You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

552 lines
16KB

  1. /*
  2. * (c) 2001 Fabrice Bellard
  3. * 2007 Marc Hoffman <marc.hoffman@analog.com>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * DCT test (c) 2001 Fabrice Bellard
  24. * Started from sample code by Juan J. Sierralta P.
  25. */
  26. #include <stdlib.h>
  27. #include <stdio.h>
  28. #include <string.h>
  29. #include <sys/time.h>
  30. #include <unistd.h>
  31. #include <math.h>
  32. #include "libavutil/cpu.h"
  33. #include "libavutil/common.h"
  34. #include "libavutil/lfg.h"
  35. #include "simple_idct.h"
  36. #include "aandcttab.h"
  37. #include "faandct.h"
  38. #include "faanidct.h"
  39. #include "x86/idct_xvid.h"
  40. #include "dctref.h"
  41. #undef printf
  42. void ff_mmx_idct(DCTELEM *data);
  43. void ff_mmxext_idct(DCTELEM *data);
  44. void odivx_idct_c(short *block);
  45. // BFIN
  46. void ff_bfin_idct(DCTELEM *block);
  47. void ff_bfin_fdct(DCTELEM *block);
  48. // ALTIVEC
  49. void fdct_altivec(DCTELEM *block);
  50. //void idct_altivec(DCTELEM *block);?? no routine
  51. // ARM
  52. void ff_j_rev_dct_arm(DCTELEM *data);
  53. void ff_simple_idct_arm(DCTELEM *data);
  54. void ff_simple_idct_armv5te(DCTELEM *data);
  55. void ff_simple_idct_armv6(DCTELEM *data);
  56. void ff_simple_idct_neon(DCTELEM *data);
  57. void ff_simple_idct_axp(DCTELEM *data);
  58. struct algo {
  59. const char *name;
  60. enum { FDCT, IDCT } is_idct;
  61. void (*func)(DCTELEM *block);
  62. void (*ref) (DCTELEM *block);
  63. enum formattag { NO_PERM, MMX_PERM, MMX_SIMPLE_PERM, SCALE_PERM,
  64. SSE2_PERM, PARTTRANS_PERM } format;
  65. int mm_support;
  66. };
  67. #ifndef FAAN_POSTSCALE
  68. #define FAAN_SCALE SCALE_PERM
  69. #else
  70. #define FAAN_SCALE NO_PERM
  71. #endif
  72. static int cpu_flags;
  73. struct algo algos[] = {
  74. {"REF-DBL", 0, ff_ref_fdct, ff_ref_fdct, NO_PERM},
  75. {"FAAN", 0, ff_faandct, ff_ref_fdct, FAAN_SCALE},
  76. {"FAANI", 1, ff_faanidct, ff_ref_idct, NO_PERM},
  77. {"IJG-AAN-INT", 0, fdct_ifast, ff_ref_fdct, SCALE_PERM},
  78. {"IJG-LLM-INT", 0, ff_jpeg_fdct_islow, ff_ref_fdct, NO_PERM},
  79. {"REF-DBL", 1, ff_ref_idct, ff_ref_idct, NO_PERM},
  80. {"INT", 1, j_rev_dct, ff_ref_idct, MMX_PERM},
  81. {"SIMPLE-C", 1, ff_simple_idct, ff_ref_idct, NO_PERM},
  82. #if HAVE_MMX
  83. {"MMX", 0, ff_fdct_mmx, ff_ref_fdct, NO_PERM, AV_CPU_FLAG_MMX},
  84. #if HAVE_MMX2
  85. {"MMX2", 0, ff_fdct_mmx2, ff_ref_fdct, NO_PERM, AV_CPU_FLAG_MMX2},
  86. {"SSE2", 0, ff_fdct_sse2, ff_ref_fdct, NO_PERM, AV_CPU_FLAG_SSE2},
  87. #endif
  88. #if CONFIG_GPL
  89. {"LIBMPEG2-MMX", 1, ff_mmx_idct, ff_ref_idct, MMX_PERM, AV_CPU_FLAG_MMX},
  90. {"LIBMPEG2-MMX2", 1, ff_mmxext_idct, ff_ref_idct, MMX_PERM, AV_CPU_FLAG_MMX2},
  91. #endif
  92. {"SIMPLE-MMX", 1, ff_simple_idct_mmx, ff_ref_idct, MMX_SIMPLE_PERM, AV_CPU_FLAG_MMX},
  93. {"XVID-MMX", 1, ff_idct_xvid_mmx, ff_ref_idct, NO_PERM, AV_CPU_FLAG_MMX},
  94. {"XVID-MMX2", 1, ff_idct_xvid_mmx2, ff_ref_idct, NO_PERM, AV_CPU_FLAG_MMX2},
  95. {"XVID-SSE2", 1, ff_idct_xvid_sse2, ff_ref_idct, SSE2_PERM, AV_CPU_FLAG_SSE2},
  96. #endif
  97. #if HAVE_ALTIVEC
  98. {"altivecfdct", 0, fdct_altivec, ff_ref_fdct, NO_PERM, AV_CPU_FLAG_ALTIVEC},
  99. #endif
  100. #if ARCH_BFIN
  101. {"BFINfdct", 0, ff_bfin_fdct, ff_ref_fdct, NO_PERM},
  102. {"BFINidct", 1, ff_bfin_idct, ff_ref_idct, NO_PERM},
  103. #endif
  104. #if ARCH_ARM
  105. {"SIMPLE-ARM", 1, ff_simple_idct_arm, ff_ref_idct, NO_PERM },
  106. {"INT-ARM", 1, ff_j_rev_dct_arm, ff_ref_idct, MMX_PERM },
  107. #if HAVE_ARMV5TE
  108. {"SIMPLE-ARMV5TE", 1, ff_simple_idct_armv5te, ff_ref_idct, NO_PERM },
  109. #endif
  110. #if HAVE_ARMV6
  111. {"SIMPLE-ARMV6", 1, ff_simple_idct_armv6, ff_ref_idct, MMX_PERM },
  112. #endif
  113. #if HAVE_NEON
  114. {"SIMPLE-NEON", 1, ff_simple_idct_neon, ff_ref_idct, PARTTRANS_PERM },
  115. #endif
  116. #endif /* ARCH_ARM */
  117. #if ARCH_ALPHA
  118. {"SIMPLE-ALPHA", 1, ff_simple_idct_axp, ff_ref_idct, NO_PERM },
  119. #endif
  120. { 0 }
  121. };
  122. #define AANSCALE_BITS 12
  123. uint8_t cropTbl[256 + 2 * MAX_NEG_CROP];
  124. static int64_t gettime(void)
  125. {
  126. struct timeval tv;
  127. gettimeofday(&tv, NULL);
  128. return (int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
  129. }
  130. #define NB_ITS 20000
  131. #define NB_ITS_SPEED 50000
  132. static short idct_mmx_perm[64];
  133. static short idct_simple_mmx_perm[64] = {
  134. 0x00, 0x08, 0x04, 0x09, 0x01, 0x0C, 0x05, 0x0D,
  135. 0x10, 0x18, 0x14, 0x19, 0x11, 0x1C, 0x15, 0x1D,
  136. 0x20, 0x28, 0x24, 0x29, 0x21, 0x2C, 0x25, 0x2D,
  137. 0x12, 0x1A, 0x16, 0x1B, 0x13, 0x1E, 0x17, 0x1F,
  138. 0x02, 0x0A, 0x06, 0x0B, 0x03, 0x0E, 0x07, 0x0F,
  139. 0x30, 0x38, 0x34, 0x39, 0x31, 0x3C, 0x35, 0x3D,
  140. 0x22, 0x2A, 0x26, 0x2B, 0x23, 0x2E, 0x27, 0x2F,
  141. 0x32, 0x3A, 0x36, 0x3B, 0x33, 0x3E, 0x37, 0x3F,
  142. };
  143. static const uint8_t idct_sse2_row_perm[8] = { 0, 4, 1, 5, 2, 6, 3, 7 };
  144. static void idct_mmx_init(void)
  145. {
  146. int i;
  147. /* the mmx/mmxext idct uses a reordered input, so we patch scan tables */
  148. for (i = 0; i < 64; i++) {
  149. idct_mmx_perm[i] = (i & 0x38) | ((i & 6) >> 1) | ((i & 1) << 2);
  150. }
  151. }
  152. DECLARE_ALIGNED(16, static DCTELEM, block)[64];
  153. DECLARE_ALIGNED(8, static DCTELEM, block1)[64];
  154. DECLARE_ALIGNED(8, static DCTELEM, block_org)[64];
  155. static inline void mmx_emms(void)
  156. {
  157. #if HAVE_MMX
  158. if (cpu_flags & AV_CPU_FLAG_MMX)
  159. __asm__ volatile ("emms\n\t");
  160. #endif
  161. }
  162. static void dct_error(const char *name, int is_idct,
  163. void (*fdct_func)(DCTELEM *block),
  164. void (*fdct_ref)(DCTELEM *block), int form,
  165. int test)
  166. {
  167. int it, i, scale;
  168. int err_inf, v;
  169. int64_t err2, ti, ti1, it1;
  170. int64_t sysErr[64], sysErrMax = 0;
  171. int maxout = 0;
  172. int blockSumErrMax = 0, blockSumErr;
  173. AVLFG prng;
  174. av_lfg_init(&prng, 1);
  175. err_inf = 0;
  176. err2 = 0;
  177. for (i = 0; i < 64; i++)
  178. sysErr[i] = 0;
  179. for (it = 0; it < NB_ITS; it++) {
  180. for (i = 0; i < 64; i++)
  181. block1[i] = 0;
  182. switch (test) {
  183. case 0:
  184. for (i = 0; i < 64; i++)
  185. block1[i] = (av_lfg_get(&prng) % 512) - 256;
  186. if (is_idct) {
  187. ff_ref_fdct(block1);
  188. for (i = 0; i < 64; i++)
  189. block1[i] >>= 3;
  190. }
  191. break;
  192. case 1: {
  193. int num = av_lfg_get(&prng) % 10 + 1;
  194. for (i = 0; i < num; i++)
  195. block1[av_lfg_get(&prng) % 64] =
  196. av_lfg_get(&prng) % 512 - 256;
  197. }
  198. break;
  199. case 2:
  200. block1[0] = av_lfg_get(&prng) % 4096 - 2048;
  201. block1[63] = (block1[0] & 1) ^ 1;
  202. break;
  203. }
  204. for (i = 0; i < 64; i++)
  205. block_org[i] = block1[i];
  206. if (form == MMX_PERM) {
  207. for (i = 0; i < 64; i++)
  208. block[idct_mmx_perm[i]] = block1[i];
  209. } else if (form == MMX_SIMPLE_PERM) {
  210. for (i = 0; i < 64; i++)
  211. block[idct_simple_mmx_perm[i]] = block1[i];
  212. } else if (form == SSE2_PERM) {
  213. for (i = 0; i < 64; i++)
  214. block[(i & 0x38) | idct_sse2_row_perm[i & 7]] = block1[i];
  215. } else if (form == PARTTRANS_PERM) {
  216. for (i = 0; i < 64; i++)
  217. block[(i & 0x24) | ((i & 3) << 3) | ((i >> 3) & 3)] = block1[i];
  218. } else {
  219. for (i = 0; i < 64; i++)
  220. block[i] = block1[i];
  221. }
  222. fdct_func(block);
  223. mmx_emms();
  224. if (form == SCALE_PERM) {
  225. for (i = 0; i < 64; i++) {
  226. scale = 8 * (1 << (AANSCALE_BITS + 11)) / ff_aanscales[i];
  227. block[i] = (block[i] * scale) >> AANSCALE_BITS;
  228. }
  229. }
  230. fdct_ref(block1);
  231. blockSumErr = 0;
  232. for (i = 0; i < 64; i++) {
  233. v = abs(block[i] - block1[i]);
  234. if (v > err_inf)
  235. err_inf = v;
  236. err2 += v * v;
  237. sysErr[i] += block[i] - block1[i];
  238. blockSumErr += v;
  239. if (abs(block[i]) > maxout)
  240. maxout = abs(block[i]);
  241. }
  242. if (blockSumErrMax < blockSumErr)
  243. blockSumErrMax = blockSumErr;
  244. }
  245. for (i = 0; i < 64; i++)
  246. sysErrMax = FFMAX(sysErrMax, FFABS(sysErr[i]));
  247. for (i = 0; i < 64; i++) {
  248. if (i % 8 == 0)
  249. printf("\n");
  250. printf("%7d ", (int) sysErr[i]);
  251. }
  252. printf("\n");
  253. printf("%s %s: err_inf=%d err2=%0.8f syserr=%0.8f maxout=%d blockSumErr=%d\n",
  254. is_idct ? "IDCT" : "DCT", name, err_inf,
  255. (double) err2 / NB_ITS / 64.0, (double) sysErrMax / NB_ITS,
  256. maxout, blockSumErrMax);
  257. /* speed test */
  258. for (i = 0; i < 64; i++)
  259. block1[i] = 0;
  260. switch (test) {
  261. case 0:
  262. for (i = 0; i < 64; i++)
  263. block1[i] = av_lfg_get(&prng) % 512 - 256;
  264. if (is_idct) {
  265. ff_ref_fdct(block1);
  266. for (i = 0; i < 64; i++)
  267. block1[i] >>= 3;
  268. }
  269. break;
  270. case 1:
  271. case 2:
  272. block1[0] = av_lfg_get(&prng) % 512 - 256;
  273. block1[1] = av_lfg_get(&prng) % 512 - 256;
  274. block1[2] = av_lfg_get(&prng) % 512 - 256;
  275. block1[3] = av_lfg_get(&prng) % 512 - 256;
  276. break;
  277. }
  278. if (form == MMX_PERM) {
  279. for (i = 0; i < 64; i++)
  280. block[idct_mmx_perm[i]] = block1[i];
  281. } else if (form == MMX_SIMPLE_PERM) {
  282. for (i = 0; i < 64; i++)
  283. block[idct_simple_mmx_perm[i]] = block1[i];
  284. } else {
  285. for (i = 0; i < 64; i++)
  286. block[i] = block1[i];
  287. }
  288. ti = gettime();
  289. it1 = 0;
  290. do {
  291. for (it = 0; it < NB_ITS_SPEED; it++) {
  292. for (i = 0; i < 64; i++)
  293. block[i] = block1[i];
  294. fdct_func(block);
  295. }
  296. it1 += NB_ITS_SPEED;
  297. ti1 = gettime() - ti;
  298. } while (ti1 < 1000000);
  299. mmx_emms();
  300. printf("%s %s: %0.1f kdct/s\n", is_idct ? "IDCT" : "DCT", name,
  301. (double) it1 * 1000.0 / (double) ti1);
  302. }
  303. DECLARE_ALIGNED(8, static uint8_t, img_dest)[64];
  304. DECLARE_ALIGNED(8, static uint8_t, img_dest1)[64];
  305. static void idct248_ref(uint8_t *dest, int linesize, int16_t *block)
  306. {
  307. static int init;
  308. static double c8[8][8];
  309. static double c4[4][4];
  310. double block1[64], block2[64], block3[64];
  311. double s, sum, v;
  312. int i, j, k;
  313. if (!init) {
  314. init = 1;
  315. for (i = 0; i < 8; i++) {
  316. sum = 0;
  317. for (j = 0; j < 8; j++) {
  318. s = (i == 0) ? sqrt(1.0 / 8.0) : sqrt(1.0 / 4.0);
  319. c8[i][j] = s * cos(M_PI * i * (j + 0.5) / 8.0);
  320. sum += c8[i][j] * c8[i][j];
  321. }
  322. }
  323. for (i = 0; i < 4; i++) {
  324. sum = 0;
  325. for (j = 0; j < 4; j++) {
  326. s = (i == 0) ? sqrt(1.0 / 4.0) : sqrt(1.0 / 2.0);
  327. c4[i][j] = s * cos(M_PI * i * (j + 0.5) / 4.0);
  328. sum += c4[i][j] * c4[i][j];
  329. }
  330. }
  331. }
  332. /* butterfly */
  333. s = 0.5 * sqrt(2.0);
  334. for (i = 0; i < 4; i++) {
  335. for (j = 0; j < 8; j++) {
  336. block1[8 * (2 * i) + j] =
  337. (block[8 * (2 * i) + j] + block[8 * (2 * i + 1) + j]) * s;
  338. block1[8 * (2 * i + 1) + j] =
  339. (block[8 * (2 * i) + j] - block[8 * (2 * i + 1) + j]) * s;
  340. }
  341. }
  342. /* idct8 on lines */
  343. for (i = 0; i < 8; i++) {
  344. for (j = 0; j < 8; j++) {
  345. sum = 0;
  346. for (k = 0; k < 8; k++)
  347. sum += c8[k][j] * block1[8 * i + k];
  348. block2[8 * i + j] = sum;
  349. }
  350. }
  351. /* idct4 */
  352. for (i = 0; i < 8; i++) {
  353. for (j = 0; j < 4; j++) {
  354. /* top */
  355. sum = 0;
  356. for (k = 0; k < 4; k++)
  357. sum += c4[k][j] * block2[8 * (2 * k) + i];
  358. block3[8 * (2 * j) + i] = sum;
  359. /* bottom */
  360. sum = 0;
  361. for (k = 0; k < 4; k++)
  362. sum += c4[k][j] * block2[8 * (2 * k + 1) + i];
  363. block3[8 * (2 * j + 1) + i] = sum;
  364. }
  365. }
  366. /* clamp and store the result */
  367. for (i = 0; i < 8; i++) {
  368. for (j = 0; j < 8; j++) {
  369. v = block3[8 * i + j];
  370. if (v < 0) v = 0;
  371. else if (v > 255) v = 255;
  372. dest[i * linesize + j] = (int) rint(v);
  373. }
  374. }
  375. }
  376. static void idct248_error(const char *name,
  377. void (*idct248_put)(uint8_t *dest, int line_size,
  378. int16_t *block))
  379. {
  380. int it, i, it1, ti, ti1, err_max, v;
  381. AVLFG prng;
  382. av_lfg_init(&prng, 1);
  383. /* just one test to see if code is correct (precision is less
  384. important here) */
  385. err_max = 0;
  386. for (it = 0; it < NB_ITS; it++) {
  387. /* XXX: use forward transform to generate values */
  388. for (i = 0; i < 64; i++)
  389. block1[i] = av_lfg_get(&prng) % 256 - 128;
  390. block1[0] += 1024;
  391. for (i = 0; i < 64; i++)
  392. block[i] = block1[i];
  393. idct248_ref(img_dest1, 8, block);
  394. for (i = 0; i < 64; i++)
  395. block[i] = block1[i];
  396. idct248_put(img_dest, 8, block);
  397. for (i = 0; i < 64; i++) {
  398. v = abs((int) img_dest[i] - (int) img_dest1[i]);
  399. if (v == 255)
  400. printf("%d %d\n", img_dest[i], img_dest1[i]);
  401. if (v > err_max)
  402. err_max = v;
  403. }
  404. }
  405. printf("%s %s: err_inf=%d\n", 1 ? "IDCT248" : "DCT248", name, err_max);
  406. ti = gettime();
  407. it1 = 0;
  408. do {
  409. for (it = 0; it < NB_ITS_SPEED; it++) {
  410. for (i = 0; i < 64; i++)
  411. block[i] = block1[i];
  412. idct248_put(img_dest, 8, block);
  413. }
  414. it1 += NB_ITS_SPEED;
  415. ti1 = gettime() - ti;
  416. } while (ti1 < 1000000);
  417. mmx_emms();
  418. printf("%s %s: %0.1f kdct/s\n", 1 ? "IDCT248" : "DCT248", name,
  419. (double) it1 * 1000.0 / (double) ti1);
  420. }
  421. static void help(void)
  422. {
  423. printf("dct-test [-i] [<test-number>]\n"
  424. "test-number 0 -> test with random matrixes\n"
  425. " 1 -> test with random sparse matrixes\n"
  426. " 2 -> do 3. test from mpeg4 std\n"
  427. "-i test IDCT implementations\n"
  428. "-4 test IDCT248 implementations\n");
  429. }
  430. int main(int argc, char **argv)
  431. {
  432. int test_idct = 0, test_248_dct = 0;
  433. int c, i;
  434. int test = 1;
  435. cpu_flags = av_get_cpu_flags();
  436. ff_ref_dct_init();
  437. idct_mmx_init();
  438. for (i = 0; i < 256; i++)
  439. cropTbl[i + MAX_NEG_CROP] = i;
  440. for (i = 0; i < MAX_NEG_CROP; i++) {
  441. cropTbl[i] = 0;
  442. cropTbl[i + MAX_NEG_CROP + 256] = 255;
  443. }
  444. for (;;) {
  445. c = getopt(argc, argv, "ih4");
  446. if (c == -1)
  447. break;
  448. switch (c) {
  449. case 'i':
  450. test_idct = 1;
  451. break;
  452. case '4':
  453. test_248_dct = 1;
  454. break;
  455. default:
  456. case 'h':
  457. help();
  458. return 0;
  459. }
  460. }
  461. if (optind < argc)
  462. test = atoi(argv[optind]);
  463. printf("ffmpeg DCT/IDCT test\n");
  464. if (test_248_dct) {
  465. idct248_error("SIMPLE-C", ff_simple_idct248_put);
  466. } else {
  467. for (i = 0; algos[i].name; i++)
  468. if (algos[i].is_idct == test_idct &&
  469. !(~cpu_flags & algos[i].mm_support)) {
  470. dct_error(algos[i].name, algos[i].is_idct, algos[i].func,
  471. algos[i].ref, algos[i].format, test);
  472. }
  473. }
  474. return 0;
  475. }