You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

748 lines
28KB

  1. /*
  2. * Copyright (c) 2012 Clément Bœsch
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along
  17. * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
  18. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  19. */
  20. /**
  21. * @file
  22. * EBU R.128 implementation
  23. * @see http://tech.ebu.ch/loudness
  24. * @see https://www.youtube.com/watch?v=iuEtQqC-Sqo "EBU R128 Introduction - Florian Camerer"
  25. * @todo True Peak
  26. * @todo implement start/stop/reset through filter command injection
  27. * @todo support other frequencies to avoid resampling
  28. */
  29. #include <math.h>
  30. #include "libavutil/audioconvert.h"
  31. #include "libavutil/avassert.h"
  32. #include "libavutil/avstring.h"
  33. #include "libavutil/xga_font_data.h"
  34. #include "libavutil/opt.h"
  35. #include "libavutil/timestamp.h"
  36. #include "audio.h"
  37. #include "avfilter.h"
  38. #include "formats.h"
  39. #include "internal.h"
  40. #define MAX_CHANNELS 63
  41. /* pre-filter coefficients */
  42. #define PRE_B0 1.53512485958697
  43. #define PRE_B1 -2.69169618940638
  44. #define PRE_B2 1.19839281085285
  45. #define PRE_A1 -1.69065929318241
  46. #define PRE_A2 0.73248077421585
  47. /* RLB-filter coefficients */
  48. #define RLB_B0 1.0
  49. #define RLB_B1 -2.0
  50. #define RLB_B2 1.0
  51. #define RLB_A1 -1.99004745483398
  52. #define RLB_A2 0.99007225036621
  53. #define ABS_THRES -70 ///< silence gate: we discard anything below this absolute (LUFS) threshold
  54. #define ABS_UP_THRES 10 ///< upper loud limit to consider (ABS_THRES being the minimum)
  55. #define HIST_GRAIN 100 ///< defines histogram precision
  56. #define HIST_SIZE ((ABS_UP_THRES - ABS_THRES) * HIST_GRAIN + 1)
  57. /**
  58. * An histogram is an array of HIST_SIZE hist_entry storing all the energies
  59. * recorded (with an accuracy of 1/HIST_GRAIN) of the loudnesses from ABS_THRES
  60. * (at 0) to ABS_UP_THRES (at HIST_SIZE-1).
  61. * This fixed-size system avoids the need of a list of energies growing
  62. * infinitely over the time and is thus more scalable.
  63. */
  64. struct hist_entry {
  65. int count; ///< how many times the corresponding value occurred
  66. double energy; ///< E = 10^((L + 0.691) / 10)
  67. double loudness; ///< L = -0.691 + 10 * log10(E)
  68. };
  69. struct integrator {
  70. double *cache[MAX_CHANNELS]; ///< window of filtered samples (N ms)
  71. int cache_pos; ///< focus on the last added bin in the cache array
  72. double sum[MAX_CHANNELS]; ///< sum of the last N ms filtered samples (cache content)
  73. int filled; ///< 1 if the cache is completely filled, 0 otherwise
  74. double rel_threshold; ///< relative threshold
  75. double sum_kept_powers; ///< sum of the powers (weighted sums) above absolute threshold
  76. int nb_kept_powers; ///< number of sum above absolute threshold
  77. struct hist_entry *histogram; ///< histogram of the powers, used to compute LRA and I
  78. };
  79. struct rect { int x, y, w, h; };
  80. typedef struct {
  81. const AVClass *class; ///< AVClass context for log and options purpose
  82. /* video */
  83. int do_video; ///< 1 if video output enabled, 0 otherwise
  84. int w, h; ///< size of the video output
  85. struct rect text; ///< rectangle for the LU legend on the left
  86. struct rect graph; ///< rectangle for the main graph in the center
  87. struct rect gauge; ///< rectangle for the gauge on the right
  88. AVFilterBufferRef *outpicref; ///< output picture reference, updated regularly
  89. int meter; ///< select a EBU mode between +9 and +18
  90. int scale_range; ///< the range of LU values according to the meter
  91. int y_zero_lu; ///< the y value (pixel position) for 0 LU
  92. int *y_line_ref; ///< y reference values for drawing the LU lines in the graph and the gauge
  93. /* audio */
  94. int nb_channels; ///< number of channels in the input
  95. double *ch_weighting; ///< channel weighting mapping
  96. int sample_count; ///< sample count used for refresh frequency, reset at refresh
  97. /* Filter caches.
  98. * The mult by 3 in the following is for X[i], X[i-1] and X[i-2] */
  99. double x[MAX_CHANNELS * 3]; ///< 3 input samples cache for each channel
  100. double y[MAX_CHANNELS * 3]; ///< 3 pre-filter samples cache for each channel
  101. double z[MAX_CHANNELS * 3]; ///< 3 RLB-filter samples cache for each channel
  102. #define I400_BINS (48000 * 4 / 10)
  103. #define I3000_BINS (48000 * 3)
  104. struct integrator i400; ///< 400ms integrator, used for Momentary loudness (M), and Integrated loudness (I)
  105. struct integrator i3000; ///< 3s integrator, used for Short term loudness (S), and Loudness Range (LRA)
  106. /* I and LRA specific */
  107. double integrated_loudness; ///< integrated loudness in LUFS (I)
  108. double loudness_range; ///< loudness range in LU (LRA)
  109. double lra_low, lra_high; ///< low and high LRA values
  110. } EBUR128Context;
  111. #define OFFSET(x) offsetof(EBUR128Context, x)
  112. #define A AV_OPT_FLAG_AUDIO_PARAM
  113. #define V AV_OPT_FLAG_VIDEO_PARAM
  114. #define F AV_OPT_FLAG_FILTERING_PARAM
  115. static const AVOption ebur128_options[] = {
  116. { "video", "set video output", OFFSET(do_video), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, V|F },
  117. { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x480"}, 0, 0, V|F },
  118. { "meter", "set scale meter (+9 to +18)", OFFSET(meter), AV_OPT_TYPE_INT, {.i64 = 9}, 9, 18, V|F },
  119. { NULL },
  120. };
  121. AVFILTER_DEFINE_CLASS(ebur128);
  122. static const uint8_t graph_colors[] = {
  123. 0xdd, 0x66, 0x66, // value above 0LU non reached
  124. 0x66, 0x66, 0xdd, // value below 0LU non reached
  125. 0x96, 0x33, 0x33, // value above 0LU reached
  126. 0x33, 0x33, 0x96, // value below 0LU reached
  127. 0xdd, 0x96, 0x96, // value above 0LU line non reached
  128. 0x96, 0x96, 0xdd, // value below 0LU line non reached
  129. 0xdd, 0x33, 0x33, // value above 0LU line reached
  130. 0x33, 0x33, 0xdd, // value below 0LU line reached
  131. };
  132. static const uint8_t *get_graph_color(const EBUR128Context *ebur128, int v, int y)
  133. {
  134. const int below0 = y > ebur128->y_zero_lu;
  135. const int reached = y >= v;
  136. const int line = ebur128->y_line_ref[y] || y == ebur128->y_zero_lu;
  137. const int colorid = 4*line + 2*reached + below0;
  138. return graph_colors + 3*colorid;
  139. }
  140. static inline int lu_to_y(const EBUR128Context *ebur128, double v)
  141. {
  142. v += 2 * ebur128->meter; // make it in range [0;...]
  143. v = av_clipf(v, 0, ebur128->scale_range); // make sure it's in the graph scale
  144. v = ebur128->scale_range - v; // invert value (y=0 is on top)
  145. return v * ebur128->graph.h / ebur128->scale_range; // rescale from scale range to px height
  146. }
  147. #define FONT8 0
  148. #define FONT16 1
  149. static const uint8_t font_colors[] = {
  150. 0xdd, 0xdd, 0x00,
  151. 0x00, 0x96, 0x96,
  152. };
  153. static void drawtext(AVFilterBufferRef *pic, int x, int y, int ftid, const uint8_t *color, const char *fmt, ...)
  154. {
  155. int i;
  156. char buf[128] = {0};
  157. const uint8_t *font;
  158. int font_height;
  159. va_list vl;
  160. if (ftid == FONT16) font = avpriv_vga16_font, font_height = 16;
  161. else if (ftid == FONT8) font = avpriv_cga_font, font_height = 8;
  162. else return;
  163. va_start(vl, fmt);
  164. vsnprintf(buf, sizeof(buf), fmt, vl);
  165. va_end(vl);
  166. for (i = 0; buf[i]; i++) {
  167. int char_y, mask;
  168. uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8)*3;
  169. for (char_y = 0; char_y < font_height; char_y++) {
  170. for (mask = 0x80; mask; mask >>= 1) {
  171. if (font[buf[i] * font_height + char_y] & mask)
  172. memcpy(p, color, 3);
  173. else
  174. memcpy(p, "\x00\x00\x00", 3);
  175. p += 3;
  176. }
  177. p += pic->linesize[0] - 8*3;
  178. }
  179. }
  180. }
  181. static void drawline(AVFilterBufferRef *pic, int x, int y, int len, int step)
  182. {
  183. int i;
  184. uint8_t *p = pic->data[0] + y*pic->linesize[0] + x*3;
  185. for (i = 0; i < len; i++) {
  186. memcpy(p, "\x00\xff\x00", 3);
  187. p += step;
  188. }
  189. }
  190. static int config_video_output(AVFilterLink *outlink)
  191. {
  192. int i, x, y;
  193. uint8_t *p;
  194. AVFilterContext *ctx = outlink->src;
  195. EBUR128Context *ebur128 = ctx->priv;
  196. AVFilterBufferRef *outpicref;
  197. /* check if there is enough space to represent everything decently */
  198. if (ebur128->w < 640 || ebur128->h < 480) {
  199. av_log(ctx, AV_LOG_ERROR, "Video size %dx%d is too small, "
  200. "minimum size is 640x480\n", ebur128->w, ebur128->h);
  201. return AVERROR(EINVAL);
  202. }
  203. outlink->w = ebur128->w;
  204. outlink->h = ebur128->h;
  205. #define PAD 8
  206. /* configure text area position and size */
  207. ebur128->text.x = PAD;
  208. ebur128->text.y = 40;
  209. ebur128->text.w = 3 * 8; // 3 characters
  210. ebur128->text.h = ebur128->h - PAD - ebur128->text.y;
  211. /* configure gauge position and size */
  212. ebur128->gauge.w = 20;
  213. ebur128->gauge.h = ebur128->text.h;
  214. ebur128->gauge.x = ebur128->w - PAD - ebur128->gauge.w;
  215. ebur128->gauge.y = ebur128->text.y;
  216. /* configure graph position and size */
  217. ebur128->graph.x = ebur128->text.x + ebur128->text.w + PAD;
  218. ebur128->graph.y = ebur128->gauge.y;
  219. ebur128->graph.w = ebur128->gauge.x - ebur128->graph.x - PAD;
  220. ebur128->graph.h = ebur128->gauge.h;
  221. /* graph and gauge share the LU-to-pixel code */
  222. av_assert0(ebur128->graph.h == ebur128->gauge.h);
  223. /* prepare the initial picref buffer */
  224. avfilter_unref_bufferp(&ebur128->outpicref);
  225. ebur128->outpicref = outpicref =
  226. ff_get_video_buffer(outlink, AV_PERM_WRITE|AV_PERM_PRESERVE|AV_PERM_REUSE2,
  227. outlink->w, outlink->h);
  228. if (!outpicref)
  229. return AVERROR(ENOMEM);
  230. outlink->sample_aspect_ratio = (AVRational){1,1};
  231. /* init y references values (to draw LU lines) */
  232. ebur128->y_line_ref = av_calloc(ebur128->graph.h + 1, sizeof(*ebur128->y_line_ref));
  233. if (!ebur128->y_line_ref)
  234. return AVERROR(ENOMEM);
  235. /* black background */
  236. memset(outpicref->data[0], 0, ebur128->h * outpicref->linesize[0]);
  237. /* draw LU legends */
  238. drawtext(outpicref, PAD, PAD+16, FONT8, font_colors+3, " LU");
  239. for (i = ebur128->meter; i >= -ebur128->meter * 2; i--) {
  240. y = lu_to_y(ebur128, i);
  241. x = PAD + (i < 10 && i > -10) * 8;
  242. ebur128->y_line_ref[y] = i;
  243. y -= 4; // -4 to center vertically
  244. drawtext(outpicref, x, y + ebur128->graph.y, FONT8, font_colors+3,
  245. "%c%d", i < 0 ? '-' : i > 0 ? '+' : ' ', FFABS(i));
  246. }
  247. /* draw graph */
  248. ebur128->y_zero_lu = lu_to_y(ebur128, 0);
  249. p = outpicref->data[0] + ebur128->graph.y * outpicref->linesize[0]
  250. + ebur128->graph.x * 3;
  251. for (y = 0; y < ebur128->graph.h; y++) {
  252. const uint8_t *c = get_graph_color(ebur128, INT_MAX, y);
  253. for (x = 0; x < ebur128->graph.w; x++)
  254. memcpy(p + x*3, c, 3);
  255. p += outpicref->linesize[0];
  256. }
  257. /* draw fancy rectangles around the graph and the gauge */
  258. #define DRAW_RECT(r) do { \
  259. drawline(outpicref, r.x, r.y - 1, r.w, 3); \
  260. drawline(outpicref, r.x, r.y + r.h, r.w, 3); \
  261. drawline(outpicref, r.x - 1, r.y, r.h, outpicref->linesize[0]); \
  262. drawline(outpicref, r.x + r.w, r.y, r.h, outpicref->linesize[0]); \
  263. } while (0)
  264. DRAW_RECT(ebur128->graph);
  265. DRAW_RECT(ebur128->gauge);
  266. return 0;
  267. }
  268. static int config_audio_output(AVFilterLink *outlink)
  269. {
  270. int i;
  271. AVFilterContext *ctx = outlink->src;
  272. EBUR128Context *ebur128 = ctx->priv;
  273. const int nb_channels = av_get_channel_layout_nb_channels(outlink->channel_layout);
  274. #define BACK_MASK (AV_CH_BACK_LEFT |AV_CH_BACK_CENTER |AV_CH_BACK_RIGHT| \
  275. AV_CH_TOP_BACK_LEFT|AV_CH_TOP_BACK_CENTER|AV_CH_TOP_BACK_RIGHT)
  276. ebur128->nb_channels = nb_channels;
  277. ebur128->ch_weighting = av_calloc(nb_channels, sizeof(*ebur128->ch_weighting));
  278. if (!ebur128->ch_weighting)
  279. return AVERROR(ENOMEM);
  280. for (i = 0; i < nb_channels; i++) {
  281. /* channel weighting */
  282. if ((outlink->channel_layout & 1ULL<<i) == AV_CH_LOW_FREQUENCY)
  283. continue;
  284. if (outlink->channel_layout & 1ULL<<i & BACK_MASK)
  285. ebur128->ch_weighting[i] = 1.41;
  286. else
  287. ebur128->ch_weighting[i] = 1.0;
  288. /* bins buffer for the two integration window (400ms and 3s) */
  289. ebur128->i400.cache[i] = av_calloc(I400_BINS, sizeof(*ebur128->i400.cache[0]));
  290. ebur128->i3000.cache[i] = av_calloc(I3000_BINS, sizeof(*ebur128->i3000.cache[0]));
  291. if (!ebur128->i400.cache[i] || !ebur128->i3000.cache[i])
  292. return AVERROR(ENOMEM);
  293. }
  294. return 0;
  295. }
  296. #define ENERGY(loudness) (pow(10, ((loudness) + 0.691) / 10.))
  297. #define LOUDNESS(energy) (-0.691 + 10 * log10(energy))
  298. static struct hist_entry *get_histogram(void)
  299. {
  300. int i;
  301. struct hist_entry *h = av_calloc(HIST_SIZE, sizeof(*h));
  302. for (i = 0; i < HIST_SIZE; i++) {
  303. h[i].loudness = i / (double)HIST_GRAIN + ABS_THRES;
  304. h[i].energy = ENERGY(h[i].loudness);
  305. }
  306. return h;
  307. }
  308. static av_cold int init(AVFilterContext *ctx, const char *args)
  309. {
  310. int ret;
  311. EBUR128Context *ebur128 = ctx->priv;
  312. AVFilterPad pad;
  313. ebur128->class = &ebur128_class;
  314. av_opt_set_defaults(ebur128);
  315. if ((ret = av_set_options_string(ebur128, args, "=", ":")) < 0)
  316. return ret;
  317. // if meter is +9 scale, scale range is from -18 LU to +9 LU (or 3*9)
  318. // if meter is +18 scale, scale range is from -36 LU to +18 LU (or 3*18)
  319. ebur128->scale_range = 3 * ebur128->meter;
  320. ebur128->i400.histogram = get_histogram();
  321. ebur128->i3000.histogram = get_histogram();
  322. ebur128->integrated_loudness = ABS_THRES;
  323. ebur128->loudness_range = 0;
  324. /* insert output pads */
  325. if (ebur128->do_video) {
  326. pad = (AVFilterPad){
  327. .name = av_strdup("out0"),
  328. .type = AVMEDIA_TYPE_VIDEO,
  329. .config_props = config_video_output,
  330. };
  331. if (!pad.name)
  332. return AVERROR(ENOMEM);
  333. ff_insert_outpad(ctx, 0, &pad);
  334. }
  335. pad = (AVFilterPad){
  336. .name = av_asprintf("out%d", ebur128->do_video),
  337. .type = AVMEDIA_TYPE_AUDIO,
  338. .config_props = config_audio_output,
  339. };
  340. if (!pad.name)
  341. return AVERROR(ENOMEM);
  342. ff_insert_outpad(ctx, ebur128->do_video, &pad);
  343. /* summary */
  344. av_log(ctx, AV_LOG_VERBOSE, "EBU +%d scale\n", ebur128->meter);
  345. return 0;
  346. }
  347. #define HIST_POS(power) (int)(((power) - ABS_THRES) * HIST_GRAIN)
  348. /* loudness and power should be set such as loudness = -0.691 +
  349. * 10*log10(power), we just avoid doing that calculus two times */
  350. static int gate_update(struct integrator *integ, double power,
  351. double loudness, int gate_thres)
  352. {
  353. int ipower;
  354. double relative_threshold;
  355. int gate_hist_pos;
  356. /* update powers histograms by incrementing current power count */
  357. ipower = av_clip(HIST_POS(loudness), 0, HIST_SIZE - 1);
  358. integ->histogram[ipower].count++;
  359. /* compute relative threshold and get its position in the histogram */
  360. integ->sum_kept_powers += power;
  361. integ->nb_kept_powers++;
  362. relative_threshold = integ->sum_kept_powers / integ->nb_kept_powers;
  363. if (!relative_threshold)
  364. relative_threshold = 1e-12;
  365. integ->rel_threshold = LOUDNESS(relative_threshold) + gate_thres;
  366. gate_hist_pos = av_clip(HIST_POS(integ->rel_threshold), 0, HIST_SIZE - 1);
  367. return gate_hist_pos;
  368. }
  369. static int filter_samples(AVFilterLink *inlink, AVFilterBufferRef *insamples)
  370. {
  371. int i, ch;
  372. AVFilterContext *ctx = inlink->dst;
  373. EBUR128Context *ebur128 = ctx->priv;
  374. const int nb_channels = ebur128->nb_channels;
  375. const int nb_samples = insamples->audio->nb_samples;
  376. const double *samples = (double *)insamples->data[0];
  377. AVFilterBufferRef *pic = ebur128->outpicref;
  378. for (i = 0; i < nb_samples; i++) {
  379. const int bin_id_400 = ebur128->i400.cache_pos;
  380. const int bin_id_3000 = ebur128->i3000.cache_pos;
  381. #define MOVE_TO_NEXT_CACHED_ENTRY(time) do { \
  382. ebur128->i##time.cache_pos++; \
  383. if (ebur128->i##time.cache_pos == I##time##_BINS) { \
  384. ebur128->i##time.filled = 1; \
  385. ebur128->i##time.cache_pos = 0; \
  386. } \
  387. } while (0)
  388. MOVE_TO_NEXT_CACHED_ENTRY(400);
  389. MOVE_TO_NEXT_CACHED_ENTRY(3000);
  390. for (ch = 0; ch < nb_channels; ch++) {
  391. double bin;
  392. if (!ebur128->ch_weighting[ch])
  393. continue;
  394. /* Y[i] = X[i]*b0 + X[i-1]*b1 + X[i-2]*b2 - Y[i-1]*a1 - Y[i-2]*a2 */
  395. #define FILTER(Y, X, name) do { \
  396. double *dst = ebur128->Y + ch*3; \
  397. double *src = ebur128->X + ch*3; \
  398. dst[2] = dst[1]; \
  399. dst[1] = dst[0]; \
  400. dst[0] = src[0]*name##_B0 + src[1]*name##_B1 + src[2]*name##_B2 \
  401. - dst[1]*name##_A1 - dst[2]*name##_A2; \
  402. } while (0)
  403. ebur128->x[ch * 3] = *samples++; // set X[i]
  404. // TODO: merge both filters in one?
  405. FILTER(y, x, PRE); // apply pre-filter
  406. ebur128->x[ch * 3 + 2] = ebur128->x[ch * 3 + 1];
  407. ebur128->x[ch * 3 + 1] = ebur128->x[ch * 3 ];
  408. FILTER(z, y, RLB); // apply RLB-filter
  409. bin = ebur128->z[ch * 3] * ebur128->z[ch * 3];
  410. /* add the new value, and limit the sum to the cache size (400ms or 3s)
  411. * by removing the oldest one */
  412. ebur128->i400.sum [ch] = ebur128->i400.sum [ch] + bin - ebur128->i400.cache [ch][bin_id_400];
  413. ebur128->i3000.sum[ch] = ebur128->i3000.sum[ch] + bin - ebur128->i3000.cache[ch][bin_id_3000];
  414. /* override old cache entry with the new value */
  415. ebur128->i400.cache [ch][bin_id_400 ] = bin;
  416. ebur128->i3000.cache[ch][bin_id_3000] = bin;
  417. }
  418. /* For integrated loudness, gating blocks are 400ms long with 75%
  419. * overlap (see BS.1770-2 p5), so a re-computation is needed each 100ms
  420. * (4800 samples at 48kHz). */
  421. if (++ebur128->sample_count == 4800) {
  422. double loudness_400, loudness_3000;
  423. double power_400 = 1e-12, power_3000 = 1e-12;
  424. AVFilterLink *outlink = ctx->outputs[0];
  425. const int64_t pts = insamples->pts +
  426. av_rescale_q(i, (AVRational){ 1, inlink->sample_rate },
  427. outlink->time_base);
  428. ebur128->sample_count = 0;
  429. #define COMPUTE_LOUDNESS(m, time) do { \
  430. if (ebur128->i##time.filled) { \
  431. /* weighting sum of the last <time> ms */ \
  432. for (ch = 0; ch < nb_channels; ch++) \
  433. power_##time += ebur128->ch_weighting[ch] * ebur128->i##time.sum[ch]; \
  434. power_##time /= I##time##_BINS; \
  435. } \
  436. loudness_##time = LOUDNESS(power_##time); \
  437. } while (0)
  438. COMPUTE_LOUDNESS(M, 400);
  439. COMPUTE_LOUDNESS(S, 3000);
  440. /* Integrated loudness */
  441. #define I_GATE_THRES -10 // initially defined to -8 LU in the first EBU standard
  442. if (loudness_400 >= ABS_THRES) {
  443. double integrated_sum = 0;
  444. int nb_integrated = 0;
  445. int gate_hist_pos = gate_update(&ebur128->i400, power_400,
  446. loudness_400, I_GATE_THRES);
  447. /* compute integrated loudness by summing the histogram values
  448. * above the relative threshold */
  449. for (i = gate_hist_pos; i < HIST_SIZE; i++) {
  450. const int nb_v = ebur128->i400.histogram[i].count;
  451. nb_integrated += nb_v;
  452. integrated_sum += nb_v * ebur128->i400.histogram[i].energy;
  453. }
  454. if (nb_integrated)
  455. ebur128->integrated_loudness = LOUDNESS(integrated_sum / nb_integrated);
  456. }
  457. /* LRA */
  458. #define LRA_GATE_THRES -20
  459. #define LRA_LOWER_PRC 10
  460. #define LRA_HIGHER_PRC 95
  461. /* XXX: example code in EBU 3342 is ">=" but formula in BS.1770
  462. * specs is ">" */
  463. if (loudness_3000 >= ABS_THRES) {
  464. int nb_powers = 0;
  465. int gate_hist_pos = gate_update(&ebur128->i3000, power_3000,
  466. loudness_3000, LRA_GATE_THRES);
  467. for (i = gate_hist_pos; i < HIST_SIZE; i++)
  468. nb_powers += ebur128->i3000.histogram[i].count;
  469. if (nb_powers) {
  470. int n, nb_pow;
  471. /* get lower loudness to consider */
  472. n = 0;
  473. nb_pow = LRA_LOWER_PRC * nb_powers / 100. + 0.5;
  474. for (i = gate_hist_pos; i < HIST_SIZE; i++) {
  475. n += ebur128->i3000.histogram[i].count;
  476. if (n >= nb_pow) {
  477. ebur128->lra_low = ebur128->i3000.histogram[i].loudness;
  478. break;
  479. }
  480. }
  481. /* get higher loudness to consider */
  482. n = nb_powers;
  483. nb_pow = LRA_HIGHER_PRC * nb_powers / 100. + 0.5;
  484. for (i = HIST_SIZE - 1; i >= 0; i--) {
  485. n -= ebur128->i3000.histogram[i].count;
  486. if (n < nb_pow) {
  487. ebur128->lra_high = ebur128->i3000.histogram[i].loudness;
  488. break;
  489. }
  490. }
  491. // XXX: show low & high on the graph?
  492. ebur128->loudness_range = ebur128->lra_high - ebur128->lra_low;
  493. }
  494. }
  495. #define LOG_FMT "M:%6.1f S:%6.1f I:%6.1f LUFS LRA:%6.1f LU"
  496. /* push one video frame */
  497. if (ebur128->do_video) {
  498. int x, y, ret;
  499. uint8_t *p;
  500. const int y_loudness_lu_graph = lu_to_y(ebur128, loudness_3000 + 23);
  501. const int y_loudness_lu_gauge = lu_to_y(ebur128, loudness_400 + 23);
  502. /* draw the graph using the short-term loudness */
  503. p = pic->data[0] + ebur128->graph.y*pic->linesize[0] + ebur128->graph.x*3;
  504. for (y = 0; y < ebur128->graph.h; y++) {
  505. const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_graph, y);
  506. memmove(p, p + 3, (ebur128->graph.w - 1) * 3);
  507. memcpy(p + (ebur128->graph.w - 1) * 3, c, 3);
  508. p += pic->linesize[0];
  509. }
  510. /* draw the gauge using the momentary loudness */
  511. p = pic->data[0] + ebur128->gauge.y*pic->linesize[0] + ebur128->gauge.x*3;
  512. for (y = 0; y < ebur128->gauge.h; y++) {
  513. const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_gauge, y);
  514. for (x = 0; x < ebur128->gauge.w; x++)
  515. memcpy(p + x*3, c, 3);
  516. p += pic->linesize[0];
  517. }
  518. /* draw textual info */
  519. drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors,
  520. LOG_FMT " ", // padding to erase trailing characters
  521. loudness_400, loudness_3000,
  522. ebur128->integrated_loudness, ebur128->loudness_range);
  523. /* set pts and push frame */
  524. pic->pts = pts;
  525. if ((ret = ff_start_frame(outlink, avfilter_ref_buffer(pic, ~AV_PERM_WRITE))) < 0 ||
  526. (ret = ff_draw_slice(outlink, 0, outlink->h, 1)) < 0 ||
  527. (ret = ff_end_frame(outlink)) < 0)
  528. return ret;
  529. }
  530. av_log(ctx, ebur128->do_video ? AV_LOG_VERBOSE : AV_LOG_INFO,
  531. "t: %-10s " LOG_FMT "\n", av_ts2timestr(pts, &outlink->time_base),
  532. loudness_400, loudness_3000,
  533. ebur128->integrated_loudness, ebur128->loudness_range);
  534. }
  535. }
  536. return ff_filter_samples(ctx->outputs[ebur128->do_video], insamples);
  537. }
  538. static int query_formats(AVFilterContext *ctx)
  539. {
  540. EBUR128Context *ebur128 = ctx->priv;
  541. AVFilterFormats *formats;
  542. AVFilterChannelLayouts *layouts;
  543. AVFilterLink *inlink = ctx->inputs[0];
  544. AVFilterLink *outlink = ctx->outputs[0];
  545. static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_DBL, -1 };
  546. static const int input_srate[] = {48000, -1}; // ITU-R BS.1770 provides coeff only for 48kHz
  547. static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGB24, -1 };
  548. /* set input audio formats */
  549. formats = ff_make_format_list(sample_fmts);
  550. if (!formats)
  551. return AVERROR(ENOMEM);
  552. ff_formats_ref(formats, &inlink->out_formats);
  553. layouts = ff_all_channel_layouts();
  554. if (!layouts)
  555. return AVERROR(ENOMEM);
  556. ff_channel_layouts_ref(layouts, &inlink->out_channel_layouts);
  557. formats = ff_make_format_list(input_srate);
  558. if (!formats)
  559. return AVERROR(ENOMEM);
  560. ff_formats_ref(formats, &inlink->out_samplerates);
  561. /* set optional output video format */
  562. if (ebur128->do_video) {
  563. formats = ff_make_format_list(pix_fmts);
  564. if (!formats)
  565. return AVERROR(ENOMEM);
  566. ff_formats_ref(formats, &outlink->in_formats);
  567. outlink = ctx->outputs[1];
  568. }
  569. /* set audio output formats (same as input since it's just a passthrough) */
  570. formats = ff_make_format_list(sample_fmts);
  571. if (!formats)
  572. return AVERROR(ENOMEM);
  573. ff_formats_ref(formats, &outlink->in_formats);
  574. layouts = ff_all_channel_layouts();
  575. if (!layouts)
  576. return AVERROR(ENOMEM);
  577. ff_channel_layouts_ref(layouts, &outlink->in_channel_layouts);
  578. formats = ff_make_format_list(input_srate);
  579. if (!formats)
  580. return AVERROR(ENOMEM);
  581. ff_formats_ref(formats, &outlink->in_samplerates);
  582. return 0;
  583. }
  584. static av_cold void uninit(AVFilterContext *ctx)
  585. {
  586. int i;
  587. EBUR128Context *ebur128 = ctx->priv;
  588. av_log(ctx, AV_LOG_INFO, "Summary:\n\n"
  589. " Integrated loudness:\n"
  590. " I: %5.1f LUFS\n"
  591. " Threshold: %5.1f LUFS\n\n"
  592. " Loudness range:\n"
  593. " LRA: %5.1f LU\n"
  594. " Threshold: %5.1f LUFS\n"
  595. " LRA low: %5.1f LUFS\n"
  596. " LRA high: %5.1f LUFS\n",
  597. ebur128->integrated_loudness, ebur128->i400.rel_threshold,
  598. ebur128->loudness_range, ebur128->i3000.rel_threshold,
  599. ebur128->lra_low, ebur128->lra_high);
  600. av_freep(&ebur128->y_line_ref);
  601. av_freep(&ebur128->ch_weighting);
  602. av_freep(&ebur128->i400.histogram);
  603. av_freep(&ebur128->i3000.histogram);
  604. for (i = 0; i < ebur128->nb_channels; i++) {
  605. av_freep(&ebur128->i400.cache[i]);
  606. av_freep(&ebur128->i3000.cache[i]);
  607. }
  608. for (i = 0; i < ctx->nb_outputs; i++)
  609. av_freep(&ctx->output_pads[i].name);
  610. avfilter_unref_bufferp(&ebur128->outpicref);
  611. }
  612. AVFilter avfilter_af_ebur128 = {
  613. .name = "ebur128",
  614. .description = NULL_IF_CONFIG_SMALL("EBU R128 scanner."),
  615. .priv_size = sizeof(EBUR128Context),
  616. .init = init,
  617. .uninit = uninit,
  618. .query_formats = query_formats,
  619. .inputs = (const AVFilterPad[]) {
  620. { .name = "default",
  621. .type = AVMEDIA_TYPE_AUDIO,
  622. .get_audio_buffer = ff_null_get_audio_buffer,
  623. .filter_samples = filter_samples, },
  624. { .name = NULL }
  625. },
  626. .outputs = NULL,
  627. };