You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2086 lines
86KB

  1. /*
  2. * VP9 compatible video decoder
  3. *
  4. * Copyright (C) 2013 Ronald S. Bultje <rsbultje gmail com>
  5. * Copyright (C) 2013 Clément Bœsch <u pkh me>
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include "libavutil/avassert.h"
  24. #include "avcodec.h"
  25. #include "internal.h"
  26. #include "videodsp.h"
  27. #include "vp56.h"
  28. #include "vp9.h"
  29. #include "vp9data.h"
  30. static const uint8_t bwh_tab[2][N_BS_SIZES][2] = {
  31. {
  32. { 16, 16 }, { 16, 8 }, { 8, 16 }, { 8, 8 }, { 8, 4 }, { 4, 8 },
  33. { 4, 4 }, { 4, 2 }, { 2, 4 }, { 2, 2 }, { 2, 1 }, { 1, 2 }, { 1, 1 },
  34. }, {
  35. { 8, 8 }, { 8, 4 }, { 4, 8 }, { 4, 4 }, { 4, 2 }, { 2, 4 },
  36. { 2, 2 }, { 2, 1 }, { 1, 2 }, { 1, 1 }, { 1, 1 }, { 1, 1 }, { 1, 1 },
  37. }
  38. };
  39. static av_always_inline void setctx_2d(uint8_t *ptr, int w, int h,
  40. ptrdiff_t stride, int v)
  41. {
  42. switch (w) {
  43. case 1:
  44. do {
  45. *ptr = v;
  46. ptr += stride;
  47. } while (--h);
  48. break;
  49. case 2: {
  50. int v16 = v * 0x0101;
  51. do {
  52. AV_WN16A(ptr, v16);
  53. ptr += stride;
  54. } while (--h);
  55. break;
  56. }
  57. case 4: {
  58. uint32_t v32 = v * 0x01010101;
  59. do {
  60. AV_WN32A(ptr, v32);
  61. ptr += stride;
  62. } while (--h);
  63. break;
  64. }
  65. case 8: {
  66. #if HAVE_FAST_64BIT
  67. uint64_t v64 = v * 0x0101010101010101ULL;
  68. do {
  69. AV_WN64A(ptr, v64);
  70. ptr += stride;
  71. } while (--h);
  72. #else
  73. uint32_t v32 = v * 0x01010101;
  74. do {
  75. AV_WN32A(ptr, v32);
  76. AV_WN32A(ptr + 4, v32);
  77. ptr += stride;
  78. } while (--h);
  79. #endif
  80. break;
  81. }
  82. }
  83. }
  84. static void decode_mode(AVCodecContext *avctx)
  85. {
  86. static const uint8_t left_ctx[N_BS_SIZES] = {
  87. 0x0, 0x8, 0x0, 0x8, 0xc, 0x8, 0xc, 0xe, 0xc, 0xe, 0xf, 0xe, 0xf
  88. };
  89. static const uint8_t above_ctx[N_BS_SIZES] = {
  90. 0x0, 0x0, 0x8, 0x8, 0x8, 0xc, 0xc, 0xc, 0xe, 0xe, 0xe, 0xf, 0xf
  91. };
  92. static const uint8_t max_tx_for_bl_bp[N_BS_SIZES] = {
  93. TX_32X32, TX_32X32, TX_32X32, TX_32X32, TX_16X16, TX_16X16,
  94. TX_16X16, TX_8X8, TX_8X8, TX_8X8, TX_4X4, TX_4X4, TX_4X4
  95. };
  96. VP9Context *s = avctx->priv_data;
  97. VP9Block *b = s->b;
  98. int row = s->row, col = s->col, row7 = s->row7;
  99. enum TxfmMode max_tx = max_tx_for_bl_bp[b->bs];
  100. int bw4 = bwh_tab[1][b->bs][0], w4 = FFMIN(s->cols - col, bw4);
  101. int bh4 = bwh_tab[1][b->bs][1], h4 = FFMIN(s->rows - row, bh4), y;
  102. int have_a = row > 0, have_l = col > s->tile_col_start;
  103. int vref, filter_id;
  104. if (!s->s.h.segmentation.enabled) {
  105. b->seg_id = 0;
  106. } else if (s->s.h.keyframe || s->s.h.intraonly) {
  107. b->seg_id = !s->s.h.segmentation.update_map ? 0 :
  108. vp8_rac_get_tree(&s->c, ff_vp9_segmentation_tree, s->s.h.segmentation.prob);
  109. } else if (!s->s.h.segmentation.update_map ||
  110. (s->s.h.segmentation.temporal &&
  111. vp56_rac_get_prob_branchy(&s->c,
  112. s->s.h.segmentation.pred_prob[s->above_segpred_ctx[col] +
  113. s->left_segpred_ctx[row7]]))) {
  114. if (!s->s.h.errorres && s->s.frames[REF_FRAME_SEGMAP].segmentation_map) {
  115. int pred = 8, x;
  116. uint8_t *refsegmap = s->s.frames[REF_FRAME_SEGMAP].segmentation_map;
  117. if (!s->s.frames[REF_FRAME_SEGMAP].uses_2pass)
  118. ff_thread_await_progress(&s->s.frames[REF_FRAME_SEGMAP].tf, row >> 3, 0);
  119. for (y = 0; y < h4; y++) {
  120. int idx_base = (y + row) * 8 * s->sb_cols + col;
  121. for (x = 0; x < w4; x++)
  122. pred = FFMIN(pred, refsegmap[idx_base + x]);
  123. }
  124. av_assert1(pred < 8);
  125. b->seg_id = pred;
  126. } else {
  127. b->seg_id = 0;
  128. }
  129. memset(&s->above_segpred_ctx[col], 1, w4);
  130. memset(&s->left_segpred_ctx[row7], 1, h4);
  131. } else {
  132. b->seg_id = vp8_rac_get_tree(&s->c, ff_vp9_segmentation_tree,
  133. s->s.h.segmentation.prob);
  134. memset(&s->above_segpred_ctx[col], 0, w4);
  135. memset(&s->left_segpred_ctx[row7], 0, h4);
  136. }
  137. if (s->s.h.segmentation.enabled &&
  138. (s->s.h.segmentation.update_map || s->s.h.keyframe || s->s.h.intraonly)) {
  139. setctx_2d(&s->s.frames[CUR_FRAME].segmentation_map[row * 8 * s->sb_cols + col],
  140. bw4, bh4, 8 * s->sb_cols, b->seg_id);
  141. }
  142. b->skip = s->s.h.segmentation.enabled &&
  143. s->s.h.segmentation.feat[b->seg_id].skip_enabled;
  144. if (!b->skip) {
  145. int c = s->left_skip_ctx[row7] + s->above_skip_ctx[col];
  146. b->skip = vp56_rac_get_prob(&s->c, s->prob.p.skip[c]);
  147. s->counts.skip[c][b->skip]++;
  148. }
  149. if (s->s.h.keyframe || s->s.h.intraonly) {
  150. b->intra = 1;
  151. } else if (s->s.h.segmentation.enabled && s->s.h.segmentation.feat[b->seg_id].ref_enabled) {
  152. b->intra = !s->s.h.segmentation.feat[b->seg_id].ref_val;
  153. } else {
  154. int c, bit;
  155. if (have_a && have_l) {
  156. c = s->above_intra_ctx[col] + s->left_intra_ctx[row7];
  157. c += (c == 2);
  158. } else {
  159. c = have_a ? 2 * s->above_intra_ctx[col] :
  160. have_l ? 2 * s->left_intra_ctx[row7] : 0;
  161. }
  162. bit = vp56_rac_get_prob(&s->c, s->prob.p.intra[c]);
  163. s->counts.intra[c][bit]++;
  164. b->intra = !bit;
  165. }
  166. if ((b->intra || !b->skip) && s->s.h.txfmmode == TX_SWITCHABLE) {
  167. int c;
  168. if (have_a) {
  169. if (have_l) {
  170. c = (s->above_skip_ctx[col] ? max_tx :
  171. s->above_txfm_ctx[col]) +
  172. (s->left_skip_ctx[row7] ? max_tx :
  173. s->left_txfm_ctx[row7]) > max_tx;
  174. } else {
  175. c = s->above_skip_ctx[col] ? 1 :
  176. (s->above_txfm_ctx[col] * 2 > max_tx);
  177. }
  178. } else if (have_l) {
  179. c = s->left_skip_ctx[row7] ? 1 :
  180. (s->left_txfm_ctx[row7] * 2 > max_tx);
  181. } else {
  182. c = 1;
  183. }
  184. switch (max_tx) {
  185. case TX_32X32:
  186. b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][0]);
  187. if (b->tx) {
  188. b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][1]);
  189. if (b->tx == 2)
  190. b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][2]);
  191. }
  192. s->counts.tx32p[c][b->tx]++;
  193. break;
  194. case TX_16X16:
  195. b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx16p[c][0]);
  196. if (b->tx)
  197. b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx16p[c][1]);
  198. s->counts.tx16p[c][b->tx]++;
  199. break;
  200. case TX_8X8:
  201. b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx8p[c]);
  202. s->counts.tx8p[c][b->tx]++;
  203. break;
  204. case TX_4X4:
  205. b->tx = TX_4X4;
  206. break;
  207. }
  208. } else {
  209. b->tx = FFMIN(max_tx, s->s.h.txfmmode);
  210. }
  211. if (s->s.h.keyframe || s->s.h.intraonly) {
  212. uint8_t *a = &s->above_mode_ctx[col * 2];
  213. uint8_t *l = &s->left_mode_ctx[(row7) << 1];
  214. b->comp = 0;
  215. if (b->bs > BS_8x8) {
  216. // FIXME the memory storage intermediates here aren't really
  217. // necessary, they're just there to make the code slightly
  218. // simpler for now
  219. b->mode[0] =
  220. a[0] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree,
  221. ff_vp9_default_kf_ymode_probs[a[0]][l[0]]);
  222. if (b->bs != BS_8x4) {
  223. b->mode[1] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree,
  224. ff_vp9_default_kf_ymode_probs[a[1]][b->mode[0]]);
  225. l[0] =
  226. a[1] = b->mode[1];
  227. } else {
  228. l[0] =
  229. a[1] =
  230. b->mode[1] = b->mode[0];
  231. }
  232. if (b->bs != BS_4x8) {
  233. b->mode[2] =
  234. a[0] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree,
  235. ff_vp9_default_kf_ymode_probs[a[0]][l[1]]);
  236. if (b->bs != BS_8x4) {
  237. b->mode[3] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree,
  238. ff_vp9_default_kf_ymode_probs[a[1]][b->mode[2]]);
  239. l[1] =
  240. a[1] = b->mode[3];
  241. } else {
  242. l[1] =
  243. a[1] =
  244. b->mode[3] = b->mode[2];
  245. }
  246. } else {
  247. b->mode[2] = b->mode[0];
  248. l[1] =
  249. a[1] =
  250. b->mode[3] = b->mode[1];
  251. }
  252. } else {
  253. b->mode[0] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree,
  254. ff_vp9_default_kf_ymode_probs[*a][*l]);
  255. b->mode[3] =
  256. b->mode[2] =
  257. b->mode[1] = b->mode[0];
  258. // FIXME this can probably be optimized
  259. memset(a, b->mode[0], bwh_tab[0][b->bs][0]);
  260. memset(l, b->mode[0], bwh_tab[0][b->bs][1]);
  261. }
  262. b->uvmode = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree,
  263. ff_vp9_default_kf_uvmode_probs[b->mode[3]]);
  264. } else if (b->intra) {
  265. b->comp = 0;
  266. if (b->bs > BS_8x8) {
  267. b->mode[0] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree,
  268. s->prob.p.y_mode[0]);
  269. s->counts.y_mode[0][b->mode[0]]++;
  270. if (b->bs != BS_8x4) {
  271. b->mode[1] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree,
  272. s->prob.p.y_mode[0]);
  273. s->counts.y_mode[0][b->mode[1]]++;
  274. } else {
  275. b->mode[1] = b->mode[0];
  276. }
  277. if (b->bs != BS_4x8) {
  278. b->mode[2] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree,
  279. s->prob.p.y_mode[0]);
  280. s->counts.y_mode[0][b->mode[2]]++;
  281. if (b->bs != BS_8x4) {
  282. b->mode[3] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree,
  283. s->prob.p.y_mode[0]);
  284. s->counts.y_mode[0][b->mode[3]]++;
  285. } else {
  286. b->mode[3] = b->mode[2];
  287. }
  288. } else {
  289. b->mode[2] = b->mode[0];
  290. b->mode[3] = b->mode[1];
  291. }
  292. } else {
  293. static const uint8_t size_group[10] = {
  294. 3, 3, 3, 3, 2, 2, 2, 1, 1, 1
  295. };
  296. int sz = size_group[b->bs];
  297. b->mode[0] = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree,
  298. s->prob.p.y_mode[sz]);
  299. b->mode[1] =
  300. b->mode[2] =
  301. b->mode[3] = b->mode[0];
  302. s->counts.y_mode[sz][b->mode[3]]++;
  303. }
  304. b->uvmode = vp8_rac_get_tree(&s->c, ff_vp9_intramode_tree,
  305. s->prob.p.uv_mode[b->mode[3]]);
  306. s->counts.uv_mode[b->mode[3]][b->uvmode]++;
  307. } else {
  308. static const uint8_t inter_mode_ctx_lut[14][14] = {
  309. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  310. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  311. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  312. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  313. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  314. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  315. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  316. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  317. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  318. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  319. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 },
  320. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 },
  321. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 0, 3 },
  322. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 3, 3, 4 },
  323. };
  324. if (s->s.h.segmentation.enabled && s->s.h.segmentation.feat[b->seg_id].ref_enabled) {
  325. av_assert2(s->s.h.segmentation.feat[b->seg_id].ref_val != 0);
  326. b->comp = 0;
  327. b->ref[0] = s->s.h.segmentation.feat[b->seg_id].ref_val - 1;
  328. } else {
  329. // read comp_pred flag
  330. if (s->s.h.comppredmode != PRED_SWITCHABLE) {
  331. b->comp = s->s.h.comppredmode == PRED_COMPREF;
  332. } else {
  333. int c;
  334. // FIXME add intra as ref=0xff (or -1) to make these easier?
  335. if (have_a) {
  336. if (have_l) {
  337. if (s->above_comp_ctx[col] && s->left_comp_ctx[row7]) {
  338. c = 4;
  339. } else if (s->above_comp_ctx[col]) {
  340. c = 2 + (s->left_intra_ctx[row7] ||
  341. s->left_ref_ctx[row7] == s->s.h.fixcompref);
  342. } else if (s->left_comp_ctx[row7]) {
  343. c = 2 + (s->above_intra_ctx[col] ||
  344. s->above_ref_ctx[col] == s->s.h.fixcompref);
  345. } else {
  346. c = (!s->above_intra_ctx[col] &&
  347. s->above_ref_ctx[col] == s->s.h.fixcompref) ^
  348. (!s->left_intra_ctx[row7] &&
  349. s->left_ref_ctx[row & 7] == s->s.h.fixcompref);
  350. }
  351. } else {
  352. c = s->above_comp_ctx[col] ? 3 :
  353. (!s->above_intra_ctx[col] && s->above_ref_ctx[col] == s->s.h.fixcompref);
  354. }
  355. } else if (have_l) {
  356. c = s->left_comp_ctx[row7] ? 3 :
  357. (!s->left_intra_ctx[row7] && s->left_ref_ctx[row7] == s->s.h.fixcompref);
  358. } else {
  359. c = 1;
  360. }
  361. b->comp = vp56_rac_get_prob(&s->c, s->prob.p.comp[c]);
  362. s->counts.comp[c][b->comp]++;
  363. }
  364. // read actual references
  365. // FIXME probably cache a few variables here to prevent repetitive
  366. // memory accesses below
  367. if (b->comp) { /* two references */
  368. int fix_idx = s->s.h.signbias[s->s.h.fixcompref], var_idx = !fix_idx, c, bit;
  369. b->ref[fix_idx] = s->s.h.fixcompref;
  370. // FIXME can this codeblob be replaced by some sort of LUT?
  371. if (have_a) {
  372. if (have_l) {
  373. if (s->above_intra_ctx[col]) {
  374. if (s->left_intra_ctx[row7]) {
  375. c = 2;
  376. } else {
  377. c = 1 + 2 * (s->left_ref_ctx[row7] != s->s.h.varcompref[1]);
  378. }
  379. } else if (s->left_intra_ctx[row7]) {
  380. c = 1 + 2 * (s->above_ref_ctx[col] != s->s.h.varcompref[1]);
  381. } else {
  382. int refl = s->left_ref_ctx[row7], refa = s->above_ref_ctx[col];
  383. if (refl == refa && refa == s->s.h.varcompref[1]) {
  384. c = 0;
  385. } else if (!s->left_comp_ctx[row7] && !s->above_comp_ctx[col]) {
  386. if ((refa == s->s.h.fixcompref && refl == s->s.h.varcompref[0]) ||
  387. (refl == s->s.h.fixcompref && refa == s->s.h.varcompref[0])) {
  388. c = 4;
  389. } else {
  390. c = (refa == refl) ? 3 : 1;
  391. }
  392. } else if (!s->left_comp_ctx[row7]) {
  393. if (refa == s->s.h.varcompref[1] && refl != s->s.h.varcompref[1]) {
  394. c = 1;
  395. } else {
  396. c = (refl == s->s.h.varcompref[1] &&
  397. refa != s->s.h.varcompref[1]) ? 2 : 4;
  398. }
  399. } else if (!s->above_comp_ctx[col]) {
  400. if (refl == s->s.h.varcompref[1] && refa != s->s.h.varcompref[1]) {
  401. c = 1;
  402. } else {
  403. c = (refa == s->s.h.varcompref[1] &&
  404. refl != s->s.h.varcompref[1]) ? 2 : 4;
  405. }
  406. } else {
  407. c = (refl == refa) ? 4 : 2;
  408. }
  409. }
  410. } else {
  411. if (s->above_intra_ctx[col]) {
  412. c = 2;
  413. } else if (s->above_comp_ctx[col]) {
  414. c = 4 * (s->above_ref_ctx[col] != s->s.h.varcompref[1]);
  415. } else {
  416. c = 3 * (s->above_ref_ctx[col] != s->s.h.varcompref[1]);
  417. }
  418. }
  419. } else if (have_l) {
  420. if (s->left_intra_ctx[row7]) {
  421. c = 2;
  422. } else if (s->left_comp_ctx[row7]) {
  423. c = 4 * (s->left_ref_ctx[row7] != s->s.h.varcompref[1]);
  424. } else {
  425. c = 3 * (s->left_ref_ctx[row7] != s->s.h.varcompref[1]);
  426. }
  427. } else {
  428. c = 2;
  429. }
  430. bit = vp56_rac_get_prob(&s->c, s->prob.p.comp_ref[c]);
  431. b->ref[var_idx] = s->s.h.varcompref[bit];
  432. s->counts.comp_ref[c][bit]++;
  433. } else /* single reference */ {
  434. int bit, c;
  435. if (have_a && !s->above_intra_ctx[col]) {
  436. if (have_l && !s->left_intra_ctx[row7]) {
  437. if (s->left_comp_ctx[row7]) {
  438. if (s->above_comp_ctx[col]) {
  439. c = 1 + (!s->s.h.fixcompref || !s->left_ref_ctx[row7] ||
  440. !s->above_ref_ctx[col]);
  441. } else {
  442. c = (3 * !s->above_ref_ctx[col]) +
  443. (!s->s.h.fixcompref || !s->left_ref_ctx[row7]);
  444. }
  445. } else if (s->above_comp_ctx[col]) {
  446. c = (3 * !s->left_ref_ctx[row7]) +
  447. (!s->s.h.fixcompref || !s->above_ref_ctx[col]);
  448. } else {
  449. c = 2 * !s->left_ref_ctx[row7] + 2 * !s->above_ref_ctx[col];
  450. }
  451. } else if (s->above_intra_ctx[col]) {
  452. c = 2;
  453. } else if (s->above_comp_ctx[col]) {
  454. c = 1 + (!s->s.h.fixcompref || !s->above_ref_ctx[col]);
  455. } else {
  456. c = 4 * (!s->above_ref_ctx[col]);
  457. }
  458. } else if (have_l && !s->left_intra_ctx[row7]) {
  459. if (s->left_intra_ctx[row7]) {
  460. c = 2;
  461. } else if (s->left_comp_ctx[row7]) {
  462. c = 1 + (!s->s.h.fixcompref || !s->left_ref_ctx[row7]);
  463. } else {
  464. c = 4 * (!s->left_ref_ctx[row7]);
  465. }
  466. } else {
  467. c = 2;
  468. }
  469. bit = vp56_rac_get_prob(&s->c, s->prob.p.single_ref[c][0]);
  470. s->counts.single_ref[c][0][bit]++;
  471. if (!bit) {
  472. b->ref[0] = 0;
  473. } else {
  474. // FIXME can this codeblob be replaced by some sort of LUT?
  475. if (have_a) {
  476. if (have_l) {
  477. if (s->left_intra_ctx[row7]) {
  478. if (s->above_intra_ctx[col]) {
  479. c = 2;
  480. } else if (s->above_comp_ctx[col]) {
  481. c = 1 + 2 * (s->s.h.fixcompref == 1 ||
  482. s->above_ref_ctx[col] == 1);
  483. } else if (!s->above_ref_ctx[col]) {
  484. c = 3;
  485. } else {
  486. c = 4 * (s->above_ref_ctx[col] == 1);
  487. }
  488. } else if (s->above_intra_ctx[col]) {
  489. if (s->left_intra_ctx[row7]) {
  490. c = 2;
  491. } else if (s->left_comp_ctx[row7]) {
  492. c = 1 + 2 * (s->s.h.fixcompref == 1 ||
  493. s->left_ref_ctx[row7] == 1);
  494. } else if (!s->left_ref_ctx[row7]) {
  495. c = 3;
  496. } else {
  497. c = 4 * (s->left_ref_ctx[row7] == 1);
  498. }
  499. } else if (s->above_comp_ctx[col]) {
  500. if (s->left_comp_ctx[row7]) {
  501. if (s->left_ref_ctx[row7] == s->above_ref_ctx[col]) {
  502. c = 3 * (s->s.h.fixcompref == 1 ||
  503. s->left_ref_ctx[row7] == 1);
  504. } else {
  505. c = 2;
  506. }
  507. } else if (!s->left_ref_ctx[row7]) {
  508. c = 1 + 2 * (s->s.h.fixcompref == 1 ||
  509. s->above_ref_ctx[col] == 1);
  510. } else {
  511. c = 3 * (s->left_ref_ctx[row7] == 1) +
  512. (s->s.h.fixcompref == 1 || s->above_ref_ctx[col] == 1);
  513. }
  514. } else if (s->left_comp_ctx[row7]) {
  515. if (!s->above_ref_ctx[col]) {
  516. c = 1 + 2 * (s->s.h.fixcompref == 1 ||
  517. s->left_ref_ctx[row7] == 1);
  518. } else {
  519. c = 3 * (s->above_ref_ctx[col] == 1) +
  520. (s->s.h.fixcompref == 1 || s->left_ref_ctx[row7] == 1);
  521. }
  522. } else if (!s->above_ref_ctx[col]) {
  523. if (!s->left_ref_ctx[row7]) {
  524. c = 3;
  525. } else {
  526. c = 4 * (s->left_ref_ctx[row7] == 1);
  527. }
  528. } else if (!s->left_ref_ctx[row7]) {
  529. c = 4 * (s->above_ref_ctx[col] == 1);
  530. } else {
  531. c = 2 * (s->left_ref_ctx[row7] == 1) +
  532. 2 * (s->above_ref_ctx[col] == 1);
  533. }
  534. } else {
  535. if (s->above_intra_ctx[col] ||
  536. (!s->above_comp_ctx[col] && !s->above_ref_ctx[col])) {
  537. c = 2;
  538. } else if (s->above_comp_ctx[col]) {
  539. c = 3 * (s->s.h.fixcompref == 1 || s->above_ref_ctx[col] == 1);
  540. } else {
  541. c = 4 * (s->above_ref_ctx[col] == 1);
  542. }
  543. }
  544. } else if (have_l) {
  545. if (s->left_intra_ctx[row7] ||
  546. (!s->left_comp_ctx[row7] && !s->left_ref_ctx[row7])) {
  547. c = 2;
  548. } else if (s->left_comp_ctx[row7]) {
  549. c = 3 * (s->s.h.fixcompref == 1 || s->left_ref_ctx[row7] == 1);
  550. } else {
  551. c = 4 * (s->left_ref_ctx[row7] == 1);
  552. }
  553. } else {
  554. c = 2;
  555. }
  556. bit = vp56_rac_get_prob(&s->c, s->prob.p.single_ref[c][1]);
  557. s->counts.single_ref[c][1][bit]++;
  558. b->ref[0] = 1 + bit;
  559. }
  560. }
  561. }
  562. if (b->bs <= BS_8x8) {
  563. if (s->s.h.segmentation.enabled && s->s.h.segmentation.feat[b->seg_id].skip_enabled) {
  564. b->mode[0] =
  565. b->mode[1] =
  566. b->mode[2] =
  567. b->mode[3] = ZEROMV;
  568. } else {
  569. static const uint8_t off[10] = {
  570. 3, 0, 0, 1, 0, 0, 0, 0, 0, 0
  571. };
  572. // FIXME this needs to use the LUT tables from find_ref_mvs
  573. // because not all are -1,0/0,-1
  574. int c = inter_mode_ctx_lut[s->above_mode_ctx[col + off[b->bs]]]
  575. [s->left_mode_ctx[row7 + off[b->bs]]];
  576. b->mode[0] = vp8_rac_get_tree(&s->c, ff_vp9_inter_mode_tree,
  577. s->prob.p.mv_mode[c]);
  578. b->mode[1] =
  579. b->mode[2] =
  580. b->mode[3] = b->mode[0];
  581. s->counts.mv_mode[c][b->mode[0] - 10]++;
  582. }
  583. }
  584. if (s->s.h.filtermode == FILTER_SWITCHABLE) {
  585. int c;
  586. if (have_a && s->above_mode_ctx[col] >= NEARESTMV) {
  587. if (have_l && s->left_mode_ctx[row7] >= NEARESTMV) {
  588. c = s->above_filter_ctx[col] == s->left_filter_ctx[row7] ?
  589. s->left_filter_ctx[row7] : 3;
  590. } else {
  591. c = s->above_filter_ctx[col];
  592. }
  593. } else if (have_l && s->left_mode_ctx[row7] >= NEARESTMV) {
  594. c = s->left_filter_ctx[row7];
  595. } else {
  596. c = 3;
  597. }
  598. filter_id = vp8_rac_get_tree(&s->c, ff_vp9_filter_tree,
  599. s->prob.p.filter[c]);
  600. s->counts.filter[c][filter_id]++;
  601. b->filter = ff_vp9_filter_lut[filter_id];
  602. } else {
  603. b->filter = s->s.h.filtermode;
  604. }
  605. if (b->bs > BS_8x8) {
  606. int c = inter_mode_ctx_lut[s->above_mode_ctx[col]][s->left_mode_ctx[row7]];
  607. b->mode[0] = vp8_rac_get_tree(&s->c, ff_vp9_inter_mode_tree,
  608. s->prob.p.mv_mode[c]);
  609. s->counts.mv_mode[c][b->mode[0] - 10]++;
  610. ff_vp9_fill_mv(s, b->mv[0], b->mode[0], 0);
  611. if (b->bs != BS_8x4) {
  612. b->mode[1] = vp8_rac_get_tree(&s->c, ff_vp9_inter_mode_tree,
  613. s->prob.p.mv_mode[c]);
  614. s->counts.mv_mode[c][b->mode[1] - 10]++;
  615. ff_vp9_fill_mv(s, b->mv[1], b->mode[1], 1);
  616. } else {
  617. b->mode[1] = b->mode[0];
  618. AV_COPY32(&b->mv[1][0], &b->mv[0][0]);
  619. AV_COPY32(&b->mv[1][1], &b->mv[0][1]);
  620. }
  621. if (b->bs != BS_4x8) {
  622. b->mode[2] = vp8_rac_get_tree(&s->c, ff_vp9_inter_mode_tree,
  623. s->prob.p.mv_mode[c]);
  624. s->counts.mv_mode[c][b->mode[2] - 10]++;
  625. ff_vp9_fill_mv(s, b->mv[2], b->mode[2], 2);
  626. if (b->bs != BS_8x4) {
  627. b->mode[3] = vp8_rac_get_tree(&s->c, ff_vp9_inter_mode_tree,
  628. s->prob.p.mv_mode[c]);
  629. s->counts.mv_mode[c][b->mode[3] - 10]++;
  630. ff_vp9_fill_mv(s, b->mv[3], b->mode[3], 3);
  631. } else {
  632. b->mode[3] = b->mode[2];
  633. AV_COPY32(&b->mv[3][0], &b->mv[2][0]);
  634. AV_COPY32(&b->mv[3][1], &b->mv[2][1]);
  635. }
  636. } else {
  637. b->mode[2] = b->mode[0];
  638. AV_COPY32(&b->mv[2][0], &b->mv[0][0]);
  639. AV_COPY32(&b->mv[2][1], &b->mv[0][1]);
  640. b->mode[3] = b->mode[1];
  641. AV_COPY32(&b->mv[3][0], &b->mv[1][0]);
  642. AV_COPY32(&b->mv[3][1], &b->mv[1][1]);
  643. }
  644. } else {
  645. ff_vp9_fill_mv(s, b->mv[0], b->mode[0], -1);
  646. AV_COPY32(&b->mv[1][0], &b->mv[0][0]);
  647. AV_COPY32(&b->mv[2][0], &b->mv[0][0]);
  648. AV_COPY32(&b->mv[3][0], &b->mv[0][0]);
  649. AV_COPY32(&b->mv[1][1], &b->mv[0][1]);
  650. AV_COPY32(&b->mv[2][1], &b->mv[0][1]);
  651. AV_COPY32(&b->mv[3][1], &b->mv[0][1]);
  652. }
  653. vref = b->ref[b->comp ? s->s.h.signbias[s->s.h.varcompref[0]] : 0];
  654. }
  655. #if HAVE_FAST_64BIT
  656. #define SPLAT_CTX(var, val, n) \
  657. switch (n) { \
  658. case 1: var = val; break; \
  659. case 2: AV_WN16A(&var, val * 0x0101); break; \
  660. case 4: AV_WN32A(&var, val * 0x01010101); break; \
  661. case 8: AV_WN64A(&var, val * 0x0101010101010101ULL); break; \
  662. case 16: { \
  663. uint64_t v64 = val * 0x0101010101010101ULL; \
  664. AV_WN64A( &var, v64); \
  665. AV_WN64A(&((uint8_t *) &var)[8], v64); \
  666. break; \
  667. } \
  668. }
  669. #else
  670. #define SPLAT_CTX(var, val, n) \
  671. switch (n) { \
  672. case 1: var = val; break; \
  673. case 2: AV_WN16A(&var, val * 0x0101); break; \
  674. case 4: AV_WN32A(&var, val * 0x01010101); break; \
  675. case 8: { \
  676. uint32_t v32 = val * 0x01010101; \
  677. AV_WN32A( &var, v32); \
  678. AV_WN32A(&((uint8_t *) &var)[4], v32); \
  679. break; \
  680. } \
  681. case 16: { \
  682. uint32_t v32 = val * 0x01010101; \
  683. AV_WN32A( &var, v32); \
  684. AV_WN32A(&((uint8_t *) &var)[4], v32); \
  685. AV_WN32A(&((uint8_t *) &var)[8], v32); \
  686. AV_WN32A(&((uint8_t *) &var)[12], v32); \
  687. break; \
  688. } \
  689. }
  690. #endif
  691. switch (bwh_tab[1][b->bs][0]) {
  692. #define SET_CTXS(dir, off, n) \
  693. do { \
  694. SPLAT_CTX(s->dir##_skip_ctx[off], b->skip, n); \
  695. SPLAT_CTX(s->dir##_txfm_ctx[off], b->tx, n); \
  696. SPLAT_CTX(s->dir##_partition_ctx[off], dir##_ctx[b->bs], n); \
  697. if (!s->s.h.keyframe && !s->s.h.intraonly) { \
  698. SPLAT_CTX(s->dir##_intra_ctx[off], b->intra, n); \
  699. SPLAT_CTX(s->dir##_comp_ctx[off], b->comp, n); \
  700. SPLAT_CTX(s->dir##_mode_ctx[off], b->mode[3], n); \
  701. if (!b->intra) { \
  702. SPLAT_CTX(s->dir##_ref_ctx[off], vref, n); \
  703. if (s->s.h.filtermode == FILTER_SWITCHABLE) { \
  704. SPLAT_CTX(s->dir##_filter_ctx[off], filter_id, n); \
  705. } \
  706. } \
  707. } \
  708. } while (0)
  709. case 1: SET_CTXS(above, col, 1); break;
  710. case 2: SET_CTXS(above, col, 2); break;
  711. case 4: SET_CTXS(above, col, 4); break;
  712. case 8: SET_CTXS(above, col, 8); break;
  713. }
  714. switch (bwh_tab[1][b->bs][1]) {
  715. case 1: SET_CTXS(left, row7, 1); break;
  716. case 2: SET_CTXS(left, row7, 2); break;
  717. case 4: SET_CTXS(left, row7, 4); break;
  718. case 8: SET_CTXS(left, row7, 8); break;
  719. }
  720. #undef SPLAT_CTX
  721. #undef SET_CTXS
  722. if (!s->s.h.keyframe && !s->s.h.intraonly) {
  723. if (b->bs > BS_8x8) {
  724. int mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]);
  725. AV_COPY32(&s->left_mv_ctx[row7 * 2 + 0][0], &b->mv[1][0]);
  726. AV_COPY32(&s->left_mv_ctx[row7 * 2 + 0][1], &b->mv[1][1]);
  727. AV_WN32A(&s->left_mv_ctx[row7 * 2 + 1][0], mv0);
  728. AV_WN32A(&s->left_mv_ctx[row7 * 2 + 1][1], mv1);
  729. AV_COPY32(&s->above_mv_ctx[col * 2 + 0][0], &b->mv[2][0]);
  730. AV_COPY32(&s->above_mv_ctx[col * 2 + 0][1], &b->mv[2][1]);
  731. AV_WN32A(&s->above_mv_ctx[col * 2 + 1][0], mv0);
  732. AV_WN32A(&s->above_mv_ctx[col * 2 + 1][1], mv1);
  733. } else {
  734. int n, mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]);
  735. for (n = 0; n < w4 * 2; n++) {
  736. AV_WN32A(&s->above_mv_ctx[col * 2 + n][0], mv0);
  737. AV_WN32A(&s->above_mv_ctx[col * 2 + n][1], mv1);
  738. }
  739. for (n = 0; n < h4 * 2; n++) {
  740. AV_WN32A(&s->left_mv_ctx[row7 * 2 + n][0], mv0);
  741. AV_WN32A(&s->left_mv_ctx[row7 * 2 + n][1], mv1);
  742. }
  743. }
  744. }
  745. // FIXME kinda ugly
  746. for (y = 0; y < h4; y++) {
  747. int x, o = (row + y) * s->sb_cols * 8 + col;
  748. VP9mvrefPair *mv = &s->s.frames[CUR_FRAME].mv[o];
  749. if (b->intra) {
  750. for (x = 0; x < w4; x++) {
  751. mv[x].ref[0] =
  752. mv[x].ref[1] = -1;
  753. }
  754. } else if (b->comp) {
  755. for (x = 0; x < w4; x++) {
  756. mv[x].ref[0] = b->ref[0];
  757. mv[x].ref[1] = b->ref[1];
  758. AV_COPY32(&mv[x].mv[0], &b->mv[3][0]);
  759. AV_COPY32(&mv[x].mv[1], &b->mv[3][1]);
  760. }
  761. } else {
  762. for (x = 0; x < w4; x++) {
  763. mv[x].ref[0] = b->ref[0];
  764. mv[x].ref[1] = -1;
  765. AV_COPY32(&mv[x].mv[0], &b->mv[3][0]);
  766. }
  767. }
  768. }
  769. }
  770. // FIXME merge cnt/eob arguments?
  771. static av_always_inline int
  772. decode_coeffs_b_generic(VP56RangeCoder *c, int16_t *coef, int n_coeffs,
  773. int is_tx32x32, int is8bitsperpixel, int bpp, unsigned (*cnt)[6][3],
  774. unsigned (*eob)[6][2], uint8_t (*p)[6][11],
  775. int nnz, const int16_t *scan, const int16_t (*nb)[2],
  776. const int16_t *band_counts, const int16_t *qmul)
  777. {
  778. int i = 0, band = 0, band_left = band_counts[band];
  779. uint8_t *tp = p[0][nnz];
  780. uint8_t cache[1024];
  781. do {
  782. int val, rc;
  783. val = vp56_rac_get_prob_branchy(c, tp[0]); // eob
  784. eob[band][nnz][val]++;
  785. if (!val)
  786. break;
  787. skip_eob:
  788. if (!vp56_rac_get_prob_branchy(c, tp[1])) { // zero
  789. cnt[band][nnz][0]++;
  790. if (!--band_left)
  791. band_left = band_counts[++band];
  792. cache[scan[i]] = 0;
  793. nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1;
  794. tp = p[band][nnz];
  795. if (++i == n_coeffs)
  796. break; //invalid input; blocks should end with EOB
  797. goto skip_eob;
  798. }
  799. rc = scan[i];
  800. if (!vp56_rac_get_prob_branchy(c, tp[2])) { // one
  801. cnt[band][nnz][1]++;
  802. val = 1;
  803. cache[rc] = 1;
  804. } else {
  805. // fill in p[3-10] (model fill) - only once per frame for each pos
  806. if (!tp[3])
  807. memcpy(&tp[3], ff_vp9_model_pareto8[tp[2]], 8);
  808. cnt[band][nnz][2]++;
  809. if (!vp56_rac_get_prob_branchy(c, tp[3])) { // 2, 3, 4
  810. if (!vp56_rac_get_prob_branchy(c, tp[4])) {
  811. cache[rc] = val = 2;
  812. } else {
  813. val = 3 + vp56_rac_get_prob(c, tp[5]);
  814. cache[rc] = 3;
  815. }
  816. } else if (!vp56_rac_get_prob_branchy(c, tp[6])) { // cat1/2
  817. cache[rc] = 4;
  818. if (!vp56_rac_get_prob_branchy(c, tp[7])) {
  819. val = vp56_rac_get_prob(c, 159) + 5;
  820. } else {
  821. val = (vp56_rac_get_prob(c, 165) << 1) + 7;
  822. val += vp56_rac_get_prob(c, 145);
  823. }
  824. } else { // cat 3-6
  825. cache[rc] = 5;
  826. if (!vp56_rac_get_prob_branchy(c, tp[8])) {
  827. if (!vp56_rac_get_prob_branchy(c, tp[9])) {
  828. val = 11 + (vp56_rac_get_prob(c, 173) << 2);
  829. val += (vp56_rac_get_prob(c, 148) << 1);
  830. val += vp56_rac_get_prob(c, 140);
  831. } else {
  832. val = 19 + (vp56_rac_get_prob(c, 176) << 3);
  833. val += (vp56_rac_get_prob(c, 155) << 2);
  834. val += (vp56_rac_get_prob(c, 140) << 1);
  835. val += vp56_rac_get_prob(c, 135);
  836. }
  837. } else if (!vp56_rac_get_prob_branchy(c, tp[10])) {
  838. val = (vp56_rac_get_prob(c, 180) << 4) + 35;
  839. val += (vp56_rac_get_prob(c, 157) << 3);
  840. val += (vp56_rac_get_prob(c, 141) << 2);
  841. val += (vp56_rac_get_prob(c, 134) << 1);
  842. val += vp56_rac_get_prob(c, 130);
  843. } else {
  844. val = 67;
  845. if (!is8bitsperpixel) {
  846. if (bpp == 12) {
  847. val += vp56_rac_get_prob(c, 255) << 17;
  848. val += vp56_rac_get_prob(c, 255) << 16;
  849. }
  850. val += (vp56_rac_get_prob(c, 255) << 15);
  851. val += (vp56_rac_get_prob(c, 255) << 14);
  852. }
  853. val += (vp56_rac_get_prob(c, 254) << 13);
  854. val += (vp56_rac_get_prob(c, 254) << 12);
  855. val += (vp56_rac_get_prob(c, 254) << 11);
  856. val += (vp56_rac_get_prob(c, 252) << 10);
  857. val += (vp56_rac_get_prob(c, 249) << 9);
  858. val += (vp56_rac_get_prob(c, 243) << 8);
  859. val += (vp56_rac_get_prob(c, 230) << 7);
  860. val += (vp56_rac_get_prob(c, 196) << 6);
  861. val += (vp56_rac_get_prob(c, 177) << 5);
  862. val += (vp56_rac_get_prob(c, 153) << 4);
  863. val += (vp56_rac_get_prob(c, 140) << 3);
  864. val += (vp56_rac_get_prob(c, 133) << 2);
  865. val += (vp56_rac_get_prob(c, 130) << 1);
  866. val += vp56_rac_get_prob(c, 129);
  867. }
  868. }
  869. }
  870. #define STORE_COEF(c, i, v) do { \
  871. if (is8bitsperpixel) { \
  872. c[i] = v; \
  873. } else { \
  874. AV_WN32A(&c[i * 2], v); \
  875. } \
  876. } while (0)
  877. if (!--band_left)
  878. band_left = band_counts[++band];
  879. if (is_tx32x32)
  880. STORE_COEF(coef, rc, ((vp8_rac_get(c) ? -val : val) * qmul[!!i]) / 2);
  881. else
  882. STORE_COEF(coef, rc, (vp8_rac_get(c) ? -val : val) * qmul[!!i]);
  883. nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1;
  884. tp = p[band][nnz];
  885. } while (++i < n_coeffs);
  886. return i;
  887. }
  888. static int decode_coeffs_b_8bpp(VP9Context *s, int16_t *coef, int n_coeffs,
  889. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  890. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  891. const int16_t (*nb)[2], const int16_t *band_counts,
  892. const int16_t *qmul)
  893. {
  894. return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 0, 1, 8, cnt, eob, p,
  895. nnz, scan, nb, band_counts, qmul);
  896. }
  897. static int decode_coeffs_b32_8bpp(VP9Context *s, int16_t *coef, int n_coeffs,
  898. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  899. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  900. const int16_t (*nb)[2], const int16_t *band_counts,
  901. const int16_t *qmul)
  902. {
  903. return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 1, 1, 8, cnt, eob, p,
  904. nnz, scan, nb, band_counts, qmul);
  905. }
  906. static int decode_coeffs_b_16bpp(VP9Context *s, int16_t *coef, int n_coeffs,
  907. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  908. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  909. const int16_t (*nb)[2], const int16_t *band_counts,
  910. const int16_t *qmul)
  911. {
  912. return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 0, 0, s->s.h.bpp, cnt, eob, p,
  913. nnz, scan, nb, band_counts, qmul);
  914. }
  915. static int decode_coeffs_b32_16bpp(VP9Context *s, int16_t *coef, int n_coeffs,
  916. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  917. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  918. const int16_t (*nb)[2], const int16_t *band_counts,
  919. const int16_t *qmul)
  920. {
  921. return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 1, 0, s->s.h.bpp, cnt, eob, p,
  922. nnz, scan, nb, band_counts, qmul);
  923. }
  924. static av_always_inline int decode_coeffs(AVCodecContext *avctx, int is8bitsperpixel)
  925. {
  926. VP9Context *s = avctx->priv_data;
  927. VP9Block *b = s->b;
  928. int row = s->row, col = s->col;
  929. uint8_t (*p)[6][11] = s->prob.coef[b->tx][0 /* y */][!b->intra];
  930. unsigned (*c)[6][3] = s->counts.coef[b->tx][0 /* y */][!b->intra];
  931. unsigned (*e)[6][2] = s->counts.eob[b->tx][0 /* y */][!b->intra];
  932. int w4 = bwh_tab[1][b->bs][0] << 1, h4 = bwh_tab[1][b->bs][1] << 1;
  933. int end_x = FFMIN(2 * (s->cols - col), w4);
  934. int end_y = FFMIN(2 * (s->rows - row), h4);
  935. int n, pl, x, y, ret;
  936. int16_t (*qmul)[2] = s->s.h.segmentation.feat[b->seg_id].qmul;
  937. int tx = 4 * s->s.h.lossless + b->tx;
  938. const int16_t * const *yscans = ff_vp9_scans[tx];
  939. const int16_t (* const *ynbs)[2] = ff_vp9_scans_nb[tx];
  940. const int16_t *uvscan = ff_vp9_scans[b->uvtx][DCT_DCT];
  941. const int16_t (*uvnb)[2] = ff_vp9_scans_nb[b->uvtx][DCT_DCT];
  942. uint8_t *a = &s->above_y_nnz_ctx[col * 2];
  943. uint8_t *l = &s->left_y_nnz_ctx[(row & 7) << 1];
  944. static const int16_t band_counts[4][8] = {
  945. { 1, 2, 3, 4, 3, 16 - 13 },
  946. { 1, 2, 3, 4, 11, 64 - 21 },
  947. { 1, 2, 3, 4, 11, 256 - 21 },
  948. { 1, 2, 3, 4, 11, 1024 - 21 },
  949. };
  950. const int16_t *y_band_counts = band_counts[b->tx];
  951. const int16_t *uv_band_counts = band_counts[b->uvtx];
  952. int bytesperpixel = is8bitsperpixel ? 1 : 2;
  953. int total_coeff = 0;
  954. #define MERGE(la, end, step, rd) \
  955. for (n = 0; n < end; n += step) \
  956. la[n] = !!rd(&la[n])
  957. #define MERGE_CTX(step, rd) \
  958. do { \
  959. MERGE(l, end_y, step, rd); \
  960. MERGE(a, end_x, step, rd); \
  961. } while (0)
  962. #define DECODE_Y_COEF_LOOP(step, mode_index, v) \
  963. for (n = 0, y = 0; y < end_y; y += step) { \
  964. for (x = 0; x < end_x; x += step, n += step * step) { \
  965. enum TxfmType txtp = ff_vp9_intra_txfm_type[b->mode[mode_index]]; \
  966. ret = (is8bitsperpixel ? decode_coeffs_b##v##_8bpp : decode_coeffs_b##v##_16bpp) \
  967. (s, s->block + 16 * n * bytesperpixel, 16 * step * step, \
  968. c, e, p, a[x] + l[y], yscans[txtp], \
  969. ynbs[txtp], y_band_counts, qmul[0]); \
  970. a[x] = l[y] = !!ret; \
  971. total_coeff |= !!ret; \
  972. if (step >= 4) { \
  973. AV_WN16A(&s->eob[n], ret); \
  974. } else { \
  975. s->eob[n] = ret; \
  976. } \
  977. } \
  978. }
  979. #define SPLAT(la, end, step, cond) \
  980. if (step == 2) { \
  981. for (n = 1; n < end; n += step) \
  982. la[n] = la[n - 1]; \
  983. } else if (step == 4) { \
  984. if (cond) { \
  985. for (n = 0; n < end; n += step) \
  986. AV_WN32A(&la[n], la[n] * 0x01010101); \
  987. } else { \
  988. for (n = 0; n < end; n += step) \
  989. memset(&la[n + 1], la[n], FFMIN(end - n - 1, 3)); \
  990. } \
  991. } else /* step == 8 */ { \
  992. if (cond) { \
  993. if (HAVE_FAST_64BIT) { \
  994. for (n = 0; n < end; n += step) \
  995. AV_WN64A(&la[n], la[n] * 0x0101010101010101ULL); \
  996. } else { \
  997. for (n = 0; n < end; n += step) { \
  998. uint32_t v32 = la[n] * 0x01010101; \
  999. AV_WN32A(&la[n], v32); \
  1000. AV_WN32A(&la[n + 4], v32); \
  1001. } \
  1002. } \
  1003. } else { \
  1004. for (n = 0; n < end; n += step) \
  1005. memset(&la[n + 1], la[n], FFMIN(end - n - 1, 7)); \
  1006. } \
  1007. }
  1008. #define SPLAT_CTX(step) \
  1009. do { \
  1010. SPLAT(a, end_x, step, end_x == w4); \
  1011. SPLAT(l, end_y, step, end_y == h4); \
  1012. } while (0)
  1013. /* y tokens */
  1014. switch (b->tx) {
  1015. case TX_4X4:
  1016. DECODE_Y_COEF_LOOP(1, b->bs > BS_8x8 ? n : 0,);
  1017. break;
  1018. case TX_8X8:
  1019. MERGE_CTX(2, AV_RN16A);
  1020. DECODE_Y_COEF_LOOP(2, 0,);
  1021. SPLAT_CTX(2);
  1022. break;
  1023. case TX_16X16:
  1024. MERGE_CTX(4, AV_RN32A);
  1025. DECODE_Y_COEF_LOOP(4, 0,);
  1026. SPLAT_CTX(4);
  1027. break;
  1028. case TX_32X32:
  1029. MERGE_CTX(8, AV_RN64A);
  1030. DECODE_Y_COEF_LOOP(8, 0, 32);
  1031. SPLAT_CTX(8);
  1032. break;
  1033. }
  1034. #define DECODE_UV_COEF_LOOP(step, v) \
  1035. for (n = 0, y = 0; y < end_y; y += step) { \
  1036. for (x = 0; x < end_x; x += step, n += step * step) { \
  1037. ret = (is8bitsperpixel ? decode_coeffs_b##v##_8bpp : decode_coeffs_b##v##_16bpp) \
  1038. (s, s->uvblock[pl] + 16 * n * bytesperpixel, \
  1039. 16 * step * step, c, e, p, a[x] + l[y], \
  1040. uvscan, uvnb, uv_band_counts, qmul[1]); \
  1041. a[x] = l[y] = !!ret; \
  1042. total_coeff |= !!ret; \
  1043. if (step >= 4) { \
  1044. AV_WN16A(&s->uveob[pl][n], ret); \
  1045. } else { \
  1046. s->uveob[pl][n] = ret; \
  1047. } \
  1048. } \
  1049. }
  1050. p = s->prob.coef[b->uvtx][1 /* uv */][!b->intra];
  1051. c = s->counts.coef[b->uvtx][1 /* uv */][!b->intra];
  1052. e = s->counts.eob[b->uvtx][1 /* uv */][!b->intra];
  1053. w4 >>= s->ss_h;
  1054. end_x >>= s->ss_h;
  1055. h4 >>= s->ss_v;
  1056. end_y >>= s->ss_v;
  1057. for (pl = 0; pl < 2; pl++) {
  1058. a = &s->above_uv_nnz_ctx[pl][col << !s->ss_h];
  1059. l = &s->left_uv_nnz_ctx[pl][(row & 7) << !s->ss_v];
  1060. switch (b->uvtx) {
  1061. case TX_4X4:
  1062. DECODE_UV_COEF_LOOP(1,);
  1063. break;
  1064. case TX_8X8:
  1065. MERGE_CTX(2, AV_RN16A);
  1066. DECODE_UV_COEF_LOOP(2,);
  1067. SPLAT_CTX(2);
  1068. break;
  1069. case TX_16X16:
  1070. MERGE_CTX(4, AV_RN32A);
  1071. DECODE_UV_COEF_LOOP(4,);
  1072. SPLAT_CTX(4);
  1073. break;
  1074. case TX_32X32:
  1075. MERGE_CTX(8, AV_RN64A);
  1076. DECODE_UV_COEF_LOOP(8, 32);
  1077. SPLAT_CTX(8);
  1078. break;
  1079. }
  1080. }
  1081. return total_coeff;
  1082. }
  1083. static int decode_coeffs_8bpp(AVCodecContext *avctx)
  1084. {
  1085. return decode_coeffs(avctx, 1);
  1086. }
  1087. static int decode_coeffs_16bpp(AVCodecContext *avctx)
  1088. {
  1089. return decode_coeffs(avctx, 0);
  1090. }
  1091. static av_always_inline int check_intra_mode(VP9Context *s, int mode, uint8_t **a,
  1092. uint8_t *dst_edge, ptrdiff_t stride_edge,
  1093. uint8_t *dst_inner, ptrdiff_t stride_inner,
  1094. uint8_t *l, int col, int x, int w,
  1095. int row, int y, enum TxfmMode tx,
  1096. int p, int ss_h, int ss_v, int bytesperpixel)
  1097. {
  1098. int have_top = row > 0 || y > 0;
  1099. int have_left = col > s->tile_col_start || x > 0;
  1100. int have_right = x < w - 1;
  1101. int bpp = s->s.h.bpp;
  1102. static const uint8_t mode_conv[10][2 /* have_left */][2 /* have_top */] = {
  1103. [VERT_PRED] = { { DC_127_PRED, VERT_PRED },
  1104. { DC_127_PRED, VERT_PRED } },
  1105. [HOR_PRED] = { { DC_129_PRED, DC_129_PRED },
  1106. { HOR_PRED, HOR_PRED } },
  1107. [DC_PRED] = { { DC_128_PRED, TOP_DC_PRED },
  1108. { LEFT_DC_PRED, DC_PRED } },
  1109. [DIAG_DOWN_LEFT_PRED] = { { DC_127_PRED, DIAG_DOWN_LEFT_PRED },
  1110. { DC_127_PRED, DIAG_DOWN_LEFT_PRED } },
  1111. [DIAG_DOWN_RIGHT_PRED] = { { DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED },
  1112. { DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED } },
  1113. [VERT_RIGHT_PRED] = { { VERT_RIGHT_PRED, VERT_RIGHT_PRED },
  1114. { VERT_RIGHT_PRED, VERT_RIGHT_PRED } },
  1115. [HOR_DOWN_PRED] = { { HOR_DOWN_PRED, HOR_DOWN_PRED },
  1116. { HOR_DOWN_PRED, HOR_DOWN_PRED } },
  1117. [VERT_LEFT_PRED] = { { DC_127_PRED, VERT_LEFT_PRED },
  1118. { DC_127_PRED, VERT_LEFT_PRED } },
  1119. [HOR_UP_PRED] = { { DC_129_PRED, DC_129_PRED },
  1120. { HOR_UP_PRED, HOR_UP_PRED } },
  1121. [TM_VP8_PRED] = { { DC_129_PRED, VERT_PRED },
  1122. { HOR_PRED, TM_VP8_PRED } },
  1123. };
  1124. static const struct {
  1125. uint8_t needs_left:1;
  1126. uint8_t needs_top:1;
  1127. uint8_t needs_topleft:1;
  1128. uint8_t needs_topright:1;
  1129. uint8_t invert_left:1;
  1130. } edges[N_INTRA_PRED_MODES] = {
  1131. [VERT_PRED] = { .needs_top = 1 },
  1132. [HOR_PRED] = { .needs_left = 1 },
  1133. [DC_PRED] = { .needs_top = 1, .needs_left = 1 },
  1134. [DIAG_DOWN_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 },
  1135. [DIAG_DOWN_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1,
  1136. .needs_topleft = 1 },
  1137. [VERT_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1,
  1138. .needs_topleft = 1 },
  1139. [HOR_DOWN_PRED] = { .needs_left = 1, .needs_top = 1,
  1140. .needs_topleft = 1 },
  1141. [VERT_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 },
  1142. [HOR_UP_PRED] = { .needs_left = 1, .invert_left = 1 },
  1143. [TM_VP8_PRED] = { .needs_left = 1, .needs_top = 1,
  1144. .needs_topleft = 1 },
  1145. [LEFT_DC_PRED] = { .needs_left = 1 },
  1146. [TOP_DC_PRED] = { .needs_top = 1 },
  1147. [DC_128_PRED] = { 0 },
  1148. [DC_127_PRED] = { 0 },
  1149. [DC_129_PRED] = { 0 }
  1150. };
  1151. av_assert2(mode >= 0 && mode < 10);
  1152. mode = mode_conv[mode][have_left][have_top];
  1153. if (edges[mode].needs_top) {
  1154. uint8_t *top, *topleft;
  1155. int n_px_need = 4 << tx, n_px_have = (((s->cols - col) << !ss_h) - x) * 4;
  1156. int n_px_need_tr = 0;
  1157. if (tx == TX_4X4 && edges[mode].needs_topright && have_right)
  1158. n_px_need_tr = 4;
  1159. // if top of sb64-row, use s->intra_pred_data[] instead of
  1160. // dst[-stride] for intra prediction (it contains pre- instead of
  1161. // post-loopfilter data)
  1162. if (have_top) {
  1163. top = !(row & 7) && !y ?
  1164. s->intra_pred_data[p] + (col * (8 >> ss_h) + x * 4) * bytesperpixel :
  1165. y == 0 ? &dst_edge[-stride_edge] : &dst_inner[-stride_inner];
  1166. if (have_left)
  1167. topleft = !(row & 7) && !y ?
  1168. s->intra_pred_data[p] + (col * (8 >> ss_h) + x * 4) * bytesperpixel :
  1169. y == 0 || x == 0 ? &dst_edge[-stride_edge] :
  1170. &dst_inner[-stride_inner];
  1171. }
  1172. if (have_top &&
  1173. (!edges[mode].needs_topleft || (have_left && top == topleft)) &&
  1174. (tx != TX_4X4 || !edges[mode].needs_topright || have_right) &&
  1175. n_px_need + n_px_need_tr <= n_px_have) {
  1176. *a = top;
  1177. } else {
  1178. if (have_top) {
  1179. if (n_px_need <= n_px_have) {
  1180. memcpy(*a, top, n_px_need * bytesperpixel);
  1181. } else {
  1182. #define memset_bpp(c, i1, v, i2, num) do { \
  1183. if (bytesperpixel == 1) { \
  1184. memset(&(c)[(i1)], (v)[(i2)], (num)); \
  1185. } else { \
  1186. int n, val = AV_RN16A(&(v)[(i2) * 2]); \
  1187. for (n = 0; n < (num); n++) { \
  1188. AV_WN16A(&(c)[((i1) + n) * 2], val); \
  1189. } \
  1190. } \
  1191. } while (0)
  1192. memcpy(*a, top, n_px_have * bytesperpixel);
  1193. memset_bpp(*a, n_px_have, (*a), n_px_have - 1, n_px_need - n_px_have);
  1194. }
  1195. } else {
  1196. #define memset_val(c, val, num) do { \
  1197. if (bytesperpixel == 1) { \
  1198. memset((c), (val), (num)); \
  1199. } else { \
  1200. int n; \
  1201. for (n = 0; n < (num); n++) { \
  1202. AV_WN16A(&(c)[n * 2], (val)); \
  1203. } \
  1204. } \
  1205. } while (0)
  1206. memset_val(*a, (128 << (bpp - 8)) - 1, n_px_need);
  1207. }
  1208. if (edges[mode].needs_topleft) {
  1209. if (have_left && have_top) {
  1210. #define assign_bpp(c, i1, v, i2) do { \
  1211. if (bytesperpixel == 1) { \
  1212. (c)[(i1)] = (v)[(i2)]; \
  1213. } else { \
  1214. AV_COPY16(&(c)[(i1) * 2], &(v)[(i2) * 2]); \
  1215. } \
  1216. } while (0)
  1217. assign_bpp(*a, -1, topleft, -1);
  1218. } else {
  1219. #define assign_val(c, i, v) do { \
  1220. if (bytesperpixel == 1) { \
  1221. (c)[(i)] = (v); \
  1222. } else { \
  1223. AV_WN16A(&(c)[(i) * 2], (v)); \
  1224. } \
  1225. } while (0)
  1226. assign_val((*a), -1, (128 << (bpp - 8)) + (have_top ? +1 : -1));
  1227. }
  1228. }
  1229. if (tx == TX_4X4 && edges[mode].needs_topright) {
  1230. if (have_top && have_right &&
  1231. n_px_need + n_px_need_tr <= n_px_have) {
  1232. memcpy(&(*a)[4 * bytesperpixel], &top[4 * bytesperpixel], 4 * bytesperpixel);
  1233. } else {
  1234. memset_bpp(*a, 4, *a, 3, 4);
  1235. }
  1236. }
  1237. }
  1238. }
  1239. if (edges[mode].needs_left) {
  1240. if (have_left) {
  1241. int n_px_need = 4 << tx, i, n_px_have = (((s->rows - row) << !ss_v) - y) * 4;
  1242. uint8_t *dst = x == 0 ? dst_edge : dst_inner;
  1243. ptrdiff_t stride = x == 0 ? stride_edge : stride_inner;
  1244. if (edges[mode].invert_left) {
  1245. if (n_px_need <= n_px_have) {
  1246. for (i = 0; i < n_px_need; i++)
  1247. assign_bpp(l, i, &dst[i * stride], -1);
  1248. } else {
  1249. for (i = 0; i < n_px_have; i++)
  1250. assign_bpp(l, i, &dst[i * stride], -1);
  1251. memset_bpp(l, n_px_have, l, n_px_have - 1, n_px_need - n_px_have);
  1252. }
  1253. } else {
  1254. if (n_px_need <= n_px_have) {
  1255. for (i = 0; i < n_px_need; i++)
  1256. assign_bpp(l, n_px_need - 1 - i, &dst[i * stride], -1);
  1257. } else {
  1258. for (i = 0; i < n_px_have; i++)
  1259. assign_bpp(l, n_px_need - 1 - i, &dst[i * stride], -1);
  1260. memset_bpp(l, 0, l, n_px_need - n_px_have, n_px_need - n_px_have);
  1261. }
  1262. }
  1263. } else {
  1264. memset_val(l, (128 << (bpp - 8)) + 1, 4 << tx);
  1265. }
  1266. }
  1267. return mode;
  1268. }
  1269. static av_always_inline void intra_recon(AVCodecContext *avctx, ptrdiff_t y_off,
  1270. ptrdiff_t uv_off, int bytesperpixel)
  1271. {
  1272. VP9Context *s = avctx->priv_data;
  1273. VP9Block *b = s->b;
  1274. int row = s->row, col = s->col;
  1275. int w4 = bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n;
  1276. int h4 = bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2);
  1277. int end_x = FFMIN(2 * (s->cols - col), w4);
  1278. int end_y = FFMIN(2 * (s->rows - row), h4);
  1279. int tx = 4 * s->s.h.lossless + b->tx, uvtx = b->uvtx + 4 * s->s.h.lossless;
  1280. int uvstep1d = 1 << b->uvtx, p;
  1281. uint8_t *dst = s->dst[0], *dst_r = s->s.frames[CUR_FRAME].tf.f->data[0] + y_off;
  1282. LOCAL_ALIGNED_32(uint8_t, a_buf, [96]);
  1283. LOCAL_ALIGNED_32(uint8_t, l, [64]);
  1284. for (n = 0, y = 0; y < end_y; y += step1d) {
  1285. uint8_t *ptr = dst, *ptr_r = dst_r;
  1286. for (x = 0; x < end_x; x += step1d, ptr += 4 * step1d * bytesperpixel,
  1287. ptr_r += 4 * step1d * bytesperpixel, n += step) {
  1288. int mode = b->mode[b->bs > BS_8x8 && b->tx == TX_4X4 ?
  1289. y * 2 + x : 0];
  1290. uint8_t *a = &a_buf[32];
  1291. enum TxfmType txtp = ff_vp9_intra_txfm_type[mode];
  1292. int eob = b->skip ? 0 : b->tx > TX_8X8 ? AV_RN16A(&s->eob[n]) : s->eob[n];
  1293. mode = check_intra_mode(s, mode, &a, ptr_r,
  1294. s->s.frames[CUR_FRAME].tf.f->linesize[0],
  1295. ptr, s->y_stride, l,
  1296. col, x, w4, row, y, b->tx, 0, 0, 0, bytesperpixel);
  1297. s->dsp.intra_pred[b->tx][mode](ptr, s->y_stride, l, a);
  1298. if (eob)
  1299. s->dsp.itxfm_add[tx][txtp](ptr, s->y_stride,
  1300. s->block + 16 * n * bytesperpixel, eob);
  1301. }
  1302. dst_r += 4 * step1d * s->s.frames[CUR_FRAME].tf.f->linesize[0];
  1303. dst += 4 * step1d * s->y_stride;
  1304. }
  1305. // U/V
  1306. w4 >>= s->ss_h;
  1307. end_x >>= s->ss_h;
  1308. end_y >>= s->ss_v;
  1309. step = 1 << (b->uvtx * 2);
  1310. for (p = 0; p < 2; p++) {
  1311. dst = s->dst[1 + p];
  1312. dst_r = s->s.frames[CUR_FRAME].tf.f->data[1 + p] + uv_off;
  1313. for (n = 0, y = 0; y < end_y; y += uvstep1d) {
  1314. uint8_t *ptr = dst, *ptr_r = dst_r;
  1315. for (x = 0; x < end_x; x += uvstep1d, ptr += 4 * uvstep1d * bytesperpixel,
  1316. ptr_r += 4 * uvstep1d * bytesperpixel, n += step) {
  1317. int mode = b->uvmode;
  1318. uint8_t *a = &a_buf[32];
  1319. int eob = b->skip ? 0 : b->uvtx > TX_8X8 ? AV_RN16A(&s->uveob[p][n]) : s->uveob[p][n];
  1320. mode = check_intra_mode(s, mode, &a, ptr_r,
  1321. s->s.frames[CUR_FRAME].tf.f->linesize[1],
  1322. ptr, s->uv_stride, l, col, x, w4, row, y,
  1323. b->uvtx, p + 1, s->ss_h, s->ss_v, bytesperpixel);
  1324. s->dsp.intra_pred[b->uvtx][mode](ptr, s->uv_stride, l, a);
  1325. if (eob)
  1326. s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, s->uv_stride,
  1327. s->uvblock[p] + 16 * n * bytesperpixel, eob);
  1328. }
  1329. dst_r += 4 * uvstep1d * s->s.frames[CUR_FRAME].tf.f->linesize[1];
  1330. dst += 4 * uvstep1d * s->uv_stride;
  1331. }
  1332. }
  1333. }
  1334. static void intra_recon_8bpp(AVCodecContext *avctx, ptrdiff_t y_off, ptrdiff_t uv_off)
  1335. {
  1336. intra_recon(avctx, y_off, uv_off, 1);
  1337. }
  1338. static void intra_recon_16bpp(AVCodecContext *avctx, ptrdiff_t y_off, ptrdiff_t uv_off)
  1339. {
  1340. intra_recon(avctx, y_off, uv_off, 2);
  1341. }
  1342. static av_always_inline void mc_luma_unscaled(VP9Context *s, vp9_mc_func (*mc)[2],
  1343. uint8_t *dst, ptrdiff_t dst_stride,
  1344. const uint8_t *ref, ptrdiff_t ref_stride,
  1345. ThreadFrame *ref_frame,
  1346. ptrdiff_t y, ptrdiff_t x, const VP56mv *mv,
  1347. int bw, int bh, int w, int h, int bytesperpixel)
  1348. {
  1349. int mx = mv->x, my = mv->y, th;
  1350. y += my >> 3;
  1351. x += mx >> 3;
  1352. ref += y * ref_stride + x * bytesperpixel;
  1353. mx &= 7;
  1354. my &= 7;
  1355. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  1356. // we use +7 because the last 7 pixels of each sbrow can be changed in
  1357. // the longest loopfilter of the next sbrow
  1358. th = (y + bh + 4 * !!my + 7) >> 6;
  1359. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  1360. // The arm/aarch64 _hv filters read one more row than what actually is
  1361. // needed, so switch to emulated edge one pixel sooner vertically
  1362. // (!!my * 5) than horizontally (!!mx * 4).
  1363. if (x < !!mx * 3 || y < !!my * 3 ||
  1364. x + !!mx * 4 > w - bw || y + !!my * 5 > h - bh) {
  1365. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  1366. ref - !!my * 3 * ref_stride - !!mx * 3 * bytesperpixel,
  1367. 160, ref_stride,
  1368. bw + !!mx * 7, bh + !!my * 7,
  1369. x - !!mx * 3, y - !!my * 3, w, h);
  1370. ref = s->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel;
  1371. ref_stride = 160;
  1372. }
  1373. mc[!!mx][!!my](dst, dst_stride, ref, ref_stride, bh, mx << 1, my << 1);
  1374. }
  1375. static av_always_inline void mc_chroma_unscaled(VP9Context *s, vp9_mc_func (*mc)[2],
  1376. uint8_t *dst_u, uint8_t *dst_v,
  1377. ptrdiff_t dst_stride,
  1378. const uint8_t *ref_u, ptrdiff_t src_stride_u,
  1379. const uint8_t *ref_v, ptrdiff_t src_stride_v,
  1380. ThreadFrame *ref_frame,
  1381. ptrdiff_t y, ptrdiff_t x, const VP56mv *mv,
  1382. int bw, int bh, int w, int h, int bytesperpixel)
  1383. {
  1384. int mx = mv->x * (1 << !s->ss_h), my = mv->y * (1 << !s->ss_v), th;
  1385. y += my >> 4;
  1386. x += mx >> 4;
  1387. ref_u += y * src_stride_u + x * bytesperpixel;
  1388. ref_v += y * src_stride_v + x * bytesperpixel;
  1389. mx &= 15;
  1390. my &= 15;
  1391. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  1392. // we use +7 because the last 7 pixels of each sbrow can be changed in
  1393. // the longest loopfilter of the next sbrow
  1394. th = (y + bh + 4 * !!my + 7) >> (6 - s->ss_v);
  1395. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  1396. // The arm/aarch64 _hv filters read one more row than what actually is
  1397. // needed, so switch to emulated edge one pixel sooner vertically
  1398. // (!!my * 5) than horizontally (!!mx * 4).
  1399. if (x < !!mx * 3 || y < !!my * 3 ||
  1400. x + !!mx * 4 > w - bw || y + !!my * 5 > h - bh) {
  1401. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  1402. ref_u - !!my * 3 * src_stride_u - !!mx * 3 * bytesperpixel,
  1403. 160, src_stride_u,
  1404. bw + !!mx * 7, bh + !!my * 7,
  1405. x - !!mx * 3, y - !!my * 3, w, h);
  1406. ref_u = s->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel;
  1407. mc[!!mx][!!my](dst_u, dst_stride, ref_u, 160, bh, mx, my);
  1408. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  1409. ref_v - !!my * 3 * src_stride_v - !!mx * 3 * bytesperpixel,
  1410. 160, src_stride_v,
  1411. bw + !!mx * 7, bh + !!my * 7,
  1412. x - !!mx * 3, y - !!my * 3, w, h);
  1413. ref_v = s->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel;
  1414. mc[!!mx][!!my](dst_v, dst_stride, ref_v, 160, bh, mx, my);
  1415. } else {
  1416. mc[!!mx][!!my](dst_u, dst_stride, ref_u, src_stride_u, bh, mx, my);
  1417. mc[!!mx][!!my](dst_v, dst_stride, ref_v, src_stride_v, bh, mx, my);
  1418. }
  1419. }
  1420. #define mc_luma_dir(s, mc, dst, dst_ls, src, src_ls, tref, row, col, mv, \
  1421. px, py, pw, ph, bw, bh, w, h, i) \
  1422. mc_luma_unscaled(s, s->dsp.mc, dst, dst_ls, src, src_ls, tref, row, col, \
  1423. mv, bw, bh, w, h, bytesperpixel)
  1424. #define mc_chroma_dir(s, mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  1425. row, col, mv, px, py, pw, ph, bw, bh, w, h, i) \
  1426. mc_chroma_unscaled(s, s->dsp.mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  1427. row, col, mv, bw, bh, w, h, bytesperpixel)
  1428. #define SCALED 0
  1429. #define FN(x) x##_8bpp
  1430. #define BYTES_PER_PIXEL 1
  1431. #include "vp9_mc_template.c"
  1432. #undef FN
  1433. #undef BYTES_PER_PIXEL
  1434. #define FN(x) x##_16bpp
  1435. #define BYTES_PER_PIXEL 2
  1436. #include "vp9_mc_template.c"
  1437. #undef mc_luma_dir
  1438. #undef mc_chroma_dir
  1439. #undef FN
  1440. #undef BYTES_PER_PIXEL
  1441. #undef SCALED
  1442. static av_always_inline void mc_luma_scaled(VP9Context *s, vp9_scaled_mc_func smc,
  1443. vp9_mc_func (*mc)[2],
  1444. uint8_t *dst, ptrdiff_t dst_stride,
  1445. const uint8_t *ref, ptrdiff_t ref_stride,
  1446. ThreadFrame *ref_frame,
  1447. ptrdiff_t y, ptrdiff_t x, const VP56mv *in_mv,
  1448. int px, int py, int pw, int ph,
  1449. int bw, int bh, int w, int h, int bytesperpixel,
  1450. const uint16_t *scale, const uint8_t *step)
  1451. {
  1452. if (s->s.frames[CUR_FRAME].tf.f->width == ref_frame->f->width &&
  1453. s->s.frames[CUR_FRAME].tf.f->height == ref_frame->f->height) {
  1454. mc_luma_unscaled(s, mc, dst, dst_stride, ref, ref_stride, ref_frame,
  1455. y, x, in_mv, bw, bh, w, h, bytesperpixel);
  1456. } else {
  1457. #define scale_mv(n, dim) (((int64_t)(n) * scale[dim]) >> 14)
  1458. int mx, my;
  1459. int refbw_m1, refbh_m1;
  1460. int th;
  1461. VP56mv mv;
  1462. mv.x = av_clip(in_mv->x, -(x + pw - px + 4) * 8, (s->cols * 8 - x + px + 3) * 8);
  1463. mv.y = av_clip(in_mv->y, -(y + ph - py + 4) * 8, (s->rows * 8 - y + py + 3) * 8);
  1464. // BUG libvpx seems to scale the two components separately. This introduces
  1465. // rounding errors but we have to reproduce them to be exactly compatible
  1466. // with the output from libvpx...
  1467. mx = scale_mv(mv.x * 2, 0) + scale_mv(x * 16, 0);
  1468. my = scale_mv(mv.y * 2, 1) + scale_mv(y * 16, 1);
  1469. y = my >> 4;
  1470. x = mx >> 4;
  1471. ref += y * ref_stride + x * bytesperpixel;
  1472. mx &= 15;
  1473. my &= 15;
  1474. refbw_m1 = ((bw - 1) * step[0] + mx) >> 4;
  1475. refbh_m1 = ((bh - 1) * step[1] + my) >> 4;
  1476. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  1477. // we use +7 because the last 7 pixels of each sbrow can be changed in
  1478. // the longest loopfilter of the next sbrow
  1479. th = (y + refbh_m1 + 4 + 7) >> 6;
  1480. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  1481. // The arm/aarch64 _hv filters read one more row than what actually is
  1482. // needed, so switch to emulated edge one pixel sooner vertically
  1483. // (y + 5 >= h - refbh_m1) than horizontally (x + 4 >= w - refbw_m1).
  1484. if (x < 3 || y < 3 || x + 4 >= w - refbw_m1 || y + 5 >= h - refbh_m1) {
  1485. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  1486. ref - 3 * ref_stride - 3 * bytesperpixel,
  1487. 288, ref_stride,
  1488. refbw_m1 + 8, refbh_m1 + 8,
  1489. x - 3, y - 3, w, h);
  1490. ref = s->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel;
  1491. ref_stride = 288;
  1492. }
  1493. smc(dst, dst_stride, ref, ref_stride, bh, mx, my, step[0], step[1]);
  1494. }
  1495. }
  1496. static av_always_inline void mc_chroma_scaled(VP9Context *s, vp9_scaled_mc_func smc,
  1497. vp9_mc_func (*mc)[2],
  1498. uint8_t *dst_u, uint8_t *dst_v,
  1499. ptrdiff_t dst_stride,
  1500. const uint8_t *ref_u, ptrdiff_t src_stride_u,
  1501. const uint8_t *ref_v, ptrdiff_t src_stride_v,
  1502. ThreadFrame *ref_frame,
  1503. ptrdiff_t y, ptrdiff_t x, const VP56mv *in_mv,
  1504. int px, int py, int pw, int ph,
  1505. int bw, int bh, int w, int h, int bytesperpixel,
  1506. const uint16_t *scale, const uint8_t *step)
  1507. {
  1508. if (s->s.frames[CUR_FRAME].tf.f->width == ref_frame->f->width &&
  1509. s->s.frames[CUR_FRAME].tf.f->height == ref_frame->f->height) {
  1510. mc_chroma_unscaled(s, mc, dst_u, dst_v, dst_stride, ref_u, src_stride_u,
  1511. ref_v, src_stride_v, ref_frame,
  1512. y, x, in_mv, bw, bh, w, h, bytesperpixel);
  1513. } else {
  1514. int mx, my;
  1515. int refbw_m1, refbh_m1;
  1516. int th;
  1517. VP56mv mv;
  1518. if (s->ss_h) {
  1519. // BUG https://code.google.com/p/webm/issues/detail?id=820
  1520. mv.x = av_clip(in_mv->x, -(x + pw - px + 4) * 16, (s->cols * 4 - x + px + 3) * 16);
  1521. mx = scale_mv(mv.x, 0) + (scale_mv(x * 16, 0) & ~15) + (scale_mv(x * 32, 0) & 15);
  1522. } else {
  1523. mv.x = av_clip(in_mv->x, -(x + pw - px + 4) * 8, (s->cols * 8 - x + px + 3) * 8);
  1524. mx = scale_mv(mv.x * 2, 0) + scale_mv(x * 16, 0);
  1525. }
  1526. if (s->ss_v) {
  1527. // BUG https://code.google.com/p/webm/issues/detail?id=820
  1528. mv.y = av_clip(in_mv->y, -(y + ph - py + 4) * 16, (s->rows * 4 - y + py + 3) * 16);
  1529. my = scale_mv(mv.y, 1) + (scale_mv(y * 16, 1) & ~15) + (scale_mv(y * 32, 1) & 15);
  1530. } else {
  1531. mv.y = av_clip(in_mv->y, -(y + ph - py + 4) * 8, (s->rows * 8 - y + py + 3) * 8);
  1532. my = scale_mv(mv.y * 2, 1) + scale_mv(y * 16, 1);
  1533. }
  1534. #undef scale_mv
  1535. y = my >> 4;
  1536. x = mx >> 4;
  1537. ref_u += y * src_stride_u + x * bytesperpixel;
  1538. ref_v += y * src_stride_v + x * bytesperpixel;
  1539. mx &= 15;
  1540. my &= 15;
  1541. refbw_m1 = ((bw - 1) * step[0] + mx) >> 4;
  1542. refbh_m1 = ((bh - 1) * step[1] + my) >> 4;
  1543. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  1544. // we use +7 because the last 7 pixels of each sbrow can be changed in
  1545. // the longest loopfilter of the next sbrow
  1546. th = (y + refbh_m1 + 4 + 7) >> (6 - s->ss_v);
  1547. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  1548. // The arm/aarch64 _hv filters read one more row than what actually is
  1549. // needed, so switch to emulated edge one pixel sooner vertically
  1550. // (y + 5 >= h - refbh_m1) than horizontally (x + 4 >= w - refbw_m1).
  1551. if (x < 3 || y < 3 || x + 4 >= w - refbw_m1 || y + 5 >= h - refbh_m1) {
  1552. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  1553. ref_u - 3 * src_stride_u - 3 * bytesperpixel,
  1554. 288, src_stride_u,
  1555. refbw_m1 + 8, refbh_m1 + 8,
  1556. x - 3, y - 3, w, h);
  1557. ref_u = s->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel;
  1558. smc(dst_u, dst_stride, ref_u, 288, bh, mx, my, step[0], step[1]);
  1559. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  1560. ref_v - 3 * src_stride_v - 3 * bytesperpixel,
  1561. 288, src_stride_v,
  1562. refbw_m1 + 8, refbh_m1 + 8,
  1563. x - 3, y - 3, w, h);
  1564. ref_v = s->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel;
  1565. smc(dst_v, dst_stride, ref_v, 288, bh, mx, my, step[0], step[1]);
  1566. } else {
  1567. smc(dst_u, dst_stride, ref_u, src_stride_u, bh, mx, my, step[0], step[1]);
  1568. smc(dst_v, dst_stride, ref_v, src_stride_v, bh, mx, my, step[0], step[1]);
  1569. }
  1570. }
  1571. }
  1572. #define mc_luma_dir(s, mc, dst, dst_ls, src, src_ls, tref, row, col, mv, \
  1573. px, py, pw, ph, bw, bh, w, h, i) \
  1574. mc_luma_scaled(s, s->dsp.s##mc, s->dsp.mc, dst, dst_ls, src, src_ls, tref, row, col, \
  1575. mv, px, py, pw, ph, bw, bh, w, h, bytesperpixel, \
  1576. s->mvscale[b->ref[i]], s->mvstep[b->ref[i]])
  1577. #define mc_chroma_dir(s, mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  1578. row, col, mv, px, py, pw, ph, bw, bh, w, h, i) \
  1579. mc_chroma_scaled(s, s->dsp.s##mc, s->dsp.mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  1580. row, col, mv, px, py, pw, ph, bw, bh, w, h, bytesperpixel, \
  1581. s->mvscale[b->ref[i]], s->mvstep[b->ref[i]])
  1582. #define SCALED 1
  1583. #define FN(x) x##_scaled_8bpp
  1584. #define BYTES_PER_PIXEL 1
  1585. #include "vp9_mc_template.c"
  1586. #undef FN
  1587. #undef BYTES_PER_PIXEL
  1588. #define FN(x) x##_scaled_16bpp
  1589. #define BYTES_PER_PIXEL 2
  1590. #include "vp9_mc_template.c"
  1591. #undef mc_luma_dir
  1592. #undef mc_chroma_dir
  1593. #undef FN
  1594. #undef BYTES_PER_PIXEL
  1595. #undef SCALED
  1596. static av_always_inline void inter_recon(AVCodecContext *avctx, int bytesperpixel)
  1597. {
  1598. VP9Context *s = avctx->priv_data;
  1599. VP9Block *b = s->b;
  1600. int row = s->row, col = s->col;
  1601. if (s->mvscale[b->ref[0]][0] || (b->comp && s->mvscale[b->ref[1]][0])) {
  1602. if (bytesperpixel == 1) {
  1603. inter_pred_scaled_8bpp(avctx);
  1604. } else {
  1605. inter_pred_scaled_16bpp(avctx);
  1606. }
  1607. } else {
  1608. if (bytesperpixel == 1) {
  1609. inter_pred_8bpp(avctx);
  1610. } else {
  1611. inter_pred_16bpp(avctx);
  1612. }
  1613. }
  1614. if (!b->skip) {
  1615. /* mostly copied intra_recon() */
  1616. int w4 = bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n;
  1617. int h4 = bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2);
  1618. int end_x = FFMIN(2 * (s->cols - col), w4);
  1619. int end_y = FFMIN(2 * (s->rows - row), h4);
  1620. int tx = 4 * s->s.h.lossless + b->tx, uvtx = b->uvtx + 4 * s->s.h.lossless;
  1621. int uvstep1d = 1 << b->uvtx, p;
  1622. uint8_t *dst = s->dst[0];
  1623. // y itxfm add
  1624. for (n = 0, y = 0; y < end_y; y += step1d) {
  1625. uint8_t *ptr = dst;
  1626. for (x = 0; x < end_x; x += step1d,
  1627. ptr += 4 * step1d * bytesperpixel, n += step) {
  1628. int eob = b->tx > TX_8X8 ? AV_RN16A(&s->eob[n]) : s->eob[n];
  1629. if (eob)
  1630. s->dsp.itxfm_add[tx][DCT_DCT](ptr, s->y_stride,
  1631. s->block + 16 * n * bytesperpixel, eob);
  1632. }
  1633. dst += 4 * s->y_stride * step1d;
  1634. }
  1635. // uv itxfm add
  1636. end_x >>= s->ss_h;
  1637. end_y >>= s->ss_v;
  1638. step = 1 << (b->uvtx * 2);
  1639. for (p = 0; p < 2; p++) {
  1640. dst = s->dst[p + 1];
  1641. for (n = 0, y = 0; y < end_y; y += uvstep1d) {
  1642. uint8_t *ptr = dst;
  1643. for (x = 0; x < end_x; x += uvstep1d,
  1644. ptr += 4 * uvstep1d * bytesperpixel, n += step) {
  1645. int eob = b->uvtx > TX_8X8 ? AV_RN16A(&s->uveob[p][n]) : s->uveob[p][n];
  1646. if (eob)
  1647. s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, s->uv_stride,
  1648. s->uvblock[p] + 16 * n * bytesperpixel, eob);
  1649. }
  1650. dst += 4 * uvstep1d * s->uv_stride;
  1651. }
  1652. }
  1653. }
  1654. }
  1655. static void inter_recon_8bpp(AVCodecContext *avctx)
  1656. {
  1657. inter_recon(avctx, 1);
  1658. }
  1659. static void inter_recon_16bpp(AVCodecContext *avctx)
  1660. {
  1661. inter_recon(avctx, 2);
  1662. }
  1663. static av_always_inline void mask_edges(uint8_t (*mask)[8][4], int ss_h, int ss_v,
  1664. int row_and_7, int col_and_7,
  1665. int w, int h, int col_end, int row_end,
  1666. enum TxfmMode tx, int skip_inter)
  1667. {
  1668. static const unsigned wide_filter_col_mask[2] = { 0x11, 0x01 };
  1669. static const unsigned wide_filter_row_mask[2] = { 0x03, 0x07 };
  1670. // FIXME I'm pretty sure all loops can be replaced by a single LUT if
  1671. // we make VP9Filter.mask uint64_t (i.e. row/col all single variable)
  1672. // and make the LUT 5-indexed (bl, bp, is_uv, tx and row/col), and then
  1673. // use row_and_7/col_and_7 as shifts (1*col_and_7+8*row_and_7)
  1674. // the intended behaviour of the vp9 loopfilter is to work on 8-pixel
  1675. // edges. This means that for UV, we work on two subsampled blocks at
  1676. // a time, and we only use the topleft block's mode information to set
  1677. // things like block strength. Thus, for any block size smaller than
  1678. // 16x16, ignore the odd portion of the block.
  1679. if (tx == TX_4X4 && (ss_v | ss_h)) {
  1680. if (h == ss_v) {
  1681. if (row_and_7 & 1)
  1682. return;
  1683. if (!row_end)
  1684. h += 1;
  1685. }
  1686. if (w == ss_h) {
  1687. if (col_and_7 & 1)
  1688. return;
  1689. if (!col_end)
  1690. w += 1;
  1691. }
  1692. }
  1693. if (tx == TX_4X4 && !skip_inter) {
  1694. int t = 1 << col_and_7, m_col = (t << w) - t, y;
  1695. // on 32-px edges, use the 8-px wide loopfilter; else, use 4-px wide
  1696. int m_row_8 = m_col & wide_filter_col_mask[ss_h], m_row_4 = m_col - m_row_8;
  1697. for (y = row_and_7; y < h + row_and_7; y++) {
  1698. int col_mask_id = 2 - !(y & wide_filter_row_mask[ss_v]);
  1699. mask[0][y][1] |= m_row_8;
  1700. mask[0][y][2] |= m_row_4;
  1701. // for odd lines, if the odd col is not being filtered,
  1702. // skip odd row also:
  1703. // .---. <-- a
  1704. // | |
  1705. // |___| <-- b
  1706. // ^ ^
  1707. // c d
  1708. //
  1709. // if a/c are even row/col and b/d are odd, and d is skipped,
  1710. // e.g. right edge of size-66x66.webm, then skip b also (bug)
  1711. if ((ss_h & ss_v) && (col_end & 1) && (y & 1)) {
  1712. mask[1][y][col_mask_id] |= (t << (w - 1)) - t;
  1713. } else {
  1714. mask[1][y][col_mask_id] |= m_col;
  1715. }
  1716. if (!ss_h)
  1717. mask[0][y][3] |= m_col;
  1718. if (!ss_v) {
  1719. if (ss_h && (col_end & 1))
  1720. mask[1][y][3] |= (t << (w - 1)) - t;
  1721. else
  1722. mask[1][y][3] |= m_col;
  1723. }
  1724. }
  1725. } else {
  1726. int y, t = 1 << col_and_7, m_col = (t << w) - t;
  1727. if (!skip_inter) {
  1728. int mask_id = (tx == TX_8X8);
  1729. int l2 = tx + ss_h - 1, step1d;
  1730. static const unsigned masks[4] = { 0xff, 0x55, 0x11, 0x01 };
  1731. int m_row = m_col & masks[l2];
  1732. // at odd UV col/row edges tx16/tx32 loopfilter edges, force
  1733. // 8wd loopfilter to prevent going off the visible edge.
  1734. if (ss_h && tx > TX_8X8 && (w ^ (w - 1)) == 1) {
  1735. int m_row_16 = ((t << (w - 1)) - t) & masks[l2];
  1736. int m_row_8 = m_row - m_row_16;
  1737. for (y = row_and_7; y < h + row_and_7; y++) {
  1738. mask[0][y][0] |= m_row_16;
  1739. mask[0][y][1] |= m_row_8;
  1740. }
  1741. } else {
  1742. for (y = row_and_7; y < h + row_and_7; y++)
  1743. mask[0][y][mask_id] |= m_row;
  1744. }
  1745. l2 = tx + ss_v - 1;
  1746. step1d = 1 << l2;
  1747. if (ss_v && tx > TX_8X8 && (h ^ (h - 1)) == 1) {
  1748. for (y = row_and_7; y < h + row_and_7 - 1; y += step1d)
  1749. mask[1][y][0] |= m_col;
  1750. if (y - row_and_7 == h - 1)
  1751. mask[1][y][1] |= m_col;
  1752. } else {
  1753. for (y = row_and_7; y < h + row_and_7; y += step1d)
  1754. mask[1][y][mask_id] |= m_col;
  1755. }
  1756. } else if (tx != TX_4X4) {
  1757. int mask_id;
  1758. mask_id = (tx == TX_8X8) || (h == ss_v);
  1759. mask[1][row_and_7][mask_id] |= m_col;
  1760. mask_id = (tx == TX_8X8) || (w == ss_h);
  1761. for (y = row_and_7; y < h + row_and_7; y++)
  1762. mask[0][y][mask_id] |= t;
  1763. } else {
  1764. int t8 = t & wide_filter_col_mask[ss_h], t4 = t - t8;
  1765. for (y = row_and_7; y < h + row_and_7; y++) {
  1766. mask[0][y][2] |= t4;
  1767. mask[0][y][1] |= t8;
  1768. }
  1769. mask[1][row_and_7][2 - !(row_and_7 & wide_filter_row_mask[ss_v])] |= m_col;
  1770. }
  1771. }
  1772. }
  1773. void ff_vp9_decode_block(AVCodecContext *avctx, int row, int col,
  1774. VP9Filter *lflvl, ptrdiff_t yoff, ptrdiff_t uvoff,
  1775. enum BlockLevel bl, enum BlockPartition bp)
  1776. {
  1777. VP9Context *s = avctx->priv_data;
  1778. VP9Block *b = s->b;
  1779. enum BlockSize bs = bl * 3 + bp;
  1780. int bytesperpixel = s->bytesperpixel;
  1781. int w4 = bwh_tab[1][bs][0], h4 = bwh_tab[1][bs][1], lvl;
  1782. int emu[2];
  1783. AVFrame *f = s->s.frames[CUR_FRAME].tf.f;
  1784. s->row = row;
  1785. s->row7 = row & 7;
  1786. s->col = col;
  1787. s->col7 = col & 7;
  1788. s->min_mv.x = -(128 + col * 64);
  1789. s->min_mv.y = -(128 + row * 64);
  1790. s->max_mv.x = 128 + (s->cols - col - w4) * 64;
  1791. s->max_mv.y = 128 + (s->rows - row - h4) * 64;
  1792. if (s->pass < 2) {
  1793. b->bs = bs;
  1794. b->bl = bl;
  1795. b->bp = bp;
  1796. decode_mode(avctx);
  1797. b->uvtx = b->tx - ((s->ss_h && w4 * 2 == (1 << b->tx)) ||
  1798. (s->ss_v && h4 * 2 == (1 << b->tx)));
  1799. if (!b->skip) {
  1800. int has_coeffs;
  1801. if (bytesperpixel == 1) {
  1802. has_coeffs = decode_coeffs_8bpp(avctx);
  1803. } else {
  1804. has_coeffs = decode_coeffs_16bpp(avctx);
  1805. }
  1806. if (!has_coeffs && b->bs <= BS_8x8 && !b->intra) {
  1807. b->skip = 1;
  1808. memset(&s->above_skip_ctx[col], 1, w4);
  1809. memset(&s->left_skip_ctx[s->row7], 1, h4);
  1810. }
  1811. } else {
  1812. int row7 = s->row7;
  1813. #define SPLAT_ZERO_CTX(v, n) \
  1814. switch (n) { \
  1815. case 1: v = 0; break; \
  1816. case 2: AV_ZERO16(&v); break; \
  1817. case 4: AV_ZERO32(&v); break; \
  1818. case 8: AV_ZERO64(&v); break; \
  1819. case 16: AV_ZERO128(&v); break; \
  1820. }
  1821. #define SPLAT_ZERO_YUV(dir, var, off, n, dir2) \
  1822. do { \
  1823. SPLAT_ZERO_CTX(s->dir##_y_##var[off * 2], n * 2); \
  1824. if (s->ss_##dir2) { \
  1825. SPLAT_ZERO_CTX(s->dir##_uv_##var[0][off], n); \
  1826. SPLAT_ZERO_CTX(s->dir##_uv_##var[1][off], n); \
  1827. } else { \
  1828. SPLAT_ZERO_CTX(s->dir##_uv_##var[0][off * 2], n * 2); \
  1829. SPLAT_ZERO_CTX(s->dir##_uv_##var[1][off * 2], n * 2); \
  1830. } \
  1831. } while (0)
  1832. switch (w4) {
  1833. case 1: SPLAT_ZERO_YUV(above, nnz_ctx, col, 1, h); break;
  1834. case 2: SPLAT_ZERO_YUV(above, nnz_ctx, col, 2, h); break;
  1835. case 4: SPLAT_ZERO_YUV(above, nnz_ctx, col, 4, h); break;
  1836. case 8: SPLAT_ZERO_YUV(above, nnz_ctx, col, 8, h); break;
  1837. }
  1838. switch (h4) {
  1839. case 1: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 1, v); break;
  1840. case 2: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 2, v); break;
  1841. case 4: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 4, v); break;
  1842. case 8: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 8, v); break;
  1843. }
  1844. }
  1845. if (s->pass == 1) {
  1846. s->b++;
  1847. s->block += w4 * h4 * 64 * bytesperpixel;
  1848. s->uvblock[0] += w4 * h4 * 64 * bytesperpixel >> (s->ss_h + s->ss_v);
  1849. s->uvblock[1] += w4 * h4 * 64 * bytesperpixel >> (s->ss_h + s->ss_v);
  1850. s->eob += 4 * w4 * h4;
  1851. s->uveob[0] += 4 * w4 * h4 >> (s->ss_h + s->ss_v);
  1852. s->uveob[1] += 4 * w4 * h4 >> (s->ss_h + s->ss_v);
  1853. return;
  1854. }
  1855. }
  1856. // emulated overhangs if the stride of the target buffer can't hold. This
  1857. // makes it possible to support emu-edge and so on even if we have large block
  1858. // overhangs
  1859. emu[0] = (col + w4) * 8 * bytesperpixel > f->linesize[0] ||
  1860. (row + h4) > s->rows;
  1861. emu[1] = ((col + w4) * 8 >> s->ss_h) * bytesperpixel > f->linesize[1] ||
  1862. (row + h4) > s->rows;
  1863. if (emu[0]) {
  1864. s->dst[0] = s->tmp_y;
  1865. s->y_stride = 128;
  1866. } else {
  1867. s->dst[0] = f->data[0] + yoff;
  1868. s->y_stride = f->linesize[0];
  1869. }
  1870. if (emu[1]) {
  1871. s->dst[1] = s->tmp_uv[0];
  1872. s->dst[2] = s->tmp_uv[1];
  1873. s->uv_stride = 128;
  1874. } else {
  1875. s->dst[1] = f->data[1] + uvoff;
  1876. s->dst[2] = f->data[2] + uvoff;
  1877. s->uv_stride = f->linesize[1];
  1878. }
  1879. if (b->intra) {
  1880. if (s->s.h.bpp > 8) {
  1881. intra_recon_16bpp(avctx, yoff, uvoff);
  1882. } else {
  1883. intra_recon_8bpp(avctx, yoff, uvoff);
  1884. }
  1885. } else {
  1886. if (s->s.h.bpp > 8) {
  1887. inter_recon_16bpp(avctx);
  1888. } else {
  1889. inter_recon_8bpp(avctx);
  1890. }
  1891. }
  1892. if (emu[0]) {
  1893. int w = FFMIN(s->cols - col, w4) * 8, h = FFMIN(s->rows - row, h4) * 8, n, o = 0;
  1894. for (n = 0; o < w; n++) {
  1895. int bw = 64 >> n;
  1896. av_assert2(n <= 4);
  1897. if (w & bw) {
  1898. s->dsp.mc[n][0][0][0][0](f->data[0] + yoff + o * bytesperpixel, f->linesize[0],
  1899. s->tmp_y + o * bytesperpixel, 128, h, 0, 0);
  1900. o += bw;
  1901. }
  1902. }
  1903. }
  1904. if (emu[1]) {
  1905. int w = FFMIN(s->cols - col, w4) * 8 >> s->ss_h;
  1906. int h = FFMIN(s->rows - row, h4) * 8 >> s->ss_v, n, o = 0;
  1907. for (n = s->ss_h; o < w; n++) {
  1908. int bw = 64 >> n;
  1909. av_assert2(n <= 4);
  1910. if (w & bw) {
  1911. s->dsp.mc[n][0][0][0][0](f->data[1] + uvoff + o * bytesperpixel, f->linesize[1],
  1912. s->tmp_uv[0] + o * bytesperpixel, 128, h, 0, 0);
  1913. s->dsp.mc[n][0][0][0][0](f->data[2] + uvoff + o * bytesperpixel, f->linesize[2],
  1914. s->tmp_uv[1] + o * bytesperpixel, 128, h, 0, 0);
  1915. o += bw;
  1916. }
  1917. }
  1918. }
  1919. // pick filter level and find edges to apply filter to
  1920. if (s->s.h.filter.level &&
  1921. (lvl = s->s.h.segmentation.feat[b->seg_id].lflvl[b->intra ? 0 : b->ref[0] + 1]
  1922. [b->mode[3] != ZEROMV]) > 0) {
  1923. int x_end = FFMIN(s->cols - col, w4), y_end = FFMIN(s->rows - row, h4);
  1924. int skip_inter = !b->intra && b->skip, col7 = s->col7, row7 = s->row7;
  1925. setctx_2d(&lflvl->level[row7 * 8 + col7], w4, h4, 8, lvl);
  1926. mask_edges(lflvl->mask[0], 0, 0, row7, col7, x_end, y_end, 0, 0, b->tx, skip_inter);
  1927. if (s->ss_h || s->ss_v)
  1928. mask_edges(lflvl->mask[1], s->ss_h, s->ss_v, row7, col7, x_end, y_end,
  1929. s->cols & 1 && col + w4 >= s->cols ? s->cols & 7 : 0,
  1930. s->rows & 1 && row + h4 >= s->rows ? s->rows & 7 : 0,
  1931. b->uvtx, skip_inter);
  1932. if (!s->filter_lut.lim_lut[lvl]) {
  1933. int sharp = s->s.h.filter.sharpness;
  1934. int limit = lvl;
  1935. if (sharp > 0) {
  1936. limit >>= (sharp + 3) >> 2;
  1937. limit = FFMIN(limit, 9 - sharp);
  1938. }
  1939. limit = FFMAX(limit, 1);
  1940. s->filter_lut.lim_lut[lvl] = limit;
  1941. s->filter_lut.mblim_lut[lvl] = 2 * (lvl + 2) + limit;
  1942. }
  1943. }
  1944. if (s->pass == 2) {
  1945. s->b++;
  1946. s->block += w4 * h4 * 64 * bytesperpixel;
  1947. s->uvblock[0] += w4 * h4 * 64 * bytesperpixel >> (s->ss_v + s->ss_h);
  1948. s->uvblock[1] += w4 * h4 * 64 * bytesperpixel >> (s->ss_v + s->ss_h);
  1949. s->eob += 4 * w4 * h4;
  1950. s->uveob[0] += 4 * w4 * h4 >> (s->ss_v + s->ss_h);
  1951. s->uveob[1] += 4 * w4 * h4 >> (s->ss_v + s->ss_h);
  1952. }
  1953. }