You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

773 lines
34KB

  1. /*
  2. * Copyright (C) 2001-2011 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #ifndef SWSCALE_SWSCALE_INTERNAL_H
  21. #define SWSCALE_SWSCALE_INTERNAL_H
  22. #include "config.h"
  23. #if HAVE_ALTIVEC_H
  24. #include <altivec.h>
  25. #endif
  26. #include "libavutil/avassert.h"
  27. #include "libavutil/avutil.h"
  28. #include "libavutil/common.h"
  29. #include "libavutil/log.h"
  30. #include "libavutil/pixfmt.h"
  31. #include "libavutil/pixdesc.h"
  32. #define STR(s) AV_TOSTRING(s) // AV_STRINGIFY is too long
  33. #define YUVRGB_TABLE_HEADROOM 128
  34. #define FAST_BGR2YV12 // use 7-bit instead of 15-bit coefficients
  35. #define MAX_FILTER_SIZE 256
  36. #define DITHER1XBPP
  37. #if HAVE_BIGENDIAN
  38. #define ALT32_CORR (-1)
  39. #else
  40. #define ALT32_CORR 1
  41. #endif
  42. #if ARCH_X86_64
  43. # define APCK_PTR2 8
  44. # define APCK_COEF 16
  45. # define APCK_SIZE 24
  46. #else
  47. # define APCK_PTR2 4
  48. # define APCK_COEF 8
  49. # define APCK_SIZE 16
  50. #endif
  51. struct SwsContext;
  52. typedef int (*SwsFunc)(struct SwsContext *context, const uint8_t *src[],
  53. int srcStride[], int srcSliceY, int srcSliceH,
  54. uint8_t *dst[], int dstStride[]);
  55. /**
  56. * Write one line of horizontally scaled data to planar output
  57. * without any additional vertical scaling (or point-scaling).
  58. *
  59. * @param src scaled source data, 15bit for 8-10bit output,
  60. * 19-bit for 16bit output (in int32_t)
  61. * @param dest pointer to the output plane. For >8bit
  62. * output, this is in uint16_t
  63. * @param dstW width of destination in pixels
  64. * @param dither ordered dither array of type int16_t and size 8
  65. * @param offset Dither offset
  66. */
  67. typedef void (*yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW,
  68. const uint8_t *dither, int offset);
  69. /**
  70. * Write one line of horizontally scaled data to planar output
  71. * with multi-point vertical scaling between input pixels.
  72. *
  73. * @param filter vertical luma/alpha scaling coefficients, 12bit [0,4096]
  74. * @param src scaled luma (Y) or alpha (A) source data, 15bit for 8-10bit output,
  75. * 19-bit for 16bit output (in int32_t)
  76. * @param filterSize number of vertical input lines to scale
  77. * @param dest pointer to output plane. For >8bit
  78. * output, this is in uint16_t
  79. * @param dstW width of destination pixels
  80. * @param offset Dither offset
  81. */
  82. typedef void (*yuv2planarX_fn)(const int16_t *filter, int filterSize,
  83. const int16_t **src, uint8_t *dest, int dstW,
  84. const uint8_t *dither, int offset);
  85. /**
  86. * Write one line of horizontally scaled chroma to interleaved output
  87. * with multi-point vertical scaling between input pixels.
  88. *
  89. * @param c SWS scaling context
  90. * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
  91. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  92. * 19-bit for 16bit output (in int32_t)
  93. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  94. * 19-bit for 16bit output (in int32_t)
  95. * @param chrFilterSize number of vertical chroma input lines to scale
  96. * @param dest pointer to the output plane. For >8bit
  97. * output, this is in uint16_t
  98. * @param dstW width of chroma planes
  99. */
  100. typedef void (*yuv2interleavedX_fn)(struct SwsContext *c,
  101. const int16_t *chrFilter,
  102. int chrFilterSize,
  103. const int16_t **chrUSrc,
  104. const int16_t **chrVSrc,
  105. uint8_t *dest, int dstW);
  106. /**
  107. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  108. * output without any additional vertical scaling (or point-scaling). Note
  109. * that this function may do chroma scaling, see the "uvalpha" argument.
  110. *
  111. * @param c SWS scaling context
  112. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  113. * 19-bit for 16bit output (in int32_t)
  114. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  115. * 19-bit for 16bit output (in int32_t)
  116. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  117. * 19-bit for 16bit output (in int32_t)
  118. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  119. * 19-bit for 16bit output (in int32_t)
  120. * @param dest pointer to the output plane. For 16bit output, this is
  121. * uint16_t
  122. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  123. * to write into dest[]
  124. * @param uvalpha chroma scaling coefficient for the second line of chroma
  125. * pixels, either 2048 or 0. If 0, one chroma input is used
  126. * for 2 output pixels (or if the SWS_FLAG_FULL_CHR_INT flag
  127. * is set, it generates 1 output pixel). If 2048, two chroma
  128. * input pixels should be averaged for 2 output pixels (this
  129. * only happens if SWS_FLAG_FULL_CHR_INT is not set)
  130. * @param y vertical line number for this output. This does not need
  131. * to be used to calculate the offset in the destination,
  132. * but can be used to generate comfort noise using dithering
  133. * for some output formats.
  134. */
  135. typedef void (*yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc,
  136. const int16_t *chrUSrc[2],
  137. const int16_t *chrVSrc[2],
  138. const int16_t *alpSrc, uint8_t *dest,
  139. int dstW, int uvalpha, int y);
  140. /**
  141. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  142. * output by doing bilinear scaling between two input lines.
  143. *
  144. * @param c SWS scaling context
  145. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  146. * 19-bit for 16bit output (in int32_t)
  147. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  148. * 19-bit for 16bit output (in int32_t)
  149. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  150. * 19-bit for 16bit output (in int32_t)
  151. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  152. * 19-bit for 16bit output (in int32_t)
  153. * @param dest pointer to the output plane. For 16bit output, this is
  154. * uint16_t
  155. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  156. * to write into dest[]
  157. * @param yalpha luma/alpha scaling coefficients for the second input line.
  158. * The first line's coefficients can be calculated by using
  159. * 4096 - yalpha
  160. * @param uvalpha chroma scaling coefficient for the second input line. The
  161. * first line's coefficients can be calculated by using
  162. * 4096 - uvalpha
  163. * @param y vertical line number for this output. This does not need
  164. * to be used to calculate the offset in the destination,
  165. * but can be used to generate comfort noise using dithering
  166. * for some output formats.
  167. */
  168. typedef void (*yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2],
  169. const int16_t *chrUSrc[2],
  170. const int16_t *chrVSrc[2],
  171. const int16_t *alpSrc[2],
  172. uint8_t *dest,
  173. int dstW, int yalpha, int uvalpha, int y);
  174. /**
  175. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  176. * output by doing multi-point vertical scaling between input pixels.
  177. *
  178. * @param c SWS scaling context
  179. * @param lumFilter vertical luma/alpha scaling coefficients, 12bit [0,4096]
  180. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  181. * 19-bit for 16bit output (in int32_t)
  182. * @param lumFilterSize number of vertical luma/alpha input lines to scale
  183. * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
  184. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  185. * 19-bit for 16bit output (in int32_t)
  186. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  187. * 19-bit for 16bit output (in int32_t)
  188. * @param chrFilterSize number of vertical chroma input lines to scale
  189. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  190. * 19-bit for 16bit output (in int32_t)
  191. * @param dest pointer to the output plane. For 16bit output, this is
  192. * uint16_t
  193. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  194. * to write into dest[]
  195. * @param y vertical line number for this output. This does not need
  196. * to be used to calculate the offset in the destination,
  197. * but can be used to generate comfort noise using dithering
  198. * or some output formats.
  199. */
  200. typedef void (*yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter,
  201. const int16_t **lumSrc, int lumFilterSize,
  202. const int16_t *chrFilter,
  203. const int16_t **chrUSrc,
  204. const int16_t **chrVSrc, int chrFilterSize,
  205. const int16_t **alpSrc, uint8_t *dest,
  206. int dstW, int y);
  207. /* This struct should be aligned on at least a 32-byte boundary. */
  208. typedef struct SwsContext {
  209. /**
  210. * info on struct for av_log
  211. */
  212. const AVClass *av_class;
  213. /**
  214. * Note that src, dst, srcStride, dstStride will be copied in the
  215. * sws_scale() wrapper so they can be freely modified here.
  216. */
  217. SwsFunc swScale;
  218. int srcW; ///< Width of source luma/alpha planes.
  219. int srcH; ///< Height of source luma/alpha planes.
  220. int dstH; ///< Height of destination luma/alpha planes.
  221. int chrSrcW; ///< Width of source chroma planes.
  222. int chrSrcH; ///< Height of source chroma planes.
  223. int chrDstW; ///< Width of destination chroma planes.
  224. int chrDstH; ///< Height of destination chroma planes.
  225. int lumXInc, chrXInc;
  226. int lumYInc, chrYInc;
  227. enum AVPixelFormat dstFormat; ///< Destination pixel format.
  228. enum AVPixelFormat srcFormat; ///< Source pixel format.
  229. int dstFormatBpp; ///< Number of bits per pixel of the destination pixel format.
  230. int srcFormatBpp; ///< Number of bits per pixel of the source pixel format.
  231. int dstBpc, srcBpc;
  232. int chrSrcHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source image.
  233. int chrSrcVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image.
  234. int chrDstHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination image.
  235. int chrDstVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination image.
  236. int vChrDrop; ///< Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user.
  237. int sliceDir; ///< Direction that slices are fed to the scaler (1 = top-to-bottom, -1 = bottom-to-top).
  238. double param[2]; ///< Input parameters for scaling algorithms that need them.
  239. uint32_t pal_yuv[256];
  240. uint32_t pal_rgb[256];
  241. /**
  242. * @name Scaled horizontal lines ring buffer.
  243. * The horizontal scaler keeps just enough scaled lines in a ring buffer
  244. * so they may be passed to the vertical scaler. The pointers to the
  245. * allocated buffers for each line are duplicated in sequence in the ring
  246. * buffer to simplify indexing and avoid wrapping around between lines
  247. * inside the vertical scaler code. The wrapping is done before the
  248. * vertical scaler is called.
  249. */
  250. //@{
  251. int16_t **lumPixBuf; ///< Ring buffer for scaled horizontal luma plane lines to be fed to the vertical scaler.
  252. int16_t **chrUPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
  253. int16_t **chrVPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
  254. int16_t **alpPixBuf; ///< Ring buffer for scaled horizontal alpha plane lines to be fed to the vertical scaler.
  255. int vLumBufSize; ///< Number of vertical luma/alpha lines allocated in the ring buffer.
  256. int vChrBufSize; ///< Number of vertical chroma lines allocated in the ring buffer.
  257. int lastInLumBuf; ///< Last scaled horizontal luma/alpha line from source in the ring buffer.
  258. int lastInChrBuf; ///< Last scaled horizontal chroma line from source in the ring buffer.
  259. int lumBufIndex; ///< Index in ring buffer of the last scaled horizontal luma/alpha line from source.
  260. int chrBufIndex; ///< Index in ring buffer of the last scaled horizontal chroma line from source.
  261. //@}
  262. uint8_t *formatConvBuffer;
  263. /**
  264. * @name Horizontal and vertical filters.
  265. * To better understand the following fields, here is a pseudo-code of
  266. * their usage in filtering a horizontal line:
  267. * @code
  268. * for (i = 0; i < width; i++) {
  269. * dst[i] = 0;
  270. * for (j = 0; j < filterSize; j++)
  271. * dst[i] += src[ filterPos[i] + j ] * filter[ filterSize * i + j ];
  272. * dst[i] >>= FRAC_BITS; // The actual implementation is fixed-point.
  273. * }
  274. * @endcode
  275. */
  276. //@{
  277. int16_t *hLumFilter; ///< Array of horizontal filter coefficients for luma/alpha planes.
  278. int16_t *hChrFilter; ///< Array of horizontal filter coefficients for chroma planes.
  279. int16_t *vLumFilter; ///< Array of vertical filter coefficients for luma/alpha planes.
  280. int16_t *vChrFilter; ///< Array of vertical filter coefficients for chroma planes.
  281. int32_t *hLumFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
  282. int32_t *hChrFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for chroma planes.
  283. int32_t *vLumFilterPos; ///< Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
  284. int32_t *vChrFilterPos; ///< Array of vertical filter starting positions for each dst[i] for chroma planes.
  285. int hLumFilterSize; ///< Horizontal filter size for luma/alpha pixels.
  286. int hChrFilterSize; ///< Horizontal filter size for chroma pixels.
  287. int vLumFilterSize; ///< Vertical filter size for luma/alpha pixels.
  288. int vChrFilterSize; ///< Vertical filter size for chroma pixels.
  289. //@}
  290. int lumMmx2FilterCodeSize; ///< Runtime-generated MMX2 horizontal fast bilinear scaler code size for luma/alpha planes.
  291. int chrMmx2FilterCodeSize; ///< Runtime-generated MMX2 horizontal fast bilinear scaler code size for chroma planes.
  292. uint8_t *lumMmx2FilterCode; ///< Runtime-generated MMX2 horizontal fast bilinear scaler code for luma/alpha planes.
  293. uint8_t *chrMmx2FilterCode; ///< Runtime-generated MMX2 horizontal fast bilinear scaler code for chroma planes.
  294. int canMMX2BeUsed;
  295. int dstY; ///< Last destination vertical line output from last slice.
  296. int flags; ///< Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
  297. void *yuvTable; // pointer to the yuv->rgb table start so it can be freed()
  298. uint8_t *table_rV[256 + 2*YUVRGB_TABLE_HEADROOM];
  299. uint8_t *table_gU[256 + 2*YUVRGB_TABLE_HEADROOM];
  300. int table_gV[256 + 2*YUVRGB_TABLE_HEADROOM];
  301. uint8_t *table_bU[256 + 2*YUVRGB_TABLE_HEADROOM];
  302. //Colorspace stuff
  303. int contrast, brightness, saturation; // for sws_getColorspaceDetails
  304. int srcColorspaceTable[4];
  305. int dstColorspaceTable[4];
  306. int srcRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (source image).
  307. int dstRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (destination image).
  308. int src0Alpha;
  309. int dst0Alpha;
  310. int yuv2rgb_y_offset;
  311. int yuv2rgb_y_coeff;
  312. int yuv2rgb_v2r_coeff;
  313. int yuv2rgb_v2g_coeff;
  314. int yuv2rgb_u2g_coeff;
  315. int yuv2rgb_u2b_coeff;
  316. #define RED_DITHER "0*8"
  317. #define GREEN_DITHER "1*8"
  318. #define BLUE_DITHER "2*8"
  319. #define Y_COEFF "3*8"
  320. #define VR_COEFF "4*8"
  321. #define UB_COEFF "5*8"
  322. #define VG_COEFF "6*8"
  323. #define UG_COEFF "7*8"
  324. #define Y_OFFSET "8*8"
  325. #define U_OFFSET "9*8"
  326. #define V_OFFSET "10*8"
  327. #define LUM_MMX_FILTER_OFFSET "11*8"
  328. #define CHR_MMX_FILTER_OFFSET "11*8+4*4*256"
  329. #define DSTW_OFFSET "11*8+4*4*256*2" //do not change, it is hardcoded in the ASM
  330. #define ESP_OFFSET "11*8+4*4*256*2+8"
  331. #define VROUNDER_OFFSET "11*8+4*4*256*2+16"
  332. #define U_TEMP "11*8+4*4*256*2+24"
  333. #define V_TEMP "11*8+4*4*256*2+32"
  334. #define Y_TEMP "11*8+4*4*256*2+40"
  335. #define ALP_MMX_FILTER_OFFSET "11*8+4*4*256*2+48"
  336. #define UV_OFF_PX "11*8+4*4*256*3+48"
  337. #define UV_OFF_BYTE "11*8+4*4*256*3+56"
  338. #define DITHER16 "11*8+4*4*256*3+64"
  339. #define DITHER32 "11*8+4*4*256*3+80"
  340. DECLARE_ALIGNED(8, uint64_t, redDither);
  341. DECLARE_ALIGNED(8, uint64_t, greenDither);
  342. DECLARE_ALIGNED(8, uint64_t, blueDither);
  343. DECLARE_ALIGNED(8, uint64_t, yCoeff);
  344. DECLARE_ALIGNED(8, uint64_t, vrCoeff);
  345. DECLARE_ALIGNED(8, uint64_t, ubCoeff);
  346. DECLARE_ALIGNED(8, uint64_t, vgCoeff);
  347. DECLARE_ALIGNED(8, uint64_t, ugCoeff);
  348. DECLARE_ALIGNED(8, uint64_t, yOffset);
  349. DECLARE_ALIGNED(8, uint64_t, uOffset);
  350. DECLARE_ALIGNED(8, uint64_t, vOffset);
  351. int32_t lumMmxFilter[4 * MAX_FILTER_SIZE];
  352. int32_t chrMmxFilter[4 * MAX_FILTER_SIZE];
  353. int dstW; ///< Width of destination luma/alpha planes.
  354. DECLARE_ALIGNED(8, uint64_t, esp);
  355. DECLARE_ALIGNED(8, uint64_t, vRounder);
  356. DECLARE_ALIGNED(8, uint64_t, u_temp);
  357. DECLARE_ALIGNED(8, uint64_t, v_temp);
  358. DECLARE_ALIGNED(8, uint64_t, y_temp);
  359. int32_t alpMmxFilter[4 * MAX_FILTER_SIZE];
  360. // alignment of these values is not necessary, but merely here
  361. // to maintain the same offset across x8632 and x86-64. Once we
  362. // use proper offset macros in the asm, they can be removed.
  363. DECLARE_ALIGNED(8, ptrdiff_t, uv_off); ///< offset (in pixels) between u and v planes
  364. DECLARE_ALIGNED(8, ptrdiff_t, uv_offx2); ///< offset (in bytes) between u and v planes
  365. DECLARE_ALIGNED(8, uint16_t, dither16)[8];
  366. DECLARE_ALIGNED(8, uint32_t, dither32)[8];
  367. const uint8_t *chrDither8, *lumDither8;
  368. #if HAVE_ALTIVEC
  369. vector signed short CY;
  370. vector signed short CRV;
  371. vector signed short CBU;
  372. vector signed short CGU;
  373. vector signed short CGV;
  374. vector signed short OY;
  375. vector unsigned short CSHIFT;
  376. vector signed short *vYCoeffsBank, *vCCoeffsBank;
  377. #endif
  378. #if ARCH_BFIN
  379. DECLARE_ALIGNED(4, uint32_t, oy);
  380. DECLARE_ALIGNED(4, uint32_t, oc);
  381. DECLARE_ALIGNED(4, uint32_t, zero);
  382. DECLARE_ALIGNED(4, uint32_t, cy);
  383. DECLARE_ALIGNED(4, uint32_t, crv);
  384. DECLARE_ALIGNED(4, uint32_t, rmask);
  385. DECLARE_ALIGNED(4, uint32_t, cbu);
  386. DECLARE_ALIGNED(4, uint32_t, bmask);
  387. DECLARE_ALIGNED(4, uint32_t, cgu);
  388. DECLARE_ALIGNED(4, uint32_t, cgv);
  389. DECLARE_ALIGNED(4, uint32_t, gmask);
  390. #endif
  391. #if HAVE_VIS
  392. DECLARE_ALIGNED(8, uint64_t, sparc_coeffs)[10];
  393. #endif
  394. int use_mmx_vfilter;
  395. /* function pointers for swScale() */
  396. yuv2planar1_fn yuv2plane1;
  397. yuv2planarX_fn yuv2planeX;
  398. yuv2interleavedX_fn yuv2nv12cX;
  399. yuv2packed1_fn yuv2packed1;
  400. yuv2packed2_fn yuv2packed2;
  401. yuv2packedX_fn yuv2packedX;
  402. /// Unscaled conversion of luma plane to YV12 for horizontal scaler.
  403. void (*lumToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
  404. int width, uint32_t *pal);
  405. /// Unscaled conversion of alpha plane to YV12 for horizontal scaler.
  406. void (*alpToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
  407. int width, uint32_t *pal);
  408. /// Unscaled conversion of chroma planes to YV12 for horizontal scaler.
  409. void (*chrToYV12)(uint8_t *dstU, uint8_t *dstV,
  410. const uint8_t *src1, const uint8_t *src2, const uint8_t *src3,
  411. int width, uint32_t *pal);
  412. /**
  413. * Functions to read planar input, such as planar RGB, and convert
  414. * internally to Y/UV.
  415. */
  416. /** @{ */
  417. void (*readLumPlanar)(uint8_t *dst, const uint8_t *src[4], int width);
  418. void (*readChrPlanar)(uint8_t *dstU, uint8_t *dstV, const uint8_t *src[4],
  419. int width);
  420. /** @} */
  421. /**
  422. * Scale one horizontal line of input data using a bilinear filter
  423. * to produce one line of output data. Compared to SwsContext->hScale(),
  424. * please take note of the following caveats when using these:
  425. * - Scaling is done using only 7bit instead of 14bit coefficients.
  426. * - You can use no more than 5 input pixels to produce 4 output
  427. * pixels. Therefore, this filter should not be used for downscaling
  428. * by more than ~20% in width (because that equals more than 5/4th
  429. * downscaling and thus more than 5 pixels input per 4 pixels output).
  430. * - In general, bilinear filters create artifacts during downscaling
  431. * (even when <20%), because one output pixel will span more than one
  432. * input pixel, and thus some pixels will need edges of both neighbor
  433. * pixels to interpolate the output pixel. Since you can use at most
  434. * two input pixels per output pixel in bilinear scaling, this is
  435. * impossible and thus downscaling by any size will create artifacts.
  436. * To enable this type of scaling, set SWS_FLAG_FAST_BILINEAR
  437. * in SwsContext->flags.
  438. */
  439. /** @{ */
  440. void (*hyscale_fast)(struct SwsContext *c,
  441. int16_t *dst, int dstWidth,
  442. const uint8_t *src, int srcW, int xInc);
  443. void (*hcscale_fast)(struct SwsContext *c,
  444. int16_t *dst1, int16_t *dst2, int dstWidth,
  445. const uint8_t *src1, const uint8_t *src2,
  446. int srcW, int xInc);
  447. /** @} */
  448. /**
  449. * Scale one horizontal line of input data using a filter over the input
  450. * lines, to produce one (differently sized) line of output data.
  451. *
  452. * @param dst pointer to destination buffer for horizontally scaled
  453. * data. If the number of bits per component of one
  454. * destination pixel (SwsContext->dstBpc) is <= 10, data
  455. * will be 15bpc in 16bits (int16_t) width. Else (i.e.
  456. * SwsContext->dstBpc == 16), data will be 19bpc in
  457. * 32bits (int32_t) width.
  458. * @param dstW width of destination image
  459. * @param src pointer to source data to be scaled. If the number of
  460. * bits per component of a source pixel (SwsContext->srcBpc)
  461. * is 8, this is 8bpc in 8bits (uint8_t) width. Else
  462. * (i.e. SwsContext->dstBpc > 8), this is native depth
  463. * in 16bits (uint16_t) width. In other words, for 9-bit
  464. * YUV input, this is 9bpc, for 10-bit YUV input, this is
  465. * 10bpc, and for 16-bit RGB or YUV, this is 16bpc.
  466. * @param filter filter coefficients to be used per output pixel for
  467. * scaling. This contains 14bpp filtering coefficients.
  468. * Guaranteed to contain dstW * filterSize entries.
  469. * @param filterPos position of the first input pixel to be used for
  470. * each output pixel during scaling. Guaranteed to
  471. * contain dstW entries.
  472. * @param filterSize the number of input coefficients to be used (and
  473. * thus the number of input pixels to be used) for
  474. * creating a single output pixel. Is aligned to 4
  475. * (and input coefficients thus padded with zeroes)
  476. * to simplify creating SIMD code.
  477. */
  478. /** @{ */
  479. void (*hyScale)(struct SwsContext *c, int16_t *dst, int dstW,
  480. const uint8_t *src, const int16_t *filter,
  481. const int32_t *filterPos, int filterSize);
  482. void (*hcScale)(struct SwsContext *c, int16_t *dst, int dstW,
  483. const uint8_t *src, const int16_t *filter,
  484. const int32_t *filterPos, int filterSize);
  485. /** @} */
  486. /// Color range conversion function for luma plane if needed.
  487. void (*lumConvertRange)(int16_t *dst, int width);
  488. /// Color range conversion function for chroma planes if needed.
  489. void (*chrConvertRange)(int16_t *dst1, int16_t *dst2, int width);
  490. int needs_hcscale; ///< Set if there are chroma planes to be converted.
  491. } SwsContext;
  492. //FIXME check init (where 0)
  493. SwsFunc ff_yuv2rgb_get_func_ptr(SwsContext *c);
  494. int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4],
  495. int fullRange, int brightness,
  496. int contrast, int saturation);
  497. void ff_yuv2rgb_init_tables_altivec(SwsContext *c, const int inv_table[4],
  498. int brightness, int contrast, int saturation);
  499. void updateMMXDitherTables(SwsContext *c, int dstY, int lumBufIndex, int chrBufIndex,
  500. int lastInLumBuf, int lastInChrBuf);
  501. SwsFunc ff_yuv2rgb_init_mmx(SwsContext *c);
  502. SwsFunc ff_yuv2rgb_init_vis(SwsContext *c);
  503. SwsFunc ff_yuv2rgb_init_altivec(SwsContext *c);
  504. SwsFunc ff_yuv2rgb_get_func_ptr_bfin(SwsContext *c);
  505. void ff_bfin_get_unscaled_swscale(SwsContext *c);
  506. #if FF_API_SWS_FORMAT_NAME
  507. /**
  508. * @deprecated Use av_get_pix_fmt_name() instead.
  509. */
  510. attribute_deprecated
  511. const char *sws_format_name(enum AVPixelFormat format);
  512. #endif
  513. static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
  514. {
  515. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  516. av_assert0(desc);
  517. return desc->comp[0].depth_minus1 == 15;
  518. }
  519. static av_always_inline int is9_OR_10BPS(enum AVPixelFormat pix_fmt)
  520. {
  521. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  522. av_assert0(desc);
  523. return desc->comp[0].depth_minus1 >= 8 && desc->comp[0].depth_minus1 <= 13;
  524. }
  525. #define isNBPS(x) is9_OR_10BPS(x)
  526. static av_always_inline int isBE(enum AVPixelFormat pix_fmt)
  527. {
  528. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  529. av_assert0(desc);
  530. return desc->flags & PIX_FMT_BE;
  531. }
  532. static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
  533. {
  534. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  535. av_assert0(desc);
  536. return !(desc->flags & PIX_FMT_RGB) && desc->nb_components >= 2;
  537. }
  538. static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt)
  539. {
  540. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  541. av_assert0(desc);
  542. return ((desc->flags & PIX_FMT_PLANAR) && isYUV(pix_fmt));
  543. }
  544. static av_always_inline int isRGB(enum AVPixelFormat pix_fmt)
  545. {
  546. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  547. av_assert0(desc);
  548. return (desc->flags & PIX_FMT_RGB);
  549. }
  550. #if 0 // FIXME
  551. #define isGray(x) \
  552. (!(av_pix_fmt_descriptors[x].flags & PIX_FMT_PAL) && \
  553. av_pix_fmt_descriptors[x].nb_components <= 2)
  554. #else
  555. #define isGray(x) \
  556. ((x) == AV_PIX_FMT_GRAY8 || \
  557. (x) == AV_PIX_FMT_Y400A || \
  558. (x) == AV_PIX_FMT_GRAY16BE || \
  559. (x) == AV_PIX_FMT_GRAY16LE)
  560. #endif
  561. #define isRGBinInt(x) \
  562. ( \
  563. (x) == AV_PIX_FMT_RGB48BE || \
  564. (x) == AV_PIX_FMT_RGB48LE || \
  565. (x) == AV_PIX_FMT_RGBA64BE || \
  566. (x) == AV_PIX_FMT_RGBA64LE || \
  567. (x) == AV_PIX_FMT_RGB32 || \
  568. (x) == AV_PIX_FMT_RGB32_1 || \
  569. (x) == AV_PIX_FMT_RGB24 || \
  570. (x) == AV_PIX_FMT_RGB565BE || \
  571. (x) == AV_PIX_FMT_RGB565LE || \
  572. (x) == AV_PIX_FMT_RGB555BE || \
  573. (x) == AV_PIX_FMT_RGB555LE || \
  574. (x) == AV_PIX_FMT_RGB444BE || \
  575. (x) == AV_PIX_FMT_RGB444LE || \
  576. (x) == AV_PIX_FMT_RGB8 || \
  577. (x) == AV_PIX_FMT_RGB4 || \
  578. (x) == AV_PIX_FMT_RGB4_BYTE || \
  579. (x) == AV_PIX_FMT_MONOBLACK || \
  580. (x) == AV_PIX_FMT_MONOWHITE \
  581. )
  582. #define isBGRinInt(x) \
  583. ( \
  584. (x) == AV_PIX_FMT_BGR48BE || \
  585. (x) == AV_PIX_FMT_BGR48LE || \
  586. (x) == AV_PIX_FMT_BGRA64BE || \
  587. (x) == AV_PIX_FMT_BGRA64LE || \
  588. (x) == AV_PIX_FMT_BGR32 || \
  589. (x) == AV_PIX_FMT_BGR32_1 || \
  590. (x) == AV_PIX_FMT_BGR24 || \
  591. (x) == AV_PIX_FMT_BGR565BE || \
  592. (x) == AV_PIX_FMT_BGR565LE || \
  593. (x) == AV_PIX_FMT_BGR555BE || \
  594. (x) == AV_PIX_FMT_BGR555LE || \
  595. (x) == AV_PIX_FMT_BGR444BE || \
  596. (x) == AV_PIX_FMT_BGR444LE || \
  597. (x) == AV_PIX_FMT_BGR8 || \
  598. (x) == AV_PIX_FMT_BGR4 || \
  599. (x) == AV_PIX_FMT_BGR4_BYTE || \
  600. (x) == AV_PIX_FMT_MONOBLACK || \
  601. (x) == AV_PIX_FMT_MONOWHITE \
  602. )
  603. #define isRGBinBytes(x) ( \
  604. (x) == AV_PIX_FMT_RGB48BE \
  605. || (x) == AV_PIX_FMT_RGB48LE \
  606. || (x) == AV_PIX_FMT_RGBA64BE \
  607. || (x) == AV_PIX_FMT_RGBA64LE \
  608. || (x) == AV_PIX_FMT_RGBA \
  609. || (x) == AV_PIX_FMT_ARGB \
  610. || (x) == AV_PIX_FMT_RGB24 \
  611. )
  612. #define isBGRinBytes(x) ( \
  613. (x) == AV_PIX_FMT_BGR48BE \
  614. || (x) == AV_PIX_FMT_BGR48LE \
  615. || (x) == AV_PIX_FMT_BGRA64BE \
  616. || (x) == AV_PIX_FMT_BGRA64LE \
  617. || (x) == AV_PIX_FMT_BGRA \
  618. || (x) == AV_PIX_FMT_ABGR \
  619. || (x) == AV_PIX_FMT_BGR24 \
  620. )
  621. #define isAnyRGB(x) \
  622. ( \
  623. isRGBinInt(x) || \
  624. isBGRinInt(x) || \
  625. (x)==AV_PIX_FMT_GBR24P \
  626. )
  627. static av_always_inline int isALPHA(enum AVPixelFormat pix_fmt)
  628. {
  629. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  630. av_assert0(desc);
  631. return desc->nb_components == 2 || desc->nb_components == 4;
  632. }
  633. #if 1
  634. #define isPacked(x) ( \
  635. (x)==AV_PIX_FMT_PAL8 \
  636. || (x)==AV_PIX_FMT_YUYV422 \
  637. || (x)==AV_PIX_FMT_UYVY422 \
  638. || (x)==AV_PIX_FMT_Y400A \
  639. || isRGBinInt(x) \
  640. || isBGRinInt(x) \
  641. )
  642. #else
  643. static av_always_inline int isPacked(enum AVPixelFormat pix_fmt)
  644. {
  645. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  646. av_assert0(desc);
  647. return ((desc->nb_components >= 2 && !(desc->flags & PIX_FMT_PLANAR)) ||
  648. pix_fmt == AV_PIX_FMT_PAL8);
  649. }
  650. #endif
  651. static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt)
  652. {
  653. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  654. av_assert0(desc);
  655. return (desc->nb_components >= 2 && (desc->flags & PIX_FMT_PLANAR));
  656. }
  657. static av_always_inline int isPackedRGB(enum AVPixelFormat pix_fmt)
  658. {
  659. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  660. av_assert0(desc);
  661. return ((desc->flags & (PIX_FMT_PLANAR | PIX_FMT_RGB)) == PIX_FMT_RGB);
  662. }
  663. static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
  664. {
  665. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  666. av_assert0(desc);
  667. return ((desc->flags & (PIX_FMT_PLANAR | PIX_FMT_RGB)) ==
  668. (PIX_FMT_PLANAR | PIX_FMT_RGB));
  669. }
  670. static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
  671. {
  672. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  673. av_assert0(desc);
  674. return (desc->flags & PIX_FMT_PAL) || (desc->flags & PIX_FMT_PSEUDOPAL);
  675. }
  676. extern const uint64_t ff_dither4[2];
  677. extern const uint64_t ff_dither8[2];
  678. extern const uint8_t dithers[8][8][8];
  679. extern const uint16_t dither_scale[15][16];
  680. extern const AVClass sws_context_class;
  681. /**
  682. * Set c->swScale to an unscaled converter if one exists for the specific
  683. * source and destination formats, bit depths, flags, etc.
  684. */
  685. void ff_get_unscaled_swscale(SwsContext *c);
  686. void ff_swscale_get_unscaled_altivec(SwsContext *c);
  687. /**
  688. * Return function pointer to fastest main scaler path function depending
  689. * on architecture and available optimizations.
  690. */
  691. SwsFunc ff_getSwsFunc(SwsContext *c);
  692. void ff_sws_init_input_funcs(SwsContext *c);
  693. void ff_sws_init_output_funcs(SwsContext *c,
  694. yuv2planar1_fn *yuv2plane1,
  695. yuv2planarX_fn *yuv2planeX,
  696. yuv2interleavedX_fn *yuv2nv12cX,
  697. yuv2packed1_fn *yuv2packed1,
  698. yuv2packed2_fn *yuv2packed2,
  699. yuv2packedX_fn *yuv2packedX);
  700. void ff_sws_init_swScale_altivec(SwsContext *c);
  701. void ff_sws_init_swScale_mmx(SwsContext *c);
  702. #endif /* SWSCALE_SWSCALE_INTERNAL_H */