You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

812 lines
24KB

  1. /*
  2. * FLAC (Free Lossless Audio Codec) decoder
  3. * Copyright (c) 2003 Alex Beregszaszi
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. /**
  20. * @file flac.c
  21. * FLAC (Free Lossless Audio Codec) decoder
  22. * @author Alex Beregszaszi
  23. *
  24. * For more information on the FLAC format, visit:
  25. * http://flac.sourceforge.net/
  26. *
  27. * This decoder can be used in 1 of 2 ways: Either raw FLAC data can be fed
  28. * through, starting from the initial 'fLaC' signature; or by passing the
  29. * 34-byte streaminfo structure through avctx->extradata[_size] followed
  30. * by data starting with the 0xFFF8 marker.
  31. */
  32. #include <limits.h>
  33. #include "avcodec.h"
  34. #include "golomb.h"
  35. #undef NDEBUG
  36. #include <assert.h>
  37. #define MAX_CHANNELS 8
  38. #define MAX_BLOCKSIZE 65535
  39. #define FLAC_STREAMINFO_SIZE 34
  40. enum decorrelation_type {
  41. INDEPENDENT,
  42. LEFT_SIDE,
  43. RIGHT_SIDE,
  44. MID_SIDE,
  45. };
  46. typedef struct FLACContext {
  47. AVCodecContext *avctx;
  48. GetBitContext gb;
  49. int min_blocksize, max_blocksize;
  50. int min_framesize, max_framesize;
  51. int samplerate, channels;
  52. int blocksize/*, last_blocksize*/;
  53. int bps, curr_bps;
  54. enum decorrelation_type decorrelation;
  55. int32_t *decoded[MAX_CHANNELS];
  56. uint8_t *bitstream;
  57. int bitstream_size;
  58. int bitstream_index;
  59. int allocated_bitstream_size;
  60. } FLACContext;
  61. #define METADATA_TYPE_STREAMINFO 0
  62. static int sample_rate_table[] =
  63. { 0, 0, 0, 0,
  64. 8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000,
  65. 0, 0, 0, 0 };
  66. static int sample_size_table[] =
  67. { 0, 8, 12, 0, 16, 20, 24, 0 };
  68. static int blocksize_table[] = {
  69. 0, 192, 576<<0, 576<<1, 576<<2, 576<<3, 0, 0,
  70. 256<<0, 256<<1, 256<<2, 256<<3, 256<<4, 256<<5, 256<<6, 256<<7
  71. };
  72. static const uint8_t table_crc8[256] = {
  73. 0x00, 0x07, 0x0e, 0x09, 0x1c, 0x1b, 0x12, 0x15,
  74. 0x38, 0x3f, 0x36, 0x31, 0x24, 0x23, 0x2a, 0x2d,
  75. 0x70, 0x77, 0x7e, 0x79, 0x6c, 0x6b, 0x62, 0x65,
  76. 0x48, 0x4f, 0x46, 0x41, 0x54, 0x53, 0x5a, 0x5d,
  77. 0xe0, 0xe7, 0xee, 0xe9, 0xfc, 0xfb, 0xf2, 0xf5,
  78. 0xd8, 0xdf, 0xd6, 0xd1, 0xc4, 0xc3, 0xca, 0xcd,
  79. 0x90, 0x97, 0x9e, 0x99, 0x8c, 0x8b, 0x82, 0x85,
  80. 0xa8, 0xaf, 0xa6, 0xa1, 0xb4, 0xb3, 0xba, 0xbd,
  81. 0xc7, 0xc0, 0xc9, 0xce, 0xdb, 0xdc, 0xd5, 0xd2,
  82. 0xff, 0xf8, 0xf1, 0xf6, 0xe3, 0xe4, 0xed, 0xea,
  83. 0xb7, 0xb0, 0xb9, 0xbe, 0xab, 0xac, 0xa5, 0xa2,
  84. 0x8f, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9d, 0x9a,
  85. 0x27, 0x20, 0x29, 0x2e, 0x3b, 0x3c, 0x35, 0x32,
  86. 0x1f, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0d, 0x0a,
  87. 0x57, 0x50, 0x59, 0x5e, 0x4b, 0x4c, 0x45, 0x42,
  88. 0x6f, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7d, 0x7a,
  89. 0x89, 0x8e, 0x87, 0x80, 0x95, 0x92, 0x9b, 0x9c,
  90. 0xb1, 0xb6, 0xbf, 0xb8, 0xad, 0xaa, 0xa3, 0xa4,
  91. 0xf9, 0xfe, 0xf7, 0xf0, 0xe5, 0xe2, 0xeb, 0xec,
  92. 0xc1, 0xc6, 0xcf, 0xc8, 0xdd, 0xda, 0xd3, 0xd4,
  93. 0x69, 0x6e, 0x67, 0x60, 0x75, 0x72, 0x7b, 0x7c,
  94. 0x51, 0x56, 0x5f, 0x58, 0x4d, 0x4a, 0x43, 0x44,
  95. 0x19, 0x1e, 0x17, 0x10, 0x05, 0x02, 0x0b, 0x0c,
  96. 0x21, 0x26, 0x2f, 0x28, 0x3d, 0x3a, 0x33, 0x34,
  97. 0x4e, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5c, 0x5b,
  98. 0x76, 0x71, 0x78, 0x7f, 0x6a, 0x6d, 0x64, 0x63,
  99. 0x3e, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2c, 0x2b,
  100. 0x06, 0x01, 0x08, 0x0f, 0x1a, 0x1d, 0x14, 0x13,
  101. 0xae, 0xa9, 0xa0, 0xa7, 0xb2, 0xb5, 0xbc, 0xbb,
  102. 0x96, 0x91, 0x98, 0x9f, 0x8a, 0x8d, 0x84, 0x83,
  103. 0xde, 0xd9, 0xd0, 0xd7, 0xc2, 0xc5, 0xcc, 0xcb,
  104. 0xe6, 0xe1, 0xe8, 0xef, 0xfa, 0xfd, 0xf4, 0xf3
  105. };
  106. static int64_t get_utf8(GetBitContext *gb)
  107. {
  108. uint64_t val;
  109. int ones=0, bytes;
  110. while(get_bits1(gb))
  111. ones++;
  112. if (ones==0) bytes=0;
  113. else if(ones==1) return -1;
  114. else bytes= ones - 1;
  115. val= get_bits(gb, 7-ones);
  116. while(bytes--){
  117. const int tmp = get_bits(gb, 8);
  118. if((tmp>>6) != 2)
  119. return -1;
  120. val<<=6;
  121. val|= tmp&0x3F;
  122. }
  123. return val;
  124. }
  125. static int skip_utf8(GetBitContext *gb)
  126. {
  127. int ones=0, bytes;
  128. while(get_bits1(gb))
  129. ones++;
  130. if (ones==0) bytes=0;
  131. else if(ones==1) return -1;
  132. else bytes= ones - 1;
  133. skip_bits(gb, 7-ones);
  134. while(bytes--){
  135. const int tmp = get_bits(gb, 8);
  136. if((tmp>>6) != 2)
  137. return -1;
  138. }
  139. return 0;
  140. }
  141. static int get_crc8(const uint8_t *buf, int count){
  142. int crc=0;
  143. int i;
  144. for(i=0; i<count; i++){
  145. crc = table_crc8[crc ^ buf[i]];
  146. }
  147. return crc;
  148. }
  149. static void metadata_streaminfo(FLACContext *s);
  150. static void dump_headers(FLACContext *s);
  151. static int flac_decode_init(AVCodecContext * avctx)
  152. {
  153. FLACContext *s = avctx->priv_data;
  154. s->avctx = avctx;
  155. /* initialize based on the demuxer-supplied streamdata header */
  156. if (avctx->extradata_size == FLAC_STREAMINFO_SIZE) {
  157. init_get_bits(&s->gb, avctx->extradata, avctx->extradata_size*8);
  158. metadata_streaminfo(s);
  159. dump_headers(s);
  160. }
  161. return 0;
  162. }
  163. static void dump_headers(FLACContext *s)
  164. {
  165. av_log(s->avctx, AV_LOG_DEBUG, " Blocksize: %d .. %d (%d)\n", s->min_blocksize, s->max_blocksize, s->blocksize);
  166. av_log(s->avctx, AV_LOG_DEBUG, " Framesize: %d .. %d\n", s->min_framesize, s->max_framesize);
  167. av_log(s->avctx, AV_LOG_DEBUG, " Samplerate: %d\n", s->samplerate);
  168. av_log(s->avctx, AV_LOG_DEBUG, " Channels: %d\n", s->channels);
  169. av_log(s->avctx, AV_LOG_DEBUG, " Bits: %d\n", s->bps);
  170. }
  171. static void allocate_buffers(FLACContext *s){
  172. int i;
  173. assert(s->max_blocksize);
  174. if(s->max_framesize == 0 && s->max_blocksize){
  175. s->max_framesize= (s->channels * s->bps * s->max_blocksize + 7)/ 8; //FIXME header overhead
  176. }
  177. for (i = 0; i < s->channels; i++)
  178. {
  179. s->decoded[i] = av_realloc(s->decoded[i], sizeof(int32_t)*s->max_blocksize);
  180. }
  181. s->bitstream= av_fast_realloc(s->bitstream, &s->allocated_bitstream_size, s->max_framesize);
  182. }
  183. static void metadata_streaminfo(FLACContext *s)
  184. {
  185. /* mandatory streaminfo */
  186. s->min_blocksize = get_bits(&s->gb, 16);
  187. s->max_blocksize = get_bits(&s->gb, 16);
  188. s->min_framesize = get_bits_long(&s->gb, 24);
  189. s->max_framesize = get_bits_long(&s->gb, 24);
  190. s->samplerate = get_bits_long(&s->gb, 20);
  191. s->channels = get_bits(&s->gb, 3) + 1;
  192. s->bps = get_bits(&s->gb, 5) + 1;
  193. s->avctx->channels = s->channels;
  194. s->avctx->sample_rate = s->samplerate;
  195. skip_bits(&s->gb, 36); /* total num of samples */
  196. skip_bits(&s->gb, 64); /* md5 sum */
  197. skip_bits(&s->gb, 64); /* md5 sum */
  198. allocate_buffers(s);
  199. }
  200. static int decode_residuals(FLACContext *s, int channel, int pred_order)
  201. {
  202. int i, tmp, partition, method_type, rice_order;
  203. int sample = 0, samples;
  204. method_type = get_bits(&s->gb, 2);
  205. if (method_type != 0){
  206. av_log(s->avctx, AV_LOG_DEBUG, "illegal residual coding method %d\n", method_type);
  207. return -1;
  208. }
  209. rice_order = get_bits(&s->gb, 4);
  210. samples= s->blocksize >> rice_order;
  211. sample=
  212. i= pred_order;
  213. for (partition = 0; partition < (1 << rice_order); partition++)
  214. {
  215. tmp = get_bits(&s->gb, 4);
  216. if (tmp == 15)
  217. {
  218. av_log(s->avctx, AV_LOG_DEBUG, "fixed len partition\n");
  219. tmp = get_bits(&s->gb, 5);
  220. for (; i < samples; i++, sample++)
  221. s->decoded[channel][sample] = get_sbits(&s->gb, tmp);
  222. }
  223. else
  224. {
  225. // av_log(s->avctx, AV_LOG_DEBUG, "rice coded partition k=%d\n", tmp);
  226. for (; i < samples; i++, sample++){
  227. s->decoded[channel][sample] = get_sr_golomb_flac(&s->gb, tmp, INT_MAX, 0);
  228. }
  229. }
  230. i= 0;
  231. }
  232. // av_log(s->avctx, AV_LOG_DEBUG, "partitions: %d, samples: %d\n", 1 << rice_order, sample);
  233. return 0;
  234. }
  235. static int decode_subframe_fixed(FLACContext *s, int channel, int pred_order)
  236. {
  237. int i;
  238. // av_log(s->avctx, AV_LOG_DEBUG, " SUBFRAME FIXED\n");
  239. /* warm up samples */
  240. // av_log(s->avctx, AV_LOG_DEBUG, " warm up samples: %d\n", pred_order);
  241. for (i = 0; i < pred_order; i++)
  242. {
  243. s->decoded[channel][i] = get_sbits(&s->gb, s->curr_bps);
  244. // av_log(s->avctx, AV_LOG_DEBUG, " %d: %d\n", i, s->decoded[channel][i]);
  245. }
  246. if (decode_residuals(s, channel, pred_order) < 0)
  247. return -1;
  248. switch(pred_order)
  249. {
  250. case 0:
  251. break;
  252. case 1:
  253. for (i = pred_order; i < s->blocksize; i++)
  254. s->decoded[channel][i] += s->decoded[channel][i-1];
  255. break;
  256. case 2:
  257. for (i = pred_order; i < s->blocksize; i++)
  258. s->decoded[channel][i] += 2*s->decoded[channel][i-1]
  259. - s->decoded[channel][i-2];
  260. break;
  261. case 3:
  262. for (i = pred_order; i < s->blocksize; i++)
  263. s->decoded[channel][i] += 3*s->decoded[channel][i-1]
  264. - 3*s->decoded[channel][i-2]
  265. + s->decoded[channel][i-3];
  266. break;
  267. case 4:
  268. for (i = pred_order; i < s->blocksize; i++)
  269. s->decoded[channel][i] += 4*s->decoded[channel][i-1]
  270. - 6*s->decoded[channel][i-2]
  271. + 4*s->decoded[channel][i-3]
  272. - s->decoded[channel][i-4];
  273. break;
  274. default:
  275. av_log(s->avctx, AV_LOG_ERROR, "illegal pred order %d\n", pred_order);
  276. return -1;
  277. }
  278. return 0;
  279. }
  280. static int decode_subframe_lpc(FLACContext *s, int channel, int pred_order)
  281. {
  282. int sum, i, j;
  283. int coeff_prec, qlevel;
  284. int coeffs[pred_order];
  285. // av_log(s->avctx, AV_LOG_DEBUG, " SUBFRAME LPC\n");
  286. /* warm up samples */
  287. // av_log(s->avctx, AV_LOG_DEBUG, " warm up samples: %d\n", pred_order);
  288. for (i = 0; i < pred_order; i++)
  289. {
  290. s->decoded[channel][i] = get_sbits(&s->gb, s->curr_bps);
  291. // av_log(s->avctx, AV_LOG_DEBUG, " %d: %d\n", i, s->decoded[channel][i]);
  292. }
  293. coeff_prec = get_bits(&s->gb, 4) + 1;
  294. if (coeff_prec == 16)
  295. {
  296. av_log(s->avctx, AV_LOG_DEBUG, "invalid coeff precision\n");
  297. return -1;
  298. }
  299. // av_log(s->avctx, AV_LOG_DEBUG, " qlp coeff prec: %d\n", coeff_prec);
  300. qlevel = get_sbits(&s->gb, 5);
  301. // av_log(s->avctx, AV_LOG_DEBUG, " quant level: %d\n", qlevel);
  302. if(qlevel < 0){
  303. av_log(s->avctx, AV_LOG_DEBUG, "qlevel %d not supported, maybe buggy stream\n", qlevel);
  304. return -1;
  305. }
  306. for (i = 0; i < pred_order; i++)
  307. {
  308. coeffs[i] = get_sbits(&s->gb, coeff_prec);
  309. // av_log(s->avctx, AV_LOG_DEBUG, " %d: %d\n", i, coeffs[i]);
  310. }
  311. if (decode_residuals(s, channel, pred_order) < 0)
  312. return -1;
  313. for (i = pred_order; i < s->blocksize; i++)
  314. {
  315. sum = 0;
  316. for (j = 0; j < pred_order; j++)
  317. sum += coeffs[j] * s->decoded[channel][i-j-1];
  318. s->decoded[channel][i] += sum >> qlevel;
  319. }
  320. return 0;
  321. }
  322. static inline int decode_subframe(FLACContext *s, int channel)
  323. {
  324. int type, wasted = 0;
  325. int i, tmp;
  326. s->curr_bps = s->bps;
  327. if(channel == 0){
  328. if(s->decorrelation == RIGHT_SIDE)
  329. s->curr_bps++;
  330. }else{
  331. if(s->decorrelation == LEFT_SIDE || s->decorrelation == MID_SIDE)
  332. s->curr_bps++;
  333. }
  334. if (get_bits1(&s->gb))
  335. {
  336. av_log(s->avctx, AV_LOG_DEBUG, "invalid subframe padding\n");
  337. return -1;
  338. }
  339. type = get_bits(&s->gb, 6);
  340. // wasted = get_bits1(&s->gb);
  341. // if (wasted)
  342. // {
  343. // while (!get_bits1(&s->gb))
  344. // wasted++;
  345. // if (wasted)
  346. // wasted++;
  347. // s->curr_bps -= wasted;
  348. // }
  349. #if 0
  350. wasted= 16 - av_log2(show_bits(&s->gb, 17));
  351. skip_bits(&s->gb, wasted+1);
  352. s->curr_bps -= wasted;
  353. #else
  354. if (get_bits1(&s->gb))
  355. {
  356. wasted = 1;
  357. while (!get_bits1(&s->gb))
  358. wasted++;
  359. s->curr_bps -= wasted;
  360. av_log(s->avctx, AV_LOG_DEBUG, "%d wasted bits\n", wasted);
  361. }
  362. #endif
  363. //FIXME use av_log2 for types
  364. if (type == 0)
  365. {
  366. av_log(s->avctx, AV_LOG_DEBUG, "coding type: constant\n");
  367. tmp = get_sbits(&s->gb, s->curr_bps);
  368. for (i = 0; i < s->blocksize; i++)
  369. s->decoded[channel][i] = tmp;
  370. }
  371. else if (type == 1)
  372. {
  373. av_log(s->avctx, AV_LOG_DEBUG, "coding type: verbatim\n");
  374. for (i = 0; i < s->blocksize; i++)
  375. s->decoded[channel][i] = get_sbits(&s->gb, s->curr_bps);
  376. }
  377. else if ((type >= 8) && (type <= 12))
  378. {
  379. // av_log(s->avctx, AV_LOG_DEBUG, "coding type: fixed\n");
  380. if (decode_subframe_fixed(s, channel, type & ~0x8) < 0)
  381. return -1;
  382. }
  383. else if (type >= 32)
  384. {
  385. // av_log(s->avctx, AV_LOG_DEBUG, "coding type: lpc\n");
  386. if (decode_subframe_lpc(s, channel, (type & ~0x20)+1) < 0)
  387. return -1;
  388. }
  389. else
  390. {
  391. av_log(s->avctx, AV_LOG_DEBUG, "invalid coding type\n");
  392. return -1;
  393. }
  394. if (wasted)
  395. {
  396. int i;
  397. for (i = 0; i < s->blocksize; i++)
  398. s->decoded[channel][i] <<= wasted;
  399. }
  400. return 0;
  401. }
  402. static int decode_frame(FLACContext *s)
  403. {
  404. int blocksize_code, sample_rate_code, sample_size_code, assignment, i, crc8;
  405. int decorrelation, bps, blocksize, samplerate;
  406. blocksize_code = get_bits(&s->gb, 4);
  407. sample_rate_code = get_bits(&s->gb, 4);
  408. assignment = get_bits(&s->gb, 4); /* channel assignment */
  409. if (assignment < 8 && s->channels == assignment+1)
  410. decorrelation = INDEPENDENT;
  411. else if (assignment >=8 && assignment < 11 && s->channels == 2)
  412. decorrelation = LEFT_SIDE + assignment - 8;
  413. else
  414. {
  415. av_log(s->avctx, AV_LOG_DEBUG, "unsupported channel assignment %d (channels=%d)\n", assignment, s->channels);
  416. return -1;
  417. }
  418. sample_size_code = get_bits(&s->gb, 3);
  419. if(sample_size_code == 0)
  420. bps= s->bps;
  421. else if((sample_size_code != 3) && (sample_size_code != 7))
  422. bps = sample_size_table[sample_size_code];
  423. else
  424. {
  425. av_log(s->avctx, AV_LOG_DEBUG, "invalid sample size code (%d)\n", sample_size_code);
  426. return -1;
  427. }
  428. if (get_bits1(&s->gb))
  429. {
  430. av_log(s->avctx, AV_LOG_DEBUG, "broken stream, invalid padding\n");
  431. return -1;
  432. }
  433. if(get_utf8(&s->gb) < 0){
  434. av_log(s->avctx, AV_LOG_ERROR, "utf8 fscked\n");
  435. return -1;
  436. }
  437. #if 0
  438. if (/*((blocksize_code == 6) || (blocksize_code == 7)) &&*/
  439. (s->min_blocksize != s->max_blocksize)){
  440. }else{
  441. }
  442. #endif
  443. if (blocksize_code == 0)
  444. blocksize = s->min_blocksize;
  445. else if (blocksize_code == 6)
  446. blocksize = get_bits(&s->gb, 8)+1;
  447. else if (blocksize_code == 7)
  448. blocksize = get_bits(&s->gb, 16)+1;
  449. else
  450. blocksize = blocksize_table[blocksize_code];
  451. if(blocksize > s->max_blocksize){
  452. av_log(s->avctx, AV_LOG_ERROR, "blocksize %d > %d\n", blocksize, s->max_blocksize);
  453. return -1;
  454. }
  455. if (sample_rate_code == 0){
  456. samplerate= s->samplerate;
  457. }else if ((sample_rate_code > 3) && (sample_rate_code < 12))
  458. samplerate = sample_rate_table[sample_rate_code];
  459. else if (sample_rate_code == 12)
  460. samplerate = get_bits(&s->gb, 8) * 1000;
  461. else if (sample_rate_code == 13)
  462. samplerate = get_bits(&s->gb, 16);
  463. else if (sample_rate_code == 14)
  464. samplerate = get_bits(&s->gb, 16) * 10;
  465. else{
  466. av_log(s->avctx, AV_LOG_ERROR, "illegal sample rate code %d\n", sample_rate_code);
  467. return -1;
  468. }
  469. skip_bits(&s->gb, 8);
  470. crc8= get_crc8(s->gb.buffer, get_bits_count(&s->gb)/8);
  471. if(crc8){
  472. av_log(s->avctx, AV_LOG_ERROR, "header crc missmatch crc=%2X\n", crc8);
  473. return -1;
  474. }
  475. s->blocksize = blocksize;
  476. s->samplerate = samplerate;
  477. s->bps = bps;
  478. s->decorrelation= decorrelation;
  479. // dump_headers(s);
  480. /* subframes */
  481. for (i = 0; i < s->channels; i++)
  482. {
  483. // av_log(s->avctx, AV_LOG_DEBUG, "decoded: %x residual: %x\n", s->decoded[i], s->residual[i]);
  484. if (decode_subframe(s, i) < 0)
  485. return -1;
  486. }
  487. align_get_bits(&s->gb);
  488. /* frame footer */
  489. skip_bits(&s->gb, 16); /* data crc */
  490. return 0;
  491. }
  492. static int flac_decode_frame(AVCodecContext *avctx,
  493. void *data, int *data_size,
  494. uint8_t *buf, int buf_size)
  495. {
  496. FLACContext *s = avctx->priv_data;
  497. int metadata_last, metadata_type, metadata_size;
  498. int tmp = 0, i, j = 0, input_buf_size = 0;
  499. int16_t *samples = data;
  500. if(s->max_framesize == 0){
  501. s->max_framesize= 8192; // should hopefully be enough for the first header
  502. s->bitstream= av_fast_realloc(s->bitstream, &s->allocated_bitstream_size, s->max_framesize);
  503. }
  504. if(1 && s->max_framesize){//FIXME truncated
  505. buf_size= FFMIN(buf_size, s->max_framesize - s->bitstream_size);
  506. input_buf_size= buf_size;
  507. if(s->bitstream_index + s->bitstream_size + buf_size > s->allocated_bitstream_size){
  508. // printf("memmove\n");
  509. memmove(s->bitstream, &s->bitstream[s->bitstream_index], s->bitstream_size);
  510. s->bitstream_index=0;
  511. }
  512. memcpy(&s->bitstream[s->bitstream_index + s->bitstream_size], buf, buf_size);
  513. buf= &s->bitstream[s->bitstream_index];
  514. buf_size += s->bitstream_size;
  515. s->bitstream_size= buf_size;
  516. if(buf_size < s->max_framesize){
  517. // printf("wanna more data ...\n");
  518. return input_buf_size;
  519. }
  520. }
  521. init_get_bits(&s->gb, buf, buf_size*8);
  522. /* fLaC signature (be) */
  523. if (show_bits_long(&s->gb, 32) == bswap_32(ff_get_fourcc("fLaC")))
  524. {
  525. skip_bits(&s->gb, 32);
  526. av_log(s->avctx, AV_LOG_DEBUG, "STREAM HEADER\n");
  527. do {
  528. metadata_last = get_bits(&s->gb, 1);
  529. metadata_type = get_bits(&s->gb, 7);
  530. metadata_size = get_bits_long(&s->gb, 24);
  531. av_log(s->avctx, AV_LOG_DEBUG, " metadata block: flag = %d, type = %d, size = %d\n",
  532. metadata_last, metadata_type,
  533. metadata_size);
  534. if(metadata_size){
  535. switch(metadata_type)
  536. {
  537. case METADATA_TYPE_STREAMINFO:
  538. metadata_streaminfo(s);
  539. dump_headers(s);
  540. break;
  541. default:
  542. for(i=0; i<metadata_size; i++)
  543. skip_bits(&s->gb, 8);
  544. }
  545. }
  546. } while(!metadata_last);
  547. }
  548. else
  549. {
  550. tmp = show_bits(&s->gb, 16);
  551. if(tmp != 0xFFF8){
  552. av_log(s->avctx, AV_LOG_ERROR, "FRAME HEADER not here\n");
  553. while(get_bits_count(&s->gb)/8+2 < buf_size && show_bits(&s->gb, 16) != 0xFFF8)
  554. skip_bits(&s->gb, 8);
  555. goto end; // we may not have enough bits left to decode a frame, so try next time
  556. }
  557. skip_bits(&s->gb, 16);
  558. if (decode_frame(s) < 0){
  559. av_log(s->avctx, AV_LOG_ERROR, "decode_frame() failed\n");
  560. s->bitstream_size=0;
  561. s->bitstream_index=0;
  562. return -1;
  563. }
  564. }
  565. #if 0
  566. /* fix the channel order here */
  567. if (s->order == MID_SIDE)
  568. {
  569. short *left = samples;
  570. short *right = samples + s->blocksize;
  571. for (i = 0; i < s->blocksize; i += 2)
  572. {
  573. uint32_t x = s->decoded[0][i];
  574. uint32_t y = s->decoded[0][i+1];
  575. right[i] = x - (y / 2);
  576. left[i] = right[i] + y;
  577. }
  578. *data_size = 2 * s->blocksize;
  579. }
  580. else
  581. {
  582. for (i = 0; i < s->channels; i++)
  583. {
  584. switch(s->order)
  585. {
  586. case INDEPENDENT:
  587. for (j = 0; j < s->blocksize; j++)
  588. samples[(s->blocksize*i)+j] = s->decoded[i][j];
  589. break;
  590. case LEFT_SIDE:
  591. case RIGHT_SIDE:
  592. if (i == 0)
  593. for (j = 0; j < s->blocksize; j++)
  594. samples[(s->blocksize*i)+j] = s->decoded[0][j];
  595. else
  596. for (j = 0; j < s->blocksize; j++)
  597. samples[(s->blocksize*i)+j] = s->decoded[0][j] - s->decoded[i][j];
  598. break;
  599. // case MID_SIDE:
  600. // av_log(s->avctx, AV_LOG_DEBUG, "mid-side unsupported\n");
  601. }
  602. *data_size += s->blocksize;
  603. }
  604. }
  605. #else
  606. switch(s->decorrelation)
  607. {
  608. case INDEPENDENT:
  609. for (j = 0; j < s->blocksize; j++)
  610. {
  611. for (i = 0; i < s->channels; i++)
  612. *(samples++) = s->decoded[i][j];
  613. }
  614. break;
  615. case LEFT_SIDE:
  616. assert(s->channels == 2);
  617. for (i = 0; i < s->blocksize; i++)
  618. {
  619. *(samples++) = s->decoded[0][i];
  620. *(samples++) = s->decoded[0][i] - s->decoded[1][i];
  621. }
  622. break;
  623. case RIGHT_SIDE:
  624. assert(s->channels == 2);
  625. for (i = 0; i < s->blocksize; i++)
  626. {
  627. *(samples++) = s->decoded[0][i] + s->decoded[1][i];
  628. *(samples++) = s->decoded[1][i];
  629. }
  630. break;
  631. case MID_SIDE:
  632. assert(s->channels == 2);
  633. for (i = 0; i < s->blocksize; i++)
  634. {
  635. int mid, side;
  636. mid = s->decoded[0][i];
  637. side = s->decoded[1][i];
  638. #if 1 //needs to be checked but IMHO it should be binary identical
  639. mid -= side>>1;
  640. *(samples++) = mid + side;
  641. *(samples++) = mid;
  642. #else
  643. mid <<= 1;
  644. if (side & 1)
  645. mid++;
  646. *(samples++) = (mid + side) >> 1;
  647. *(samples++) = (mid - side) >> 1;
  648. #endif
  649. }
  650. break;
  651. }
  652. #endif
  653. *data_size = (int8_t *)samples - (int8_t *)data;
  654. // av_log(s->avctx, AV_LOG_DEBUG, "data size: %d\n", *data_size);
  655. // s->last_blocksize = s->blocksize;
  656. end:
  657. i= (get_bits_count(&s->gb)+7)/8;;
  658. if(i > buf_size){
  659. av_log(s->avctx, AV_LOG_ERROR, "overread: %d\n", i - buf_size);
  660. s->bitstream_size=0;
  661. s->bitstream_index=0;
  662. return -1;
  663. }
  664. if(s->bitstream_size){
  665. s->bitstream_index += i;
  666. s->bitstream_size -= i;
  667. return input_buf_size;
  668. }else
  669. return i;
  670. }
  671. static int flac_decode_close(AVCodecContext *avctx)
  672. {
  673. FLACContext *s = avctx->priv_data;
  674. int i;
  675. for (i = 0; i < s->channels; i++)
  676. {
  677. av_freep(&s->decoded[i]);
  678. }
  679. av_freep(&s->bitstream);
  680. return 0;
  681. }
  682. static void flac_flush(AVCodecContext *avctx){
  683. FLACContext *s = avctx->priv_data;
  684. s->bitstream_size=
  685. s->bitstream_index= 0;
  686. }
  687. AVCodec flac_decoder = {
  688. "flac",
  689. CODEC_TYPE_AUDIO,
  690. CODEC_ID_FLAC,
  691. sizeof(FLACContext),
  692. flac_decode_init,
  693. NULL,
  694. flac_decode_close,
  695. flac_decode_frame,
  696. .flush= flac_flush,
  697. };