. rce.i_tex_bits= bits;
  211. rce.p_tex_bits= 0;
  212. rce.mv_bits= 0;
  213. }else{
  214. rce.i_count = 0; //FIXME we do know this approx
  215. rce.i_tex_bits= 0;
  216. rce.p_tex_bits= bits*0.9;
  217. rce.mv_bits= bits*0.1;
  218. }
  219. rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale;
  220. rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale;
  221. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  222. rcc->frame_count[rce.pict_type] ++;
  223. get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i);
  224. rcc->pass1_wanted_bits+= s->bit_rate/get_fps(s->avctx); //FIXME misbehaves a little for variable fps
  225. }
  226. }
  227. }
  228. return 0;
  229. }
  230. void ff_rate_control_uninit(MpegEncContext *s)
  231. {
  232. RateControlContext *rcc= &s->rc_context;
  233. emms_c();
  234. av_expr_free(rcc->rc_eq_eval);
  235. av_freep(&rcc->entry);
  236. #if CONFIG_LIBXVID
  237. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  238. ff_xvid_rate_control_uninit(s);
  239. #endif
  240. }
  241. int ff_vbv_update(MpegEncContext *s, int frame_size){
  242. RateControlContext *rcc= &s->rc_context;
  243. const double fps= get_fps(s->avctx);
  244. const int buffer_size= s->avctx->rc_buffer_size;
  245. const double min_rate= s->avctx->rc_min_rate/fps;
  246. const double max_rate= s->avctx->rc_max_rate/fps;
  247. av_dlog(s, "%d %f %d %f %f\n",
  248. buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
  249. if(buffer_size){
  250. int left;
  251. rcc->buffer_index-= frame_size;
  252. if(rcc->buffer_index < 0){
  253. av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
  254. rcc->buffer_index= 0;
  255. }
  256. left= buffer_size - rcc->buffer_index - 1;
  257. rcc->buffer_index += av_clip(left, min_rate, max_rate);
  258. if(rcc->buffer_index > buffer_size){
  259. int stuffing= ceil((rcc->buffer_index - buffer_size)/8);
  260. if(stuffing < 4 && s->codec_id == AV_CODEC_ID_MPEG4)
  261. stuffing=4;
  262. rcc->buffer_index -= 8*stuffing;
  263. if(s->avctx->debug & FF_DEBUG_RC)
  264. av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
  265. return stuffing;
  266. }
  267. }
  268. return 0;
  269. }
  270. /**
  271. * Modify the bitrate curve from pass1 for one frame.
  272. */
  273. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){
  274. RateControlContext *rcc= &s->rc_context;
  275. AVCodecContext *a= s->avctx;
  276. double q, bits;
  277. const int pict_type= rce->new_pict_type;
  278. const double mb_num= s->mb_num;
  279. int i;
  280. double const_values[]={
  281. M_PI,
  282. M_E,
  283. rce->i_tex_bits*rce->qscale,
  284. rce->p_tex_bits*rce->qscale,
  285. (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale,
  286. rce->mv_bits/mb_num,
  287. rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code)*0.5 : rce->f_code,
  288. rce->i_count/mb_num,
  289. rce->mc_mb_var_sum/mb_num,
  290. rce->mb_var_sum/mb_num,
  291. rce->pict_type == AV_PICTURE_TYPE_I,
  292. rce->pict_type == AV_PICTURE_TYPE_P,
  293. rce->pict_type == AV_PICTURE_TYPE_B,
  294. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  295. a->qcompress,
  296. /* rcc->last_qscale_for[AV_PICTURE_TYPE_I],
  297. rcc->last_qscale_for[AV_PICTURE_TYPE_P],
  298. rcc->last_qscale_for[AV_PICTURE_TYPE_B],
  299. rcc->next_non_b_qscale,*/
  300. rcc->i_cplx_sum[AV_PICTURE_TYPE_I] / (double)rcc->frame_count[AV_PICTURE_TYPE_I],
  301. rcc->i_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  302. rcc->p_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  303. rcc->p_cplx_sum[AV_PICTURE_TYPE_B] / (double)rcc->frame_count[AV_PICTURE_TYPE_B],
  304. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  305. 0
  306. };
  307. bits = av_expr_eval(rcc->rc_eq_eval, const_values, rce);
  308. if (isnan(bits)) {
  309. av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->avctx->rc_eq);
  310. return -1;
  311. }
  312. rcc->pass1_rc_eq_output_sum+= bits;
  313. bits*=rate_factor;
  314. if(bits<0.0) bits=0.0;
  315. bits+= 1.0; //avoid 1/0 issues
  316. /* user override */
  317. for(i=0; i<s->avctx->rc_override_count; i++){
  318. RcOverride *rco= s->avctx->rc_override;
  319. if(rco[i].start_frame > frame_num) continue;
  320. if(rco[i].end_frame < frame_num) continue;
  321. if(rco[i].qscale)
  322. bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
  323. else
  324. bits*= rco[i].quality_factor;
  325. }
  326. q= bits2qp(rce, bits);
  327. /* I/B difference */
  328. if (pict_type==AV_PICTURE_TYPE_I && s->avctx->i_quant_factor<0.0)
  329. q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  330. else if(pict_type==AV_PICTURE_TYPE_B && s->avctx->b_quant_factor<0.0)
  331. q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  332. if(q<1) q=1;
  333. return q;
  334. }
  335. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){
  336. RateControlContext *rcc= &s->rc_context;
  337. AVCodecContext *a= s->avctx;
  338. const int pict_type= rce->new_pict_type;
  339. const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P];
  340. const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type];
  341. if (pict_type==AV_PICTURE_TYPE_I && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==AV_PICTURE_TYPE_P))
  342. q= last_p_q *FFABS(a->i_quant_factor) + a->i_quant_offset;
  343. else if(pict_type==AV_PICTURE_TYPE_B && a->b_quant_factor>0.0)
  344. q= last_non_b_q* a->b_quant_factor + a->b_quant_offset;
  345. if(q<1) q=1;
  346. /* last qscale / qdiff stuff */
  347. if(rcc->last_non_b_pict_type==pict_type || pict_type!=AV_PICTURE_TYPE_I){
  348. double last_q= rcc->last_qscale_for[pict_type];
  349. const int maxdiff= FF_QP2LAMBDA * a->max_qdiff;
  350. if (q > last_q + maxdiff) q= last_q + maxdiff;
  351. else if(q < last_q - maxdiff) q= last_q - maxdiff;
  352. }
  353. rcc->last_qscale_for[pict_type]= q; //Note we cannot do that after blurring
  354. if(pict_type!=AV_PICTURE_TYPE_B)
  355. rcc->last_non_b_pict_type= pict_type;
  356. return q;
  357. }
  358. /**
  359. * Get the qmin & qmax for pict_type.
  360. */
  361. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){
  362. int qmin= s->avctx->lmin;
  363. int qmax= s->avctx->lmax;
  364. assert(qmin <= qmax);
  365. if(pict_type==AV_PICTURE_TYPE_B){
  366. qmin= (int)(qmin*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  367. qmax= (int)(qmax*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  368. }else if(pict_type==AV_PICTURE_TYPE_I){
  369. qmin= (int)(qmin*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  370. qmax= (int)(qmax*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  371. }
  372. qmin= av_clip(qmin, 1, FF_LAMBDA_MAX);
  373. qmax= av_clip(qmax, 1, FF_LAMBDA_MAX);
  374. if(qmax<qmin) qmax= qmin;
  375. *qmin_ret= qmin;
  376. *qmax_ret= qmax;
  377. }
  378. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){
  379. RateControlContext *rcc= &s->rc_context;
  380. int qmin, qmax;
  381. const int pict_type= rce->new_pict_type;
  382. const double buffer_size= s->avctx->rc_buffer_size;
  383. const double fps= get_fps(s->avctx);
  384. const double min_rate= s->avctx->rc_min_rate / fps;
  385. const double max_rate= s->avctx->rc_max_rate / fps;
  386. get_qminmax(&qmin, &qmax, s, pict_type);
  387. /* modulation */
  388. if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==AV_PICTURE_TYPE_P)
  389. q*= s->avctx->rc_qmod_amp;
  390. /* buffer overflow/underflow protection */
  391. if(buffer_size){
  392. double expected_size= rcc->buffer_index;
  393. double q_limit;
  394. if(min_rate){
  395. double d= 2*(buffer_size - expected_size)/buffer_size;
  396. if(d>1.0) d=1.0;
  397. else if(d<0.0001) d=0.0001;
  398. q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  399. q_limit= bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index) * s->avctx->rc_min_vbv_overflow_use, 1));
  400. if(q > q_limit){
  401. if(s->avctx->debug&FF_DEBUG_RC){
  402. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  403. }
  404. q= q_limit;
  405. }
  406. }
  407. if(max_rate){
  408. double d= 2*expected_size/buffer_size;
  409. if(d>1.0) d=1.0;
  410. else if(d<0.0001) d=0.0001;
  411. q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  412. q_limit= bits2qp(rce, FFMAX(rcc->buffer_index * s->avctx->rc_max_available_vbv_use, 1));
  413. if(q < q_limit){
  414. if(s->avctx->debug&FF_DEBUG_RC){
  415. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  416. }
  417. q= q_limit;
  418. }
  419. }
  420. }
  421. av_dlog(s, "q:%f max:%f min:%f size:%f index:%f agr:%f\n",
  422. q, max_rate, min_rate, buffer_size, rcc->buffer_index,
  423. s->avctx->rc_buffer_aggressivity);
  424. if(s->avctx->rc_qsquish==0.0 || qmin==qmax){
  425. if (q<qmin) q=qmin;
  426. else if(q>qmax) q=qmax;
  427. }else{
  428. double min2= log(qmin);
  429. double max2= log(qmax);
  430. q= log(q);
  431. q= (q - min2)/(max2-min2) - 0.5;
  432. q*= -4.0;
  433. q= 1.0/(1.0 + exp(q));
  434. q= q*(max2-min2) + min2;
  435. q= exp(q);
  436. }
  437. return q;
  438. }
  439. //----------------------------------
  440. // 1 Pass Code
  441. static double predict_size(Predictor *p, double q, double var)
  442. {
  443. return p->coeff*var / (q*p->count);
  444. }
  445. static void update_predictor(Predictor *p, double q, double var, double size)
  446. {
  447. double new_coeff= size*q / (var + 1);
  448. if(var<10) return;
  449. p->count*= p->decay;
  450. p->coeff*= p->decay;
  451. p->count++;
  452. p->coeff+= new_coeff;
  453. }
  454. static void adaptive_quantization(MpegEncContext *s, double q){
  455. int i;
  456. const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0);
  457. const float dark_masking= s->avctx->dark_masking / (128.0*128.0);
  458. const float temp_cplx_masking= s->avctx->temporal_cplx_masking;
  459. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  460. const float p_masking = s->avctx->p_masking;
  461. const float border_masking = s->avctx->border_masking;
  462. float bits_sum= 0.0;
  463. float cplx_sum= 0.0;
  464. float *cplx_tab = s->cplx_tab;
  465. float *bits_tab = s->bits_tab;
  466. const int qmin= s->avctx->mb_lmin;
  467. const int qmax= s->avctx->mb_lmax;
  468. Picture * const pic= &s->current_picture;
  469. const int mb_width = s->mb_width;
  470. const int mb_height = s->mb_height;
  471. for(i=0; i<s->mb_num; i++){
  472. const int mb_xy= s->mb_index2xy[i];
  473. float temp_cplx= sqrt(pic->mc_mb_var[mb_xy]); //FIXME merge in pow()
  474. float spat_cplx= sqrt(pic->mb_var[mb_xy]);
  475. const int lumi= pic->mb_mean[mb_xy];
  476. float bits, cplx, factor;
  477. int mb_x = mb_xy % s->mb_stride;
  478. int mb_y = mb_xy / s->mb_stride;
  479. int mb_distance;
  480. float mb_factor = 0.0;
  481. if(spat_cplx < 4) spat_cplx= 4; //FIXME finetune
  482. if(temp_cplx < 4) temp_cplx= 4; //FIXME finetune
  483. if((s->mb_type[mb_xy]&CANDIDATE_MB_TYPE_INTRA)){//FIXME hq mode
  484. cplx= spat_cplx;
  485. factor= 1.0 + p_masking;
  486. }else{
  487. cplx= temp_cplx;
  488. factor= pow(temp_cplx, - temp_cplx_masking);
  489. }
  490. factor*=pow(spat_cplx, - spatial_cplx_masking);
  491. if(lumi>127)
  492. factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking);
  493. else
  494. factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking);
  495. if(mb_x < mb_width/5){
  496. mb_distance = mb_width/5 - mb_x;
  497. mb_factor = (float)mb_distance / (float)(mb_width/5);
  498. }else if(mb_x > 4*mb_width/5){
  499. mb_distance = mb_x - 4*mb_width/5;
  500. mb_factor = (float)mb_distance / (float)(mb_width/5);
  501. }
  502. if(mb_y < mb_height/5){
  503. mb_distance = mb_height/5 - mb_y;
  504. mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
  505. }else if(mb_y > 4*mb_height/5){
  506. mb_distance = mb_y - 4*mb_height/5;
  507. mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
  508. }
  509. factor*= 1.0 - border_masking*mb_factor;
  510. if(factor<0.00001) factor= 0.00001;
  511. bits= cplx*factor;
  512. cplx_sum+= cplx;
  513. bits_sum+= bits;
  514. cplx_tab[i]= cplx;
  515. bits_tab[i]= bits;
  516. }
  517. /* handle qmin/qmax clipping */
  518. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  519. float factor= bits_sum/cplx_sum;
  520. for(i=0; i<s->mb_num; i++){
  521. float newq= q*cplx_tab[i]/bits_tab[i];
  522. newq*= factor;
  523. if (newq > qmax){
  524. bits_sum -= bits_tab[i];
  525. cplx_sum -= cplx_tab[i]*q/qmax;
  526. }
  527. else if(newq < qmin){
  528. bits_sum -= bits_tab[i];
  529. cplx_sum -= cplx_tab[i]*q/qmin;
  530. }
  531. }
  532. if(bits_sum < 0.001) bits_sum= 0.001;
  533. if(cplx_sum < 0.001) cplx_sum= 0.001;
  534. }
  535. for(i=0; i<s->mb_num; i++){
  536. const int mb_xy= s->mb_index2xy[i];
  537. float newq= q*cplx_tab[i]/bits_tab[i];
  538. int intq;
  539. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  540. newq*= bits_sum/cplx_sum;
  541. }
  542. intq= (int)(newq + 0.5);
  543. if (intq > qmax) intq= qmax;
  544. else if(intq < qmin) intq= qmin;
  545. s->lambda_table[mb_xy]= intq;
  546. }
  547. }
  548. void ff_get_2pass_fcode(MpegEncContext *s){
  549. RateControlContext *rcc= &s->rc_context;
  550. int picture_number= s->picture_number;
  551. RateControlEntry *rce;
  552. rce= &rcc->entry[picture_number];
  553. s->f_code= rce->f_code;
  554. s->b_code= rce->b_code;
  555. }
  556. //FIXME rd or at least approx for dquant
  557. float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
  558. {
  559. float q;
  560. int qmin, qmax;
  561. float br_compensation;
  562. double diff;
  563. double short_term_q;
  564. double fps;
  565. int picture_number= s->picture_number;
  566. int64_t wanted_bits;
  567. RateControlContext *rcc= &s->rc_context;
  568. AVCodecContext *a= s->avctx;
  569. RateControlEntry local_rce, *rce;
  570. double bits;
  571. double rate_factor;
  572. int var;
  573. const int pict_type= s->pict_type;
  574. Picture * const pic= &s->current_picture;
  575. emms_c();
  576. #if CONFIG_LIBXVID
  577. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  578. return ff_xvid_rate_estimate_qscale(s, dry_run);
  579. #endif
  580. get_qminmax(&qmin, &qmax, s, pict_type);
  581. fps= get_fps(s->avctx);
  582. /* update predictors */
  583. if(picture_number>2 && !dry_run){
  584. const int last_var= s->last_pict_type == AV_PICTURE_TYPE_I ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum;
  585. av_assert1(s->frame_bits >= s->stuffing_bits);
  586. update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits - s->stuffing_bits);
  587. }
  588. if(s->flags&CODEC_FLAG_PASS2){
  589. assert(picture_number>=0);
  590. assert(picture_number<rcc->num_entries);
  591. rce= &rcc->entry[picture_number];
  592. wanted_bits= rce->expected_bits;
  593. }else{
  594. Picture *dts_pic;
  595. rce= &local_rce;
  596. //FIXME add a dts field to AVFrame and ensure its set and use it here instead of reordering
  597. //but the reordering is simpler for now until h.264 b pyramid must be handeld
  598. if(s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
  599. dts_pic= s->current_picture_ptr;
  600. else
  601. dts_pic= s->last_picture_ptr;
  602. if (!dts_pic || dts_pic->f.pts == AV_NOPTS_VALUE)
  603. wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
  604. else
  605. wanted_bits = (uint64_t)(s->bit_rate*(double)dts_pic->f.pts / fps);
  606. }
  607. diff= s->total_bits - wanted_bits;
  608. br_compensation= (a->bit_rate_tolerance - diff)/a->bit_rate_tolerance;
  609. if(br_compensation<=0.0) br_compensation=0.001;
  610. var= pict_type == AV_PICTURE_TYPE_I ? pic->mb_var_sum : pic->mc_mb_var_sum;
  611. short_term_q = 0; /* avoid warning */
  612. if(s->flags&CODEC_FLAG_PASS2){
  613. if(pict_type!=AV_PICTURE_TYPE_I)
  614. assert(pict_type == rce->new_pict_type);
  615. q= rce->new_qscale / br_compensation;
  616. av_dlog(s, "%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale,
  617. br_compensation, s->frame_bits, var, pict_type);
  618. }else{
  619. rce->pict_type=
  620. rce->new_pict_type= pict_type;
  621. rce->mc_mb_var_sum= pic->mc_mb_var_sum;
  622. rce->mb_var_sum = pic-> mb_var_sum;
  623. rce->qscale = FF_QP2LAMBDA * 2;
  624. rce->f_code = s->f_code;
  625. rce->b_code = s->b_code;
  626. rce->misc_bits= 1;
  627. bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  628. if(pict_type== AV_PICTURE_TYPE_I){
  629. rce->i_count = s->mb_num;
  630. rce->i_tex_bits= bits;
  631. rce->p_tex_bits= 0;
  632. rce->mv_bits= 0;
  633. }else{
  634. rce->i_count = 0; //FIXME we do know this approx
  635. rce->i_tex_bits= 0;
  636. rce->p_tex_bits= bits*0.9;
  637. rce->mv_bits= bits*0.1;
  638. }
  639. rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale;
  640. rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale;
  641. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  642. rcc->frame_count[pict_type] ++;
  643. bits= rce->i_tex_bits + rce->p_tex_bits;
  644. rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation;
  645. q= get_qscale(s, rce, rate_factor, picture_number);
  646. if (q < 0)
  647. return -1;
  648. assert(q>0.0);
  649. q= get_diff_limited_q(s, rce, q);
  650. assert(q>0.0);
  651. if(pict_type==AV_PICTURE_TYPE_P || s->intra_only){ //FIXME type dependent blur like in 2-pass
  652. rcc->short_term_qsum*=a->qblur;
  653. rcc->short_term_qcount*=a->qblur;
  654. rcc->short_term_qsum+= q;
  655. rcc->short_term_qcount++;
  656. q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount;
  657. }
  658. assert(q>0.0);
  659. q= modify_qscale(s, rce, q, picture_number);
  660. rcc->pass1_wanted_bits+= s->bit_rate/fps;
  661. assert(q>0.0);
  662. }
  663. if(s->avctx->debug&FF_DEBUG_RC){
  664. av_log(s->avctx, AV_LOG_DEBUG, "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f size:%d var:%d/%d br:%d fps:%d\n",
  665. av_get_picture_type_char(pict_type), qmin, q, qmax, picture_number, (int)wanted_bits/1000, (int)s->total_bits/1000,
  666. br_compensation, short_term_q, s->frame_bits, pic->mb_var_sum, pic->mc_mb_var_sum, s->bit_rate/1000, (int)fps
  667. );
  668. }
  669. if (q<qmin) q=qmin;
  670. else if(q>qmax) q=qmax;
  671. if(s->adaptive_quant)
  672. adaptive_quantization(s, q);
  673. else
  674. q= (int)(q + 0.5);
  675. if(!dry_run){
  676. rcc->last_qscale= q;
  677. rcc->last_mc_mb_var_sum= pic->mc_mb_var_sum;
  678. rcc->last_mb_var_sum= pic->mb_var_sum;
  679. }
  680. return q;
  681. }
  682. //----------------------------------------------
  683. // 2-Pass code
  684. static int init_pass2(MpegEncContext *s)
  685. {
  686. RateControlContext *rcc= &s->rc_context;
  687. AVCodecContext *a= s->avctx;
  688. int i, toobig;
  689. double fps= get_fps(s->avctx);
  690. double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1
  691. uint64_t const_bits[5]={0,0,0,0,0}; // quantizer independent bits
  692. uint64_t all_const_bits;
  693. uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
  694. double rate_factor=0;
  695. double step;
  696. //int last_i_frame=-10000000;
  697. const int filter_size= (int)(a->qblur*4) | 1;
  698. double expected_bits;
  699. double *qscale, *blurred_qscale, qscale_sum;
  700. /* find complexity & const_bits & decide the pict_types */
  701. for(i=0; i<rcc->num_entries; i++){
  702. RateControlEntry *rce= &rcc->entry[i];
  703. rce->new_pict_type= rce->pict_type;
  704. rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale;
  705. rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale;
  706. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  707. rcc->frame_count[rce->pict_type] ++;
  708. complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
  709. const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
  710. }
  711. all_const_bits= const_bits[AV_PICTURE_TYPE_I] + const_bits[AV_PICTURE_TYPE_P] + const_bits[AV_PICTURE_TYPE_B];
  712. if(all_available_bits < all_const_bits){
  713. av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
  714. return -1;
  715. }
  716. qscale= av_malloc(sizeof(double)*rcc->num_entries);
  717. blurred_qscale= av_malloc(sizeof(double)*rcc->num_entries);
  718. toobig = 0;
  719. for(step=256*256; step>0.0000001; step*=0.5){
  720. expected_bits=0;
  721. rate_factor+= step;
  722. rcc->buffer_index= s->avctx->rc_buffer_size/2;
  723. /* find qscale */
  724. for(i=0; i<rcc->num_entries; i++){
  725. RateControlEntry *rce= &rcc->entry[i];
  726. qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
  727. rcc->last_qscale_for[rce->pict_type] = qscale[i];
  728. }
  729. assert(filter_size%2==1);
  730. /* fixed I/B QP relative to P mode */
  731. for(i=FFMAX(0, rcc->num_entries-300); i<rcc->num_entries; i++){
  732. RateControlEntry *rce= &rcc->entry[i];
  733. qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
  734. }
  735. for(i=rcc->num_entries-1; i>=0; i--){
  736. RateControlEntry *rce= &rcc->entry[i];
  737. qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
  738. }
  739. /* smooth curve */
  740. for(i=0; i<rcc->num_entries; i++){
  741. RateControlEntry *rce= &rcc->entry[i];
  742. const int pict_type= rce->new_pict_type;
  743. int j;
  744. double q=0.0, sum=0.0;
  745. for(j=0; j<filter_size; j++){
  746. int index= i+j-filter_size/2;
  747. double d= index-i;
  748. double coeff= a->qblur==0 ? 1.0 : exp(-d*d/(a->qblur * a->qblur));
  749. if(index < 0 || index >= rcc->num_entries) continue;
  750. if(pict_type != rcc->entry[index].new_pict_type) continue;
  751. q+= qscale[index] * coeff;
  752. sum+= coeff;
  753. }
  754. blurred_qscale[i]= q/sum;
  755. }
  756. /* find expected bits */
  757. for(i=0; i<rcc->num_entries; i++){
  758. RateControlEntry *rce= &rcc->entry[i];
  759. double bits;
  760. rce->new_qscale= modify_qscale(s, rce, blurred_qscale[i], i);
  761. bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  762. bits += 8*ff_vbv_update(s, bits);
  763. rce->expected_bits= expected_bits;
  764. expected_bits += bits;
  765. }
  766. av_dlog(s->avctx,
  767. "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
  768. expected_bits, (int)all_available_bits, rate_factor);
  769. if(expected_bits > all_available_bits) {
  770. rate_factor-= step;
  771. ++toobig;
  772. }
  773. }
  774. av_free(qscale);
  775. av_free(blurred_qscale);
  776. /* check bitrate calculations and print info */
  777. qscale_sum = 0.0;
  778. for(i=0; i<rcc->num_entries; i++){
  779. av_dlog(s, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
  780. i,
  781. rcc->entry[i].new_qscale,
  782. rcc->entry[i].new_qscale / FF_QP2LAMBDA);
  783. qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA, s->avctx->qmin, s->avctx->qmax);
  784. }
  785. assert(toobig <= 40);
  786. av_log(s->avctx, AV_LOG_DEBUG,
  787. "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
  788. s->bit_rate,
  789. (int)(expected_bits / ((double)all_available_bits/s->bit_rate)));
  790. av_log(s->avctx, AV_LOG_DEBUG,
  791. "[lavc rc] estimated target average qp: %.3f\n",
  792. (float)qscale_sum / rcc->num_entries);
  793. if (toobig == 0) {
  794. av_log(s->avctx, AV_LOG_INFO,
  795. "[lavc rc] Using all of requested bitrate is not "
  796. "necessary for this video with these parameters.\n");
  797. } else if (toobig == 40) {
  798. av_log(s->avctx, AV_LOG_ERROR,
  799. "[lavc rc] Error: bitrate too low for this video "
  800. "with these parameters.\n");
  801. return -1;
  802. } else if (fabs(expected_bits/all_available_bits - 1.0) > 0.01) {
  803. av_log(s->avctx, AV_LOG_ERROR,
  804. "[lavc rc] Error: 2pass curve failed to converge\n");
  805. return -1;
  806. }
  807. return 0;
  808. }