You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2514 lines
93KB

  1. /*
  2. * DCA compatible decoder
  3. * Copyright (C) 2004 Gildas Bazin
  4. * Copyright (C) 2004 Benjamin Zores
  5. * Copyright (C) 2006 Benjamin Larsson
  6. * Copyright (C) 2007 Konstantin Shishkov
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include <math.h>
  25. #include <stddef.h>
  26. #include <stdio.h>
  27. #include "libavutil/common.h"
  28. #include "libavutil/float_dsp.h"
  29. #include "libavutil/intmath.h"
  30. #include "libavutil/intreadwrite.h"
  31. #include "libavutil/mathematics.h"
  32. #include "libavutil/audioconvert.h"
  33. #include "libavutil/samplefmt.h"
  34. #include "avcodec.h"
  35. #include "dsputil.h"
  36. #include "fft.h"
  37. #include "get_bits.h"
  38. #include "put_bits.h"
  39. #include "dcadata.h"
  40. #include "dcahuff.h"
  41. #include "dca.h"
  42. #include "dca_parser.h"
  43. #include "synth_filter.h"
  44. #include "dcadsp.h"
  45. #include "fmtconvert.h"
  46. #if ARCH_ARM
  47. # include "arm/dca.h"
  48. #endif
  49. //#define TRACE
  50. #define DCA_PRIM_CHANNELS_MAX (7)
  51. #define DCA_SUBBANDS (64)
  52. #define DCA_ABITS_MAX (32) /* Should be 28 */
  53. #define DCA_SUBSUBFRAMES_MAX (4)
  54. #define DCA_SUBFRAMES_MAX (16)
  55. #define DCA_BLOCKS_MAX (16)
  56. #define DCA_LFE_MAX (3)
  57. #define DCA_CHSETS_MAX (4)
  58. #define DCA_CHSET_CHANS_MAX (8)
  59. enum DCAMode {
  60. DCA_MONO = 0,
  61. DCA_CHANNEL,
  62. DCA_STEREO,
  63. DCA_STEREO_SUMDIFF,
  64. DCA_STEREO_TOTAL,
  65. DCA_3F,
  66. DCA_2F1R,
  67. DCA_3F1R,
  68. DCA_2F2R,
  69. DCA_3F2R,
  70. DCA_4F2R
  71. };
  72. /* these are unconfirmed but should be mostly correct */
  73. enum DCAExSSSpeakerMask {
  74. DCA_EXSS_FRONT_CENTER = 0x0001,
  75. DCA_EXSS_FRONT_LEFT_RIGHT = 0x0002,
  76. DCA_EXSS_SIDE_REAR_LEFT_RIGHT = 0x0004,
  77. DCA_EXSS_LFE = 0x0008,
  78. DCA_EXSS_REAR_CENTER = 0x0010,
  79. DCA_EXSS_FRONT_HIGH_LEFT_RIGHT = 0x0020,
  80. DCA_EXSS_REAR_LEFT_RIGHT = 0x0040,
  81. DCA_EXSS_FRONT_HIGH_CENTER = 0x0080,
  82. DCA_EXSS_OVERHEAD = 0x0100,
  83. DCA_EXSS_CENTER_LEFT_RIGHT = 0x0200,
  84. DCA_EXSS_WIDE_LEFT_RIGHT = 0x0400,
  85. DCA_EXSS_SIDE_LEFT_RIGHT = 0x0800,
  86. DCA_EXSS_LFE2 = 0x1000,
  87. DCA_EXSS_SIDE_HIGH_LEFT_RIGHT = 0x2000,
  88. DCA_EXSS_REAR_HIGH_CENTER = 0x4000,
  89. DCA_EXSS_REAR_HIGH_LEFT_RIGHT = 0x8000,
  90. };
  91. enum DCAXxchSpeakerMask {
  92. DCA_XXCH_FRONT_CENTER = 0x0000001,
  93. DCA_XXCH_FRONT_LEFT = 0x0000002,
  94. DCA_XXCH_FRONT_RIGHT = 0x0000004,
  95. DCA_XXCH_SIDE_REAR_LEFT = 0x0000008,
  96. DCA_XXCH_SIDE_REAR_RIGHT = 0x0000010,
  97. DCA_XXCH_LFE1 = 0x0000020,
  98. DCA_XXCH_REAR_CENTER = 0x0000040,
  99. DCA_XXCH_SURROUND_REAR_LEFT = 0x0000080,
  100. DCA_XXCH_SURROUND_REAR_RIGHT = 0x0000100,
  101. DCA_XXCH_SIDE_SURROUND_LEFT = 0x0000200,
  102. DCA_XXCH_SIDE_SURROUND_RIGHT = 0x0000400,
  103. DCA_XXCH_FRONT_CENTER_LEFT = 0x0000800,
  104. DCA_XXCH_FRONT_CENTER_RIGHT = 0x0001000,
  105. DCA_XXCH_FRONT_HIGH_LEFT = 0x0002000,
  106. DCA_XXCH_FRONT_HIGH_CENTER = 0x0004000,
  107. DCA_XXCH_FRONT_HIGH_RIGHT = 0x0008000,
  108. DCA_XXCH_LFE2 = 0x0010000,
  109. DCA_XXCH_SIDE_FRONT_LEFT = 0x0020000,
  110. DCA_XXCH_SIDE_FRONT_RIGHT = 0x0040000,
  111. DCA_XXCH_OVERHEAD = 0x0080000,
  112. DCA_XXCH_SIDE_HIGH_LEFT = 0x0100000,
  113. DCA_XXCH_SIDE_HIGH_RIGHT = 0x0200000,
  114. DCA_XXCH_REAR_HIGH_CENTER = 0x0400000,
  115. DCA_XXCH_REAR_HIGH_LEFT = 0x0800000,
  116. DCA_XXCH_REAR_HIGH_RIGHT = 0x1000000,
  117. DCA_XXCH_REAR_LOW_CENTER = 0x2000000,
  118. DCA_XXCH_REAR_LOW_LEFT = 0x4000000,
  119. DCA_XXCH_REAR_LOW_RIGHT = 0x8000000,
  120. };
  121. static const uint32_t map_xxch_to_native[28] = {
  122. AV_CH_FRONT_CENTER,
  123. AV_CH_FRONT_LEFT,
  124. AV_CH_FRONT_RIGHT,
  125. AV_CH_SIDE_LEFT,
  126. AV_CH_SIDE_RIGHT,
  127. AV_CH_LOW_FREQUENCY,
  128. AV_CH_BACK_CENTER,
  129. AV_CH_BACK_LEFT,
  130. AV_CH_BACK_RIGHT,
  131. AV_CH_SIDE_LEFT, /* side surround left -- dup sur side L */
  132. AV_CH_SIDE_RIGHT, /* side surround right -- dup sur side R */
  133. AV_CH_FRONT_LEFT_OF_CENTER,
  134. AV_CH_FRONT_RIGHT_OF_CENTER,
  135. AV_CH_TOP_FRONT_LEFT,
  136. AV_CH_TOP_FRONT_CENTER,
  137. AV_CH_TOP_FRONT_RIGHT,
  138. AV_CH_LOW_FREQUENCY, /* lfe2 -- duplicate lfe1 position */
  139. AV_CH_FRONT_LEFT_OF_CENTER, /* side front left -- dup front cntr L */
  140. AV_CH_FRONT_RIGHT_OF_CENTER,/* side front right -- dup front cntr R */
  141. AV_CH_TOP_CENTER, /* overhead */
  142. AV_CH_TOP_FRONT_LEFT, /* side high left -- dup */
  143. AV_CH_TOP_FRONT_RIGHT, /* side high right -- dup */
  144. AV_CH_TOP_BACK_CENTER,
  145. AV_CH_TOP_BACK_LEFT,
  146. AV_CH_TOP_BACK_RIGHT,
  147. AV_CH_BACK_CENTER, /* rear low center -- dup */
  148. AV_CH_BACK_LEFT, /* rear low left -- dup */
  149. AV_CH_BACK_RIGHT /* read low right -- dup */
  150. };
  151. enum DCAExtensionMask {
  152. DCA_EXT_CORE = 0x001, ///< core in core substream
  153. DCA_EXT_XXCH = 0x002, ///< XXCh channels extension in core substream
  154. DCA_EXT_X96 = 0x004, ///< 96/24 extension in core substream
  155. DCA_EXT_XCH = 0x008, ///< XCh channel extension in core substream
  156. DCA_EXT_EXSS_CORE = 0x010, ///< core in ExSS (extension substream)
  157. DCA_EXT_EXSS_XBR = 0x020, ///< extended bitrate extension in ExSS
  158. DCA_EXT_EXSS_XXCH = 0x040, ///< XXCh channels extension in ExSS
  159. DCA_EXT_EXSS_X96 = 0x080, ///< 96/24 extension in ExSS
  160. DCA_EXT_EXSS_LBR = 0x100, ///< low bitrate component in ExSS
  161. DCA_EXT_EXSS_XLL = 0x200, ///< lossless extension in ExSS
  162. };
  163. /* -1 are reserved or unknown */
  164. static const int dca_ext_audio_descr_mask[] = {
  165. DCA_EXT_XCH,
  166. -1,
  167. DCA_EXT_X96,
  168. DCA_EXT_XCH | DCA_EXT_X96,
  169. -1,
  170. -1,
  171. DCA_EXT_XXCH,
  172. -1,
  173. };
  174. /* extensions that reside in core substream */
  175. #define DCA_CORE_EXTS (DCA_EXT_XCH | DCA_EXT_XXCH | DCA_EXT_X96)
  176. /* Tables for mapping dts channel configurations to libavcodec multichannel api.
  177. * Some compromises have been made for special configurations. Most configurations
  178. * are never used so complete accuracy is not needed.
  179. *
  180. * L = left, R = right, C = center, S = surround, F = front, R = rear, T = total, OV = overhead.
  181. * S -> side, when both rear and back are configured move one of them to the side channel
  182. * OV -> center back
  183. * All 2 channel configurations -> AV_CH_LAYOUT_STEREO
  184. */
  185. static const uint64_t dca_core_channel_layout[] = {
  186. AV_CH_FRONT_CENTER, ///< 1, A
  187. AV_CH_LAYOUT_STEREO, ///< 2, A + B (dual mono)
  188. AV_CH_LAYOUT_STEREO, ///< 2, L + R (stereo)
  189. AV_CH_LAYOUT_STEREO, ///< 2, (L + R) + (L - R) (sum-difference)
  190. AV_CH_LAYOUT_STEREO, ///< 2, LT + RT (left and right total)
  191. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER, ///< 3, C + L + R
  192. AV_CH_LAYOUT_STEREO | AV_CH_BACK_CENTER, ///< 3, L + R + S
  193. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 4, C + L + R + S
  194. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 4, L + R + SL + SR
  195. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_SIDE_LEFT |
  196. AV_CH_SIDE_RIGHT, ///< 5, C + L + R + SL + SR
  197. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  198. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER, ///< 6, CL + CR + L + R + SL + SR
  199. AV_CH_LAYOUT_STEREO | AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT |
  200. AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 6, C + L + R + LR + RR + OV
  201. AV_CH_FRONT_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  202. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_BACK_CENTER |
  203. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 6, CF + CR + LF + RF + LR + RR
  204. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  205. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  206. AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 7, CL + C + CR + L + R + SL + SR
  207. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  208. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  209. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 8, CL + CR + L + R + SL1 + SL2 + SR1 + SR2
  210. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  211. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  212. AV_CH_SIDE_LEFT | AV_CH_BACK_CENTER | AV_CH_SIDE_RIGHT, ///< 8, CL + C + CR + L + R + SL + S + SR
  213. };
  214. static const int8_t dca_lfe_index[] = {
  215. 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 1, 3, 2, 3
  216. };
  217. static const int8_t dca_channel_reorder_lfe[][9] = {
  218. { 0, -1, -1, -1, -1, -1, -1, -1, -1},
  219. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  220. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  221. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  222. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  223. { 2, 0, 1, -1, -1, -1, -1, -1, -1},
  224. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  225. { 2, 0, 1, 4, -1, -1, -1, -1, -1},
  226. { 0, 1, 3, 4, -1, -1, -1, -1, -1},
  227. { 2, 0, 1, 4, 5, -1, -1, -1, -1},
  228. { 3, 4, 0, 1, 5, 6, -1, -1, -1},
  229. { 2, 0, 1, 4, 5, 6, -1, -1, -1},
  230. { 0, 6, 4, 5, 2, 3, -1, -1, -1},
  231. { 4, 2, 5, 0, 1, 6, 7, -1, -1},
  232. { 5, 6, 0, 1, 7, 3, 8, 4, -1},
  233. { 4, 2, 5, 0, 1, 6, 8, 7, -1},
  234. };
  235. static const int8_t dca_channel_reorder_lfe_xch[][9] = {
  236. { 0, 2, -1, -1, -1, -1, -1, -1, -1},
  237. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  238. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  239. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  240. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  241. { 2, 0, 1, 4, -1, -1, -1, -1, -1},
  242. { 0, 1, 3, 4, -1, -1, -1, -1, -1},
  243. { 2, 0, 1, 4, 5, -1, -1, -1, -1},
  244. { 0, 1, 4, 5, 3, -1, -1, -1, -1},
  245. { 2, 0, 1, 5, 6, 4, -1, -1, -1},
  246. { 3, 4, 0, 1, 6, 7, 5, -1, -1},
  247. { 2, 0, 1, 4, 5, 6, 7, -1, -1},
  248. { 0, 6, 4, 5, 2, 3, 7, -1, -1},
  249. { 4, 2, 5, 0, 1, 7, 8, 6, -1},
  250. { 5, 6, 0, 1, 8, 3, 9, 4, 7},
  251. { 4, 2, 5, 0, 1, 6, 9, 8, 7},
  252. };
  253. static const int8_t dca_channel_reorder_nolfe[][9] = {
  254. { 0, -1, -1, -1, -1, -1, -1, -1, -1},
  255. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  256. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  257. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  258. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  259. { 2, 0, 1, -1, -1, -1, -1, -1, -1},
  260. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  261. { 2, 0, 1, 3, -1, -1, -1, -1, -1},
  262. { 0, 1, 2, 3, -1, -1, -1, -1, -1},
  263. { 2, 0, 1, 3, 4, -1, -1, -1, -1},
  264. { 2, 3, 0, 1, 4, 5, -1, -1, -1},
  265. { 2, 0, 1, 3, 4, 5, -1, -1, -1},
  266. { 0, 5, 3, 4, 1, 2, -1, -1, -1},
  267. { 3, 2, 4, 0, 1, 5, 6, -1, -1},
  268. { 4, 5, 0, 1, 6, 2, 7, 3, -1},
  269. { 3, 2, 4, 0, 1, 5, 7, 6, -1},
  270. };
  271. static const int8_t dca_channel_reorder_nolfe_xch[][9] = {
  272. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  273. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  274. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  275. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  276. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  277. { 2, 0, 1, 3, -1, -1, -1, -1, -1},
  278. { 0, 1, 2, 3, -1, -1, -1, -1, -1},
  279. { 2, 0, 1, 3, 4, -1, -1, -1, -1},
  280. { 0, 1, 3, 4, 2, -1, -1, -1, -1},
  281. { 2, 0, 1, 4, 5, 3, -1, -1, -1},
  282. { 2, 3, 0, 1, 5, 6, 4, -1, -1},
  283. { 2, 0, 1, 3, 4, 5, 6, -1, -1},
  284. { 0, 5, 3, 4, 1, 2, 6, -1, -1},
  285. { 3, 2, 4, 0, 1, 6, 7, 5, -1},
  286. { 4, 5, 0, 1, 7, 2, 8, 3, 6},
  287. { 3, 2, 4, 0, 1, 5, 8, 7, 6},
  288. };
  289. #define DCA_DOLBY 101 /* FIXME */
  290. #define DCA_CHANNEL_BITS 6
  291. #define DCA_CHANNEL_MASK 0x3F
  292. #define DCA_LFE 0x80
  293. #define HEADER_SIZE 14
  294. #define DCA_MAX_FRAME_SIZE 16384
  295. #define DCA_MAX_EXSS_HEADER_SIZE 4096
  296. #define DCA_BUFFER_PADDING_SIZE 1024
  297. /** Bit allocation */
  298. typedef struct {
  299. int offset; ///< code values offset
  300. int maxbits[8]; ///< max bits in VLC
  301. int wrap; ///< wrap for get_vlc2()
  302. VLC vlc[8]; ///< actual codes
  303. } BitAlloc;
  304. static BitAlloc dca_bitalloc_index; ///< indexes for samples VLC select
  305. static BitAlloc dca_tmode; ///< transition mode VLCs
  306. static BitAlloc dca_scalefactor; ///< scalefactor VLCs
  307. static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs
  308. static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba,
  309. int idx)
  310. {
  311. return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) +
  312. ba->offset;
  313. }
  314. typedef struct {
  315. AVCodecContext *avctx;
  316. AVFrame frame;
  317. /* Frame header */
  318. int frame_type; ///< type of the current frame
  319. int samples_deficit; ///< deficit sample count
  320. int crc_present; ///< crc is present in the bitstream
  321. int sample_blocks; ///< number of PCM sample blocks
  322. int frame_size; ///< primary frame byte size
  323. int amode; ///< audio channels arrangement
  324. int sample_rate; ///< audio sampling rate
  325. int bit_rate; ///< transmission bit rate
  326. int bit_rate_index; ///< transmission bit rate index
  327. int downmix; ///< embedded downmix enabled
  328. int dynrange; ///< embedded dynamic range flag
  329. int timestamp; ///< embedded time stamp flag
  330. int aux_data; ///< auxiliary data flag
  331. int hdcd; ///< source material is mastered in HDCD
  332. int ext_descr; ///< extension audio descriptor flag
  333. int ext_coding; ///< extended coding flag
  334. int aspf; ///< audio sync word insertion flag
  335. int lfe; ///< low frequency effects flag
  336. int predictor_history; ///< predictor history flag
  337. int header_crc; ///< header crc check bytes
  338. int multirate_inter; ///< multirate interpolator switch
  339. int version; ///< encoder software revision
  340. int copy_history; ///< copy history
  341. int source_pcm_res; ///< source pcm resolution
  342. int front_sum; ///< front sum/difference flag
  343. int surround_sum; ///< surround sum/difference flag
  344. int dialog_norm; ///< dialog normalisation parameter
  345. /* Primary audio coding header */
  346. int subframes; ///< number of subframes
  347. int total_channels; ///< number of channels including extensions
  348. int prim_channels; ///< number of primary audio channels
  349. int subband_activity[DCA_PRIM_CHANNELS_MAX]; ///< subband activity count
  350. int vq_start_subband[DCA_PRIM_CHANNELS_MAX]; ///< high frequency vq start subband
  351. int joint_intensity[DCA_PRIM_CHANNELS_MAX]; ///< joint intensity coding index
  352. int transient_huffman[DCA_PRIM_CHANNELS_MAX]; ///< transient mode code book
  353. int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book
  354. int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX]; ///< bit allocation quantizer select
  355. int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< quantization index codebook select
  356. float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< scale factor adjustment
  357. /* Primary audio coding side information */
  358. int subsubframes[DCA_SUBFRAMES_MAX]; ///< number of subsubframes
  359. int partial_samples[DCA_SUBFRAMES_MAX]; ///< partial subsubframe samples count
  360. int prediction_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction mode (ADPCM used or not)
  361. int prediction_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction VQ coefs
  362. int bitalloc[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< bit allocation index
  363. int transition_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< transition mode (transients)
  364. int scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][2]; ///< scale factors (2 if transient)
  365. int joint_huff[DCA_PRIM_CHANNELS_MAX]; ///< joint subband scale factors codebook
  366. int joint_scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< joint subband scale factors
  367. int downmix_coef[DCA_PRIM_CHANNELS_MAX][2]; ///< stereo downmix coefficients
  368. int dynrange_coef; ///< dynamic range coefficient
  369. int high_freq_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< VQ encoded high frequency subbands
  370. float lfe_data[2 * DCA_LFE_MAX * (DCA_BLOCKS_MAX + 4)]; ///< Low frequency effect data
  371. int lfe_scale_factor;
  372. /* Subband samples history (for ADPCM) */
  373. DECLARE_ALIGNED(16, float, subband_samples_hist)[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][4];
  374. DECLARE_ALIGNED(32, float, subband_fir_hist)[DCA_PRIM_CHANNELS_MAX][512];
  375. DECLARE_ALIGNED(32, float, subband_fir_noidea)[DCA_PRIM_CHANNELS_MAX][32];
  376. int hist_index[DCA_PRIM_CHANNELS_MAX];
  377. DECLARE_ALIGNED(32, float, raXin)[32];
  378. int output; ///< type of output
  379. DECLARE_ALIGNED(32, float, subband_samples)[DCA_BLOCKS_MAX][DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8];
  380. float *samples_chanptr[DCA_PRIM_CHANNELS_MAX + 1];
  381. float *extra_channels[DCA_PRIM_CHANNELS_MAX + 1];
  382. uint8_t *extra_channels_buffer;
  383. unsigned int extra_channels_buffer_size;
  384. uint8_t dca_buffer[DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE + DCA_BUFFER_PADDING_SIZE];
  385. int dca_buffer_size; ///< how much data is in the dca_buffer
  386. const int8_t *channel_order_tab; ///< channel reordering table, lfe and non lfe
  387. GetBitContext gb;
  388. /* Current position in DCA frame */
  389. int current_subframe;
  390. int current_subsubframe;
  391. int core_ext_mask; ///< present extensions in the core substream
  392. /* XCh extension information */
  393. int xch_present; ///< XCh extension present and valid
  394. int xch_base_channel; ///< index of first (only) channel containing XCH data
  395. /* XXCH extension information */
  396. int xxch_chset;
  397. int xxch_nbits_spk_mask;
  398. uint32_t xxch_core_spkmask;
  399. uint32_t xxch_spk_masks[4]; /* speaker masks, last element is core mask */
  400. int xxch_chset_nch[4];
  401. float xxch_dmix_sf[DCA_CHSETS_MAX];
  402. uint32_t xxch_downmix; /* downmix enabled per channel set */
  403. uint32_t xxch_dmix_embedded; /* lower layer has mix pre-embedded, per chset */
  404. float xxch_dmix_coeff[DCA_PRIM_CHANNELS_MAX][32]; /* worst case sizing */
  405. int8_t xxch_order_tab[32];
  406. int8_t lfe_index;
  407. /* ExSS header parser */
  408. int static_fields; ///< static fields present
  409. int mix_metadata; ///< mixing metadata present
  410. int num_mix_configs; ///< number of mix out configurations
  411. int mix_config_num_ch[4]; ///< number of channels in each mix out configuration
  412. int profile;
  413. int debug_flag; ///< used for suppressing repeated error messages output
  414. AVFloatDSPContext fdsp;
  415. FFTContext imdct;
  416. SynthFilterContext synth;
  417. DCADSPContext dcadsp;
  418. FmtConvertContext fmt_conv;
  419. } DCAContext;
  420. static const uint16_t dca_vlc_offs[] = {
  421. 0, 512, 640, 768, 1282, 1794, 2436, 3080, 3770, 4454, 5364,
  422. 5372, 5380, 5388, 5392, 5396, 5412, 5420, 5428, 5460, 5492, 5508,
  423. 5572, 5604, 5668, 5796, 5860, 5892, 6412, 6668, 6796, 7308, 7564,
  424. 7820, 8076, 8620, 9132, 9388, 9910, 10166, 10680, 11196, 11726, 12240,
  425. 12752, 13298, 13810, 14326, 14840, 15500, 16022, 16540, 17158, 17678, 18264,
  426. 18796, 19352, 19926, 20468, 21472, 22398, 23014, 23622,
  427. };
  428. static av_cold void dca_init_vlcs(void)
  429. {
  430. static int vlcs_initialized = 0;
  431. int i, j, c = 14;
  432. static VLC_TYPE dca_table[23622][2];
  433. if (vlcs_initialized)
  434. return;
  435. dca_bitalloc_index.offset = 1;
  436. dca_bitalloc_index.wrap = 2;
  437. for (i = 0; i < 5; i++) {
  438. dca_bitalloc_index.vlc[i].table = &dca_table[dca_vlc_offs[i]];
  439. dca_bitalloc_index.vlc[i].table_allocated = dca_vlc_offs[i + 1] - dca_vlc_offs[i];
  440. init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
  441. bitalloc_12_bits[i], 1, 1,
  442. bitalloc_12_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  443. }
  444. dca_scalefactor.offset = -64;
  445. dca_scalefactor.wrap = 2;
  446. for (i = 0; i < 5; i++) {
  447. dca_scalefactor.vlc[i].table = &dca_table[dca_vlc_offs[i + 5]];
  448. dca_scalefactor.vlc[i].table_allocated = dca_vlc_offs[i + 6] - dca_vlc_offs[i + 5];
  449. init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
  450. scales_bits[i], 1, 1,
  451. scales_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  452. }
  453. dca_tmode.offset = 0;
  454. dca_tmode.wrap = 1;
  455. for (i = 0; i < 4; i++) {
  456. dca_tmode.vlc[i].table = &dca_table[dca_vlc_offs[i + 10]];
  457. dca_tmode.vlc[i].table_allocated = dca_vlc_offs[i + 11] - dca_vlc_offs[i + 10];
  458. init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
  459. tmode_bits[i], 1, 1,
  460. tmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  461. }
  462. for (i = 0; i < 10; i++)
  463. for (j = 0; j < 7; j++) {
  464. if (!bitalloc_codes[i][j])
  465. break;
  466. dca_smpl_bitalloc[i + 1].offset = bitalloc_offsets[i];
  467. dca_smpl_bitalloc[i + 1].wrap = 1 + (j > 4);
  468. dca_smpl_bitalloc[i + 1].vlc[j].table = &dca_table[dca_vlc_offs[c]];
  469. dca_smpl_bitalloc[i + 1].vlc[j].table_allocated = dca_vlc_offs[c + 1] - dca_vlc_offs[c];
  470. init_vlc(&dca_smpl_bitalloc[i + 1].vlc[j], bitalloc_maxbits[i][j],
  471. bitalloc_sizes[i],
  472. bitalloc_bits[i][j], 1, 1,
  473. bitalloc_codes[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
  474. c++;
  475. }
  476. vlcs_initialized = 1;
  477. }
  478. static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
  479. {
  480. while (len--)
  481. *dst++ = get_bits(gb, bits);
  482. }
  483. static inline int dca_xxch2index(DCAContext *s, int xxch_ch)
  484. {
  485. int i, base, mask;
  486. /* locate channel set containing the channel */
  487. for (i = -1, base = 0, mask = (s->xxch_core_spkmask & ~DCA_XXCH_LFE1);
  488. i <= s->xxch_chset && !(mask & xxch_ch); mask = s->xxch_spk_masks[++i])
  489. base += av_popcount(mask);
  490. return base + av_popcount(mask & (xxch_ch - 1));
  491. }
  492. static int dca_parse_audio_coding_header(DCAContext *s, int base_channel,
  493. int xxch)
  494. {
  495. int i, j;
  496. static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
  497. static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
  498. static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
  499. int hdr_pos = 0, hdr_size = 0;
  500. float sign, mag, scale_factor;
  501. int this_chans, acc_mask;
  502. int embedded_downmix;
  503. int nchans, mask[8];
  504. int coeff, ichan;
  505. /* xxch has arbitrary sized audio coding headers */
  506. if (xxch) {
  507. hdr_pos = get_bits_count(&s->gb);
  508. hdr_size = get_bits(&s->gb, 7) + 1;
  509. }
  510. nchans = get_bits(&s->gb, 3) + 1;
  511. s->total_channels = nchans + base_channel;
  512. s->prim_channels = s->total_channels;
  513. /* obtain speaker layout mask & downmix coefficients for XXCH */
  514. if (xxch) {
  515. acc_mask = s->xxch_core_spkmask;
  516. this_chans = get_bits(&s->gb, s->xxch_nbits_spk_mask - 6) << 6;
  517. s->xxch_spk_masks[s->xxch_chset] = this_chans;
  518. s->xxch_chset_nch[s->xxch_chset] = nchans;
  519. for (i = 0; i <= s->xxch_chset; i++)
  520. acc_mask |= s->xxch_spk_masks[i];
  521. /* check for downmixing information */
  522. if (get_bits1(&s->gb)) {
  523. embedded_downmix = get_bits1(&s->gb);
  524. scale_factor =
  525. 1.0f / dca_downmix_scale_factors[(get_bits(&s->gb, 6) - 1) << 2];
  526. s->xxch_dmix_sf[s->xxch_chset] = scale_factor;
  527. for (i = base_channel; i < s->prim_channels; i++) {
  528. s->xxch_downmix |= (1 << i);
  529. mask[i] = get_bits(&s->gb, s->xxch_nbits_spk_mask);
  530. }
  531. for (j = base_channel; j < s->prim_channels; j++) {
  532. memset(s->xxch_dmix_coeff[j], 0, sizeof(s->xxch_dmix_coeff[0]));
  533. s->xxch_dmix_embedded |= (embedded_downmix << j);
  534. for (i = 0; i < s->xxch_nbits_spk_mask; i++) {
  535. if (mask[j] & (1 << i)) {
  536. if ((1 << i) == DCA_XXCH_LFE1) {
  537. av_log(s->avctx, AV_LOG_WARNING,
  538. "DCA-XXCH: dmix to LFE1 not supported.\n");
  539. continue;
  540. }
  541. coeff = get_bits(&s->gb, 7);
  542. sign = (coeff & 64) ? 1.0 : -1.0;
  543. mag = dca_downmix_scale_factors[((coeff & 63) - 1) << 2];
  544. ichan = dca_xxch2index(s, 1 << i);
  545. s->xxch_dmix_coeff[j][ichan] = sign * mag;
  546. }
  547. }
  548. }
  549. }
  550. }
  551. if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
  552. s->prim_channels = DCA_PRIM_CHANNELS_MAX;
  553. for (i = base_channel; i < s->prim_channels; i++) {
  554. s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
  555. if (s->subband_activity[i] > DCA_SUBBANDS)
  556. s->subband_activity[i] = DCA_SUBBANDS;
  557. }
  558. for (i = base_channel; i < s->prim_channels; i++) {
  559. s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
  560. if (s->vq_start_subband[i] > DCA_SUBBANDS)
  561. s->vq_start_subband[i] = DCA_SUBBANDS;
  562. }
  563. get_array(&s->gb, s->joint_intensity + base_channel, s->prim_channels - base_channel, 3);
  564. get_array(&s->gb, s->transient_huffman + base_channel, s->prim_channels - base_channel, 2);
  565. get_array(&s->gb, s->scalefactor_huffman + base_channel, s->prim_channels - base_channel, 3);
  566. get_array(&s->gb, s->bitalloc_huffman + base_channel, s->prim_channels - base_channel, 3);
  567. /* Get codebooks quantization indexes */
  568. if (!base_channel)
  569. memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
  570. for (j = 1; j < 11; j++)
  571. for (i = base_channel; i < s->prim_channels; i++)
  572. s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
  573. /* Get scale factor adjustment */
  574. for (j = 0; j < 11; j++)
  575. for (i = base_channel; i < s->prim_channels; i++)
  576. s->scalefactor_adj[i][j] = 1;
  577. for (j = 1; j < 11; j++)
  578. for (i = base_channel; i < s->prim_channels; i++)
  579. if (s->quant_index_huffman[i][j] < thr[j])
  580. s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
  581. if (!xxch) {
  582. if (s->crc_present) {
  583. /* Audio header CRC check */
  584. get_bits(&s->gb, 16);
  585. }
  586. } else {
  587. /* Skip to the end of the header, also ignore CRC if present */
  588. i = get_bits_count(&s->gb);
  589. if (hdr_pos + 8 * hdr_size > i)
  590. skip_bits_long(&s->gb, hdr_pos + 8 * hdr_size - i);
  591. }
  592. s->current_subframe = 0;
  593. s->current_subsubframe = 0;
  594. #ifdef TRACE
  595. av_log(s->avctx, AV_LOG_DEBUG, "subframes: %i\n", s->subframes);
  596. av_log(s->avctx, AV_LOG_DEBUG, "prim channels: %i\n", s->prim_channels);
  597. for (i = base_channel; i < s->prim_channels; i++) {
  598. av_log(s->avctx, AV_LOG_DEBUG, "subband activity: %i\n",
  599. s->subband_activity[i]);
  600. av_log(s->avctx, AV_LOG_DEBUG, "vq start subband: %i\n",
  601. s->vq_start_subband[i]);
  602. av_log(s->avctx, AV_LOG_DEBUG, "joint intensity: %i\n",
  603. s->joint_intensity[i]);
  604. av_log(s->avctx, AV_LOG_DEBUG, "transient mode codebook: %i\n",
  605. s->transient_huffman[i]);
  606. av_log(s->avctx, AV_LOG_DEBUG, "scale factor codebook: %i\n",
  607. s->scalefactor_huffman[i]);
  608. av_log(s->avctx, AV_LOG_DEBUG, "bit allocation quantizer: %i\n",
  609. s->bitalloc_huffman[i]);
  610. av_log(s->avctx, AV_LOG_DEBUG, "quant index huff:");
  611. for (j = 0; j < 11; j++)
  612. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->quant_index_huffman[i][j]);
  613. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  614. av_log(s->avctx, AV_LOG_DEBUG, "scalefac adj:");
  615. for (j = 0; j < 11; j++)
  616. av_log(s->avctx, AV_LOG_DEBUG, " %1.3f", s->scalefactor_adj[i][j]);
  617. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  618. }
  619. #endif
  620. return 0;
  621. }
  622. static int dca_parse_frame_header(DCAContext *s)
  623. {
  624. init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
  625. /* Sync code */
  626. skip_bits_long(&s->gb, 32);
  627. /* Frame header */
  628. s->frame_type = get_bits(&s->gb, 1);
  629. s->samples_deficit = get_bits(&s->gb, 5) + 1;
  630. s->crc_present = get_bits(&s->gb, 1);
  631. s->sample_blocks = get_bits(&s->gb, 7) + 1;
  632. s->frame_size = get_bits(&s->gb, 14) + 1;
  633. if (s->frame_size < 95)
  634. return AVERROR_INVALIDDATA;
  635. s->amode = get_bits(&s->gb, 6);
  636. s->sample_rate = avpriv_dca_sample_rates[get_bits(&s->gb, 4)];
  637. if (!s->sample_rate)
  638. return AVERROR_INVALIDDATA;
  639. s->bit_rate_index = get_bits(&s->gb, 5);
  640. s->bit_rate = dca_bit_rates[s->bit_rate_index];
  641. if (!s->bit_rate)
  642. return AVERROR_INVALIDDATA;
  643. s->downmix = get_bits(&s->gb, 1); /* note: this is FixedBit == 0 */
  644. s->dynrange = get_bits(&s->gb, 1);
  645. s->timestamp = get_bits(&s->gb, 1);
  646. s->aux_data = get_bits(&s->gb, 1);
  647. s->hdcd = get_bits(&s->gb, 1);
  648. s->ext_descr = get_bits(&s->gb, 3);
  649. s->ext_coding = get_bits(&s->gb, 1);
  650. s->aspf = get_bits(&s->gb, 1);
  651. s->lfe = get_bits(&s->gb, 2);
  652. s->predictor_history = get_bits(&s->gb, 1);
  653. /* TODO: check CRC */
  654. if (s->crc_present)
  655. s->header_crc = get_bits(&s->gb, 16);
  656. s->multirate_inter = get_bits(&s->gb, 1);
  657. s->version = get_bits(&s->gb, 4);
  658. s->copy_history = get_bits(&s->gb, 2);
  659. s->source_pcm_res = get_bits(&s->gb, 3);
  660. s->front_sum = get_bits(&s->gb, 1);
  661. s->surround_sum = get_bits(&s->gb, 1);
  662. s->dialog_norm = get_bits(&s->gb, 4);
  663. /* FIXME: channels mixing levels */
  664. s->output = s->amode;
  665. if (s->lfe)
  666. s->output |= DCA_LFE;
  667. #ifdef TRACE
  668. av_log(s->avctx, AV_LOG_DEBUG, "frame type: %i\n", s->frame_type);
  669. av_log(s->avctx, AV_LOG_DEBUG, "samples deficit: %i\n", s->samples_deficit);
  670. av_log(s->avctx, AV_LOG_DEBUG, "crc present: %i\n", s->crc_present);
  671. av_log(s->avctx, AV_LOG_DEBUG, "sample blocks: %i (%i samples)\n",
  672. s->sample_blocks, s->sample_blocks * 32);
  673. av_log(s->avctx, AV_LOG_DEBUG, "frame size: %i bytes\n", s->frame_size);
  674. av_log(s->avctx, AV_LOG_DEBUG, "amode: %i (%i channels)\n",
  675. s->amode, dca_channels[s->amode]);
  676. av_log(s->avctx, AV_LOG_DEBUG, "sample rate: %i Hz\n",
  677. s->sample_rate);
  678. av_log(s->avctx, AV_LOG_DEBUG, "bit rate: %i bits/s\n",
  679. s->bit_rate);
  680. av_log(s->avctx, AV_LOG_DEBUG, "downmix: %i\n", s->downmix);
  681. av_log(s->avctx, AV_LOG_DEBUG, "dynrange: %i\n", s->dynrange);
  682. av_log(s->avctx, AV_LOG_DEBUG, "timestamp: %i\n", s->timestamp);
  683. av_log(s->avctx, AV_LOG_DEBUG, "aux_data: %i\n", s->aux_data);
  684. av_log(s->avctx, AV_LOG_DEBUG, "hdcd: %i\n", s->hdcd);
  685. av_log(s->avctx, AV_LOG_DEBUG, "ext descr: %i\n", s->ext_descr);
  686. av_log(s->avctx, AV_LOG_DEBUG, "ext coding: %i\n", s->ext_coding);
  687. av_log(s->avctx, AV_LOG_DEBUG, "aspf: %i\n", s->aspf);
  688. av_log(s->avctx, AV_LOG_DEBUG, "lfe: %i\n", s->lfe);
  689. av_log(s->avctx, AV_LOG_DEBUG, "predictor history: %i\n",
  690. s->predictor_history);
  691. av_log(s->avctx, AV_LOG_DEBUG, "header crc: %i\n", s->header_crc);
  692. av_log(s->avctx, AV_LOG_DEBUG, "multirate inter: %i\n",
  693. s->multirate_inter);
  694. av_log(s->avctx, AV_LOG_DEBUG, "version number: %i\n", s->version);
  695. av_log(s->avctx, AV_LOG_DEBUG, "copy history: %i\n", s->copy_history);
  696. av_log(s->avctx, AV_LOG_DEBUG,
  697. "source pcm resolution: %i (%i bits/sample)\n",
  698. s->source_pcm_res, dca_bits_per_sample[s->source_pcm_res]);
  699. av_log(s->avctx, AV_LOG_DEBUG, "front sum: %i\n", s->front_sum);
  700. av_log(s->avctx, AV_LOG_DEBUG, "surround sum: %i\n", s->surround_sum);
  701. av_log(s->avctx, AV_LOG_DEBUG, "dialog norm: %i\n", s->dialog_norm);
  702. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  703. #endif
  704. /* Primary audio coding header */
  705. s->subframes = get_bits(&s->gb, 4) + 1;
  706. return dca_parse_audio_coding_header(s, 0, 0);
  707. }
  708. static inline int get_scale(GetBitContext *gb, int level, int value, int log2range)
  709. {
  710. if (level < 5) {
  711. /* huffman encoded */
  712. value += get_bitalloc(gb, &dca_scalefactor, level);
  713. value = av_clip(value, 0, (1 << log2range) - 1);
  714. } else if (level < 8) {
  715. if (level + 1 > log2range) {
  716. skip_bits(gb, level + 1 - log2range);
  717. value = get_bits(gb, log2range);
  718. } else {
  719. value = get_bits(gb, level + 1);
  720. }
  721. }
  722. return value;
  723. }
  724. static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
  725. {
  726. /* Primary audio coding side information */
  727. int j, k;
  728. if (get_bits_left(&s->gb) < 0)
  729. return AVERROR_INVALIDDATA;
  730. if (!base_channel) {
  731. s->subsubframes[s->current_subframe] = get_bits(&s->gb, 2) + 1;
  732. s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3);
  733. }
  734. for (j = base_channel; j < s->prim_channels; j++) {
  735. for (k = 0; k < s->subband_activity[j]; k++)
  736. s->prediction_mode[j][k] = get_bits(&s->gb, 1);
  737. }
  738. /* Get prediction codebook */
  739. for (j = base_channel; j < s->prim_channels; j++) {
  740. for (k = 0; k < s->subband_activity[j]; k++) {
  741. if (s->prediction_mode[j][k] > 0) {
  742. /* (Prediction coefficient VQ address) */
  743. s->prediction_vq[j][k] = get_bits(&s->gb, 12);
  744. }
  745. }
  746. }
  747. /* Bit allocation index */
  748. for (j = base_channel; j < s->prim_channels; j++) {
  749. for (k = 0; k < s->vq_start_subband[j]; k++) {
  750. if (s->bitalloc_huffman[j] == 6)
  751. s->bitalloc[j][k] = get_bits(&s->gb, 5);
  752. else if (s->bitalloc_huffman[j] == 5)
  753. s->bitalloc[j][k] = get_bits(&s->gb, 4);
  754. else if (s->bitalloc_huffman[j] == 7) {
  755. av_log(s->avctx, AV_LOG_ERROR,
  756. "Invalid bit allocation index\n");
  757. return AVERROR_INVALIDDATA;
  758. } else {
  759. s->bitalloc[j][k] =
  760. get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
  761. }
  762. if (s->bitalloc[j][k] > 26) {
  763. av_dlog(s->avctx, "bitalloc index [%i][%i] too big (%i)\n",
  764. j, k, s->bitalloc[j][k]);
  765. return AVERROR_INVALIDDATA;
  766. }
  767. }
  768. }
  769. /* Transition mode */
  770. for (j = base_channel; j < s->prim_channels; j++) {
  771. for (k = 0; k < s->subband_activity[j]; k++) {
  772. s->transition_mode[j][k] = 0;
  773. if (s->subsubframes[s->current_subframe] > 1 &&
  774. k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
  775. s->transition_mode[j][k] =
  776. get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
  777. }
  778. }
  779. }
  780. if (get_bits_left(&s->gb) < 0)
  781. return AVERROR_INVALIDDATA;
  782. for (j = base_channel; j < s->prim_channels; j++) {
  783. const uint32_t *scale_table;
  784. int scale_sum, log_size;
  785. memset(s->scale_factor[j], 0,
  786. s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);
  787. if (s->scalefactor_huffman[j] == 6) {
  788. scale_table = scale_factor_quant7;
  789. log_size = 7;
  790. } else {
  791. scale_table = scale_factor_quant6;
  792. log_size = 6;
  793. }
  794. /* When huffman coded, only the difference is encoded */
  795. scale_sum = 0;
  796. for (k = 0; k < s->subband_activity[j]; k++) {
  797. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
  798. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  799. s->scale_factor[j][k][0] = scale_table[scale_sum];
  800. }
  801. if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
  802. /* Get second scale factor */
  803. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  804. s->scale_factor[j][k][1] = scale_table[scale_sum];
  805. }
  806. }
  807. }
  808. /* Joint subband scale factor codebook select */
  809. for (j = base_channel; j < s->prim_channels; j++) {
  810. /* Transmitted only if joint subband coding enabled */
  811. if (s->joint_intensity[j] > 0)
  812. s->joint_huff[j] = get_bits(&s->gb, 3);
  813. }
  814. if (get_bits_left(&s->gb) < 0)
  815. return AVERROR_INVALIDDATA;
  816. /* Scale factors for joint subband coding */
  817. for (j = base_channel; j < s->prim_channels; j++) {
  818. int source_channel;
  819. /* Transmitted only if joint subband coding enabled */
  820. if (s->joint_intensity[j] > 0) {
  821. int scale = 0;
  822. source_channel = s->joint_intensity[j] - 1;
  823. /* When huffman coded, only the difference is encoded
  824. * (is this valid as well for joint scales ???) */
  825. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
  826. scale = get_scale(&s->gb, s->joint_huff[j], 64 /* bias */, 7);
  827. s->joint_scale_factor[j][k] = scale; /*joint_scale_table[scale]; */
  828. }
  829. if (!(s->debug_flag & 0x02)) {
  830. av_log(s->avctx, AV_LOG_DEBUG,
  831. "Joint stereo coding not supported\n");
  832. s->debug_flag |= 0x02;
  833. }
  834. }
  835. }
  836. /* Stereo downmix coefficients */
  837. if (!base_channel && s->prim_channels > 2) {
  838. if (s->downmix) {
  839. for (j = base_channel; j < s->prim_channels; j++) {
  840. s->downmix_coef[j][0] = get_bits(&s->gb, 7);
  841. s->downmix_coef[j][1] = get_bits(&s->gb, 7);
  842. }
  843. } else {
  844. int am = s->amode & DCA_CHANNEL_MASK;
  845. if (am >= FF_ARRAY_ELEMS(dca_default_coeffs)) {
  846. av_log(s->avctx, AV_LOG_ERROR,
  847. "Invalid channel mode %d\n", am);
  848. return AVERROR_INVALIDDATA;
  849. }
  850. for (j = base_channel; j < FFMIN(s->prim_channels, FF_ARRAY_ELEMS(dca_default_coeffs[am])); j++) {
  851. s->downmix_coef[j][0] = dca_default_coeffs[am][j][0];
  852. s->downmix_coef[j][1] = dca_default_coeffs[am][j][1];
  853. }
  854. }
  855. }
  856. /* Dynamic range coefficient */
  857. if (!base_channel && s->dynrange)
  858. s->dynrange_coef = get_bits(&s->gb, 8);
  859. /* Side information CRC check word */
  860. if (s->crc_present) {
  861. get_bits(&s->gb, 16);
  862. }
  863. /*
  864. * Primary audio data arrays
  865. */
  866. /* VQ encoded high frequency subbands */
  867. for (j = base_channel; j < s->prim_channels; j++)
  868. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  869. /* 1 vector -> 32 samples */
  870. s->high_freq_vq[j][k] = get_bits(&s->gb, 10);
  871. /* Low frequency effect data */
  872. if (!base_channel && s->lfe) {
  873. int quant7;
  874. /* LFE samples */
  875. int lfe_samples = 2 * s->lfe * (4 + block_index);
  876. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  877. float lfe_scale;
  878. for (j = lfe_samples; j < lfe_end_sample; j++) {
  879. /* Signed 8 bits int */
  880. s->lfe_data[j] = get_sbits(&s->gb, 8);
  881. }
  882. /* Scale factor index */
  883. quant7 = get_bits(&s->gb, 8);
  884. if (quant7 > 127) {
  885. av_log_ask_for_sample(s->avctx, "LFEScaleIndex larger than 127\n");
  886. return AVERROR_INVALIDDATA;
  887. }
  888. s->lfe_scale_factor = scale_factor_quant7[quant7];
  889. /* Quantization step size * scale factor */
  890. lfe_scale = 0.035 * s->lfe_scale_factor;
  891. for (j = lfe_samples; j < lfe_end_sample; j++)
  892. s->lfe_data[j] *= lfe_scale;
  893. }
  894. #ifdef TRACE
  895. av_log(s->avctx, AV_LOG_DEBUG, "subsubframes: %i\n",
  896. s->subsubframes[s->current_subframe]);
  897. av_log(s->avctx, AV_LOG_DEBUG, "partial samples: %i\n",
  898. s->partial_samples[s->current_subframe]);
  899. for (j = base_channel; j < s->prim_channels; j++) {
  900. av_log(s->avctx, AV_LOG_DEBUG, "prediction mode:");
  901. for (k = 0; k < s->subband_activity[j]; k++)
  902. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->prediction_mode[j][k]);
  903. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  904. }
  905. for (j = base_channel; j < s->prim_channels; j++) {
  906. for (k = 0; k < s->subband_activity[j]; k++)
  907. av_log(s->avctx, AV_LOG_DEBUG,
  908. "prediction coefs: %f, %f, %f, %f\n",
  909. (float) adpcm_vb[s->prediction_vq[j][k]][0] / 8192,
  910. (float) adpcm_vb[s->prediction_vq[j][k]][1] / 8192,
  911. (float) adpcm_vb[s->prediction_vq[j][k]][2] / 8192,
  912. (float) adpcm_vb[s->prediction_vq[j][k]][3] / 8192);
  913. }
  914. for (j = base_channel; j < s->prim_channels; j++) {
  915. av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index: ");
  916. for (k = 0; k < s->vq_start_subband[j]; k++)
  917. av_log(s->avctx, AV_LOG_DEBUG, "%2.2i ", s->bitalloc[j][k]);
  918. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  919. }
  920. for (j = base_channel; j < s->prim_channels; j++) {
  921. av_log(s->avctx, AV_LOG_DEBUG, "Transition mode:");
  922. for (k = 0; k < s->subband_activity[j]; k++)
  923. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->transition_mode[j][k]);
  924. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  925. }
  926. for (j = base_channel; j < s->prim_channels; j++) {
  927. av_log(s->avctx, AV_LOG_DEBUG, "Scale factor:");
  928. for (k = 0; k < s->subband_activity[j]; k++) {
  929. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0)
  930. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->scale_factor[j][k][0]);
  931. if (k < s->vq_start_subband[j] && s->transition_mode[j][k])
  932. av_log(s->avctx, AV_LOG_DEBUG, " %i(t)", s->scale_factor[j][k][1]);
  933. }
  934. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  935. }
  936. for (j = base_channel; j < s->prim_channels; j++) {
  937. if (s->joint_intensity[j] > 0) {
  938. int source_channel = s->joint_intensity[j] - 1;
  939. av_log(s->avctx, AV_LOG_DEBUG, "Joint scale factor index:\n");
  940. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++)
  941. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->joint_scale_factor[j][k]);
  942. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  943. }
  944. }
  945. if (!base_channel && s->prim_channels > 2 && s->downmix) {
  946. av_log(s->avctx, AV_LOG_DEBUG, "Downmix coeffs:\n");
  947. for (j = 0; j < s->prim_channels; j++) {
  948. av_log(s->avctx, AV_LOG_DEBUG, "Channel 0, %d = %f\n", j,
  949. dca_downmix_coeffs[s->downmix_coef[j][0]]);
  950. av_log(s->avctx, AV_LOG_DEBUG, "Channel 1, %d = %f\n", j,
  951. dca_downmix_coeffs[s->downmix_coef[j][1]]);
  952. }
  953. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  954. }
  955. for (j = base_channel; j < s->prim_channels; j++)
  956. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  957. av_log(s->avctx, AV_LOG_DEBUG, "VQ index: %i\n", s->high_freq_vq[j][k]);
  958. if (!base_channel && s->lfe) {
  959. int lfe_samples = 2 * s->lfe * (4 + block_index);
  960. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  961. av_log(s->avctx, AV_LOG_DEBUG, "LFE samples:\n");
  962. for (j = lfe_samples; j < lfe_end_sample; j++)
  963. av_log(s->avctx, AV_LOG_DEBUG, " %f", s->lfe_data[j]);
  964. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  965. }
  966. #endif
  967. return 0;
  968. }
  969. static void qmf_32_subbands(DCAContext *s, int chans,
  970. float samples_in[32][8], float *samples_out,
  971. float scale)
  972. {
  973. const float *prCoeff;
  974. int i;
  975. int sb_act = s->subband_activity[chans];
  976. int subindex;
  977. scale *= sqrt(1 / 8.0);
  978. /* Select filter */
  979. if (!s->multirate_inter) /* Non-perfect reconstruction */
  980. prCoeff = fir_32bands_nonperfect;
  981. else /* Perfect reconstruction */
  982. prCoeff = fir_32bands_perfect;
  983. for (i = sb_act; i < 32; i++)
  984. s->raXin[i] = 0.0;
  985. /* Reconstructed channel sample index */
  986. for (subindex = 0; subindex < 8; subindex++) {
  987. /* Load in one sample from each subband and clear inactive subbands */
  988. for (i = 0; i < sb_act; i++) {
  989. unsigned sign = (i - 1) & 2;
  990. uint32_t v = AV_RN32A(&samples_in[i][subindex]) ^ sign << 30;
  991. AV_WN32A(&s->raXin[i], v);
  992. }
  993. s->synth.synth_filter_float(&s->imdct,
  994. s->subband_fir_hist[chans],
  995. &s->hist_index[chans],
  996. s->subband_fir_noidea[chans], prCoeff,
  997. samples_out, s->raXin, scale);
  998. samples_out += 32;
  999. }
  1000. }
  1001. static void lfe_interpolation_fir(DCAContext *s, int decimation_select,
  1002. int num_deci_sample, float *samples_in,
  1003. float *samples_out, float scale)
  1004. {
  1005. /* samples_in: An array holding decimated samples.
  1006. * Samples in current subframe starts from samples_in[0],
  1007. * while samples_in[-1], samples_in[-2], ..., stores samples
  1008. * from last subframe as history.
  1009. *
  1010. * samples_out: An array holding interpolated samples
  1011. */
  1012. int decifactor;
  1013. const float *prCoeff;
  1014. int deciindex;
  1015. /* Select decimation filter */
  1016. if (decimation_select == 1) {
  1017. decifactor = 64;
  1018. prCoeff = lfe_fir_128;
  1019. } else {
  1020. decifactor = 32;
  1021. prCoeff = lfe_fir_64;
  1022. }
  1023. /* Interpolation */
  1024. for (deciindex = 0; deciindex < num_deci_sample; deciindex++) {
  1025. s->dcadsp.lfe_fir(samples_out, samples_in, prCoeff, decifactor, scale);
  1026. samples_in++;
  1027. samples_out += 2 * decifactor;
  1028. }
  1029. }
  1030. /* downmixing routines */
  1031. #define MIX_REAR1(samples, s1, rs, coef) \
  1032. samples[0][i] += samples[s1][i] * coef[rs][0]; \
  1033. samples[1][i] += samples[s1][i] * coef[rs][1];
  1034. #define MIX_REAR2(samples, s1, s2, rs, coef) \
  1035. samples[0][i] += samples[s1][i] * coef[rs][0] + samples[s2][i] * coef[rs + 1][0]; \
  1036. samples[1][i] += samples[s1][i] * coef[rs][1] + samples[s2][i] * coef[rs + 1][1];
  1037. #define MIX_FRONT3(samples, coef) \
  1038. t = samples[c][i]; \
  1039. u = samples[l][i]; \
  1040. v = samples[r][i]; \
  1041. samples[0][i] = t * coef[0][0] + u * coef[1][0] + v * coef[2][0]; \
  1042. samples[1][i] = t * coef[0][1] + u * coef[1][1] + v * coef[2][1];
  1043. #define DOWNMIX_TO_STEREO(op1, op2) \
  1044. for (i = 0; i < 256; i++) { \
  1045. op1 \
  1046. op2 \
  1047. }
  1048. static void dca_downmix(float **samples, int srcfmt,
  1049. int downmix_coef[DCA_PRIM_CHANNELS_MAX][2],
  1050. const int8_t *channel_mapping)
  1051. {
  1052. int c, l, r, sl, sr, s;
  1053. int i;
  1054. float t, u, v;
  1055. float coef[DCA_PRIM_CHANNELS_MAX][2];
  1056. for (i = 0; i < DCA_PRIM_CHANNELS_MAX; i++) {
  1057. coef[i][0] = dca_downmix_coeffs[downmix_coef[i][0]];
  1058. coef[i][1] = dca_downmix_coeffs[downmix_coef[i][1]];
  1059. }
  1060. switch (srcfmt) {
  1061. case DCA_MONO:
  1062. case DCA_CHANNEL:
  1063. case DCA_STEREO_TOTAL:
  1064. case DCA_STEREO_SUMDIFF:
  1065. case DCA_4F2R:
  1066. av_log(NULL, 0, "Not implemented!\n");
  1067. break;
  1068. case DCA_STEREO:
  1069. break;
  1070. case DCA_3F:
  1071. c = channel_mapping[0];
  1072. l = channel_mapping[1];
  1073. r = channel_mapping[2];
  1074. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), );
  1075. break;
  1076. case DCA_2F1R:
  1077. s = channel_mapping[2];
  1078. DOWNMIX_TO_STEREO(MIX_REAR1(samples, s, 2, coef), );
  1079. break;
  1080. case DCA_3F1R:
  1081. c = channel_mapping[0];
  1082. l = channel_mapping[1];
  1083. r = channel_mapping[2];
  1084. s = channel_mapping[3];
  1085. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  1086. MIX_REAR1(samples, s, 3, coef));
  1087. break;
  1088. case DCA_2F2R:
  1089. sl = channel_mapping[2];
  1090. sr = channel_mapping[3];
  1091. DOWNMIX_TO_STEREO(MIX_REAR2(samples, sl, sr, 2, coef), );
  1092. break;
  1093. case DCA_3F2R:
  1094. c = channel_mapping[0];
  1095. l = channel_mapping[1];
  1096. r = channel_mapping[2];
  1097. sl = channel_mapping[3];
  1098. sr = channel_mapping[4];
  1099. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  1100. MIX_REAR2(samples, sl, sr, 3, coef));
  1101. break;
  1102. }
  1103. }
  1104. #ifndef decode_blockcodes
  1105. /* Very compact version of the block code decoder that does not use table
  1106. * look-up but is slightly slower */
  1107. static int decode_blockcode(int code, int levels, int *values)
  1108. {
  1109. int i;
  1110. int offset = (levels - 1) >> 1;
  1111. for (i = 0; i < 4; i++) {
  1112. int div = FASTDIV(code, levels);
  1113. values[i] = code - offset - div * levels;
  1114. code = div;
  1115. }
  1116. return code;
  1117. }
  1118. static int decode_blockcodes(int code1, int code2, int levels, int *values)
  1119. {
  1120. return decode_blockcode(code1, levels, values) |
  1121. decode_blockcode(code2, levels, values + 4);
  1122. }
  1123. #endif
  1124. static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 };
  1125. static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 };
  1126. #ifndef int8x8_fmul_int32
  1127. static inline void int8x8_fmul_int32(float *dst, const int8_t *src, int scale)
  1128. {
  1129. float fscale = scale / 16.0;
  1130. int i;
  1131. for (i = 0; i < 8; i++)
  1132. dst[i] = src[i] * fscale;
  1133. }
  1134. #endif
  1135. static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
  1136. {
  1137. int k, l;
  1138. int subsubframe = s->current_subsubframe;
  1139. const float *quant_step_table;
  1140. /* FIXME */
  1141. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  1142. LOCAL_ALIGNED_16(int, block, [8]);
  1143. /*
  1144. * Audio data
  1145. */
  1146. /* Select quantization step size table */
  1147. if (s->bit_rate_index == 0x1f)
  1148. quant_step_table = lossless_quant_d;
  1149. else
  1150. quant_step_table = lossy_quant_d;
  1151. for (k = base_channel; k < s->prim_channels; k++) {
  1152. if (get_bits_left(&s->gb) < 0)
  1153. return AVERROR_INVALIDDATA;
  1154. for (l = 0; l < s->vq_start_subband[k]; l++) {
  1155. int m;
  1156. /* Select the mid-tread linear quantizer */
  1157. int abits = s->bitalloc[k][l];
  1158. float quant_step_size = quant_step_table[abits];
  1159. /*
  1160. * Determine quantization index code book and its type
  1161. */
  1162. /* Select quantization index code book */
  1163. int sel = s->quant_index_huffman[k][abits];
  1164. /*
  1165. * Extract bits from the bit stream
  1166. */
  1167. if (!abits) {
  1168. memset(subband_samples[k][l], 0, 8 * sizeof(subband_samples[0][0][0]));
  1169. } else {
  1170. /* Deal with transients */
  1171. int sfi = s->transition_mode[k][l] && subsubframe >= s->transition_mode[k][l];
  1172. float rscale = quant_step_size * s->scale_factor[k][l][sfi] *
  1173. s->scalefactor_adj[k][sel];
  1174. if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table) {
  1175. if (abits <= 7) {
  1176. /* Block code */
  1177. int block_code1, block_code2, size, levels, err;
  1178. size = abits_sizes[abits - 1];
  1179. levels = abits_levels[abits - 1];
  1180. block_code1 = get_bits(&s->gb, size);
  1181. block_code2 = get_bits(&s->gb, size);
  1182. err = decode_blockcodes(block_code1, block_code2,
  1183. levels, block);
  1184. if (err) {
  1185. av_log(s->avctx, AV_LOG_ERROR,
  1186. "ERROR: block code look-up failed\n");
  1187. return AVERROR_INVALIDDATA;
  1188. }
  1189. } else {
  1190. /* no coding */
  1191. for (m = 0; m < 8; m++)
  1192. block[m] = get_sbits(&s->gb, abits - 3);
  1193. }
  1194. } else {
  1195. /* Huffman coded */
  1196. for (m = 0; m < 8; m++)
  1197. block[m] = get_bitalloc(&s->gb,
  1198. &dca_smpl_bitalloc[abits], sel);
  1199. }
  1200. s->fmt_conv.int32_to_float_fmul_scalar(subband_samples[k][l],
  1201. block, rscale, 8);
  1202. }
  1203. /*
  1204. * Inverse ADPCM if in prediction mode
  1205. */
  1206. if (s->prediction_mode[k][l]) {
  1207. int n;
  1208. for (m = 0; m < 8; m++) {
  1209. for (n = 1; n <= 4; n++)
  1210. if (m >= n)
  1211. subband_samples[k][l][m] +=
  1212. (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  1213. subband_samples[k][l][m - n] / 8192);
  1214. else if (s->predictor_history)
  1215. subband_samples[k][l][m] +=
  1216. (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  1217. s->subband_samples_hist[k][l][m - n + 4] / 8192);
  1218. }
  1219. }
  1220. }
  1221. /*
  1222. * Decode VQ encoded high frequencies
  1223. */
  1224. for (l = s->vq_start_subband[k]; l < s->subband_activity[k]; l++) {
  1225. /* 1 vector -> 32 samples but we only need the 8 samples
  1226. * for this subsubframe. */
  1227. int hfvq = s->high_freq_vq[k][l];
  1228. if (!s->debug_flag & 0x01) {
  1229. av_log(s->avctx, AV_LOG_DEBUG,
  1230. "Stream with high frequencies VQ coding\n");
  1231. s->debug_flag |= 0x01;
  1232. }
  1233. int8x8_fmul_int32(subband_samples[k][l],
  1234. &high_freq_vq[hfvq][subsubframe * 8],
  1235. s->scale_factor[k][l][0]);
  1236. }
  1237. }
  1238. /* Check for DSYNC after subsubframe */
  1239. if (s->aspf || subsubframe == s->subsubframes[s->current_subframe] - 1) {
  1240. if (0xFFFF == get_bits(&s->gb, 16)) { /* 0xFFFF */
  1241. #ifdef TRACE
  1242. av_log(s->avctx, AV_LOG_DEBUG, "Got subframe DSYNC\n");
  1243. #endif
  1244. } else {
  1245. av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
  1246. }
  1247. }
  1248. /* Backup predictor history for adpcm */
  1249. for (k = base_channel; k < s->prim_channels; k++)
  1250. for (l = 0; l < s->vq_start_subband[k]; l++)
  1251. memcpy(s->subband_samples_hist[k][l],
  1252. &subband_samples[k][l][4],
  1253. 4 * sizeof(subband_samples[0][0][0]));
  1254. return 0;
  1255. }
  1256. static int dca_filter_channels(DCAContext *s, int block_index)
  1257. {
  1258. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  1259. int k;
  1260. /* 32 subbands QMF */
  1261. for (k = 0; k < s->prim_channels; k++) {
  1262. /* static float pcm_to_double[8] = { 32768.0, 32768.0, 524288.0, 524288.0,
  1263. 0, 8388608.0, 8388608.0 };*/
  1264. qmf_32_subbands(s, k, subband_samples[k],
  1265. s->samples_chanptr[s->channel_order_tab[k]],
  1266. M_SQRT1_2 / 32768.0 /* pcm_to_double[s->source_pcm_res] */);
  1267. }
  1268. /* Down mixing */
  1269. if (s->avctx->request_channels == 2 && s->prim_channels > 2) {
  1270. dca_downmix(s->samples_chanptr, s->amode, s->downmix_coef, s->channel_order_tab);
  1271. }
  1272. /* Generate LFE samples for this subsubframe FIXME!!! */
  1273. if (s->output & DCA_LFE) {
  1274. lfe_interpolation_fir(s, s->lfe, 2 * s->lfe,
  1275. s->lfe_data + 2 * s->lfe * (block_index + 4),
  1276. s->samples_chanptr[s->lfe_index],
  1277. 1.0 / (256.0 * 32768.0));
  1278. /* Outputs 20bits pcm samples */
  1279. }
  1280. return 0;
  1281. }
  1282. static int dca_subframe_footer(DCAContext *s, int base_channel)
  1283. {
  1284. int aux_data_count = 0, i;
  1285. /*
  1286. * Unpack optional information
  1287. */
  1288. /* presumably optional information only appears in the core? */
  1289. if (!base_channel) {
  1290. if (s->timestamp)
  1291. skip_bits_long(&s->gb, 32);
  1292. if (s->aux_data)
  1293. aux_data_count = get_bits(&s->gb, 6);
  1294. for (i = 0; i < aux_data_count; i++)
  1295. get_bits(&s->gb, 8);
  1296. if (s->crc_present && (s->downmix || s->dynrange))
  1297. get_bits(&s->gb, 16);
  1298. }
  1299. return 0;
  1300. }
  1301. /**
  1302. * Decode a dca frame block
  1303. *
  1304. * @param s pointer to the DCAContext
  1305. */
  1306. static int dca_decode_block(DCAContext *s, int base_channel, int block_index)
  1307. {
  1308. int ret;
  1309. /* Sanity check */
  1310. if (s->current_subframe >= s->subframes) {
  1311. av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
  1312. s->current_subframe, s->subframes);
  1313. return AVERROR_INVALIDDATA;
  1314. }
  1315. if (!s->current_subsubframe) {
  1316. #ifdef TRACE
  1317. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_header\n");
  1318. #endif
  1319. /* Read subframe header */
  1320. if ((ret = dca_subframe_header(s, base_channel, block_index)))
  1321. return ret;
  1322. }
  1323. /* Read subsubframe */
  1324. #ifdef TRACE
  1325. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subsubframe\n");
  1326. #endif
  1327. if ((ret = dca_subsubframe(s, base_channel, block_index)))
  1328. return ret;
  1329. /* Update state */
  1330. s->current_subsubframe++;
  1331. if (s->current_subsubframe >= s->subsubframes[s->current_subframe]) {
  1332. s->current_subsubframe = 0;
  1333. s->current_subframe++;
  1334. }
  1335. if (s->current_subframe >= s->subframes) {
  1336. #ifdef TRACE
  1337. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_footer\n");
  1338. #endif
  1339. /* Read subframe footer */
  1340. if ((ret = dca_subframe_footer(s, base_channel)))
  1341. return ret;
  1342. }
  1343. return 0;
  1344. }
  1345. /**
  1346. * Return the number of channels in an ExSS speaker mask (HD)
  1347. */
  1348. static int dca_exss_mask2count(int mask)
  1349. {
  1350. /* count bits that mean speaker pairs twice */
  1351. return av_popcount(mask) +
  1352. av_popcount(mask & (DCA_EXSS_CENTER_LEFT_RIGHT |
  1353. DCA_EXSS_FRONT_LEFT_RIGHT |
  1354. DCA_EXSS_FRONT_HIGH_LEFT_RIGHT |
  1355. DCA_EXSS_WIDE_LEFT_RIGHT |
  1356. DCA_EXSS_SIDE_LEFT_RIGHT |
  1357. DCA_EXSS_SIDE_HIGH_LEFT_RIGHT |
  1358. DCA_EXSS_SIDE_REAR_LEFT_RIGHT |
  1359. DCA_EXSS_REAR_LEFT_RIGHT |
  1360. DCA_EXSS_REAR_HIGH_LEFT_RIGHT));
  1361. }
  1362. /**
  1363. * Skip mixing coefficients of a single mix out configuration (HD)
  1364. */
  1365. static void dca_exss_skip_mix_coeffs(GetBitContext *gb, int channels, int out_ch)
  1366. {
  1367. int i;
  1368. for (i = 0; i < channels; i++) {
  1369. int mix_map_mask = get_bits(gb, out_ch);
  1370. int num_coeffs = av_popcount(mix_map_mask);
  1371. skip_bits_long(gb, num_coeffs * 6);
  1372. }
  1373. }
  1374. /**
  1375. * Parse extension substream asset header (HD)
  1376. */
  1377. static int dca_exss_parse_asset_header(DCAContext *s)
  1378. {
  1379. int header_pos = get_bits_count(&s->gb);
  1380. int header_size;
  1381. int channels = 0;
  1382. int embedded_stereo = 0;
  1383. int embedded_6ch = 0;
  1384. int drc_code_present;
  1385. int av_uninit(extensions_mask);
  1386. int i, j;
  1387. if (get_bits_left(&s->gb) < 16)
  1388. return -1;
  1389. /* We will parse just enough to get to the extensions bitmask with which
  1390. * we can set the profile value. */
  1391. header_size = get_bits(&s->gb, 9) + 1;
  1392. skip_bits(&s->gb, 3); // asset index
  1393. if (s->static_fields) {
  1394. if (get_bits1(&s->gb))
  1395. skip_bits(&s->gb, 4); // asset type descriptor
  1396. if (get_bits1(&s->gb))
  1397. skip_bits_long(&s->gb, 24); // language descriptor
  1398. if (get_bits1(&s->gb)) {
  1399. /* How can one fit 1024 bytes of text here if the maximum value
  1400. * for the asset header size field above was 512 bytes? */
  1401. int text_length = get_bits(&s->gb, 10) + 1;
  1402. if (get_bits_left(&s->gb) < text_length * 8)
  1403. return -1;
  1404. skip_bits_long(&s->gb, text_length * 8); // info text
  1405. }
  1406. skip_bits(&s->gb, 5); // bit resolution - 1
  1407. skip_bits(&s->gb, 4); // max sample rate code
  1408. channels = get_bits(&s->gb, 8) + 1;
  1409. if (get_bits1(&s->gb)) { // 1-to-1 channels to speakers
  1410. int spkr_remap_sets;
  1411. int spkr_mask_size = 16;
  1412. int num_spkrs[7];
  1413. if (channels > 2)
  1414. embedded_stereo = get_bits1(&s->gb);
  1415. if (channels > 6)
  1416. embedded_6ch = get_bits1(&s->gb);
  1417. if (get_bits1(&s->gb)) {
  1418. spkr_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
  1419. skip_bits(&s->gb, spkr_mask_size); // spkr activity mask
  1420. }
  1421. spkr_remap_sets = get_bits(&s->gb, 3);
  1422. for (i = 0; i < spkr_remap_sets; i++) {
  1423. /* std layout mask for each remap set */
  1424. num_spkrs[i] = dca_exss_mask2count(get_bits(&s->gb, spkr_mask_size));
  1425. }
  1426. for (i = 0; i < spkr_remap_sets; i++) {
  1427. int num_dec_ch_remaps = get_bits(&s->gb, 5) + 1;
  1428. if (get_bits_left(&s->gb) < 0)
  1429. return -1;
  1430. for (j = 0; j < num_spkrs[i]; j++) {
  1431. int remap_dec_ch_mask = get_bits_long(&s->gb, num_dec_ch_remaps);
  1432. int num_dec_ch = av_popcount(remap_dec_ch_mask);
  1433. skip_bits_long(&s->gb, num_dec_ch * 5); // remap codes
  1434. }
  1435. }
  1436. } else {
  1437. skip_bits(&s->gb, 3); // representation type
  1438. }
  1439. }
  1440. drc_code_present = get_bits1(&s->gb);
  1441. if (drc_code_present)
  1442. get_bits(&s->gb, 8); // drc code
  1443. if (get_bits1(&s->gb))
  1444. skip_bits(&s->gb, 5); // dialog normalization code
  1445. if (drc_code_present && embedded_stereo)
  1446. get_bits(&s->gb, 8); // drc stereo code
  1447. if (s->mix_metadata && get_bits1(&s->gb)) {
  1448. skip_bits(&s->gb, 1); // external mix
  1449. skip_bits(&s->gb, 6); // post mix gain code
  1450. if (get_bits(&s->gb, 2) != 3) // mixer drc code
  1451. skip_bits(&s->gb, 3); // drc limit
  1452. else
  1453. skip_bits(&s->gb, 8); // custom drc code
  1454. if (get_bits1(&s->gb)) // channel specific scaling
  1455. for (i = 0; i < s->num_mix_configs; i++)
  1456. skip_bits_long(&s->gb, s->mix_config_num_ch[i] * 6); // scale codes
  1457. else
  1458. skip_bits_long(&s->gb, s->num_mix_configs * 6); // scale codes
  1459. for (i = 0; i < s->num_mix_configs; i++) {
  1460. if (get_bits_left(&s->gb) < 0)
  1461. return -1;
  1462. dca_exss_skip_mix_coeffs(&s->gb, channels, s->mix_config_num_ch[i]);
  1463. if (embedded_6ch)
  1464. dca_exss_skip_mix_coeffs(&s->gb, 6, s->mix_config_num_ch[i]);
  1465. if (embedded_stereo)
  1466. dca_exss_skip_mix_coeffs(&s->gb, 2, s->mix_config_num_ch[i]);
  1467. }
  1468. }
  1469. switch (get_bits(&s->gb, 2)) {
  1470. case 0: extensions_mask = get_bits(&s->gb, 12); break;
  1471. case 1: extensions_mask = DCA_EXT_EXSS_XLL; break;
  1472. case 2: extensions_mask = DCA_EXT_EXSS_LBR; break;
  1473. case 3: extensions_mask = 0; /* aux coding */ break;
  1474. }
  1475. /* not parsed further, we were only interested in the extensions mask */
  1476. if (get_bits_left(&s->gb) < 0)
  1477. return -1;
  1478. if (get_bits_count(&s->gb) - header_pos > header_size * 8) {
  1479. av_log(s->avctx, AV_LOG_WARNING, "Asset header size mismatch.\n");
  1480. return -1;
  1481. }
  1482. skip_bits_long(&s->gb, header_pos + header_size * 8 - get_bits_count(&s->gb));
  1483. if (extensions_mask & DCA_EXT_EXSS_XLL)
  1484. s->profile = FF_PROFILE_DTS_HD_MA;
  1485. else if (extensions_mask & (DCA_EXT_EXSS_XBR | DCA_EXT_EXSS_X96 |
  1486. DCA_EXT_EXSS_XXCH))
  1487. s->profile = FF_PROFILE_DTS_HD_HRA;
  1488. if (!(extensions_mask & DCA_EXT_CORE))
  1489. av_log(s->avctx, AV_LOG_WARNING, "DTS core detection mismatch.\n");
  1490. if ((extensions_mask & DCA_CORE_EXTS) != s->core_ext_mask)
  1491. av_log(s->avctx, AV_LOG_WARNING,
  1492. "DTS extensions detection mismatch (%d, %d)\n",
  1493. extensions_mask & DCA_CORE_EXTS, s->core_ext_mask);
  1494. return 0;
  1495. }
  1496. static int dca_xbr_parse_frame(DCAContext *s)
  1497. {
  1498. int scale_table_high[DCA_CHSET_CHANS_MAX][DCA_SUBBANDS][2];
  1499. int active_bands[DCA_CHSETS_MAX][DCA_CHSET_CHANS_MAX];
  1500. int abits_high[DCA_CHSET_CHANS_MAX][DCA_SUBBANDS];
  1501. int anctemp[DCA_CHSET_CHANS_MAX];
  1502. int chset_fsize[DCA_CHSETS_MAX];
  1503. int n_xbr_ch[DCA_CHSETS_MAX];
  1504. int hdr_size, num_chsets, xbr_tmode, hdr_pos;
  1505. int i, j, k, l, chset, chan_base;
  1506. av_log(s->avctx, AV_LOG_DEBUG, "DTS-XBR: decoding XBR extension\n");
  1507. /* get bit position of sync header */
  1508. hdr_pos = get_bits_count(&s->gb) - 32;
  1509. hdr_size = get_bits(&s->gb, 6) + 1;
  1510. num_chsets = get_bits(&s->gb, 2) + 1;
  1511. for(i = 0; i < num_chsets; i++)
  1512. chset_fsize[i] = get_bits(&s->gb, 14) + 1;
  1513. xbr_tmode = get_bits1(&s->gb);
  1514. for(i = 0; i < num_chsets; i++) {
  1515. n_xbr_ch[i] = get_bits(&s->gb, 3) + 1;
  1516. k = get_bits(&s->gb, 2) + 5;
  1517. for(j = 0; j < n_xbr_ch[i]; j++)
  1518. active_bands[i][j] = get_bits(&s->gb, k) + 1;
  1519. }
  1520. /* skip to the end of the header */
  1521. i = get_bits_count(&s->gb);
  1522. if(hdr_pos + hdr_size * 8 > i)
  1523. skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i);
  1524. /* loop over the channel data sets */
  1525. /* only decode as many channels as we've decoded base data for */
  1526. for(chset = 0, chan_base = 0;
  1527. chset < num_chsets && chan_base + n_xbr_ch[chset] <= s->prim_channels;
  1528. chan_base += n_xbr_ch[chset++]) {
  1529. int start_posn = get_bits_count(&s->gb);
  1530. int subsubframe = 0;
  1531. int subframe = 0;
  1532. /* loop over subframes */
  1533. for (k = 0; k < (s->sample_blocks / 8); k++) {
  1534. /* parse header if we're on first subsubframe of a block */
  1535. if(subsubframe == 0) {
  1536. /* Parse subframe header */
  1537. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1538. anctemp[i] = get_bits(&s->gb, 2) + 2;
  1539. }
  1540. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1541. get_array(&s->gb, abits_high[i], active_bands[chset][i], anctemp[i]);
  1542. }
  1543. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1544. anctemp[i] = get_bits(&s->gb, 3);
  1545. if(anctemp[i] < 1) {
  1546. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: SYNC ERROR\n");
  1547. return AVERROR_INVALIDDATA;
  1548. }
  1549. }
  1550. /* generate scale factors */
  1551. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1552. const uint32_t *scale_table;
  1553. int nbits;
  1554. if (s->scalefactor_huffman[chan_base+i] == 6) {
  1555. scale_table = scale_factor_quant7;
  1556. } else {
  1557. scale_table = scale_factor_quant6;
  1558. }
  1559. nbits = anctemp[i];
  1560. for(j = 0; j < active_bands[chset][i]; j++) {
  1561. if(abits_high[i][j] > 0) {
  1562. scale_table_high[i][j][0] =
  1563. scale_table[get_bits(&s->gb, nbits)];
  1564. if(xbr_tmode && s->transition_mode[i][j]) {
  1565. scale_table_high[i][j][1] =
  1566. scale_table[get_bits(&s->gb, nbits)];
  1567. }
  1568. }
  1569. }
  1570. }
  1571. }
  1572. /* decode audio array for this block */
  1573. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1574. for(j = 0; j < active_bands[chset][i]; j++) {
  1575. const int xbr_abits = abits_high[i][j];
  1576. const float quant_step_size = lossless_quant_d[xbr_abits];
  1577. const int sfi = xbr_tmode && s->transition_mode[i][j] && subsubframe >= s->transition_mode[i][j];
  1578. const float rscale = quant_step_size * scale_table_high[i][j][sfi];
  1579. float *subband_samples = s->subband_samples[k][chan_base+i][j];
  1580. int block[8];
  1581. if(xbr_abits <= 0)
  1582. continue;
  1583. if(xbr_abits > 7) {
  1584. get_array(&s->gb, block, 8, xbr_abits - 3);
  1585. } else {
  1586. int block_code1, block_code2, size, levels, err;
  1587. size = abits_sizes[xbr_abits - 1];
  1588. levels = abits_levels[xbr_abits - 1];
  1589. block_code1 = get_bits(&s->gb, size);
  1590. block_code2 = get_bits(&s->gb, size);
  1591. err = decode_blockcodes(block_code1, block_code2,
  1592. levels, block);
  1593. if (err) {
  1594. av_log(s->avctx, AV_LOG_ERROR,
  1595. "ERROR: DTS-XBR: block code look-up failed\n");
  1596. return AVERROR_INVALIDDATA;
  1597. }
  1598. }
  1599. /* scale & sum into subband */
  1600. for(l = 0; l < 8; l++)
  1601. subband_samples[l] += (float)block[l] * rscale;
  1602. }
  1603. }
  1604. /* check DSYNC marker */
  1605. if(s->aspf || subsubframe == s->subsubframes[subframe] - 1) {
  1606. if(get_bits(&s->gb, 16) != 0xffff) {
  1607. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: Didn't get subframe DSYNC\n");
  1608. return AVERROR_INVALIDDATA;
  1609. }
  1610. }
  1611. /* advance sub-sub-frame index */
  1612. if(++subsubframe >= s->subsubframes[subframe]) {
  1613. subsubframe = 0;
  1614. subframe++;
  1615. }
  1616. }
  1617. /* skip to next channel set */
  1618. i = get_bits_count(&s->gb);
  1619. if(start_posn + chset_fsize[chset] * 8 != i) {
  1620. j = start_posn + chset_fsize[chset] * 8 - i;
  1621. if(j < 0 || j >= 8)
  1622. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: end of channel set,"
  1623. " skipping further than expected (%d bits)\n", j);
  1624. skip_bits_long(&s->gb, j);
  1625. }
  1626. }
  1627. return 0;
  1628. }
  1629. /* parse initial header for XXCH and dump details */
  1630. static int dca_xxch_decode_frame(DCAContext *s)
  1631. {
  1632. int hdr_size, spkmsk_bits, num_chsets, core_spk, hdr_pos;
  1633. int i, chset, base_channel, chstart, fsize[8];
  1634. /* assume header word has already been parsed */
  1635. hdr_pos = get_bits_count(&s->gb) - 32;
  1636. hdr_size = get_bits(&s->gb, 6) + 1;
  1637. /*chhdr_crc =*/ skip_bits1(&s->gb);
  1638. spkmsk_bits = get_bits(&s->gb, 5) + 1;
  1639. num_chsets = get_bits(&s->gb, 2) + 1;
  1640. for (i = 0; i < num_chsets; i++)
  1641. fsize[i] = get_bits(&s->gb, 14) + 1;
  1642. core_spk = get_bits(&s->gb, spkmsk_bits);
  1643. s->xxch_core_spkmask = core_spk;
  1644. s->xxch_nbits_spk_mask = spkmsk_bits;
  1645. s->xxch_downmix = 0;
  1646. s->xxch_dmix_embedded = 0;
  1647. /* skip to the end of the header */
  1648. i = get_bits_count(&s->gb);
  1649. if (hdr_pos + hdr_size * 8 > i)
  1650. skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i);
  1651. for (chset = 0; chset < num_chsets; chset++) {
  1652. chstart = get_bits_count(&s->gb);
  1653. base_channel = s->prim_channels;
  1654. s->xxch_chset = chset;
  1655. /* XXCH and Core headers differ, see 6.4.2 "XXCH Channel Set Header" vs.
  1656. 5.3.2 "Primary Audio Coding Header", DTS Spec 1.3.1 */
  1657. dca_parse_audio_coding_header(s, base_channel, 1);
  1658. /* decode channel data */
  1659. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1660. if (dca_decode_block(s, base_channel, i)) {
  1661. av_log(s->avctx, AV_LOG_ERROR,
  1662. "Error decoding DTS-XXCH extension\n");
  1663. continue;
  1664. }
  1665. }
  1666. /* skip to end of this section */
  1667. i = get_bits_count(&s->gb);
  1668. if (chstart + fsize[chset] * 8 > i)
  1669. skip_bits_long(&s->gb, chstart + fsize[chset] * 8 - i);
  1670. }
  1671. s->xxch_chset = num_chsets;
  1672. return 0;
  1673. }
  1674. /**
  1675. * Parse extension substream header (HD)
  1676. */
  1677. static void dca_exss_parse_header(DCAContext *s)
  1678. {
  1679. int asset_size[8];
  1680. int ss_index;
  1681. int blownup;
  1682. int num_audiop = 1;
  1683. int num_assets = 1;
  1684. int active_ss_mask[8];
  1685. int i, j;
  1686. int start_posn;
  1687. int hdrsize;
  1688. uint32_t mkr;
  1689. if (get_bits_left(&s->gb) < 52)
  1690. return;
  1691. start_posn = get_bits_count(&s->gb) - 32;
  1692. skip_bits(&s->gb, 8); // user data
  1693. ss_index = get_bits(&s->gb, 2);
  1694. blownup = get_bits1(&s->gb);
  1695. hdrsize = get_bits(&s->gb, 8 + 4 * blownup) + 1; // header_size
  1696. skip_bits(&s->gb, 16 + 4 * blownup); // hd_size
  1697. s->static_fields = get_bits1(&s->gb);
  1698. if (s->static_fields) {
  1699. skip_bits(&s->gb, 2); // reference clock code
  1700. skip_bits(&s->gb, 3); // frame duration code
  1701. if (get_bits1(&s->gb))
  1702. skip_bits_long(&s->gb, 36); // timestamp
  1703. /* a single stream can contain multiple audio assets that can be
  1704. * combined to form multiple audio presentations */
  1705. num_audiop = get_bits(&s->gb, 3) + 1;
  1706. if (num_audiop > 1) {
  1707. av_log_ask_for_sample(s->avctx, "Multiple DTS-HD audio presentations.");
  1708. /* ignore such streams for now */
  1709. return;
  1710. }
  1711. num_assets = get_bits(&s->gb, 3) + 1;
  1712. if (num_assets > 1) {
  1713. av_log_ask_for_sample(s->avctx, "Multiple DTS-HD audio assets.");
  1714. /* ignore such streams for now */
  1715. return;
  1716. }
  1717. for (i = 0; i < num_audiop; i++)
  1718. active_ss_mask[i] = get_bits(&s->gb, ss_index + 1);
  1719. for (i = 0; i < num_audiop; i++)
  1720. for (j = 0; j <= ss_index; j++)
  1721. if (active_ss_mask[i] & (1 << j))
  1722. skip_bits(&s->gb, 8); // active asset mask
  1723. s->mix_metadata = get_bits1(&s->gb);
  1724. if (s->mix_metadata) {
  1725. int mix_out_mask_size;
  1726. skip_bits(&s->gb, 2); // adjustment level
  1727. mix_out_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
  1728. s->num_mix_configs = get_bits(&s->gb, 2) + 1;
  1729. for (i = 0; i < s->num_mix_configs; i++) {
  1730. int mix_out_mask = get_bits(&s->gb, mix_out_mask_size);
  1731. s->mix_config_num_ch[i] = dca_exss_mask2count(mix_out_mask);
  1732. }
  1733. }
  1734. }
  1735. for (i = 0; i < num_assets; i++)
  1736. asset_size[i] = get_bits_long(&s->gb, 16 + 4 * blownup);
  1737. for (i = 0; i < num_assets; i++) {
  1738. if (dca_exss_parse_asset_header(s))
  1739. return;
  1740. }
  1741. /* not parsed further, we were only interested in the extensions mask
  1742. * from the asset header */
  1743. if (num_assets > 0) {
  1744. j = get_bits_count(&s->gb);
  1745. if (start_posn + hdrsize * 8 > j)
  1746. skip_bits_long(&s->gb, start_posn + hdrsize * 8 - j);
  1747. for (i = 0; i < num_assets; i++) {
  1748. start_posn = get_bits_count(&s->gb);
  1749. mkr = get_bits_long(&s->gb, 32);
  1750. /* parse extensions that we know about */
  1751. if (mkr == 0x655e315e) {
  1752. dca_xbr_parse_frame(s);
  1753. } else if (mkr == 0x47004a03) {
  1754. dca_xxch_decode_frame(s);
  1755. s->core_ext_mask |= DCA_EXT_XXCH; /* xxx use for chan reordering */
  1756. } else {
  1757. av_log(s->avctx, AV_LOG_DEBUG,
  1758. "DTS-ExSS: unknown marker = 0x%08x\n", mkr);
  1759. }
  1760. /* skip to end of block */
  1761. j = get_bits_count(&s->gb);
  1762. if (start_posn + asset_size[i] * 8 > j)
  1763. skip_bits_long(&s->gb, start_posn + asset_size[i] * 8 - j);
  1764. }
  1765. }
  1766. }
  1767. /**
  1768. * Main frame decoding function
  1769. * FIXME add arguments
  1770. */
  1771. static int dca_decode_frame(AVCodecContext *avctx, void *data,
  1772. int *got_frame_ptr, AVPacket *avpkt)
  1773. {
  1774. const uint8_t *buf = avpkt->data;
  1775. int buf_size = avpkt->size;
  1776. int channel_mask;
  1777. int channel_layout;
  1778. int lfe_samples;
  1779. int num_core_channels = 0;
  1780. int i, ret;
  1781. float **samples_flt;
  1782. float *src_chan;
  1783. float *dst_chan;
  1784. DCAContext *s = avctx->priv_data;
  1785. int core_ss_end;
  1786. int channels, full_channels;
  1787. float scale;
  1788. int achan;
  1789. int chset;
  1790. int mask;
  1791. int lavc;
  1792. int posn;
  1793. int j, k;
  1794. int endch;
  1795. s->xch_present = 0;
  1796. s->dca_buffer_size = ff_dca_convert_bitstream(buf, buf_size, s->dca_buffer,
  1797. DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE);
  1798. if (s->dca_buffer_size == AVERROR_INVALIDDATA) {
  1799. av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
  1800. return AVERROR_INVALIDDATA;
  1801. }
  1802. init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
  1803. if ((ret = dca_parse_frame_header(s)) < 0) {
  1804. //seems like the frame is corrupt, try with the next one
  1805. return ret;
  1806. }
  1807. //set AVCodec values with parsed data
  1808. avctx->sample_rate = s->sample_rate;
  1809. avctx->bit_rate = s->bit_rate;
  1810. s->profile = FF_PROFILE_DTS;
  1811. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1812. if ((ret = dca_decode_block(s, 0, i))) {
  1813. av_log(avctx, AV_LOG_ERROR, "error decoding block\n");
  1814. return ret;
  1815. }
  1816. }
  1817. /* record number of core channels incase less than max channels are requested */
  1818. num_core_channels = s->prim_channels;
  1819. if (s->ext_coding)
  1820. s->core_ext_mask = dca_ext_audio_descr_mask[s->ext_descr];
  1821. else
  1822. s->core_ext_mask = 0;
  1823. core_ss_end = FFMIN(s->frame_size, s->dca_buffer_size) * 8;
  1824. /* only scan for extensions if ext_descr was unknown or indicated a
  1825. * supported XCh extension */
  1826. if (s->core_ext_mask < 0 || s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH)) {
  1827. /* if ext_descr was unknown, clear s->core_ext_mask so that the
  1828. * extensions scan can fill it up */
  1829. s->core_ext_mask = FFMAX(s->core_ext_mask, 0);
  1830. /* extensions start at 32-bit boundaries into bitstream */
  1831. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1832. while (core_ss_end - get_bits_count(&s->gb) >= 32) {
  1833. uint32_t bits = get_bits_long(&s->gb, 32);
  1834. switch (bits) {
  1835. case 0x5a5a5a5a: {
  1836. int ext_amode, xch_fsize;
  1837. s->xch_base_channel = s->prim_channels;
  1838. /* validate sync word using XCHFSIZE field */
  1839. xch_fsize = show_bits(&s->gb, 10);
  1840. if ((s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize) &&
  1841. (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize + 1))
  1842. continue;
  1843. /* skip length-to-end-of-frame field for the moment */
  1844. skip_bits(&s->gb, 10);
  1845. s->core_ext_mask |= DCA_EXT_XCH;
  1846. /* extension amode(number of channels in extension) should be 1 */
  1847. /* AFAIK XCh is not used for more channels */
  1848. if ((ext_amode = get_bits(&s->gb, 4)) != 1) {
  1849. av_log(avctx, AV_LOG_ERROR, "XCh extension amode %d not"
  1850. " supported!\n", ext_amode);
  1851. continue;
  1852. }
  1853. /* much like core primary audio coding header */
  1854. dca_parse_audio_coding_header(s, s->xch_base_channel, 0);
  1855. for (i = 0; i < (s->sample_blocks / 8); i++)
  1856. if ((ret = dca_decode_block(s, s->xch_base_channel, i))) {
  1857. av_log(avctx, AV_LOG_ERROR, "error decoding XCh extension\n");
  1858. continue;
  1859. }
  1860. s->xch_present = 1;
  1861. break;
  1862. }
  1863. case 0x47004a03:
  1864. /* XXCh: extended channels */
  1865. /* usually found either in core or HD part in DTS-HD HRA streams,
  1866. * but not in DTS-ES which contains XCh extensions instead */
  1867. s->core_ext_mask |= DCA_EXT_XXCH;
  1868. dca_xxch_decode_frame(s);
  1869. break;
  1870. case 0x1d95f262: {
  1871. int fsize96 = show_bits(&s->gb, 12) + 1;
  1872. if (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + fsize96)
  1873. continue;
  1874. av_log(avctx, AV_LOG_DEBUG, "X96 extension found at %d bits\n",
  1875. get_bits_count(&s->gb));
  1876. skip_bits(&s->gb, 12);
  1877. av_log(avctx, AV_LOG_DEBUG, "FSIZE96 = %d bytes\n", fsize96);
  1878. av_log(avctx, AV_LOG_DEBUG, "REVNO = %d\n", get_bits(&s->gb, 4));
  1879. s->core_ext_mask |= DCA_EXT_X96;
  1880. break;
  1881. }
  1882. }
  1883. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1884. }
  1885. } else {
  1886. /* no supported extensions, skip the rest of the core substream */
  1887. skip_bits_long(&s->gb, core_ss_end - get_bits_count(&s->gb));
  1888. }
  1889. if (s->core_ext_mask & DCA_EXT_X96)
  1890. s->profile = FF_PROFILE_DTS_96_24;
  1891. else if (s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH))
  1892. s->profile = FF_PROFILE_DTS_ES;
  1893. /* check for ExSS (HD part) */
  1894. if (s->dca_buffer_size - s->frame_size > 32 &&
  1895. get_bits_long(&s->gb, 32) == DCA_HD_MARKER)
  1896. dca_exss_parse_header(s);
  1897. avctx->profile = s->profile;
  1898. full_channels = channels = s->prim_channels + !!s->lfe;
  1899. /* If we have XXCH then the channel layout is managed differently */
  1900. /* note that XLL will also have another way to do things */
  1901. if (!(s->core_ext_mask & DCA_EXT_XXCH)
  1902. || (s->core_ext_mask & DCA_EXT_XXCH && avctx->request_channels > 0
  1903. && avctx->request_channels
  1904. < num_core_channels + !!s->lfe + s->xxch_chset_nch[0]))
  1905. { /* xxx should also do MA extensions */
  1906. if (s->amode < 16) {
  1907. avctx->channel_layout = dca_core_channel_layout[s->amode];
  1908. if (s->xch_present && (!avctx->request_channels ||
  1909. avctx->request_channels
  1910. > num_core_channels + !!s->lfe)) {
  1911. avctx->channel_layout |= AV_CH_BACK_CENTER;
  1912. if (s->lfe) {
  1913. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  1914. s->channel_order_tab = dca_channel_reorder_lfe_xch[s->amode];
  1915. } else {
  1916. s->channel_order_tab = dca_channel_reorder_nolfe_xch[s->amode];
  1917. }
  1918. } else {
  1919. channels = num_core_channels + !!s->lfe;
  1920. s->xch_present = 0; /* disable further xch processing */
  1921. if (s->lfe) {
  1922. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  1923. s->channel_order_tab = dca_channel_reorder_lfe[s->amode];
  1924. } else
  1925. s->channel_order_tab = dca_channel_reorder_nolfe[s->amode];
  1926. }
  1927. if (channels > !!s->lfe &&
  1928. s->channel_order_tab[channels - 1 - !!s->lfe] < 0)
  1929. return AVERROR_INVALIDDATA;
  1930. if (avctx->request_channels == 2 && s->prim_channels > 2) {
  1931. channels = 2;
  1932. s->output = DCA_STEREO;
  1933. avctx->channel_layout = AV_CH_LAYOUT_STEREO;
  1934. }
  1935. else if (avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE) {
  1936. static const int8_t dca_channel_order_native[9] = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };
  1937. s->channel_order_tab = dca_channel_order_native;
  1938. }
  1939. s->lfe_index = dca_lfe_index[s->amode];
  1940. } else {
  1941. av_log(avctx, AV_LOG_ERROR,
  1942. "Non standard configuration %d !\n", s->amode);
  1943. return AVERROR_INVALIDDATA;
  1944. }
  1945. s->xxch_downmix = 0;
  1946. } else {
  1947. /* we only get here if an XXCH channel set can be added to the mix */
  1948. channel_mask = s->xxch_core_spkmask;
  1949. if (avctx->request_channels > 0
  1950. && avctx->request_channels < s->prim_channels) {
  1951. channels = num_core_channels + !!s->lfe;
  1952. for (i = 0; i < s->xxch_chset && channels + s->xxch_chset_nch[i]
  1953. <= avctx->request_channels; i++) {
  1954. channels += s->xxch_chset_nch[i];
  1955. channel_mask |= s->xxch_spk_masks[i];
  1956. }
  1957. } else {
  1958. channels = s->prim_channels + !!s->lfe;
  1959. for (i = 0; i < s->xxch_chset; i++) {
  1960. channel_mask |= s->xxch_spk_masks[i];
  1961. }
  1962. }
  1963. /* Given the DTS spec'ed channel mask, generate an avcodec version */
  1964. channel_layout = 0;
  1965. for (i = 0; i < s->xxch_nbits_spk_mask; ++i) {
  1966. if (channel_mask & (1 << i)) {
  1967. channel_layout |= map_xxch_to_native[i];
  1968. }
  1969. }
  1970. /* make sure that we have managed to get equivelant dts/avcodec channel
  1971. * masks in some sense -- unfortunately some channels could overlap */
  1972. if (av_popcount(channel_mask) != av_popcount(channel_layout)) {
  1973. av_log(avctx, AV_LOG_DEBUG,
  1974. "DTS-XXCH: Inconsistant avcodec/dts channel layouts\n");
  1975. return AVERROR_INVALIDDATA;
  1976. }
  1977. avctx->channel_layout = channel_layout;
  1978. if (!(avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE)) {
  1979. /* Estimate DTS --> avcodec ordering table */
  1980. for (chset = -1, j = 0; chset < s->xxch_chset; ++chset) {
  1981. mask = chset >= 0 ? s->xxch_spk_masks[chset]
  1982. : s->xxch_core_spkmask;
  1983. for (i = 0; i < s->xxch_nbits_spk_mask; i++) {
  1984. if (mask & ~(DCA_XXCH_LFE1 | DCA_XXCH_LFE2) & (1 << i)) {
  1985. lavc = map_xxch_to_native[i];
  1986. posn = av_popcount(channel_layout & (lavc - 1));
  1987. s->xxch_order_tab[j++] = posn;
  1988. }
  1989. }
  1990. }
  1991. s->lfe_index = av_popcount(channel_layout & (AV_CH_LOW_FREQUENCY-1));
  1992. } else { /* native ordering */
  1993. for (i = 0; i < channels; i++)
  1994. s->xxch_order_tab[i] = i;
  1995. s->lfe_index = channels - 1;
  1996. }
  1997. s->channel_order_tab = s->xxch_order_tab;
  1998. }
  1999. if (avctx->channels != channels) {
  2000. if (avctx->channels)
  2001. av_log(avctx, AV_LOG_INFO, "Number of channels changed in DCA decoder (%d -> %d)\n", avctx->channels, channels);
  2002. avctx->channels = channels;
  2003. }
  2004. /* get output buffer */
  2005. s->frame.nb_samples = 256 * (s->sample_blocks / 8);
  2006. if ((ret = avctx->get_buffer(avctx, &s->frame)) < 0) {
  2007. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  2008. return ret;
  2009. }
  2010. samples_flt = (float **) s->frame.extended_data;
  2011. /* allocate buffer for extra channels if downmixing */
  2012. if (avctx->channels < full_channels) {
  2013. ret = av_samples_get_buffer_size(NULL, full_channels - channels,
  2014. s->frame.nb_samples,
  2015. avctx->sample_fmt, 0);
  2016. if (ret < 0)
  2017. return ret;
  2018. av_fast_malloc(&s->extra_channels_buffer,
  2019. &s->extra_channels_buffer_size, ret);
  2020. if (!s->extra_channels_buffer)
  2021. return AVERROR(ENOMEM);
  2022. ret = av_samples_fill_arrays((uint8_t **)s->extra_channels, NULL,
  2023. s->extra_channels_buffer,
  2024. full_channels - channels,
  2025. s->frame.nb_samples, avctx->sample_fmt, 0);
  2026. if (ret < 0)
  2027. return ret;
  2028. }
  2029. /* filter to get final output */
  2030. for (i = 0; i < (s->sample_blocks / 8); i++) {
  2031. int ch;
  2032. for (ch = 0; ch < channels; ch++)
  2033. s->samples_chanptr[ch] = samples_flt[ch] + i * 256;
  2034. for (; ch < full_channels; ch++)
  2035. s->samples_chanptr[ch] = s->extra_channels[ch - channels] + i * 256;
  2036. dca_filter_channels(s, i);
  2037. /* If this was marked as a DTS-ES stream we need to subtract back- */
  2038. /* channel from SL & SR to remove matrixed back-channel signal */
  2039. if ((s->source_pcm_res & 1) && s->xch_present) {
  2040. float *back_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel]];
  2041. float *lt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 2]];
  2042. float *rt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 1]];
  2043. s->fdsp.vector_fmac_scalar(lt_chan, back_chan, -M_SQRT1_2, 256);
  2044. s->fdsp.vector_fmac_scalar(rt_chan, back_chan, -M_SQRT1_2, 256);
  2045. }
  2046. /* If stream contains XXCH, we might need to undo an embedded downmix */
  2047. if (s->xxch_dmix_embedded) {
  2048. /* Loop over channel sets in turn */
  2049. ch = num_core_channels;
  2050. for (chset = 0; chset < s->xxch_chset; chset++) {
  2051. endch = ch + s->xxch_chset_nch[chset];
  2052. mask = s->xxch_dmix_embedded;
  2053. /* undo downmix */
  2054. for (j = ch; j < endch; j++) {
  2055. if (mask & (1 << j)) { /* this channel has been mixed-out */
  2056. src_chan = s->samples_chanptr[s->channel_order_tab[j]];
  2057. for (k = 0; k < endch; k++) {
  2058. achan = s->channel_order_tab[k];
  2059. scale = s->xxch_dmix_coeff[j][k];
  2060. if (scale != 0.0) {
  2061. dst_chan = s->samples_chanptr[achan];
  2062. s->fdsp.vector_fmac_scalar(dst_chan, src_chan,
  2063. -scale, 256);
  2064. }
  2065. }
  2066. }
  2067. }
  2068. /* if a downmix has been embedded then undo the pre-scaling */
  2069. if ((mask & (1 << ch)) && s->xxch_dmix_sf[chset] != 1.0f) {
  2070. scale = s->xxch_dmix_sf[chset];
  2071. for (j = 0; j < ch; j++) {
  2072. src_chan = s->samples_chanptr[s->channel_order_tab[j]];
  2073. for (k = 0; k < 256; k++)
  2074. src_chan[k] *= scale;
  2075. }
  2076. /* LFE channel is always part of core, scale if it exists */
  2077. if (s->lfe) {
  2078. src_chan = s->samples_chanptr[s->lfe_index];
  2079. for (k = 0; k < 256; k++)
  2080. src_chan[k] *= scale;
  2081. }
  2082. }
  2083. ch = endch;
  2084. }
  2085. }
  2086. }
  2087. /* update lfe history */
  2088. lfe_samples = 2 * s->lfe * (s->sample_blocks / 8);
  2089. for (i = 0; i < 2 * s->lfe * 4; i++)
  2090. s->lfe_data[i] = s->lfe_data[i + lfe_samples];
  2091. *got_frame_ptr = 1;
  2092. *(AVFrame *) data = s->frame;
  2093. return buf_size;
  2094. }
  2095. /**
  2096. * DCA initialization
  2097. *
  2098. * @param avctx pointer to the AVCodecContext
  2099. */
  2100. static av_cold int dca_decode_init(AVCodecContext *avctx)
  2101. {
  2102. DCAContext *s = avctx->priv_data;
  2103. s->avctx = avctx;
  2104. dca_init_vlcs();
  2105. avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
  2106. ff_mdct_init(&s->imdct, 6, 1, 1.0);
  2107. ff_synth_filter_init(&s->synth);
  2108. ff_dcadsp_init(&s->dcadsp);
  2109. ff_fmt_convert_init(&s->fmt_conv, avctx);
  2110. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  2111. /* allow downmixing to stereo */
  2112. if (avctx->channels > 0 && avctx->request_channels < avctx->channels &&
  2113. avctx->request_channels == 2) {
  2114. avctx->channels = avctx->request_channels;
  2115. }
  2116. avcodec_get_frame_defaults(&s->frame);
  2117. avctx->coded_frame = &s->frame;
  2118. return 0;
  2119. }
  2120. static av_cold int dca_decode_end(AVCodecContext *avctx)
  2121. {
  2122. DCAContext *s = avctx->priv_data;
  2123. ff_mdct_end(&s->imdct);
  2124. av_freep(&s->extra_channels_buffer);
  2125. return 0;
  2126. }
  2127. static const AVProfile profiles[] = {
  2128. { FF_PROFILE_DTS, "DTS" },
  2129. { FF_PROFILE_DTS_ES, "DTS-ES" },
  2130. { FF_PROFILE_DTS_96_24, "DTS 96/24" },
  2131. { FF_PROFILE_DTS_HD_HRA, "DTS-HD HRA" },
  2132. { FF_PROFILE_DTS_HD_MA, "DTS-HD MA" },
  2133. { FF_PROFILE_UNKNOWN },
  2134. };
  2135. AVCodec ff_dca_decoder = {
  2136. .name = "dca",
  2137. .type = AVMEDIA_TYPE_AUDIO,
  2138. .id = AV_CODEC_ID_DTS,
  2139. .priv_data_size = sizeof(DCAContext),
  2140. .init = dca_decode_init,
  2141. .decode = dca_decode_frame,
  2142. .close = dca_decode_end,
  2143. .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
  2144. .capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
  2145. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  2146. AV_SAMPLE_FMT_NONE },
  2147. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  2148. };