You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1782 lines
63KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  22. #define _DARWIN_C_SOURCE // needed for MAP_ANON
  23. #include <inttypes.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include <string.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "libavutil/attributes.h"
  38. #include "libavutil/avassert.h"
  39. #include "libavutil/avutil.h"
  40. #include "libavutil/bswap.h"
  41. #include "libavutil/cpu.h"
  42. #include "libavutil/intreadwrite.h"
  43. #include "libavutil/mathematics.h"
  44. #include "libavutil/opt.h"
  45. #include "libavutil/pixdesc.h"
  46. #include "libavutil/x86/asm.h"
  47. #include "libavutil/x86/cpu.h"
  48. #include "rgb2rgb.h"
  49. #include "swscale.h"
  50. #include "swscale_internal.h"
  51. unsigned swscale_version(void)
  52. {
  53. av_assert0(LIBSWSCALE_VERSION_MICRO >= 100);
  54. return LIBSWSCALE_VERSION_INT;
  55. }
  56. const char *swscale_configuration(void)
  57. {
  58. return FFMPEG_CONFIGURATION;
  59. }
  60. const char *swscale_license(void)
  61. {
  62. #define LICENSE_PREFIX "libswscale license: "
  63. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  64. }
  65. #define RET 0xC3 // near return opcode for x86
  66. typedef struct FormatEntry {
  67. int is_supported_in, is_supported_out;
  68. } FormatEntry;
  69. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  70. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  71. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  72. [AV_PIX_FMT_RGB24] = { 1, 1 },
  73. [AV_PIX_FMT_BGR24] = { 1, 1 },
  74. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  75. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  76. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  77. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  78. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  79. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  80. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  81. [AV_PIX_FMT_PAL8] = { 1, 0 },
  82. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  83. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  84. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  85. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  86. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  87. [AV_PIX_FMT_BGR8] = { 1, 1 },
  88. [AV_PIX_FMT_BGR4] = { 0, 1 },
  89. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  90. [AV_PIX_FMT_RGB8] = { 1, 1 },
  91. [AV_PIX_FMT_RGB4] = { 0, 1 },
  92. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  93. [AV_PIX_FMT_NV12] = { 1, 1 },
  94. [AV_PIX_FMT_NV21] = { 1, 1 },
  95. [AV_PIX_FMT_ARGB] = { 1, 1 },
  96. [AV_PIX_FMT_RGBA] = { 1, 1 },
  97. [AV_PIX_FMT_ABGR] = { 1, 1 },
  98. [AV_PIX_FMT_BGRA] = { 1, 1 },
  99. [AV_PIX_FMT_0RGB] = { 1, 1 },
  100. [AV_PIX_FMT_RGB0] = { 1, 1 },
  101. [AV_PIX_FMT_0BGR] = { 1, 1 },
  102. [AV_PIX_FMT_BGR0] = { 1, 1 },
  103. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  104. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  105. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  106. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  107. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  108. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  109. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  110. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  111. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  112. [AV_PIX_FMT_RGBA64BE] = { 1, 0 },
  113. [AV_PIX_FMT_RGBA64LE] = { 1, 0 },
  114. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  115. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  116. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  117. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  118. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  119. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  120. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  121. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  122. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  123. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  124. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  125. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  126. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  127. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  128. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  129. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  130. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  131. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  132. [AV_PIX_FMT_Y400A] = { 1, 0 },
  133. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  134. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  135. [AV_PIX_FMT_BGRA64BE] = { 0, 0 },
  136. [AV_PIX_FMT_BGRA64LE] = { 0, 0 },
  137. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  138. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  139. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  140. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  141. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  142. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  143. [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
  144. [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
  145. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  146. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  147. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  148. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  149. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  150. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  151. [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
  152. [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
  153. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  154. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  155. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  156. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  157. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  158. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  159. [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
  160. [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
  161. [AV_PIX_FMT_GBRP] = { 1, 0 },
  162. [AV_PIX_FMT_GBRP9LE] = { 1, 0 },
  163. [AV_PIX_FMT_GBRP9BE] = { 1, 0 },
  164. [AV_PIX_FMT_GBRP10LE] = { 1, 0 },
  165. [AV_PIX_FMT_GBRP10BE] = { 1, 0 },
  166. [AV_PIX_FMT_GBRP12LE] = { 1, 0 },
  167. [AV_PIX_FMT_GBRP12BE] = { 1, 0 },
  168. [AV_PIX_FMT_GBRP14LE] = { 1, 0 },
  169. [AV_PIX_FMT_GBRP14BE] = { 1, 0 },
  170. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  171. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  172. };
  173. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  174. {
  175. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  176. format_entries[pix_fmt].is_supported_in : 0;
  177. }
  178. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  179. {
  180. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  181. format_entries[pix_fmt].is_supported_out : 0;
  182. }
  183. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  184. #if FF_API_SWS_FORMAT_NAME
  185. const char *sws_format_name(enum AVPixelFormat format)
  186. {
  187. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  188. if (desc)
  189. return desc->name;
  190. else
  191. return "Unknown format";
  192. }
  193. #endif
  194. static double getSplineCoeff(double a, double b, double c, double d,
  195. double dist)
  196. {
  197. if (dist <= 1.0)
  198. return ((d * dist + c) * dist + b) * dist + a;
  199. else
  200. return getSplineCoeff(0.0,
  201. b + 2.0 * c + 3.0 * d,
  202. c + 3.0 * d,
  203. -b - 3.0 * c - 6.0 * d,
  204. dist - 1.0);
  205. }
  206. static int initFilter(int16_t **outFilter, int32_t **filterPos,
  207. int *outFilterSize, int xInc, int srcW, int dstW,
  208. int filterAlign, int one, int flags, int cpu_flags,
  209. SwsVector *srcFilter, SwsVector *dstFilter,
  210. double param[2])
  211. {
  212. int i;
  213. int filterSize;
  214. int filter2Size;
  215. int minFilterSize;
  216. int64_t *filter = NULL;
  217. int64_t *filter2 = NULL;
  218. const int64_t fone = 1LL << 54;
  219. int ret = -1;
  220. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  221. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  222. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
  223. if (FFABS(xInc - 0x10000) < 10) { // unscaled
  224. int i;
  225. filterSize = 1;
  226. FF_ALLOCZ_OR_GOTO(NULL, filter,
  227. dstW * sizeof(*filter) * filterSize, fail);
  228. for (i = 0; i < dstW; i++) {
  229. filter[i * filterSize] = fone;
  230. (*filterPos)[i] = i;
  231. }
  232. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  233. int i;
  234. int64_t xDstInSrc;
  235. filterSize = 1;
  236. FF_ALLOC_OR_GOTO(NULL, filter,
  237. dstW * sizeof(*filter) * filterSize, fail);
  238. xDstInSrc = xInc / 2 - 0x8000;
  239. for (i = 0; i < dstW; i++) {
  240. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  241. (*filterPos)[i] = xx;
  242. filter[i] = fone;
  243. xDstInSrc += xInc;
  244. }
  245. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  246. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  247. int i;
  248. int64_t xDstInSrc;
  249. filterSize = 2;
  250. FF_ALLOC_OR_GOTO(NULL, filter,
  251. dstW * sizeof(*filter) * filterSize, fail);
  252. xDstInSrc = xInc / 2 - 0x8000;
  253. for (i = 0; i < dstW; i++) {
  254. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  255. int j;
  256. (*filterPos)[i] = xx;
  257. // bilinear upscale / linear interpolate / area averaging
  258. for (j = 0; j < filterSize; j++) {
  259. int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
  260. if (coeff < 0)
  261. coeff = 0;
  262. filter[i * filterSize + j] = coeff;
  263. xx++;
  264. }
  265. xDstInSrc += xInc;
  266. }
  267. } else {
  268. int64_t xDstInSrc;
  269. int sizeFactor;
  270. if (flags & SWS_BICUBIC)
  271. sizeFactor = 4;
  272. else if (flags & SWS_X)
  273. sizeFactor = 8;
  274. else if (flags & SWS_AREA)
  275. sizeFactor = 1; // downscale only, for upscale it is bilinear
  276. else if (flags & SWS_GAUSS)
  277. sizeFactor = 8; // infinite ;)
  278. else if (flags & SWS_LANCZOS)
  279. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  280. else if (flags & SWS_SINC)
  281. sizeFactor = 20; // infinite ;)
  282. else if (flags & SWS_SPLINE)
  283. sizeFactor = 20; // infinite ;)
  284. else if (flags & SWS_BILINEAR)
  285. sizeFactor = 2;
  286. else {
  287. av_assert0(0);
  288. }
  289. if (xInc <= 1 << 16)
  290. filterSize = 1 + sizeFactor; // upscale
  291. else
  292. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  293. filterSize = FFMIN(filterSize, srcW - 2);
  294. filterSize = FFMAX(filterSize, 1);
  295. FF_ALLOC_OR_GOTO(NULL, filter,
  296. dstW * sizeof(*filter) * filterSize, fail);
  297. xDstInSrc = xInc - 0x10000;
  298. for (i = 0; i < dstW; i++) {
  299. int xx = (xDstInSrc - ((filterSize - 2) << 16)) / (1 << 17);
  300. int j;
  301. (*filterPos)[i] = xx;
  302. for (j = 0; j < filterSize; j++) {
  303. int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
  304. double floatd;
  305. int64_t coeff;
  306. if (xInc > 1 << 16)
  307. d = d * dstW / srcW;
  308. floatd = d * (1.0 / (1 << 30));
  309. if (flags & SWS_BICUBIC) {
  310. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  311. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  312. if (d >= 1LL << 31) {
  313. coeff = 0.0;
  314. } else {
  315. int64_t dd = (d * d) >> 30;
  316. int64_t ddd = (dd * d) >> 30;
  317. if (d < 1LL << 30)
  318. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  319. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  320. (6 * (1 << 24) - 2 * B) * (1 << 30);
  321. else
  322. coeff = (-B - 6 * C) * ddd +
  323. (6 * B + 30 * C) * dd +
  324. (-12 * B - 48 * C) * d +
  325. (8 * B + 24 * C) * (1 << 30);
  326. }
  327. coeff *= fone >> (30 + 24);
  328. }
  329. #if 0
  330. else if (flags & SWS_X) {
  331. double p = param ? param * 0.01 : 0.3;
  332. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  333. coeff *= pow(2.0, -p * d * d);
  334. }
  335. #endif
  336. else if (flags & SWS_X) {
  337. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  338. double c;
  339. if (floatd < 1.0)
  340. c = cos(floatd * M_PI);
  341. else
  342. c = -1.0;
  343. if (c < 0.0)
  344. c = -pow(-c, A);
  345. else
  346. c = pow(c, A);
  347. coeff = (c * 0.5 + 0.5) * fone;
  348. } else if (flags & SWS_AREA) {
  349. int64_t d2 = d - (1 << 29);
  350. if (d2 * xInc < -(1LL << (29 + 16)))
  351. coeff = 1.0 * (1LL << (30 + 16));
  352. else if (d2 * xInc < (1LL << (29 + 16)))
  353. coeff = -d2 * xInc + (1LL << (29 + 16));
  354. else
  355. coeff = 0.0;
  356. coeff *= fone >> (30 + 16);
  357. } else if (flags & SWS_GAUSS) {
  358. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  359. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  360. } else if (flags & SWS_SINC) {
  361. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  362. } else if (flags & SWS_LANCZOS) {
  363. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  364. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  365. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  366. if (floatd > p)
  367. coeff = 0;
  368. } else if (flags & SWS_BILINEAR) {
  369. coeff = (1 << 30) - d;
  370. if (coeff < 0)
  371. coeff = 0;
  372. coeff *= fone >> 30;
  373. } else if (flags & SWS_SPLINE) {
  374. double p = -2.196152422706632;
  375. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  376. } else {
  377. av_assert0(0);
  378. }
  379. filter[i * filterSize + j] = coeff;
  380. xx++;
  381. }
  382. xDstInSrc += 2 * xInc;
  383. }
  384. }
  385. /* apply src & dst Filter to filter -> filter2
  386. * av_free(filter);
  387. */
  388. av_assert0(filterSize > 0);
  389. filter2Size = filterSize;
  390. if (srcFilter)
  391. filter2Size += srcFilter->length - 1;
  392. if (dstFilter)
  393. filter2Size += dstFilter->length - 1;
  394. av_assert0(filter2Size > 0);
  395. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
  396. for (i = 0; i < dstW; i++) {
  397. int j, k;
  398. if (srcFilter) {
  399. for (k = 0; k < srcFilter->length; k++) {
  400. for (j = 0; j < filterSize; j++)
  401. filter2[i * filter2Size + k + j] +=
  402. srcFilter->coeff[k] * filter[i * filterSize + j];
  403. }
  404. } else {
  405. for (j = 0; j < filterSize; j++)
  406. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  407. }
  408. // FIXME dstFilter
  409. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  410. }
  411. av_freep(&filter);
  412. /* try to reduce the filter-size (step1 find size and shift left) */
  413. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  414. minFilterSize = 0;
  415. for (i = dstW - 1; i >= 0; i--) {
  416. int min = filter2Size;
  417. int j;
  418. int64_t cutOff = 0.0;
  419. /* get rid of near zero elements on the left by shifting left */
  420. for (j = 0; j < filter2Size; j++) {
  421. int k;
  422. cutOff += FFABS(filter2[i * filter2Size]);
  423. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  424. break;
  425. /* preserve monotonicity because the core can't handle the
  426. * filter otherwise */
  427. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  428. break;
  429. // move filter coefficients left
  430. for (k = 1; k < filter2Size; k++)
  431. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  432. filter2[i * filter2Size + k - 1] = 0;
  433. (*filterPos)[i]++;
  434. }
  435. cutOff = 0;
  436. /* count near zeros on the right */
  437. for (j = filter2Size - 1; j > 0; j--) {
  438. cutOff += FFABS(filter2[i * filter2Size + j]);
  439. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  440. break;
  441. min--;
  442. }
  443. if (min > minFilterSize)
  444. minFilterSize = min;
  445. }
  446. if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) {
  447. // we can handle the special case 4, so we don't want to go the full 8
  448. if (minFilterSize < 5)
  449. filterAlign = 4;
  450. /* We really don't want to waste our time doing useless computation, so
  451. * fall back on the scalar C code for very small filters.
  452. * Vectorizing is worth it only if you have a decent-sized vector. */
  453. if (minFilterSize < 3)
  454. filterAlign = 1;
  455. }
  456. if (INLINE_MMX(cpu_flags)) {
  457. // special case for unscaled vertical filtering
  458. if (minFilterSize == 1 && filterAlign == 2)
  459. filterAlign = 1;
  460. }
  461. av_assert0(minFilterSize > 0);
  462. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  463. av_assert0(filterSize > 0);
  464. filter = av_malloc(filterSize * dstW * sizeof(*filter));
  465. if (filterSize >= MAX_FILTER_SIZE * 16 /
  466. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  467. goto fail;
  468. *outFilterSize = filterSize;
  469. if (flags & SWS_PRINT_INFO)
  470. av_log(NULL, AV_LOG_VERBOSE,
  471. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  472. filter2Size, filterSize);
  473. /* try to reduce the filter-size (step2 reduce it) */
  474. for (i = 0; i < dstW; i++) {
  475. int j;
  476. for (j = 0; j < filterSize; j++) {
  477. if (j >= filter2Size)
  478. filter[i * filterSize + j] = 0;
  479. else
  480. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  481. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  482. filter[i * filterSize + j] = 0;
  483. }
  484. }
  485. // FIXME try to align filterPos if possible
  486. // fix borders
  487. for (i = 0; i < dstW; i++) {
  488. int j;
  489. if ((*filterPos)[i] < 0) {
  490. // move filter coefficients left to compensate for filterPos
  491. for (j = 1; j < filterSize; j++) {
  492. int left = FFMAX(j + (*filterPos)[i], 0);
  493. filter[i * filterSize + left] += filter[i * filterSize + j];
  494. filter[i * filterSize + j] = 0;
  495. }
  496. (*filterPos)[i]= 0;
  497. }
  498. if ((*filterPos)[i] + filterSize > srcW) {
  499. int shift = (*filterPos)[i] + filterSize - srcW;
  500. // move filter coefficients right to compensate for filterPos
  501. for (j = filterSize - 2; j >= 0; j--) {
  502. int right = FFMIN(j + shift, filterSize - 1);
  503. filter[i * filterSize + right] += filter[i * filterSize + j];
  504. filter[i * filterSize + j] = 0;
  505. }
  506. (*filterPos)[i]= srcW - filterSize;
  507. }
  508. }
  509. // Note the +1 is for the MMX scaler which reads over the end
  510. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  511. FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
  512. *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
  513. /* normalize & store in outFilter */
  514. for (i = 0; i < dstW; i++) {
  515. int j;
  516. int64_t error = 0;
  517. int64_t sum = 0;
  518. for (j = 0; j < filterSize; j++) {
  519. sum += filter[i * filterSize + j];
  520. }
  521. sum = (sum + one / 2) / one;
  522. for (j = 0; j < *outFilterSize; j++) {
  523. int64_t v = filter[i * filterSize + j] + error;
  524. int intV = ROUNDED_DIV(v, sum);
  525. (*outFilter)[i * (*outFilterSize) + j] = intV;
  526. error = v - intV * sum;
  527. }
  528. }
  529. (*filterPos)[dstW + 0] =
  530. (*filterPos)[dstW + 1] =
  531. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  532. * read over the end */
  533. for (i = 0; i < *outFilterSize; i++) {
  534. int k = (dstW - 1) * (*outFilterSize) + i;
  535. (*outFilter)[k + 1 * (*outFilterSize)] =
  536. (*outFilter)[k + 2 * (*outFilterSize)] =
  537. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  538. }
  539. ret = 0;
  540. fail:
  541. av_free(filter);
  542. av_free(filter2);
  543. return ret;
  544. }
  545. #if HAVE_MMXEXT_INLINE
  546. static int initMMX2HScaler(int dstW, int xInc, uint8_t *filterCode,
  547. int16_t *filter, int32_t *filterPos, int numSplits)
  548. {
  549. uint8_t *fragmentA;
  550. x86_reg imm8OfPShufW1A;
  551. x86_reg imm8OfPShufW2A;
  552. x86_reg fragmentLengthA;
  553. uint8_t *fragmentB;
  554. x86_reg imm8OfPShufW1B;
  555. x86_reg imm8OfPShufW2B;
  556. x86_reg fragmentLengthB;
  557. int fragmentPos;
  558. int xpos, i;
  559. // create an optimized horizontal scaling routine
  560. /* This scaler is made of runtime-generated MMX2 code using specially tuned
  561. * pshufw instructions. For every four output pixels, if four input pixels
  562. * are enough for the fast bilinear scaling, then a chunk of fragmentB is
  563. * used. If five input pixels are needed, then a chunk of fragmentA is used.
  564. */
  565. // code fragment
  566. __asm__ volatile (
  567. "jmp 9f \n\t"
  568. // Begin
  569. "0: \n\t"
  570. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  571. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  572. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  573. "punpcklbw %%mm7, %%mm1 \n\t"
  574. "punpcklbw %%mm7, %%mm0 \n\t"
  575. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  576. "1: \n\t"
  577. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  578. "2: \n\t"
  579. "psubw %%mm1, %%mm0 \n\t"
  580. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  581. "pmullw %%mm3, %%mm0 \n\t"
  582. "psllw $7, %%mm1 \n\t"
  583. "paddw %%mm1, %%mm0 \n\t"
  584. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  585. "add $8, %%"REG_a" \n\t"
  586. // End
  587. "9: \n\t"
  588. // "int $3 \n\t"
  589. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  590. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  591. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  592. "dec %1 \n\t"
  593. "dec %2 \n\t"
  594. "sub %0, %1 \n\t"
  595. "sub %0, %2 \n\t"
  596. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  597. "sub %0, %3 \n\t"
  598. : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  599. "=r" (fragmentLengthA)
  600. );
  601. __asm__ volatile (
  602. "jmp 9f \n\t"
  603. // Begin
  604. "0: \n\t"
  605. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  606. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  607. "punpcklbw %%mm7, %%mm0 \n\t"
  608. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  609. "1: \n\t"
  610. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  611. "2: \n\t"
  612. "psubw %%mm1, %%mm0 \n\t"
  613. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  614. "pmullw %%mm3, %%mm0 \n\t"
  615. "psllw $7, %%mm1 \n\t"
  616. "paddw %%mm1, %%mm0 \n\t"
  617. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  618. "add $8, %%"REG_a" \n\t"
  619. // End
  620. "9: \n\t"
  621. // "int $3 \n\t"
  622. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  623. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  624. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  625. "dec %1 \n\t"
  626. "dec %2 \n\t"
  627. "sub %0, %1 \n\t"
  628. "sub %0, %2 \n\t"
  629. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  630. "sub %0, %3 \n\t"
  631. : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  632. "=r" (fragmentLengthB)
  633. );
  634. xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
  635. fragmentPos = 0;
  636. for (i = 0; i < dstW / numSplits; i++) {
  637. int xx = xpos >> 16;
  638. if ((i & 3) == 0) {
  639. int a = 0;
  640. int b = ((xpos + xInc) >> 16) - xx;
  641. int c = ((xpos + xInc * 2) >> 16) - xx;
  642. int d = ((xpos + xInc * 3) >> 16) - xx;
  643. int inc = (d + 1 < 4);
  644. uint8_t *fragment = (d + 1 < 4) ? fragmentB : fragmentA;
  645. x86_reg imm8OfPShufW1 = (d + 1 < 4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  646. x86_reg imm8OfPShufW2 = (d + 1 < 4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  647. x86_reg fragmentLength = (d + 1 < 4) ? fragmentLengthB : fragmentLengthA;
  648. int maxShift = 3 - (d + inc);
  649. int shift = 0;
  650. if (filterCode) {
  651. filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9;
  652. filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9;
  653. filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
  654. filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
  655. filterPos[i / 2] = xx;
  656. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  657. filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) |
  658. ((b + inc) << 2) |
  659. ((c + inc) << 4) |
  660. ((d + inc) << 6);
  661. filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) |
  662. (c << 4) |
  663. (d << 6);
  664. if (i + 4 - inc >= dstW)
  665. shift = maxShift; // avoid overread
  666. else if ((filterPos[i / 2] & 3) <= maxShift)
  667. shift = filterPos[i / 2] & 3; // align
  668. if (shift && i >= shift) {
  669. filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
  670. filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
  671. filterPos[i / 2] -= shift;
  672. }
  673. }
  674. fragmentPos += fragmentLength;
  675. if (filterCode)
  676. filterCode[fragmentPos] = RET;
  677. }
  678. xpos += xInc;
  679. }
  680. if (filterCode)
  681. filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part
  682. return fragmentPos + 1;
  683. }
  684. #endif /* HAVE_MMXEXT_INLINE */
  685. static void getSubSampleFactors(int *h, int *v, enum AVPixelFormat format)
  686. {
  687. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  688. *h = desc->log2_chroma_w;
  689. *v = desc->log2_chroma_h;
  690. }
  691. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  692. int srcRange, const int table[4], int dstRange,
  693. int brightness, int contrast, int saturation)
  694. {
  695. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  696. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(c->srcFormat);
  697. memcpy(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  698. memcpy(c->dstColorspaceTable, table, sizeof(int) * 4);
  699. c->brightness = brightness;
  700. c->contrast = contrast;
  701. c->saturation = saturation;
  702. c->srcRange = srcRange;
  703. c->dstRange = dstRange;
  704. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  705. return -1;
  706. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  707. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  708. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  709. contrast, saturation);
  710. // FIXME factorize
  711. if (HAVE_ALTIVEC && av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC)
  712. ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness,
  713. contrast, saturation);
  714. return 0;
  715. }
  716. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  717. int *srcRange, int **table, int *dstRange,
  718. int *brightness, int *contrast, int *saturation)
  719. {
  720. if (!c || isYUV(c->dstFormat) || isGray(c->dstFormat))
  721. return -1;
  722. *inv_table = c->srcColorspaceTable;
  723. *table = c->dstColorspaceTable;
  724. *srcRange = c->srcRange;
  725. *dstRange = c->dstRange;
  726. *brightness = c->brightness;
  727. *contrast = c->contrast;
  728. *saturation = c->saturation;
  729. return 0;
  730. }
  731. static int handle_jpeg(enum AVPixelFormat *format)
  732. {
  733. switch (*format) {
  734. case AV_PIX_FMT_YUVJ420P:
  735. *format = AV_PIX_FMT_YUV420P;
  736. return 1;
  737. case AV_PIX_FMT_YUVJ422P:
  738. *format = AV_PIX_FMT_YUV422P;
  739. return 1;
  740. case AV_PIX_FMT_YUVJ444P:
  741. *format = AV_PIX_FMT_YUV444P;
  742. return 1;
  743. case AV_PIX_FMT_YUVJ440P:
  744. *format = AV_PIX_FMT_YUV440P;
  745. return 1;
  746. default:
  747. return 0;
  748. }
  749. }
  750. static int handle_0alpha(enum AVPixelFormat *format)
  751. {
  752. switch (*format) {
  753. case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
  754. case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
  755. case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
  756. case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
  757. default: return 0;
  758. }
  759. }
  760. SwsContext *sws_alloc_context(void)
  761. {
  762. SwsContext *c = av_mallocz(sizeof(SwsContext));
  763. c->av_class = &sws_context_class;
  764. av_opt_set_defaults(c);
  765. return c;
  766. }
  767. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  768. SwsFilter *dstFilter)
  769. {
  770. int i, j;
  771. int usesVFilter, usesHFilter;
  772. int unscaled;
  773. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  774. int srcW = c->srcW;
  775. int srcH = c->srcH;
  776. int dstW = c->dstW;
  777. int dstH = c->dstH;
  778. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
  779. int flags, cpu_flags;
  780. enum AVPixelFormat srcFormat = c->srcFormat;
  781. enum AVPixelFormat dstFormat = c->dstFormat;
  782. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(srcFormat);
  783. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(dstFormat);
  784. cpu_flags = av_get_cpu_flags();
  785. flags = c->flags;
  786. emms_c();
  787. if (!rgb15to16)
  788. sws_rgb2rgb_init();
  789. unscaled = (srcW == dstW && srcH == dstH);
  790. handle_jpeg(&srcFormat);
  791. handle_jpeg(&dstFormat);
  792. handle_0alpha(&srcFormat);
  793. handle_0alpha(&dstFormat);
  794. if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat){
  795. av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
  796. c->srcFormat= srcFormat;
  797. c->dstFormat= dstFormat;
  798. }
  799. if (!sws_isSupportedInput(srcFormat)) {
  800. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  801. av_get_pix_fmt_name(srcFormat));
  802. return AVERROR(EINVAL);
  803. }
  804. if (!sws_isSupportedOutput(dstFormat)) {
  805. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  806. av_get_pix_fmt_name(dstFormat));
  807. return AVERROR(EINVAL);
  808. }
  809. i = flags & (SWS_POINT |
  810. SWS_AREA |
  811. SWS_BILINEAR |
  812. SWS_FAST_BILINEAR |
  813. SWS_BICUBIC |
  814. SWS_X |
  815. SWS_GAUSS |
  816. SWS_LANCZOS |
  817. SWS_SINC |
  818. SWS_SPLINE |
  819. SWS_BICUBLIN);
  820. if (!i || (i & (i - 1))) {
  821. av_log(c, AV_LOG_ERROR, "Exactly one scaler algorithm must be chosen, got %X\n", i);
  822. return AVERROR(EINVAL);
  823. }
  824. /* sanity check */
  825. if (srcW < 4 || srcH < 1 || dstW < 8 || dstH < 1) {
  826. /* FIXME check if these are enough and try to lower them after
  827. * fixing the relevant parts of the code */
  828. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  829. srcW, srcH, dstW, dstH);
  830. return AVERROR(EINVAL);
  831. }
  832. if (!dstFilter)
  833. dstFilter = &dummyFilter;
  834. if (!srcFilter)
  835. srcFilter = &dummyFilter;
  836. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  837. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  838. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  839. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  840. c->vRounder = 4 * 0x0001000100010001ULL;
  841. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  842. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  843. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  844. (dstFilter->chrV && dstFilter->chrV->length > 1);
  845. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  846. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  847. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  848. (dstFilter->chrH && dstFilter->chrH->length > 1);
  849. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  850. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  851. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
  852. if (dstW&1) {
  853. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
  854. flags |= SWS_FULL_CHR_H_INT;
  855. c->flags = flags;
  856. }
  857. }
  858. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  859. * chroma interpolation */
  860. if (flags & SWS_FULL_CHR_H_INT &&
  861. isAnyRGB(dstFormat) &&
  862. dstFormat != AV_PIX_FMT_RGBA &&
  863. dstFormat != AV_PIX_FMT_ARGB &&
  864. dstFormat != AV_PIX_FMT_BGRA &&
  865. dstFormat != AV_PIX_FMT_ABGR &&
  866. dstFormat != AV_PIX_FMT_RGB24 &&
  867. dstFormat != AV_PIX_FMT_BGR24) {
  868. av_log(c, AV_LOG_WARNING,
  869. "full chroma interpolation for destination format '%s' not yet implemented\n",
  870. av_get_pix_fmt_name(dstFormat));
  871. flags &= ~SWS_FULL_CHR_H_INT;
  872. c->flags = flags;
  873. }
  874. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  875. c->chrDstHSubSample = 1;
  876. // drop some chroma lines if the user wants it
  877. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  878. SWS_SRC_V_CHR_DROP_SHIFT;
  879. c->chrSrcVSubSample += c->vChrDrop;
  880. /* drop every other pixel for chroma calculation unless user
  881. * wants full chroma */
  882. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  883. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  884. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  885. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  886. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  887. (flags & SWS_FAST_BILINEAR)))
  888. c->chrSrcHSubSample = 1;
  889. // Note the -((-x)>>y) is so that we always round toward +inf.
  890. c->chrSrcW = -((-srcW) >> c->chrSrcHSubSample);
  891. c->chrSrcH = -((-srcH) >> c->chrSrcVSubSample);
  892. c->chrDstW = -((-dstW) >> c->chrDstHSubSample);
  893. c->chrDstH = -((-dstH) >> c->chrDstVSubSample);
  894. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
  895. /* unscaled special cases */
  896. if (unscaled && !usesHFilter && !usesVFilter &&
  897. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  898. ff_get_unscaled_swscale(c);
  899. if (c->swScale) {
  900. if (flags & SWS_PRINT_INFO)
  901. av_log(c, AV_LOG_INFO,
  902. "using unscaled %s -> %s special converter\n",
  903. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  904. return 0;
  905. }
  906. }
  907. c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
  908. if (c->srcBpc < 8)
  909. c->srcBpc = 8;
  910. c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
  911. if (c->dstBpc < 8)
  912. c->dstBpc = 8;
  913. if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
  914. c->srcBpc = 16;
  915. if (c->dstBpc == 16)
  916. dst_stride <<= 1;
  917. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
  918. c->canMMX2BeUsed = (dstW >= srcW && (dstW & 31) == 0 &&
  919. (srcW & 15) == 0) ? 1 : 0;
  920. if (!c->canMMX2BeUsed && dstW >= srcW && (srcW & 15) == 0
  921. && (flags & SWS_FAST_BILINEAR)) {
  922. if (flags & SWS_PRINT_INFO)
  923. av_log(c, AV_LOG_INFO,
  924. "output width is not a multiple of 32 -> no MMX2 scaler\n");
  925. }
  926. if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
  927. c->canMMX2BeUsed=0;
  928. } else
  929. c->canMMX2BeUsed = 0;
  930. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  931. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  932. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  933. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  934. * correct scaling.
  935. * n-2 is the last chrominance sample available.
  936. * This is not perfect, but no one should notice the difference, the more
  937. * correct variant would be like the vertical one, but that would require
  938. * some special code for the first and last pixel */
  939. if (flags & SWS_FAST_BILINEAR) {
  940. if (c->canMMX2BeUsed) {
  941. c->lumXInc += 20;
  942. c->chrXInc += 20;
  943. }
  944. // we don't use the x86 asm scaler if MMX is available
  945. else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
  946. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  947. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  948. }
  949. }
  950. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  951. /* precalculate horizontal scaler filter coefficients */
  952. {
  953. #if HAVE_MMXEXT_INLINE
  954. // can't downscale !!!
  955. if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) {
  956. c->lumMmx2FilterCodeSize = initMMX2HScaler(dstW, c->lumXInc, NULL,
  957. NULL, NULL, 8);
  958. c->chrMmx2FilterCodeSize = initMMX2HScaler(c->chrDstW, c->chrXInc,
  959. NULL, NULL, NULL, 4);
  960. #if USE_MMAP
  961. c->lumMmx2FilterCode = mmap(NULL, c->lumMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  962. c->chrMmx2FilterCode = mmap(NULL, c->chrMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  963. #elif HAVE_VIRTUALALLOC
  964. c->lumMmx2FilterCode = VirtualAlloc(NULL, c->lumMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  965. c->chrMmx2FilterCode = VirtualAlloc(NULL, c->chrMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  966. #else
  967. c->lumMmx2FilterCode = av_malloc(c->lumMmx2FilterCodeSize);
  968. c->chrMmx2FilterCode = av_malloc(c->chrMmx2FilterCodeSize);
  969. #endif
  970. #ifdef MAP_ANONYMOUS
  971. if (c->lumMmx2FilterCode == MAP_FAILED || c->chrMmx2FilterCode == MAP_FAILED)
  972. #else
  973. if (!c->lumMmx2FilterCode || !c->chrMmx2FilterCode)
  974. #endif
  975. {
  976. av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
  977. return AVERROR(ENOMEM);
  978. }
  979. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  980. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  981. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  982. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  983. initMMX2HScaler( dstW, c->lumXInc, c->lumMmx2FilterCode,
  984. c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
  985. initMMX2HScaler(c->chrDstW, c->chrXInc, c->chrMmx2FilterCode,
  986. c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
  987. #if USE_MMAP
  988. mprotect(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
  989. mprotect(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
  990. #endif
  991. } else
  992. #endif /* HAVE_MMXEXT_INLINE */
  993. {
  994. const int filterAlign =
  995. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 4 :
  996. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  997. 1;
  998. if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
  999. &c->hLumFilterSize, c->lumXInc,
  1000. srcW, dstW, filterAlign, 1 << 14,
  1001. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1002. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1003. c->param) < 0)
  1004. goto fail;
  1005. if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1006. &c->hChrFilterSize, c->chrXInc,
  1007. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1008. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1009. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1010. c->param) < 0)
  1011. goto fail;
  1012. }
  1013. } // initialize horizontal stuff
  1014. /* precalculate vertical scaler filter coefficients */
  1015. {
  1016. const int filterAlign =
  1017. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 2 :
  1018. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  1019. 1;
  1020. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1021. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1022. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1023. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1024. c->param) < 0)
  1025. goto fail;
  1026. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1027. c->chrYInc, c->chrSrcH, c->chrDstH,
  1028. filterAlign, (1 << 12),
  1029. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1030. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1031. c->param) < 0)
  1032. goto fail;
  1033. #if HAVE_ALTIVEC
  1034. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1035. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1036. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1037. int j;
  1038. short *p = (short *)&c->vYCoeffsBank[i];
  1039. for (j = 0; j < 8; j++)
  1040. p[j] = c->vLumFilter[i];
  1041. }
  1042. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1043. int j;
  1044. short *p = (short *)&c->vCCoeffsBank[i];
  1045. for (j = 0; j < 8; j++)
  1046. p[j] = c->vChrFilter[i];
  1047. }
  1048. #endif
  1049. }
  1050. // calculate buffer sizes so that they won't run out while handling these damn slices
  1051. c->vLumBufSize = c->vLumFilterSize;
  1052. c->vChrBufSize = c->vChrFilterSize;
  1053. for (i = 0; i < dstH; i++) {
  1054. int chrI = (int64_t)i * c->chrDstH / dstH;
  1055. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1056. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1057. << c->chrSrcVSubSample));
  1058. nextSlice >>= c->chrSrcVSubSample;
  1059. nextSlice <<= c->chrSrcVSubSample;
  1060. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1061. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1062. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1063. (nextSlice >> c->chrSrcVSubSample))
  1064. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1065. c->vChrFilterPos[chrI];
  1066. }
  1067. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1068. * need to allocate several megabytes to handle all possible cases) */
  1069. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1070. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1071. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1072. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1073. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1074. /* Note we need at least one pixel more at the end because of the MMX code
  1075. * (just in case someone wants to replace the 4000/8000). */
  1076. /* align at 16 bytes for AltiVec */
  1077. for (i = 0; i < c->vLumBufSize; i++) {
  1078. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1079. dst_stride + 16, fail);
  1080. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1081. }
  1082. // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
  1083. c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
  1084. c->uv_offx2 = dst_stride + 16;
  1085. for (i = 0; i < c->vChrBufSize; i++) {
  1086. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1087. dst_stride * 2 + 32, fail);
  1088. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1089. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1090. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1091. }
  1092. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1093. for (i = 0; i < c->vLumBufSize; i++) {
  1094. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1095. dst_stride + 16, fail);
  1096. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1097. }
  1098. // try to avoid drawing green stuff between the right end and the stride end
  1099. for (i = 0; i < c->vChrBufSize; i++)
  1100. if(desc_dst->comp[0].depth_minus1 == 15){
  1101. av_assert0(c->dstBpc > 14);
  1102. for(j=0; j<dst_stride/2+1; j++)
  1103. ((int32_t*)(c->chrUPixBuf[i]))[j] = 1<<18;
  1104. } else
  1105. for(j=0; j<dst_stride+1; j++)
  1106. ((int16_t*)(c->chrUPixBuf[i]))[j] = 1<<14;
  1107. av_assert0(c->chrDstH <= dstH);
  1108. if (flags & SWS_PRINT_INFO) {
  1109. if (flags & SWS_FAST_BILINEAR)
  1110. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  1111. else if (flags & SWS_BILINEAR)
  1112. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  1113. else if (flags & SWS_BICUBIC)
  1114. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  1115. else if (flags & SWS_X)
  1116. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  1117. else if (flags & SWS_POINT)
  1118. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  1119. else if (flags & SWS_AREA)
  1120. av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
  1121. else if (flags & SWS_BICUBLIN)
  1122. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  1123. else if (flags & SWS_GAUSS)
  1124. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  1125. else if (flags & SWS_SINC)
  1126. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  1127. else if (flags & SWS_LANCZOS)
  1128. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  1129. else if (flags & SWS_SPLINE)
  1130. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  1131. else
  1132. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  1133. av_log(c, AV_LOG_INFO, "from %s to %s%s ",
  1134. av_get_pix_fmt_name(srcFormat),
  1135. #ifdef DITHER1XBPP
  1136. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1137. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1138. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1139. "dithered " : "",
  1140. #else
  1141. "",
  1142. #endif
  1143. av_get_pix_fmt_name(dstFormat));
  1144. if (INLINE_MMXEXT(cpu_flags))
  1145. av_log(c, AV_LOG_INFO, "using MMX2\n");
  1146. else if (INLINE_AMD3DNOW(cpu_flags))
  1147. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  1148. else if (INLINE_MMX(cpu_flags))
  1149. av_log(c, AV_LOG_INFO, "using MMX\n");
  1150. else if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC)
  1151. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  1152. else
  1153. av_log(c, AV_LOG_INFO, "using C\n");
  1154. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1155. av_log(c, AV_LOG_DEBUG,
  1156. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1157. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1158. av_log(c, AV_LOG_DEBUG,
  1159. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1160. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1161. c->chrXInc, c->chrYInc);
  1162. }
  1163. c->swScale = ff_getSwsFunc(c);
  1164. return 0;
  1165. fail: // FIXME replace things by appropriate error codes
  1166. return -1;
  1167. }
  1168. #if FF_API_SWS_GETCONTEXT
  1169. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1170. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1171. int flags, SwsFilter *srcFilter,
  1172. SwsFilter *dstFilter, const double *param)
  1173. {
  1174. SwsContext *c;
  1175. if (!(c = sws_alloc_context()))
  1176. return NULL;
  1177. c->flags = flags;
  1178. c->srcW = srcW;
  1179. c->srcH = srcH;
  1180. c->dstW = dstW;
  1181. c->dstH = dstH;
  1182. c->srcRange = handle_jpeg(&srcFormat);
  1183. c->dstRange = handle_jpeg(&dstFormat);
  1184. c->src0Alpha = handle_0alpha(&srcFormat);
  1185. c->dst0Alpha = handle_0alpha(&dstFormat);
  1186. c->srcFormat = srcFormat;
  1187. c->dstFormat = dstFormat;
  1188. if (param) {
  1189. c->param[0] = param[0];
  1190. c->param[1] = param[1];
  1191. }
  1192. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1193. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1194. c->dstRange, 0, 1 << 16, 1 << 16);
  1195. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1196. sws_freeContext(c);
  1197. return NULL;
  1198. }
  1199. return c;
  1200. }
  1201. #endif
  1202. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1203. float lumaSharpen, float chromaSharpen,
  1204. float chromaHShift, float chromaVShift,
  1205. int verbose)
  1206. {
  1207. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1208. if (!filter)
  1209. return NULL;
  1210. if (lumaGBlur != 0.0) {
  1211. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1212. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1213. } else {
  1214. filter->lumH = sws_getIdentityVec();
  1215. filter->lumV = sws_getIdentityVec();
  1216. }
  1217. if (chromaGBlur != 0.0) {
  1218. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1219. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1220. } else {
  1221. filter->chrH = sws_getIdentityVec();
  1222. filter->chrV = sws_getIdentityVec();
  1223. }
  1224. if (chromaSharpen != 0.0) {
  1225. SwsVector *id = sws_getIdentityVec();
  1226. sws_scaleVec(filter->chrH, -chromaSharpen);
  1227. sws_scaleVec(filter->chrV, -chromaSharpen);
  1228. sws_addVec(filter->chrH, id);
  1229. sws_addVec(filter->chrV, id);
  1230. sws_freeVec(id);
  1231. }
  1232. if (lumaSharpen != 0.0) {
  1233. SwsVector *id = sws_getIdentityVec();
  1234. sws_scaleVec(filter->lumH, -lumaSharpen);
  1235. sws_scaleVec(filter->lumV, -lumaSharpen);
  1236. sws_addVec(filter->lumH, id);
  1237. sws_addVec(filter->lumV, id);
  1238. sws_freeVec(id);
  1239. }
  1240. if (chromaHShift != 0.0)
  1241. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1242. if (chromaVShift != 0.0)
  1243. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1244. sws_normalizeVec(filter->chrH, 1.0);
  1245. sws_normalizeVec(filter->chrV, 1.0);
  1246. sws_normalizeVec(filter->lumH, 1.0);
  1247. sws_normalizeVec(filter->lumV, 1.0);
  1248. if (verbose)
  1249. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1250. if (verbose)
  1251. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1252. return filter;
  1253. }
  1254. SwsVector *sws_allocVec(int length)
  1255. {
  1256. SwsVector *vec = av_malloc(sizeof(SwsVector));
  1257. if (!vec)
  1258. return NULL;
  1259. vec->length = length;
  1260. vec->coeff = av_malloc(sizeof(double) * length);
  1261. if (!vec->coeff)
  1262. av_freep(&vec);
  1263. return vec;
  1264. }
  1265. SwsVector *sws_getGaussianVec(double variance, double quality)
  1266. {
  1267. const int length = (int)(variance * quality + 0.5) | 1;
  1268. int i;
  1269. double middle = (length - 1) * 0.5;
  1270. SwsVector *vec = sws_allocVec(length);
  1271. if (!vec)
  1272. return NULL;
  1273. for (i = 0; i < length; i++) {
  1274. double dist = i - middle;
  1275. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1276. sqrt(2 * variance * M_PI);
  1277. }
  1278. sws_normalizeVec(vec, 1.0);
  1279. return vec;
  1280. }
  1281. SwsVector *sws_getConstVec(double c, int length)
  1282. {
  1283. int i;
  1284. SwsVector *vec = sws_allocVec(length);
  1285. if (!vec)
  1286. return NULL;
  1287. for (i = 0; i < length; i++)
  1288. vec->coeff[i] = c;
  1289. return vec;
  1290. }
  1291. SwsVector *sws_getIdentityVec(void)
  1292. {
  1293. return sws_getConstVec(1.0, 1);
  1294. }
  1295. static double sws_dcVec(SwsVector *a)
  1296. {
  1297. int i;
  1298. double sum = 0;
  1299. for (i = 0; i < a->length; i++)
  1300. sum += a->coeff[i];
  1301. return sum;
  1302. }
  1303. void sws_scaleVec(SwsVector *a, double scalar)
  1304. {
  1305. int i;
  1306. for (i = 0; i < a->length; i++)
  1307. a->coeff[i] *= scalar;
  1308. }
  1309. void sws_normalizeVec(SwsVector *a, double height)
  1310. {
  1311. sws_scaleVec(a, height / sws_dcVec(a));
  1312. }
  1313. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1314. {
  1315. int length = a->length + b->length - 1;
  1316. int i, j;
  1317. SwsVector *vec = sws_getConstVec(0.0, length);
  1318. if (!vec)
  1319. return NULL;
  1320. for (i = 0; i < a->length; i++) {
  1321. for (j = 0; j < b->length; j++) {
  1322. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1323. }
  1324. }
  1325. return vec;
  1326. }
  1327. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1328. {
  1329. int length = FFMAX(a->length, b->length);
  1330. int i;
  1331. SwsVector *vec = sws_getConstVec(0.0, length);
  1332. if (!vec)
  1333. return NULL;
  1334. for (i = 0; i < a->length; i++)
  1335. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1336. for (i = 0; i < b->length; i++)
  1337. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1338. return vec;
  1339. }
  1340. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1341. {
  1342. int length = FFMAX(a->length, b->length);
  1343. int i;
  1344. SwsVector *vec = sws_getConstVec(0.0, length);
  1345. if (!vec)
  1346. return NULL;
  1347. for (i = 0; i < a->length; i++)
  1348. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1349. for (i = 0; i < b->length; i++)
  1350. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1351. return vec;
  1352. }
  1353. /* shift left / or right if "shift" is negative */
  1354. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1355. {
  1356. int length = a->length + FFABS(shift) * 2;
  1357. int i;
  1358. SwsVector *vec = sws_getConstVec(0.0, length);
  1359. if (!vec)
  1360. return NULL;
  1361. for (i = 0; i < a->length; i++) {
  1362. vec->coeff[i + (length - 1) / 2 -
  1363. (a->length - 1) / 2 - shift] = a->coeff[i];
  1364. }
  1365. return vec;
  1366. }
  1367. void sws_shiftVec(SwsVector *a, int shift)
  1368. {
  1369. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1370. av_free(a->coeff);
  1371. a->coeff = shifted->coeff;
  1372. a->length = shifted->length;
  1373. av_free(shifted);
  1374. }
  1375. void sws_addVec(SwsVector *a, SwsVector *b)
  1376. {
  1377. SwsVector *sum = sws_sumVec(a, b);
  1378. av_free(a->coeff);
  1379. a->coeff = sum->coeff;
  1380. a->length = sum->length;
  1381. av_free(sum);
  1382. }
  1383. void sws_subVec(SwsVector *a, SwsVector *b)
  1384. {
  1385. SwsVector *diff = sws_diffVec(a, b);
  1386. av_free(a->coeff);
  1387. a->coeff = diff->coeff;
  1388. a->length = diff->length;
  1389. av_free(diff);
  1390. }
  1391. void sws_convVec(SwsVector *a, SwsVector *b)
  1392. {
  1393. SwsVector *conv = sws_getConvVec(a, b);
  1394. av_free(a->coeff);
  1395. a->coeff = conv->coeff;
  1396. a->length = conv->length;
  1397. av_free(conv);
  1398. }
  1399. SwsVector *sws_cloneVec(SwsVector *a)
  1400. {
  1401. int i;
  1402. SwsVector *vec = sws_allocVec(a->length);
  1403. if (!vec)
  1404. return NULL;
  1405. for (i = 0; i < a->length; i++)
  1406. vec->coeff[i] = a->coeff[i];
  1407. return vec;
  1408. }
  1409. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1410. {
  1411. int i;
  1412. double max = 0;
  1413. double min = 0;
  1414. double range;
  1415. for (i = 0; i < a->length; i++)
  1416. if (a->coeff[i] > max)
  1417. max = a->coeff[i];
  1418. for (i = 0; i < a->length; i++)
  1419. if (a->coeff[i] < min)
  1420. min = a->coeff[i];
  1421. range = max - min;
  1422. for (i = 0; i < a->length; i++) {
  1423. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1424. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1425. for (; x > 0; x--)
  1426. av_log(log_ctx, log_level, " ");
  1427. av_log(log_ctx, log_level, "|\n");
  1428. }
  1429. }
  1430. void sws_freeVec(SwsVector *a)
  1431. {
  1432. if (!a)
  1433. return;
  1434. av_freep(&a->coeff);
  1435. a->length = 0;
  1436. av_free(a);
  1437. }
  1438. void sws_freeFilter(SwsFilter *filter)
  1439. {
  1440. if (!filter)
  1441. return;
  1442. if (filter->lumH)
  1443. sws_freeVec(filter->lumH);
  1444. if (filter->lumV)
  1445. sws_freeVec(filter->lumV);
  1446. if (filter->chrH)
  1447. sws_freeVec(filter->chrH);
  1448. if (filter->chrV)
  1449. sws_freeVec(filter->chrV);
  1450. av_free(filter);
  1451. }
  1452. void sws_freeContext(SwsContext *c)
  1453. {
  1454. int i;
  1455. if (!c)
  1456. return;
  1457. if (c->lumPixBuf) {
  1458. for (i = 0; i < c->vLumBufSize; i++)
  1459. av_freep(&c->lumPixBuf[i]);
  1460. av_freep(&c->lumPixBuf);
  1461. }
  1462. if (c->chrUPixBuf) {
  1463. for (i = 0; i < c->vChrBufSize; i++)
  1464. av_freep(&c->chrUPixBuf[i]);
  1465. av_freep(&c->chrUPixBuf);
  1466. av_freep(&c->chrVPixBuf);
  1467. }
  1468. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1469. for (i = 0; i < c->vLumBufSize; i++)
  1470. av_freep(&c->alpPixBuf[i]);
  1471. av_freep(&c->alpPixBuf);
  1472. }
  1473. av_freep(&c->vLumFilter);
  1474. av_freep(&c->vChrFilter);
  1475. av_freep(&c->hLumFilter);
  1476. av_freep(&c->hChrFilter);
  1477. #if HAVE_ALTIVEC
  1478. av_freep(&c->vYCoeffsBank);
  1479. av_freep(&c->vCCoeffsBank);
  1480. #endif
  1481. av_freep(&c->vLumFilterPos);
  1482. av_freep(&c->vChrFilterPos);
  1483. av_freep(&c->hLumFilterPos);
  1484. av_freep(&c->hChrFilterPos);
  1485. #if HAVE_MMX_INLINE
  1486. #if USE_MMAP
  1487. if (c->lumMmx2FilterCode)
  1488. munmap(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize);
  1489. if (c->chrMmx2FilterCode)
  1490. munmap(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize);
  1491. #elif HAVE_VIRTUALALLOC
  1492. if (c->lumMmx2FilterCode)
  1493. VirtualFree(c->lumMmx2FilterCode, 0, MEM_RELEASE);
  1494. if (c->chrMmx2FilterCode)
  1495. VirtualFree(c->chrMmx2FilterCode, 0, MEM_RELEASE);
  1496. #else
  1497. av_free(c->lumMmx2FilterCode);
  1498. av_free(c->chrMmx2FilterCode);
  1499. #endif
  1500. c->lumMmx2FilterCode = NULL;
  1501. c->chrMmx2FilterCode = NULL;
  1502. #endif /* HAVE_MMX_INLINE */
  1503. av_freep(&c->yuvTable);
  1504. av_freep(&c->formatConvBuffer);
  1505. av_free(c);
  1506. }
  1507. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1508. int srcH, enum AVPixelFormat srcFormat,
  1509. int dstW, int dstH,
  1510. enum AVPixelFormat dstFormat, int flags,
  1511. SwsFilter *srcFilter,
  1512. SwsFilter *dstFilter,
  1513. const double *param)
  1514. {
  1515. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1516. SWS_PARAM_DEFAULT };
  1517. if (!param)
  1518. param = default_param;
  1519. if (context &&
  1520. (context->srcW != srcW ||
  1521. context->srcH != srcH ||
  1522. context->srcFormat != srcFormat ||
  1523. context->dstW != dstW ||
  1524. context->dstH != dstH ||
  1525. context->dstFormat != dstFormat ||
  1526. context->flags != flags ||
  1527. context->param[0] != param[0] ||
  1528. context->param[1] != param[1])) {
  1529. sws_freeContext(context);
  1530. context = NULL;
  1531. }
  1532. if (!context) {
  1533. if (!(context = sws_alloc_context()))
  1534. return NULL;
  1535. context->srcW = srcW;
  1536. context->srcH = srcH;
  1537. context->srcRange = handle_jpeg(&srcFormat);
  1538. context->src0Alpha = handle_0alpha(&srcFormat);
  1539. context->srcFormat = srcFormat;
  1540. context->dstW = dstW;
  1541. context->dstH = dstH;
  1542. context->dstRange = handle_jpeg(&dstFormat);
  1543. context->dst0Alpha = handle_0alpha(&dstFormat);
  1544. context->dstFormat = dstFormat;
  1545. context->flags = flags;
  1546. context->param[0] = param[0];
  1547. context->param[1] = param[1];
  1548. sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1549. context->srcRange,
  1550. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1551. context->dstRange, 0, 1 << 16, 1 << 16);
  1552. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1553. sws_freeContext(context);
  1554. return NULL;
  1555. }
  1556. }
  1557. return context;
  1558. }