You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1338 lines
50KB

  1. \input texinfo @c -*- texinfo -*-
  2. @settitle ffmpeg Documentation
  3. @titlepage
  4. @center @titlefont{ffmpeg Documentation}
  5. @end titlepage
  6. @top
  7. @contents
  8. @chapter Synopsis
  9. The generic syntax is:
  10. @example
  11. @c man begin SYNOPSIS
  12. ffmpeg [global options] [[infile options][@option{-i} @var{infile}]]... @{[outfile options] @var{outfile}@}...
  13. @c man end
  14. @end example
  15. @chapter Description
  16. @c man begin DESCRIPTION
  17. ffmpeg is a very fast video and audio converter that can also grab from
  18. a live audio/video source. It can also convert between arbitrary sample
  19. rates and resize video on the fly with a high quality polyphase filter.
  20. ffmpeg reads from an arbitrary number of input "files" (which can be regular
  21. files, pipes, network streams, grabbing devices, etc.), specified by the
  22. @code{-i} option, and writes to an arbitrary number of output "files", which are
  23. specified by a plain output filename. Anything found on the command line which
  24. cannot be interpreted as an option is considered to be an output filename.
  25. Each input or output file can in principle contain any number of streams of
  26. different types (video/audio/subtitle/attachment/data). Allowed number and/or
  27. types of streams can be limited by the container format. Selecting, which
  28. streams from which inputs go into output, is done either automatically or with
  29. the @code{-map} option (see the Stream selection chapter).
  30. To refer to input files in options, you must use their indices (0-based). E.g.
  31. the first input file is @code{0}, the second is @code{1} etc. Similarly, streams
  32. within a file are referred to by their indices. E.g. @code{2:3} refers to the
  33. fourth stream in the third input file. See also the Stream specifiers chapter.
  34. As a general rule, options are applied to the next specified
  35. file. Therefore, order is important, and you can have the same
  36. option on the command line multiple times. Each occurrence is
  37. then applied to the next input or output file.
  38. Exceptions from this rule are the global options (e.g. verbosity level),
  39. which should be specified first.
  40. Do not mix input and output files -- first specify all input files, then all
  41. output files. Also do not mix options which belong to different files. All
  42. options apply ONLY to the next input or output file and are reset between files.
  43. @itemize
  44. @item
  45. To set the video bitrate of the output file to 64kbit/s:
  46. @example
  47. ffmpeg -i input.avi -b:v 64k -bufsize 64k output.avi
  48. @end example
  49. @item
  50. To force the frame rate of the output file to 24 fps:
  51. @example
  52. ffmpeg -i input.avi -r 24 output.avi
  53. @end example
  54. @item
  55. To force the frame rate of the input file (valid for raw formats only)
  56. to 1 fps and the frame rate of the output file to 24 fps:
  57. @example
  58. ffmpeg -r 1 -i input.m2v -r 24 output.avi
  59. @end example
  60. @end itemize
  61. The format option may be needed for raw input files.
  62. @c man end DESCRIPTION
  63. @chapter Detailed description
  64. @c man begin DETAILED DESCRIPTION
  65. The transcoding process in @command{ffmpeg} for each output can be described by
  66. the following diagram:
  67. @example
  68. _______ ______________ _________ ______________ ________
  69. | | | | | | | | | |
  70. | input | demuxer | encoded data | decoder | decoded | encoder | encoded data | muxer | output |
  71. | file | ---------> | packets | ---------> | frames | ---------> | packets | -------> | file |
  72. |_______| |______________| |_________| |______________| |________|
  73. @end example
  74. @command{ffmpeg} calls the libavformat library (containing demuxers) to read
  75. input files and get packets containing encoded data from them. When there are
  76. multiple input files, @command{ffmpeg} tries to keep them synchronized by
  77. tracking lowest timestamp on any active input stream.
  78. Encoded packets are then passed to the decoder (unless streamcopy is selected
  79. for the stream, see further for a description). The decoder produces
  80. uncompressed frames (raw video/PCM audio/...) which can be processed further by
  81. filtering (see next section). After filtering the frames are passed to the
  82. encoder, which encodes them and outputs encoded packets again. Finally those are
  83. passed to the muxer, which writes the encoded packets to the output file.
  84. @section Filtering
  85. Before encoding, @command{ffmpeg} can process raw audio and video frames using
  86. filters from the libavfilter library. Several chained filters form a filter
  87. graph. @command{ffmpeg} distinguishes between two types of filtergraphs -
  88. simple and complex.
  89. @subsection Simple filtergraphs
  90. Simple filtergraphs are those that have exactly one input and output, both of
  91. the same type. In the above diagram they can be represented by simply inserting
  92. an additional step between decoding and encoding:
  93. @example
  94. _________ __________ ______________
  95. | | | | | |
  96. | decoded | simple filtergraph | filtered | encoder | encoded data |
  97. | frames | -------------------> | frames | ---------> | packets |
  98. |_________| |__________| |______________|
  99. @end example
  100. Simple filtergraphs are configured with the per-stream @option{-filter} option
  101. (with @option{-vf} and @option{-af} aliases for video and audio respectively).
  102. A simple filtergraph for video can look for example like this:
  103. @example
  104. _______ _____________ _______ _____ ________
  105. | | | | | | | | | |
  106. | input | ---> | deinterlace | ---> | scale | ---> | fps | ---> | output |
  107. |_______| |_____________| |_______| |_____| |________|
  108. @end example
  109. Note that some filters change frame properties but not frame contents. E.g. the
  110. @code{fps} filter in the example above changes number of frames, but does not
  111. touch the frame contents. Another example is the @code{setpts} filter, which
  112. only sets timestamps and otherwise passes the frames unchanged.
  113. @subsection Complex filtergraphs
  114. Complex filtergraphs are those which cannot be described as simply a linear
  115. processing chain applied to one stream. This is the case e.g. when the graph has
  116. more than one input and/or output, or when output stream type is different from
  117. input. They can be represented with the following diagram:
  118. @example
  119. _________
  120. | |
  121. | input 0 |\ __________
  122. |_________| \ | |
  123. \ _________ /| output 0 |
  124. \ | | / |__________|
  125. _________ \| complex | /
  126. | | | |/
  127. | input 1 |---->| filter |\
  128. |_________| | | \ __________
  129. /| graph | \ | |
  130. / | | \| output 1 |
  131. _________ / |_________| |__________|
  132. | | /
  133. | input 2 |/
  134. |_________|
  135. @end example
  136. Complex filtergraphs are configured with the @option{-filter_complex} option.
  137. Note that this option is global, since a complex filtergraph by its nature
  138. cannot be unambiguously associated with a single stream or file.
  139. A trivial example of a complex filtergraph is the @code{overlay} filter, which
  140. has two video inputs and one video output, containing one video overlaid on top
  141. of the other. Its audio counterpart is the @code{amix} filter.
  142. @section Stream copy
  143. Stream copy is a mode selected by supplying the @code{copy} parameter to the
  144. @option{-codec} option. It makes @command{ffmpeg} omit the decoding and encoding
  145. step for the specified stream, so it does only demuxing and muxing. It is useful
  146. for changing the container format or modifying container-level metadata. The
  147. diagram above will in this case simplify to this:
  148. @example
  149. _______ ______________ ________
  150. | | | | | |
  151. | input | demuxer | encoded data | muxer | output |
  152. | file | ---------> | packets | -------> | file |
  153. |_______| |______________| |________|
  154. @end example
  155. Since there is no decoding or encoding, it is very fast and there is no quality
  156. loss. However it might not work in some cases because of many factors. Applying
  157. filters is obviously also impossible, since filters work on uncompressed data.
  158. @c man end DETAILED DESCRIPTION
  159. @chapter Stream selection
  160. @c man begin STREAM SELECTION
  161. By default ffmpeg includes only one stream of each type (video, audio, subtitle)
  162. present in the input files and adds them to each output file. It picks the
  163. "best" of each based upon the following criteria; for video it is the stream
  164. with the highest resolution, for audio the stream with the most channels, for
  165. subtitle it's the first subtitle stream. In the case where several streams of
  166. the same type rate equally, the lowest numbered stream is chosen.
  167. You can disable some of those defaults by using @code{-vn/-an/-sn} options. For
  168. full manual control, use the @code{-map} option, which disables the defaults just
  169. described.
  170. @c man end STREAM SELECTION
  171. @chapter Options
  172. @c man begin OPTIONS
  173. @include avtools-common-opts.texi
  174. @section Main options
  175. @table @option
  176. @item -f @var{fmt} (@emph{input/output})
  177. Force input or output file format. The format is normally auto detected for input
  178. files and guessed from file extension for output files, so this option is not
  179. needed in most cases.
  180. @item -i @var{filename} (@emph{input})
  181. input file name
  182. @item -y (@emph{global})
  183. Overwrite output files without asking.
  184. @item -n (@emph{global})
  185. Do not overwrite output files but exit if file exists.
  186. @item -c[:@var{stream_specifier}] @var{codec} (@emph{input/output,per-stream})
  187. @itemx -codec[:@var{stream_specifier}] @var{codec} (@emph{input/output,per-stream})
  188. Select an encoder (when used before an output file) or a decoder (when used
  189. before an input file) for one or more streams. @var{codec} is the name of a
  190. decoder/encoder or a special value @code{copy} (output only) to indicate that
  191. the stream is not to be re-encoded.
  192. For example
  193. @example
  194. ffmpeg -i INPUT -map 0 -c:v libx264 -c:a copy OUTPUT
  195. @end example
  196. encodes all video streams with libx264 and copies all audio streams.
  197. For each stream, the last matching @code{c} option is applied, so
  198. @example
  199. ffmpeg -i INPUT -map 0 -c copy -c:v:1 libx264 -c:a:137 libvorbis OUTPUT
  200. @end example
  201. will copy all the streams except the second video, which will be encoded with
  202. libx264, and the 138th audio, which will be encoded with libvorbis.
  203. @item -t @var{duration} (@emph{output})
  204. Stop writing the output after its duration reaches @var{duration}.
  205. @var{duration} may be a number in seconds, or in @code{hh:mm:ss[.xxx]} form.
  206. @item -fs @var{limit_size} (@emph{output})
  207. Set the file size limit, expressed in bytes.
  208. @item -ss @var{position} (@emph{input/output})
  209. When used as an input option (before @code{-i}), seeks in this input file to
  210. @var{position}. When used as an output option (before an output filename),
  211. decodes but discards input until the timestamps reach @var{position}. This is
  212. slower, but more accurate.
  213. @var{position} may be either in seconds or in @code{hh:mm:ss[.xxx]} form.
  214. @item -itsoffset @var{offset} (@emph{input})
  215. Set the input time offset in seconds.
  216. @code{[-]hh:mm:ss[.xxx]} syntax is also supported.
  217. The offset is added to the timestamps of the input files.
  218. Specifying a positive offset means that the corresponding
  219. streams are delayed by @var{offset} seconds.
  220. @item -timestamp @var{time} (@emph{output})
  221. Set the recording timestamp in the container.
  222. The syntax for @var{time} is:
  223. @example
  224. now|([(YYYY-MM-DD|YYYYMMDD)[T|t| ]]((HH:MM:SS[.m...])|(HHMMSS[.m...]))[Z|z])
  225. @end example
  226. If the value is "now" it takes the current time.
  227. Time is local time unless 'Z' or 'z' is appended, in which case it is
  228. interpreted as UTC.
  229. If the year-month-day part is not specified it takes the current
  230. year-month-day.
  231. @item -metadata[:metadata_specifier] @var{key}=@var{value} (@emph{output,per-metadata})
  232. Set a metadata key/value pair.
  233. An optional @var{metadata_specifier} may be given to set metadata
  234. on streams or chapters. See @code{-map_metadata} documentation for
  235. details.
  236. This option overrides metadata set with @code{-map_metadata}. It is
  237. also possible to delete metadata by using an empty value.
  238. For example, for setting the title in the output file:
  239. @example
  240. ffmpeg -i in.avi -metadata title="my title" out.flv
  241. @end example
  242. To set the language of the first audio stream:
  243. @example
  244. ffmpeg -i INPUT -metadata:s:a:1 language=eng OUTPUT
  245. @end example
  246. @item -target @var{type} (@emph{output})
  247. Specify target file type (@code{vcd}, @code{svcd}, @code{dvd}, @code{dv},
  248. @code{dv50}). @var{type} may be prefixed with @code{pal-}, @code{ntsc-} or
  249. @code{film-} to use the corresponding standard. All the format options
  250. (bitrate, codecs, buffer sizes) are then set automatically. You can just type:
  251. @example
  252. ffmpeg -i myfile.avi -target vcd /tmp/vcd.mpg
  253. @end example
  254. Nevertheless you can specify additional options as long as you know
  255. they do not conflict with the standard, as in:
  256. @example
  257. ffmpeg -i myfile.avi -target vcd -bf 2 /tmp/vcd.mpg
  258. @end example
  259. @item -dframes @var{number} (@emph{output})
  260. Set the number of data frames to record. This is an alias for @code{-frames:d}.
  261. @item -frames[:@var{stream_specifier}] @var{framecount} (@emph{output,per-stream})
  262. Stop writing to the stream after @var{framecount} frames.
  263. @item -q[:@var{stream_specifier}] @var{q} (@emph{output,per-stream})
  264. @itemx -qscale[:@var{stream_specifier}] @var{q} (@emph{output,per-stream})
  265. Use fixed quality scale (VBR). The meaning of @var{q} is
  266. codec-dependent.
  267. @item -filter[:@var{stream_specifier}] @var{filter_graph} (@emph{output,per-stream})
  268. @var{filter_graph} is a description of the filter graph to apply to
  269. the stream. Use @code{-filters} to show all the available filters
  270. (including also sources and sinks).
  271. See also the @option{-filter_complex} option if you want to create filter graphs
  272. with multiple inputs and/or outputs.
  273. @item -pre[:@var{stream_specifier}] @var{preset_name} (@emph{output,per-stream})
  274. Specify the preset for matching stream(s).
  275. @item -stats (@emph{global})
  276. Print encoding progress/statistics. On by default.
  277. @item -progress @var{url} (@emph{global})
  278. Send program-friendly progress information to @var{url}.
  279. Progress information is written approximately every second and at the end of
  280. the encoding process. It is made of "@var{key}=@var{value}" lines. @var{key}
  281. consists of only alphanumeric characters. The last key of a sequence of
  282. progress information is always "progress".
  283. @item -stdin
  284. Enable interaction on standard input. On by default unless standard input is
  285. used as an input. To explicitly disable interaction you need to specify
  286. @code{-nostdin}.
  287. Disabling interaction on standard input is useful, for example, if
  288. ffmpeg is in the background process group. Roughly the same result can
  289. be achieved with @code{ffmpeg ... < /dev/null} but it requires a
  290. shell.
  291. @item -debug_ts (@emph{global})
  292. Print timestamp information. It is off by default. This option is
  293. mostly useful for testing and debugging purposes, and the output
  294. format may change from one version to another, so it should not be
  295. employed by portable scripts.
  296. See also the option @code{-fdebug ts}.
  297. @item -attach @var{filename} (@emph{output})
  298. Add an attachment to the output file. This is supported by a few formats
  299. like Matroska for e.g. fonts used in rendering subtitles. Attachments
  300. are implemented as a specific type of stream, so this option will add
  301. a new stream to the file. It is then possible to use per-stream options
  302. on this stream in the usual way. Attachment streams created with this
  303. option will be created after all the other streams (i.e. those created
  304. with @code{-map} or automatic mappings).
  305. Note that for Matroska you also have to set the mimetype metadata tag:
  306. @example
  307. ffmpeg -i INPUT -attach DejaVuSans.ttf -metadata:s:2 mimetype=application/x-truetype-font out.mkv
  308. @end example
  309. (assuming that the attachment stream will be third in the output file).
  310. @item -dump_attachment[:@var{stream_specifier}] @var{filename} (@emph{input,per-stream})
  311. Extract the matching attachment stream into a file named @var{filename}. If
  312. @var{filename} is empty, then the value of the @code{filename} metadata tag
  313. will be used.
  314. E.g. to extract the first attachment to a file named 'out.ttf':
  315. @example
  316. ffmpeg -dump_attachment:t:0 out.ttf INPUT
  317. @end example
  318. To extract all attachments to files determined by the @code{filename} tag:
  319. @example
  320. ffmpeg -dump_attachment:t "" INPUT
  321. @end example
  322. Technical note -- attachments are implemented as codec extradata, so this
  323. option can actually be used to extract extradata from any stream, not just
  324. attachments.
  325. @end table
  326. @section Video Options
  327. @table @option
  328. @item -vframes @var{number} (@emph{output})
  329. Set the number of video frames to record. This is an alias for @code{-frames:v}.
  330. @item -r[:@var{stream_specifier}] @var{fps} (@emph{input/output,per-stream})
  331. Set frame rate (Hz value, fraction or abbreviation).
  332. As an input option, ignore any timestamps stored in the file and instead
  333. generate timestamps assuming constant frame rate @var{fps}.
  334. As an output option, duplicate or drop input frames to achieve constant output
  335. frame rate @var{fps} (note that this actually causes the @code{fps} filter to be
  336. inserted to the end of the corresponding filtergraph).
  337. @item -s[:@var{stream_specifier}] @var{size} (@emph{input/output,per-stream})
  338. Set frame size.
  339. As an input option, this is a shortcut for the @option{video_size} private
  340. option, recognized by some demuxers for which the frame size is either not
  341. stored in the file or is configurable -- e.g. raw video or video grabbers.
  342. As an output option, this inserts the @code{scale} video filter to the
  343. @emph{end} of the corresponding filtergraph. Please use the @code{scale} filter
  344. directly to insert it at the beginning or some other place.
  345. The format is @samp{wxh} (default - same as source).
  346. @item -aspect[:@var{stream_specifier}] @var{aspect} (@emph{output,per-stream})
  347. Set the video display aspect ratio specified by @var{aspect}.
  348. @var{aspect} can be a floating point number string, or a string of the
  349. form @var{num}:@var{den}, where @var{num} and @var{den} are the
  350. numerator and denominator of the aspect ratio. For example "4:3",
  351. "16:9", "1.3333", and "1.7777" are valid argument values.
  352. @item -croptop @var{size}
  353. @item -cropbottom @var{size}
  354. @item -cropleft @var{size}
  355. @item -cropright @var{size}
  356. All the crop options have been removed. Use -vf
  357. crop=width:height:x:y instead.
  358. @item -padtop @var{size}
  359. @item -padbottom @var{size}
  360. @item -padleft @var{size}
  361. @item -padright @var{size}
  362. @item -padcolor @var{hex_color}
  363. All the pad options have been removed. Use -vf
  364. pad=width:height:x:y:color instead.
  365. @item -vn (@emph{output})
  366. Disable video recording.
  367. @item -vcodec @var{codec} (@emph{output})
  368. Set the video codec. This is an alias for @code{-codec:v}.
  369. @item -pass[:@var{stream_specifier}] @var{n} (@emph{output,per-stream})
  370. Select the pass number (1 or 2). It is used to do two-pass
  371. video encoding. The statistics of the video are recorded in the first
  372. pass into a log file (see also the option -passlogfile),
  373. and in the second pass that log file is used to generate the video
  374. at the exact requested bitrate.
  375. On pass 1, you may just deactivate audio and set output to null,
  376. examples for Windows and Unix:
  377. @example
  378. ffmpeg -i foo.mov -c:v libxvid -pass 1 -an -f rawvideo -y NUL
  379. ffmpeg -i foo.mov -c:v libxvid -pass 1 -an -f rawvideo -y /dev/null
  380. @end example
  381. @item -passlogfile[:@var{stream_specifier}] @var{prefix} (@emph{output,per-stream})
  382. Set two-pass log file name prefix to @var{prefix}, the default file name
  383. prefix is ``ffmpeg2pass''. The complete file name will be
  384. @file{PREFIX-N.log}, where N is a number specific to the output
  385. stream
  386. @item -vlang @var{code}
  387. Set the ISO 639 language code (3 letters) of the current video stream.
  388. @item -vf @var{filter_graph} (@emph{output})
  389. @var{filter_graph} is a description of the filter graph to apply to
  390. the input video.
  391. Use the option "-filters" to show all the available filters (including
  392. also sources and sinks). This is an alias for @code{-filter:v}.
  393. @end table
  394. @section Advanced Video Options
  395. @table @option
  396. @item -pix_fmt[:@var{stream_specifier}] @var{format} (@emph{input/output,per-stream})
  397. Set pixel format. Use @code{-pix_fmts} to show all the supported
  398. pixel formats.
  399. If the selected pixel format can not be selected, ffmpeg will print a
  400. warning and select the best pixel format supported by the encoder.
  401. If @var{pix_fmt} is prefixed by a @code{+}, ffmpeg will exit with an error
  402. if the requested pixel format can not be selected, and automatic conversions
  403. inside filter graphs are disabled.
  404. If @var{pix_fmt} is a single @code{+}, ffmpeg selects the same pixel format
  405. as the input (or graph output) and automatic conversions are disabled.
  406. @item -sws_flags @var{flags} (@emph{input/output})
  407. Set SwScaler flags.
  408. @item -vdt @var{n}
  409. Discard threshold.
  410. @item -rc_override[:@var{stream_specifier}] @var{override} (@emph{output,per-stream})
  411. Rate control override for specific intervals, formatted as "int,int,int"
  412. list separated with slashes. Two first values are the beginning and
  413. end frame numbers, last one is quantizer to use if positive, or quality
  414. factor if negative.
  415. @item -deinterlace
  416. Deinterlace pictures.
  417. This option is deprecated since the deinterlacing is very low quality.
  418. Use the yadif filter with @code{-filter:v yadif}.
  419. @item -ilme
  420. Force interlacing support in encoder (MPEG-2 and MPEG-4 only).
  421. Use this option if your input file is interlaced and you want
  422. to keep the interlaced format for minimum losses.
  423. The alternative is to deinterlace the input stream with
  424. @option{-deinterlace}, but deinterlacing introduces losses.
  425. @item -psnr
  426. Calculate PSNR of compressed frames.
  427. @item -vstats
  428. Dump video coding statistics to @file{vstats_HHMMSS.log}.
  429. @item -vstats_file @var{file}
  430. Dump video coding statistics to @var{file}.
  431. @item -top[:@var{stream_specifier}] @var{n} (@emph{output,per-stream})
  432. top=1/bottom=0/auto=-1 field first
  433. @item -dc @var{precision}
  434. Intra_dc_precision.
  435. @item -vtag @var{fourcc/tag} (@emph{output})
  436. Force video tag/fourcc. This is an alias for @code{-tag:v}.
  437. @item -qphist (@emph{global})
  438. Show QP histogram
  439. @item -vbsf @var{bitstream_filter}
  440. Deprecated see -bsf
  441. @item -force_key_frames[:@var{stream_specifier}] @var{time}[,@var{time}...] (@emph{output,per-stream})
  442. Force key frames at the specified timestamps, more precisely at the first
  443. frames after each specified time.
  444. This option can be useful to ensure that a seek point is present at a
  445. chapter mark or any other designated place in the output file.
  446. The timestamps must be specified in ascending order.
  447. @item -copyinkf[:@var{stream_specifier}] (@emph{output,per-stream})
  448. When doing stream copy, copy also non-key frames found at the
  449. beginning.
  450. @end table
  451. @section Audio Options
  452. @table @option
  453. @item -aframes @var{number} (@emph{output})
  454. Set the number of audio frames to record. This is an alias for @code{-frames:a}.
  455. @item -ar[:@var{stream_specifier}] @var{freq} (@emph{input/output,per-stream})
  456. Set the audio sampling frequency. For output streams it is set by
  457. default to the frequency of the corresponding input stream. For input
  458. streams this option only makes sense for audio grabbing devices and raw
  459. demuxers and is mapped to the corresponding demuxer options.
  460. @item -aq @var{q} (@emph{output})
  461. Set the audio quality (codec-specific, VBR). This is an alias for -q:a.
  462. @item -ac[:@var{stream_specifier}] @var{channels} (@emph{input/output,per-stream})
  463. Set the number of audio channels. For output streams it is set by
  464. default to the number of input audio channels. For input streams
  465. this option only makes sense for audio grabbing devices and raw demuxers
  466. and is mapped to the corresponding demuxer options.
  467. @item -an (@emph{output})
  468. Disable audio recording.
  469. @item -acodec @var{codec} (@emph{input/output})
  470. Set the audio codec. This is an alias for @code{-codec:a}.
  471. @item -sample_fmt[:@var{stream_specifier}] @var{sample_fmt} (@emph{output,per-stream})
  472. Set the audio sample format. Use @code{-sample_fmts} to get a list
  473. of supported sample formats.
  474. @item -af @var{filter_graph} (@emph{output})
  475. @var{filter_graph} is a description of the filter graph to apply to
  476. the input audio.
  477. Use the option "-filters" to show all the available filters (including
  478. also sources and sinks). This is an alias for @code{-filter:a}.
  479. @end table
  480. @section Advanced Audio options:
  481. @table @option
  482. @item -atag @var{fourcc/tag} (@emph{output})
  483. Force audio tag/fourcc. This is an alias for @code{-tag:a}.
  484. @item -absf @var{bitstream_filter}
  485. Deprecated, see -bsf
  486. @end table
  487. @section Subtitle options:
  488. @table @option
  489. @item -slang @var{code}
  490. Set the ISO 639 language code (3 letters) of the current subtitle stream.
  491. @item -scodec @var{codec} (@emph{input/output})
  492. Set the subtitle codec. This is an alias for @code{-codec:s}.
  493. @item -sn (@emph{output})
  494. Disable subtitle recording.
  495. @item -sbsf @var{bitstream_filter}
  496. Deprecated, see -bsf
  497. @end table
  498. @section Advanced Subtitle options:
  499. @table @option
  500. @item -fix_sub_duration
  501. Fix subtitles durations. For each subtitle, wait for the next packet in the
  502. same stream and adjust the duration of the first to avoid overlap. This is
  503. necessary with some subtitles codecs, especially DVB subtitles, because the
  504. duration in the original packet is only a rough estimate and the end is
  505. actually marked by an empty subtitle frame. Failing to use this option when
  506. necessary can result in exaggerated durations or muxing failures due to
  507. non-monotonic timestamps.
  508. Note that this option will delay the output of all data until the next
  509. subtitle packet is decoded: it may increase memory consumption and latency a
  510. lot.
  511. @end table
  512. @section Advanced options
  513. @table @option
  514. @item -map [-]@var{input_file_id}[:@var{stream_specifier}][,@var{sync_file_id}[:@var{stream_specifier}]] | @var{[linklabel]} (@emph{output})
  515. Designate one or more input streams as a source for the output file. Each input
  516. stream is identified by the input file index @var{input_file_id} and
  517. the input stream index @var{input_stream_id} within the input
  518. file. Both indices start at 0. If specified,
  519. @var{sync_file_id}:@var{stream_specifier} sets which input stream
  520. is used as a presentation sync reference.
  521. The first @code{-map} option on the command line specifies the
  522. source for output stream 0, the second @code{-map} option specifies
  523. the source for output stream 1, etc.
  524. A @code{-} character before the stream identifier creates a "negative" mapping.
  525. It disables matching streams from already created mappings.
  526. An alternative @var{[linklabel]} form will map outputs from complex filter
  527. graphs (see the @option{-filter_complex} option) to the output file.
  528. @var{linklabel} must correspond to a defined output link label in the graph.
  529. For example, to map ALL streams from the first input file to output
  530. @example
  531. ffmpeg -i INPUT -map 0 output
  532. @end example
  533. For example, if you have two audio streams in the first input file,
  534. these streams are identified by "0:0" and "0:1". You can use
  535. @code{-map} to select which streams to place in an output file. For
  536. example:
  537. @example
  538. ffmpeg -i INPUT -map 0:1 out.wav
  539. @end example
  540. will map the input stream in @file{INPUT} identified by "0:1" to
  541. the (single) output stream in @file{out.wav}.
  542. For example, to select the stream with index 2 from input file
  543. @file{a.mov} (specified by the identifier "0:2"), and stream with
  544. index 6 from input @file{b.mov} (specified by the identifier "1:6"),
  545. and copy them to the output file @file{out.mov}:
  546. @example
  547. ffmpeg -i a.mov -i b.mov -c copy -map 0:2 -map 1:6 out.mov
  548. @end example
  549. To select all video and the third audio stream from an input file:
  550. @example
  551. ffmpeg -i INPUT -map 0:v -map 0:a:2 OUTPUT
  552. @end example
  553. To map all the streams except the second audio, use negative mappings
  554. @example
  555. ffmpeg -i INPUT -map 0 -map -0:a:1 OUTPUT
  556. @end example
  557. Note that using this option disables the default mappings for this output file.
  558. @item -map_channel [@var{input_file_id}.@var{stream_specifier}.@var{channel_id}|-1][:@var{output_file_id}.@var{stream_specifier}]
  559. Map an audio channel from a given input to an output. If
  560. @var{output_file_id}.@var{stream_specifier} is not set, the audio channel will
  561. be mapped on all the audio streams.
  562. Using "-1" instead of
  563. @var{input_file_id}.@var{stream_specifier}.@var{channel_id} will map a muted
  564. channel.
  565. For example, assuming @var{INPUT} is a stereo audio file, you can switch the
  566. two audio channels with the following command:
  567. @example
  568. ffmpeg -i INPUT -map_channel 0.0.1 -map_channel 0.0.0 OUTPUT
  569. @end example
  570. If you want to mute the first channel and keep the second:
  571. @example
  572. ffmpeg -i INPUT -map_channel -1 -map_channel 0.0.1 OUTPUT
  573. @end example
  574. The order of the "-map_channel" option specifies the order of the channels in
  575. the output stream. The output channel layout is guessed from the number of
  576. channels mapped (mono if one "-map_channel", stereo if two, etc.). Using "-ac"
  577. in combination of "-map_channel" makes the channel gain levels to be updated if
  578. input and output channel layouts don't match (for instance two "-map_channel"
  579. options and "-ac 6").
  580. You can also extract each channel of an input to specific outputs; the following
  581. command extracts two channels of the @var{INPUT} audio stream (file 0, stream 0)
  582. to the respective @var{OUTPUT_CH0} and @var{OUTPUT_CH1} outputs:
  583. @example
  584. ffmpeg -i INPUT -map_channel 0.0.0 OUTPUT_CH0 -map_channel 0.0.1 OUTPUT_CH1
  585. @end example
  586. The following example splits the channels of a stereo input into two separate
  587. streams, which are put into the same output file:
  588. @example
  589. ffmpeg -i stereo.wav -map 0:0 -map 0:0 -map_channel 0.0.0:0.0 -map_channel 0.0.1:0.1 -y out.ogg
  590. @end example
  591. Note that currently each output stream can only contain channels from a single
  592. input stream; you can't for example use "-map_channel" to pick multiple input
  593. audio channels contained in different streams (from the same or different files)
  594. and merge them into a single output stream. It is therefore not currently
  595. possible, for example, to turn two separate mono streams into a single stereo
  596. stream. However splitting a stereo stream into two single channel mono streams
  597. is possible.
  598. If you need this feature, a possible workaround is to use the @emph{amerge}
  599. filter. For example, if you need to merge a media (here @file{input.mkv}) with 2
  600. mono audio streams into one single stereo channel audio stream (and keep the
  601. video stream), you can use the following command:
  602. @example
  603. ffmpeg -i input.mkv -filter_complex "[0:1] [0:2] amerge" -c:a pcm_s16le -c:v copy output.mkv
  604. @end example
  605. @item -map_metadata[:@var{metadata_spec_out}] @var{infile}[:@var{metadata_spec_in}] (@emph{output,per-metadata})
  606. Set metadata information of the next output file from @var{infile}. Note that
  607. those are file indices (zero-based), not filenames.
  608. Optional @var{metadata_spec_in/out} parameters specify, which metadata to copy.
  609. A metadata specifier can have the following forms:
  610. @table @option
  611. @item @var{g}
  612. global metadata, i.e. metadata that applies to the whole file
  613. @item @var{s}[:@var{stream_spec}]
  614. per-stream metadata. @var{stream_spec} is a stream specifier as described
  615. in the @ref{Stream specifiers} chapter. In an input metadata specifier, the first
  616. matching stream is copied from. In an output metadata specifier, all matching
  617. streams are copied to.
  618. @item @var{c}:@var{chapter_index}
  619. per-chapter metadata. @var{chapter_index} is the zero-based chapter index.
  620. @item @var{p}:@var{program_index}
  621. per-program metadata. @var{program_index} is the zero-based program index.
  622. @end table
  623. If metadata specifier is omitted, it defaults to global.
  624. By default, global metadata is copied from the first input file,
  625. per-stream and per-chapter metadata is copied along with streams/chapters. These
  626. default mappings are disabled by creating any mapping of the relevant type. A negative
  627. file index can be used to create a dummy mapping that just disables automatic copying.
  628. For example to copy metadata from the first stream of the input file to global metadata
  629. of the output file:
  630. @example
  631. ffmpeg -i in.ogg -map_metadata 0:s:0 out.mp3
  632. @end example
  633. To do the reverse, i.e. copy global metadata to all audio streams:
  634. @example
  635. ffmpeg -i in.mkv -map_metadata:s:a 0:g out.mkv
  636. @end example
  637. Note that simple @code{0} would work as well in this example, since global
  638. metadata is assumed by default.
  639. @item -map_chapters @var{input_file_index} (@emph{output})
  640. Copy chapters from input file with index @var{input_file_index} to the next
  641. output file. If no chapter mapping is specified, then chapters are copied from
  642. the first input file with at least one chapter. Use a negative file index to
  643. disable any chapter copying.
  644. @item -debug @var{category}
  645. Print specific debug info.
  646. @var{category} is a number or a string containing one of the following values:
  647. @table @samp
  648. @item bitstream
  649. @item buffers
  650. picture buffer allocations
  651. @item bugs
  652. @item dct_coeff
  653. @item er
  654. error recognition
  655. @item mb_type
  656. macroblock (MB) type
  657. @item mmco
  658. memory management control operations (H.264)
  659. @item mv
  660. motion vector
  661. @item pict
  662. picture info
  663. @item pts
  664. @item qp
  665. per-block quantization parameter (QP)
  666. @item rc
  667. rate control
  668. @item skip
  669. @item startcode
  670. @item thread_ops
  671. threading operations
  672. @item vis_mb_type
  673. visualize block types
  674. @item vis_qp
  675. visualize quantization parameter (QP), lower QP are tinted greener
  676. @end table
  677. @item -benchmark (@emph{global})
  678. Show benchmarking information at the end of an encode.
  679. Shows CPU time used and maximum memory consumption.
  680. Maximum memory consumption is not supported on all systems,
  681. it will usually display as 0 if not supported.
  682. @item -benchmark_all (@emph{global})
  683. Show benchmarking information during the encode.
  684. Shows CPU time used in various steps (audio/video encode/decode).
  685. @item -timelimit @var{duration} (@emph{global})
  686. Exit after ffmpeg has been running for @var{duration} seconds.
  687. @item -dump (@emph{global})
  688. Dump each input packet to stderr.
  689. @item -hex (@emph{global})
  690. When dumping packets, also dump the payload.
  691. @item -re (@emph{input})
  692. Read input at native frame rate. Mainly used to simulate a grab device.
  693. By default @command{ffmpeg} attempts to read the input(s) as fast as possible.
  694. This option will slow down the reading of the input(s) to the native frame rate
  695. of the input(s). It is useful for real-time output (e.g. live streaming). If
  696. your input(s) is coming from some other live streaming source (through HTTP or
  697. UDP for example) the server might already be in real-time, thus the option will
  698. likely not be required. On the other hand, this is meaningful if your input(s)
  699. is a file you are trying to push in real-time.
  700. @item -loop_input
  701. Loop over the input stream. Currently it works only for image
  702. streams. This option is used for automatic FFserver testing.
  703. This option is deprecated, use -loop 1.
  704. @item -loop_output @var{number_of_times}
  705. Repeatedly loop output for formats that support looping such as animated GIF
  706. (0 will loop the output infinitely).
  707. This option is deprecated, use -loop.
  708. @item -vsync @var{parameter}
  709. Video sync method.
  710. For compatibility reasons old values can be specified as numbers.
  711. Newly added values will have to be specified as strings always.
  712. @table @option
  713. @item 0, passthrough
  714. Each frame is passed with its timestamp from the demuxer to the muxer.
  715. @item 1, cfr
  716. Frames will be duplicated and dropped to achieve exactly the requested
  717. constant framerate.
  718. @item 2, vfr
  719. Frames are passed through with their timestamp or dropped so as to
  720. prevent 2 frames from having the same timestamp.
  721. @item drop
  722. As passthrough but destroys all timestamps, making the muxer generate
  723. fresh timestamps based on frame-rate.
  724. @item -1, auto
  725. Chooses between 1 and 2 depending on muxer capabilities. This is the
  726. default method.
  727. @end table
  728. With -map you can select from which stream the timestamps should be
  729. taken. You can leave either video or audio unchanged and sync the
  730. remaining stream(s) to the unchanged one.
  731. @item -async @var{samples_per_second}
  732. Audio sync method. "Stretches/squeezes" the audio stream to match the timestamps,
  733. the parameter is the maximum samples per second by which the audio is changed.
  734. -async 1 is a special case where only the start of the audio stream is corrected
  735. without any later correction.
  736. This option has been deprecated. Use the @code{asyncts} audio filter instead.
  737. @item -copyts
  738. Copy timestamps from input to output.
  739. @item -copytb @var{mode}
  740. Specify how to set the encoder timebase when stream copying. @var{mode} is an
  741. integer numeric value, and can assume one of the following values:
  742. @table @option
  743. @item 1
  744. Use the demuxer timebase.
  745. The time base is copied to the output encoder from the corresponding input
  746. demuxer. This is sometimes required to avoid non monotonically increasing
  747. timestamps when copying video streams with variable frame rate.
  748. @item 0
  749. Use the decoder timebase.
  750. The time base is copied to the output encoder from the corresponding input
  751. decoder.
  752. @item -1
  753. Try to make the choice automatically, in order to generate a sane output.
  754. @end table
  755. Default value is -1.
  756. @item -shortest (@emph{output})
  757. Finish encoding when the shortest input stream ends.
  758. @item -dts_delta_threshold
  759. Timestamp discontinuity delta threshold.
  760. @item -muxdelay @var{seconds} (@emph{input})
  761. Set the maximum demux-decode delay.
  762. @item -muxpreload @var{seconds} (@emph{input})
  763. Set the initial demux-decode delay.
  764. @item -streamid @var{output-stream-index}:@var{new-value} (@emph{output})
  765. Assign a new stream-id value to an output stream. This option should be
  766. specified prior to the output filename to which it applies.
  767. For the situation where multiple output files exist, a streamid
  768. may be reassigned to a different value.
  769. For example, to set the stream 0 PID to 33 and the stream 1 PID to 36 for
  770. an output mpegts file:
  771. @example
  772. ffmpeg -i infile -streamid 0:33 -streamid 1:36 out.ts
  773. @end example
  774. @item -bsf[:@var{stream_specifier}] @var{bitstream_filters} (@emph{output,per-stream})
  775. Set bitstream filters for matching streams. @var{bistream_filters} is
  776. a comma-separated list of bitstream filters. Use the @code{-bsfs} option
  777. to get the list of bitstream filters.
  778. @example
  779. ffmpeg -i h264.mp4 -c:v copy -bsf:v h264_mp4toannexb -an out.h264
  780. @end example
  781. @example
  782. ffmpeg -i file.mov -an -vn -bsf:s mov2textsub -c:s copy -f rawvideo sub.txt
  783. @end example
  784. @item -tag[:@var{stream_specifier}] @var{codec_tag} (@emph{per-stream})
  785. Force a tag/fourcc for matching streams.
  786. @item -timecode @var{hh}:@var{mm}:@var{ss}SEP@var{ff}
  787. Specify Timecode for writing. @var{SEP} is ':' for non drop timecode and ';'
  788. (or '.') for drop.
  789. @example
  790. ffmpeg -i input.mpg -timecode 01:02:03.04 -r 30000/1001 -s ntsc output.mpg
  791. @end example
  792. @item -filter_complex @var{filtergraph} (@emph{global})
  793. Define a complex filter graph, i.e. one with arbitrary number of inputs and/or
  794. outputs. For simple graphs -- those with one input and one output of the same
  795. type -- see the @option{-filter} options. @var{filtergraph} is a description of
  796. the filter graph, as described in @ref{Filtergraph syntax}.
  797. Input link labels must refer to input streams using the
  798. @code{[file_index:stream_specifier]} syntax (i.e. the same as @option{-map}
  799. uses). If @var{stream_specifier} matches multiple streams, the first one will be
  800. used. An unlabeled input will be connected to the first unused input stream of
  801. the matching type.
  802. Output link labels are referred to with @option{-map}. Unlabeled outputs are
  803. added to the first output file.
  804. Note that with this option it is possible to use only lavfi sources without
  805. normal input files.
  806. For example, to overlay an image over video
  807. @example
  808. ffmpeg -i video.mkv -i image.png -filter_complex '[0:v][1:v]overlay[out]' -map
  809. '[out]' out.mkv
  810. @end example
  811. Here @code{[0:v]} refers to the first video stream in the first input file,
  812. which is linked to the first (main) input of the overlay filter. Similarly the
  813. first video stream in the second input is linked to the second (overlay) input
  814. of overlay.
  815. Assuming there is only one video stream in each input file, we can omit input
  816. labels, so the above is equivalent to
  817. @example
  818. ffmpeg -i video.mkv -i image.png -filter_complex 'overlay[out]' -map
  819. '[out]' out.mkv
  820. @end example
  821. Furthermore we can omit the output label and the single output from the filter
  822. graph will be added to the output file automatically, so we can simply write
  823. @example
  824. ffmpeg -i video.mkv -i image.png -filter_complex 'overlay' out.mkv
  825. @end example
  826. To generate 5 seconds of pure red video using lavfi @code{color} source:
  827. @example
  828. ffmpeg -filter_complex 'color=red' -t 5 out.mkv
  829. @end example
  830. @end table
  831. As a special exception, you can use a bitmap subtitle stream as input: it
  832. will be converted into a video with the same size as the largest video in
  833. the file, or 720×576 if no video is present. Note that this is an
  834. experimental and temporary solution. It will be removed once libavfilter has
  835. proper support for subtitles.
  836. For example, to hardcode subtitles on top of a DVB-T recording stored in
  837. MPEG-TS format, delaying the subtitles by 1 second:
  838. @example
  839. ffmpeg -i input.ts -filter_complex \
  840. '[#0x2ef] setpts=PTS+1/TB [sub] ; [#0x2d0] [sub] overlay' \
  841. -sn -map '#0x2dc' output.mkv
  842. @end example
  843. (0x2d0, 0x2dc and 0x2ef are the MPEG-TS PIDs of respectively the video,
  844. audio and subtitles streams; 0:0, 0:3 and 0:7 would have worked too)
  845. @section Preset files
  846. A preset file contains a sequence of @var{option}=@var{value} pairs,
  847. one for each line, specifying a sequence of options which would be
  848. awkward to specify on the command line. Lines starting with the hash
  849. ('#') character are ignored and are used to provide comments. Check
  850. the @file{presets} directory in the FFmpeg source tree for examples.
  851. Preset files are specified with the @code{vpre}, @code{apre},
  852. @code{spre}, and @code{fpre} options. The @code{fpre} option takes the
  853. filename of the preset instead of a preset name as input and can be
  854. used for any kind of codec. For the @code{vpre}, @code{apre}, and
  855. @code{spre} options, the options specified in a preset file are
  856. applied to the currently selected codec of the same type as the preset
  857. option.
  858. The argument passed to the @code{vpre}, @code{apre}, and @code{spre}
  859. preset options identifies the preset file to use according to the
  860. following rules:
  861. First ffmpeg searches for a file named @var{arg}.ffpreset in the
  862. directories @file{$FFMPEG_DATADIR} (if set), and @file{$HOME/.ffmpeg}, and in
  863. the datadir defined at configuration time (usually @file{PREFIX/share/ffmpeg})
  864. or in a @file{ffpresets} folder along the executable on win32,
  865. in that order. For example, if the argument is @code{libvpx-1080p}, it will
  866. search for the file @file{libvpx-1080p.ffpreset}.
  867. If no such file is found, then ffmpeg will search for a file named
  868. @var{codec_name}-@var{arg}.ffpreset in the above-mentioned
  869. directories, where @var{codec_name} is the name of the codec to which
  870. the preset file options will be applied. For example, if you select
  871. the video codec with @code{-vcodec libvpx} and use @code{-vpre 1080p},
  872. then it will search for the file @file{libvpx-1080p.ffpreset}.
  873. @c man end OPTIONS
  874. @chapter Tips
  875. @c man begin TIPS
  876. @itemize
  877. @item
  878. For streaming at very low bitrate application, use a low frame rate
  879. and a small GOP size. This is especially true for RealVideo where
  880. the Linux player does not seem to be very fast, so it can miss
  881. frames. An example is:
  882. @example
  883. ffmpeg -g 3 -r 3 -t 10 -b:v 50k -s qcif -f rv10 /tmp/b.rm
  884. @end example
  885. @item
  886. The parameter 'q' which is displayed while encoding is the current
  887. quantizer. The value 1 indicates that a very good quality could
  888. be achieved. The value 31 indicates the worst quality. If q=31 appears
  889. too often, it means that the encoder cannot compress enough to meet
  890. your bitrate. You must either increase the bitrate, decrease the
  891. frame rate or decrease the frame size.
  892. @item
  893. If your computer is not fast enough, you can speed up the
  894. compression at the expense of the compression ratio. You can use
  895. '-me zero' to speed up motion estimation, and '-g 0' to disable
  896. motion estimation completely (you have only I-frames, which means it
  897. is about as good as JPEG compression).
  898. @item
  899. To have very low audio bitrates, reduce the sampling frequency
  900. (down to 22050 Hz for MPEG audio, 22050 or 11025 for AC-3).
  901. @item
  902. To have a constant quality (but a variable bitrate), use the option
  903. '-qscale n' when 'n' is between 1 (excellent quality) and 31 (worst
  904. quality).
  905. @end itemize
  906. @c man end TIPS
  907. @chapter Examples
  908. @c man begin EXAMPLES
  909. @section Preset files
  910. A preset file contains a sequence of @var{option=value} pairs, one for
  911. each line, specifying a sequence of options which can be specified also on
  912. the command line. Lines starting with the hash ('#') character are ignored and
  913. are used to provide comments. Empty lines are also ignored. Check the
  914. @file{presets} directory in the FFmpeg source tree for examples.
  915. Preset files are specified with the @code{pre} option, this option takes a
  916. preset name as input. FFmpeg searches for a file named @var{preset_name}.avpreset in
  917. the directories @file{$AVCONV_DATADIR} (if set), and @file{$HOME/.ffmpeg}, and in
  918. the data directory defined at configuration time (usually @file{$PREFIX/share/ffmpeg})
  919. in that order. For example, if the argument is @code{libx264-max}, it will
  920. search for the file @file{libx264-max.avpreset}.
  921. @section Video and Audio grabbing
  922. If you specify the input format and device then ffmpeg can grab video
  923. and audio directly.
  924. @example
  925. ffmpeg -f oss -i /dev/dsp -f video4linux2 -i /dev/video0 /tmp/out.mpg
  926. @end example
  927. Or with an ALSA audio source (mono input, card id 1) instead of OSS:
  928. @example
  929. ffmpeg -f alsa -ac 1 -i hw:1 -f video4linux2 -i /dev/video0 /tmp/out.mpg
  930. @end example
  931. Note that you must activate the right video source and channel before
  932. launching ffmpeg with any TV viewer such as
  933. @uref{http://linux.bytesex.org/xawtv/, xawtv} by Gerd Knorr. You also
  934. have to set the audio recording levels correctly with a
  935. standard mixer.
  936. @section X11 grabbing
  937. Grab the X11 display with ffmpeg via
  938. @example
  939. ffmpeg -f x11grab -s cif -r 25 -i :0.0 /tmp/out.mpg
  940. @end example
  941. 0.0 is display.screen number of your X11 server, same as
  942. the DISPLAY environment variable.
  943. @example
  944. ffmpeg -f x11grab -s cif -r 25 -i :0.0+10,20 /tmp/out.mpg
  945. @end example
  946. 0.0 is display.screen number of your X11 server, same as the DISPLAY environment
  947. variable. 10 is the x-offset and 20 the y-offset for the grabbing.
  948. @section Video and Audio file format conversion
  949. Any supported file format and protocol can serve as input to ffmpeg:
  950. Examples:
  951. @itemize
  952. @item
  953. You can use YUV files as input:
  954. @example
  955. ffmpeg -i /tmp/test%d.Y /tmp/out.mpg
  956. @end example
  957. It will use the files:
  958. @example
  959. /tmp/test0.Y, /tmp/test0.U, /tmp/test0.V,
  960. /tmp/test1.Y, /tmp/test1.U, /tmp/test1.V, etc...
  961. @end example
  962. The Y files use twice the resolution of the U and V files. They are
  963. raw files, without header. They can be generated by all decent video
  964. decoders. You must specify the size of the image with the @option{-s} option
  965. if ffmpeg cannot guess it.
  966. @item
  967. You can input from a raw YUV420P file:
  968. @example
  969. ffmpeg -i /tmp/test.yuv /tmp/out.avi
  970. @end example
  971. test.yuv is a file containing raw YUV planar data. Each frame is composed
  972. of the Y plane followed by the U and V planes at half vertical and
  973. horizontal resolution.
  974. @item
  975. You can output to a raw YUV420P file:
  976. @example
  977. ffmpeg -i mydivx.avi hugefile.yuv
  978. @end example
  979. @item
  980. You can set several input files and output files:
  981. @example
  982. ffmpeg -i /tmp/a.wav -s 640x480 -i /tmp/a.yuv /tmp/a.mpg
  983. @end example
  984. Converts the audio file a.wav and the raw YUV video file a.yuv
  985. to MPEG file a.mpg.
  986. @item
  987. You can also do audio and video conversions at the same time:
  988. @example
  989. ffmpeg -i /tmp/a.wav -ar 22050 /tmp/a.mp2
  990. @end example
  991. Converts a.wav to MPEG audio at 22050 Hz sample rate.
  992. @item
  993. You can encode to several formats at the same time and define a
  994. mapping from input stream to output streams:
  995. @example
  996. ffmpeg -i /tmp/a.wav -map 0:a -b:a 64k /tmp/a.mp2 -map 0:a -b:a 128k /tmp/b.mp2
  997. @end example
  998. Converts a.wav to a.mp2 at 64 kbits and to b.mp2 at 128 kbits. '-map
  999. file:index' specifies which input stream is used for each output
  1000. stream, in the order of the definition of output streams.
  1001. @item
  1002. You can transcode decrypted VOBs:
  1003. @example
  1004. ffmpeg -i snatch_1.vob -f avi -c:v mpeg4 -b:v 800k -g 300 -bf 2 -c:a libmp3lame -b:a 128k snatch.avi
  1005. @end example
  1006. This is a typical DVD ripping example; the input is a VOB file, the
  1007. output an AVI file with MPEG-4 video and MP3 audio. Note that in this
  1008. command we use B-frames so the MPEG-4 stream is DivX5 compatible, and
  1009. GOP size is 300 which means one intra frame every 10 seconds for 29.97fps
  1010. input video. Furthermore, the audio stream is MP3-encoded so you need
  1011. to enable LAME support by passing @code{--enable-libmp3lame} to configure.
  1012. The mapping is particularly useful for DVD transcoding
  1013. to get the desired audio language.
  1014. NOTE: To see the supported input formats, use @code{ffmpeg -formats}.
  1015. @item
  1016. You can extract images from a video, or create a video from many images:
  1017. For extracting images from a video:
  1018. @example
  1019. ffmpeg -i foo.avi -r 1 -s WxH -f image2 foo-%03d.jpeg
  1020. @end example
  1021. This will extract one video frame per second from the video and will
  1022. output them in files named @file{foo-001.jpeg}, @file{foo-002.jpeg},
  1023. etc. Images will be rescaled to fit the new WxH values.
  1024. If you want to extract just a limited number of frames, you can use the
  1025. above command in combination with the -vframes or -t option, or in
  1026. combination with -ss to start extracting from a certain point in time.
  1027. For creating a video from many images:
  1028. @example
  1029. ffmpeg -f image2 -i foo-%03d.jpeg -r 12 -s WxH foo.avi
  1030. @end example
  1031. The syntax @code{foo-%03d.jpeg} specifies to use a decimal number
  1032. composed of three digits padded with zeroes to express the sequence
  1033. number. It is the same syntax supported by the C printf function, but
  1034. only formats accepting a normal integer are suitable.
  1035. When importing an image sequence, -i also supports expanding
  1036. shell-like wildcard patterns (globbing) internally, by selecting the
  1037. image2-specific @code{-pattern_type glob} option.
  1038. For example, for creating a video from filenames matching the glob pattern
  1039. @code{foo-*.jpeg}:
  1040. @example
  1041. ffmpeg -f image2 -pattern_type glob -i 'foo-*.jpeg' -r 12 -s WxH foo.avi
  1042. @end example
  1043. @item
  1044. You can put many streams of the same type in the output:
  1045. @example
  1046. ffmpeg -i test1.avi -i test2.avi -map 0.3 -map 0.2 -map 0.1 -map 0.0 -c copy test12.nut
  1047. @end example
  1048. The resulting output file @file{test12.avi} will contain first four streams from
  1049. the input file in reverse order.
  1050. @item
  1051. To force CBR video output:
  1052. @example
  1053. ffmpeg -i myfile.avi -b 4000k -minrate 4000k -maxrate 4000k -bufsize 1835k out.m2v
  1054. @end example
  1055. @item
  1056. The four options lmin, lmax, mblmin and mblmax use 'lambda' units,
  1057. but you may use the QP2LAMBDA constant to easily convert from 'q' units:
  1058. @example
  1059. ffmpeg -i src.ext -lmax 21*QP2LAMBDA dst.ext
  1060. @end example
  1061. @end itemize
  1062. @c man end EXAMPLES
  1063. @include syntax.texi
  1064. @include eval.texi
  1065. @include decoders.texi
  1066. @include encoders.texi
  1067. @include demuxers.texi
  1068. @include muxers.texi
  1069. @include indevs.texi
  1070. @include outdevs.texi
  1071. @include protocols.texi
  1072. @include bitstream_filters.texi
  1073. @include filters.texi
  1074. @include metadata.texi
  1075. @ignore
  1076. @setfilename ffmpeg
  1077. @settitle ffmpeg video converter
  1078. @c man begin SEEALSO
  1079. ffplay(1), ffprobe(1), ffserver(1) and the FFmpeg HTML documentation
  1080. @c man end
  1081. @c man begin AUTHORS
  1082. See git history
  1083. @c man end
  1084. @end ignore
  1085. @bye