You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

425 lines
14KB

  1. /*
  2. * Copyright (C) 2012 British Broadcasting Corporation, All Rights Reserved
  3. * Author of de-interlace algorithm: Jim Easterbrook for BBC R&D
  4. * Based on the process described by Martin Weston for BBC R&D
  5. * Author of FFmpeg filter: Mark Himsley for BBC Broadcast Systems Development
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include "libavutil/common.h"
  24. #include "libavutil/imgutils.h"
  25. #include "libavutil/opt.h"
  26. #include "libavutil/pixdesc.h"
  27. #include "avfilter.h"
  28. #include "formats.h"
  29. #include "internal.h"
  30. #include "video.h"
  31. typedef struct W3FDIFContext {
  32. const AVClass *class;
  33. int filter; ///< 0 is simple, 1 is more complex
  34. int deint; ///< which frames to deinterlace
  35. int linesize[4]; ///< bytes of pixel data per line for each plane
  36. int planeheight[4]; ///< height of each plane
  37. int field; ///< which field are we on, 0 or 1
  38. int eof;
  39. int nb_planes;
  40. AVFrame *prev, *cur, *next; ///< previous, current, next frames
  41. int32_t **work_line; ///< lines we are calculating
  42. int nb_threads;
  43. } W3FDIFContext;
  44. #define OFFSET(x) offsetof(W3FDIFContext, x)
  45. #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  46. #define CONST(name, help, val, unit) { name, help, 0, AV_OPT_TYPE_CONST, {.i64=val}, 0, 0, FLAGS, unit }
  47. static const AVOption w3fdif_options[] = {
  48. { "filter", "specify the filter", OFFSET(filter), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, FLAGS, "filter" },
  49. CONST("simple", NULL, 0, "filter"),
  50. CONST("complex", NULL, 1, "filter"),
  51. { "deint", "specify which frames to deinterlace", OFFSET(deint), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "deint" },
  52. CONST("all", "deinterlace all frames", 0, "deint"),
  53. CONST("interlaced", "only deinterlace frames marked as interlaced", 1, "deint"),
  54. { NULL }
  55. };
  56. AVFILTER_DEFINE_CLASS(w3fdif);
  57. static int query_formats(AVFilterContext *ctx)
  58. {
  59. static const enum AVPixelFormat pix_fmts[] = {
  60. AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
  61. AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
  62. AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
  63. AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
  64. AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
  65. AV_PIX_FMT_YUVJ411P,
  66. AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
  67. AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
  68. AV_PIX_FMT_GRAY8,
  69. AV_PIX_FMT_NONE
  70. };
  71. AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
  72. if (!fmts_list)
  73. return AVERROR(ENOMEM);
  74. return ff_set_common_formats(ctx, fmts_list);
  75. }
  76. static int config_input(AVFilterLink *inlink)
  77. {
  78. AVFilterContext *ctx = inlink->dst;
  79. W3FDIFContext *s = ctx->priv;
  80. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
  81. int ret, i;
  82. if ((ret = av_image_fill_linesizes(s->linesize, inlink->format, inlink->w)) < 0)
  83. return ret;
  84. s->planeheight[1] = s->planeheight[2] = FF_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
  85. s->planeheight[0] = s->planeheight[3] = inlink->h;
  86. s->nb_planes = av_pix_fmt_count_planes(inlink->format);
  87. s->nb_threads = ctx->graph->nb_threads;
  88. s->work_line = av_calloc(s->nb_threads, sizeof(*s->work_line));
  89. if (!s->work_line)
  90. return AVERROR(ENOMEM);
  91. for (i = 0; i < s->nb_threads; i++) {
  92. s->work_line[i] = av_calloc(s->linesize[0], sizeof(*s->work_line[0]));
  93. if (!s->work_line[i])
  94. return AVERROR(ENOMEM);
  95. }
  96. return 0;
  97. }
  98. static int config_output(AVFilterLink *outlink)
  99. {
  100. AVFilterLink *inlink = outlink->src->inputs[0];
  101. outlink->time_base.num = inlink->time_base.num;
  102. outlink->time_base.den = inlink->time_base.den * 2;
  103. outlink->frame_rate.num = inlink->frame_rate.num * 2;
  104. outlink->frame_rate.den = inlink->frame_rate.den;
  105. return 0;
  106. }
  107. /*
  108. * Filter coefficients from PH-2071, scaled by 256 * 256.
  109. * Each set of coefficients has a set for low-frequencies and high-frequencies.
  110. * n_coef_lf[] and n_coef_hf[] are the number of coefs for simple and more-complex.
  111. * It is important for later that n_coef_lf[] is even and n_coef_hf[] is odd.
  112. * coef_lf[][] and coef_hf[][] are the coefficients for low-frequencies
  113. * and high-frequencies for simple and more-complex mode.
  114. */
  115. static const int8_t n_coef_lf[2] = { 2, 4 };
  116. static const int32_t coef_lf[2][4] = {{ 32768, 32768, 0, 0},
  117. { -1704, 34472, 34472, -1704}};
  118. static const int8_t n_coef_hf[2] = { 3, 5 };
  119. static const int32_t coef_hf[2][5] = {{ -4096, 8192, -4096, 0, 0},
  120. { 2032, -7602, 11140, -7602, 2032}};
  121. typedef struct ThreadData {
  122. AVFrame *out, *cur, *adj;
  123. int plane;
  124. } ThreadData;
  125. static int deinterlace_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  126. {
  127. W3FDIFContext *s = ctx->priv;
  128. ThreadData *td = arg;
  129. AVFrame *out = td->out;
  130. AVFrame *cur = td->cur;
  131. AVFrame *adj = td->adj;
  132. const int plane = td->plane;
  133. const int filter = s->filter;
  134. uint8_t *in_line, *in_lines_cur[5], *in_lines_adj[5];
  135. uint8_t *out_line, *out_pixel;
  136. int32_t *work_line, *work_pixel;
  137. uint8_t *cur_data = cur->data[plane];
  138. uint8_t *adj_data = adj->data[plane];
  139. uint8_t *dst_data = out->data[plane];
  140. const int linesize = s->linesize[plane];
  141. const int height = s->planeheight[plane];
  142. const int cur_line_stride = cur->linesize[plane];
  143. const int adj_line_stride = adj->linesize[plane];
  144. const int dst_line_stride = out->linesize[plane];
  145. const int start = (height * jobnr) / nb_jobs;
  146. const int end = (height * (jobnr+1)) / nb_jobs;
  147. int i, j, y_in, y_out;
  148. /* copy unchanged the lines of the field */
  149. y_out = start + (s->field == cur->top_field_first) - (start & 1);
  150. in_line = cur_data + (y_out * cur_line_stride);
  151. out_line = dst_data + (y_out * dst_line_stride);
  152. while (y_out < end) {
  153. memcpy(out_line, in_line, linesize);
  154. y_out += 2;
  155. in_line += cur_line_stride * 2;
  156. out_line += dst_line_stride * 2;
  157. }
  158. /* interpolate other lines of the field */
  159. y_out = start + (s->field != cur->top_field_first) - (start & 1);
  160. out_line = dst_data + (y_out * dst_line_stride);
  161. while (y_out < end) {
  162. /* clear workspace */
  163. memset(s->work_line[jobnr], 0, sizeof(*s->work_line[jobnr]) * linesize);
  164. /* get low vertical frequencies from current field */
  165. for (j = 0; j < n_coef_lf[filter]; j++) {
  166. y_in = (y_out + 1) + (j * 2) - n_coef_lf[filter];
  167. while (y_in < 0)
  168. y_in += 2;
  169. while (y_in >= height)
  170. y_in -= 2;
  171. in_lines_cur[j] = cur_data + (y_in * cur_line_stride);
  172. }
  173. work_line = s->work_line[jobnr];
  174. switch (n_coef_lf[filter]) {
  175. case 2:
  176. for (i = 0; i < linesize; i++) {
  177. *work_line += *in_lines_cur[0]++ * coef_lf[filter][0];
  178. *work_line++ += *in_lines_cur[1]++ * coef_lf[filter][1];
  179. }
  180. break;
  181. case 4:
  182. for (i = 0; i < linesize; i++) {
  183. *work_line += *in_lines_cur[0]++ * coef_lf[filter][0];
  184. *work_line += *in_lines_cur[1]++ * coef_lf[filter][1];
  185. *work_line += *in_lines_cur[2]++ * coef_lf[filter][2];
  186. *work_line++ += *in_lines_cur[3]++ * coef_lf[filter][3];
  187. }
  188. }
  189. /* get high vertical frequencies from adjacent fields */
  190. for (j = 0; j < n_coef_hf[filter]; j++) {
  191. y_in = (y_out + 1) + (j * 2) - n_coef_hf[filter];
  192. while (y_in < 0)
  193. y_in += 2;
  194. while (y_in >= height)
  195. y_in -= 2;
  196. in_lines_cur[j] = cur_data + (y_in * cur_line_stride);
  197. in_lines_adj[j] = adj_data + (y_in * adj_line_stride);
  198. }
  199. work_line = s->work_line[jobnr];
  200. switch (n_coef_hf[filter]) {
  201. case 3:
  202. for (i = 0; i < linesize; i++) {
  203. *work_line += *in_lines_cur[0]++ * coef_hf[filter][0];
  204. *work_line += *in_lines_adj[0]++ * coef_hf[filter][0];
  205. *work_line += *in_lines_cur[1]++ * coef_hf[filter][1];
  206. *work_line += *in_lines_adj[1]++ * coef_hf[filter][1];
  207. *work_line += *in_lines_cur[2]++ * coef_hf[filter][2];
  208. *work_line++ += *in_lines_adj[2]++ * coef_hf[filter][2];
  209. }
  210. break;
  211. case 5:
  212. for (i = 0; i < linesize; i++) {
  213. *work_line += *in_lines_cur[0]++ * coef_hf[filter][0];
  214. *work_line += *in_lines_adj[0]++ * coef_hf[filter][0];
  215. *work_line += *in_lines_cur[1]++ * coef_hf[filter][1];
  216. *work_line += *in_lines_adj[1]++ * coef_hf[filter][1];
  217. *work_line += *in_lines_cur[2]++ * coef_hf[filter][2];
  218. *work_line += *in_lines_adj[2]++ * coef_hf[filter][2];
  219. *work_line += *in_lines_cur[3]++ * coef_hf[filter][3];
  220. *work_line += *in_lines_adj[3]++ * coef_hf[filter][3];
  221. *work_line += *in_lines_cur[4]++ * coef_hf[filter][4];
  222. *work_line++ += *in_lines_adj[4]++ * coef_hf[filter][4];
  223. }
  224. }
  225. /* save scaled result to the output frame, scaling down by 256 * 256 */
  226. work_pixel = s->work_line[jobnr];
  227. out_pixel = out_line;
  228. for (j = 0; j < linesize; j++, out_pixel++, work_pixel++)
  229. *out_pixel = av_clip(*work_pixel, 0, 255 * 256 * 256) >> 16;
  230. /* move on to next line */
  231. y_out += 2;
  232. out_line += dst_line_stride * 2;
  233. }
  234. return 0;
  235. }
  236. static int filter(AVFilterContext *ctx, int is_second)
  237. {
  238. W3FDIFContext *s = ctx->priv;
  239. AVFilterLink *outlink = ctx->outputs[0];
  240. AVFrame *out, *adj;
  241. ThreadData td;
  242. int plane;
  243. out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
  244. if (!out)
  245. return AVERROR(ENOMEM);
  246. av_frame_copy_props(out, s->cur);
  247. out->interlaced_frame = 0;
  248. if (!is_second) {
  249. if (out->pts != AV_NOPTS_VALUE)
  250. out->pts *= 2;
  251. } else {
  252. int64_t cur_pts = s->cur->pts;
  253. int64_t next_pts = s->next->pts;
  254. if (next_pts != AV_NOPTS_VALUE && cur_pts != AV_NOPTS_VALUE) {
  255. out->pts = cur_pts + next_pts;
  256. } else {
  257. out->pts = AV_NOPTS_VALUE;
  258. }
  259. }
  260. adj = s->field ? s->next : s->prev;
  261. td.out = out; td.cur = s->cur; td.adj = adj;
  262. for (plane = 0; plane < s->nb_planes; plane++) {
  263. td.plane = plane;
  264. ctx->internal->execute(ctx, deinterlace_slice, &td, NULL, FFMIN(s->planeheight[plane], s->nb_threads));
  265. }
  266. s->field = !s->field;
  267. return ff_filter_frame(outlink, out);
  268. }
  269. static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
  270. {
  271. AVFilterContext *ctx = inlink->dst;
  272. W3FDIFContext *s = ctx->priv;
  273. int ret;
  274. av_frame_free(&s->prev);
  275. s->prev = s->cur;
  276. s->cur = s->next;
  277. s->next = frame;
  278. if (!s->cur) {
  279. s->cur = av_frame_clone(s->next);
  280. if (!s->cur)
  281. return AVERROR(ENOMEM);
  282. }
  283. if ((s->deint && !s->cur->interlaced_frame) || ctx->is_disabled) {
  284. AVFrame *out = av_frame_clone(s->cur);
  285. if (!out)
  286. return AVERROR(ENOMEM);
  287. av_frame_free(&s->prev);
  288. if (out->pts != AV_NOPTS_VALUE)
  289. out->pts *= 2;
  290. return ff_filter_frame(ctx->outputs[0], out);
  291. }
  292. if (!s->prev)
  293. return 0;
  294. ret = filter(ctx, 0);
  295. if (ret < 0)
  296. return ret;
  297. return filter(ctx, 1);
  298. }
  299. static int request_frame(AVFilterLink *outlink)
  300. {
  301. AVFilterContext *ctx = outlink->src;
  302. W3FDIFContext *s = ctx->priv;
  303. /* TODO reindent */
  304. int ret;
  305. if (s->eof)
  306. return AVERROR_EOF;
  307. ret = ff_request_frame(ctx->inputs[0]);
  308. if (ret == AVERROR_EOF && s->cur) {
  309. AVFrame *next = av_frame_clone(s->next);
  310. if (!next)
  311. return AVERROR(ENOMEM);
  312. next->pts = s->next->pts * 2 - s->cur->pts;
  313. filter_frame(ctx->inputs[0], next);
  314. s->eof = 1;
  315. } else if (ret < 0) {
  316. return ret;
  317. }
  318. return 0;
  319. }
  320. static av_cold void uninit(AVFilterContext *ctx)
  321. {
  322. W3FDIFContext *s = ctx->priv;
  323. int i;
  324. av_frame_free(&s->prev);
  325. av_frame_free(&s->cur );
  326. av_frame_free(&s->next);
  327. for (i = 0; i < s->nb_threads; i++)
  328. av_freep(&s->work_line[i]);
  329. av_freep(&s->work_line);
  330. }
  331. static const AVFilterPad w3fdif_inputs[] = {
  332. {
  333. .name = "default",
  334. .type = AVMEDIA_TYPE_VIDEO,
  335. .filter_frame = filter_frame,
  336. .config_props = config_input,
  337. },
  338. { NULL }
  339. };
  340. static const AVFilterPad w3fdif_outputs[] = {
  341. {
  342. .name = "default",
  343. .type = AVMEDIA_TYPE_VIDEO,
  344. .config_props = config_output,
  345. .request_frame = request_frame,
  346. },
  347. { NULL }
  348. };
  349. AVFilter ff_vf_w3fdif = {
  350. .name = "w3fdif",
  351. .description = NULL_IF_CONFIG_SMALL("Apply Martin Weston three field deinterlace."),
  352. .priv_size = sizeof(W3FDIFContext),
  353. .priv_class = &w3fdif_class,
  354. .uninit = uninit,
  355. .query_formats = query_formats,
  356. .inputs = w3fdif_inputs,
  357. .outputs = w3fdif_outputs,
  358. .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS,
  359. };