You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2394 lines
66KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @section Filtergraph syntax
  14. A filtergraph can be represented using a textual representation, which
  15. is recognized by the @code{-vf} and @code{-af} options of the ff*
  16. tools, and by the @code{avfilter_graph_parse()} function defined in
  17. @file{libavfilter/avfiltergraph.h}.
  18. A filterchain consists of a sequence of connected filters, each one
  19. connected to the previous one in the sequence. A filterchain is
  20. represented by a list of ","-separated filter descriptions.
  21. A filtergraph consists of a sequence of filterchains. A sequence of
  22. filterchains is represented by a list of ";"-separated filterchain
  23. descriptions.
  24. A filter is represented by a string of the form:
  25. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  26. @var{filter_name} is the name of the filter class of which the
  27. described filter is an instance of, and has to be the name of one of
  28. the filter classes registered in the program.
  29. The name of the filter class is optionally followed by a string
  30. "=@var{arguments}".
  31. @var{arguments} is a string which contains the parameters used to
  32. initialize the filter instance, and are described in the filter
  33. descriptions below.
  34. The list of arguments can be quoted using the character "'" as initial
  35. and ending mark, and the character '\' for escaping the characters
  36. within the quoted text; otherwise the argument string is considered
  37. terminated when the next special character (belonging to the set
  38. "[]=;,") is encountered.
  39. The name and arguments of the filter are optionally preceded and
  40. followed by a list of link labels.
  41. A link label allows to name a link and associate it to a filter output
  42. or input pad. The preceding labels @var{in_link_1}
  43. ... @var{in_link_N}, are associated to the filter input pads,
  44. the following labels @var{out_link_1} ... @var{out_link_M}, are
  45. associated to the output pads.
  46. When two link labels with the same name are found in the
  47. filtergraph, a link between the corresponding input and output pad is
  48. created.
  49. If an output pad is not labelled, it is linked by default to the first
  50. unlabelled input pad of the next filter in the filterchain.
  51. For example in the filterchain:
  52. @example
  53. nullsrc, split[L1], [L2]overlay, nullsink
  54. @end example
  55. the split filter instance has two output pads, and the overlay filter
  56. instance two input pads. The first output pad of split is labelled
  57. "L1", the first input pad of overlay is labelled "L2", and the second
  58. output pad of split is linked to the second input pad of overlay,
  59. which are both unlabelled.
  60. In a complete filterchain all the unlabelled filter input and output
  61. pads must be connected. A filtergraph is considered valid if all the
  62. filter input and output pads of all the filterchains are connected.
  63. Follows a BNF description for the filtergraph syntax:
  64. @example
  65. @var{NAME} ::= sequence of alphanumeric characters and '_'
  66. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  67. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  68. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  69. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  70. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  71. @var{FILTERGRAPH} ::= @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  72. @end example
  73. @c man end FILTERGRAPH DESCRIPTION
  74. @chapter Audio Filters
  75. @c man begin AUDIO FILTERS
  76. When you configure your FFmpeg build, you can disable any of the
  77. existing filters using --disable-filters.
  78. The configure output will show the audio filters included in your
  79. build.
  80. Below is a description of the currently available audio filters.
  81. @section aformat
  82. Convert the input audio to one of the specified formats. The framework will
  83. negotiate the most appropriate format to minimize conversions.
  84. The filter accepts three lists of formats, separated by ":", in the form:
  85. "@var{sample_formats}:@var{channel_layouts}:@var{packing_formats}".
  86. Elements in each list are separated by "," which has to be escaped in the
  87. filtergraph specification.
  88. The special parameter "all", in place of a list of elements, signifies all
  89. supported formats.
  90. Some examples follow:
  91. @example
  92. aformat=u8\\,s16:mono:packed
  93. aformat=s16:mono\\,stereo:all
  94. @end example
  95. @section anull
  96. Pass the audio source unchanged to the output.
  97. @section aresample
  98. Resample the input audio to the specified sample rate.
  99. The filter accepts exactly one parameter, the output sample rate. If not
  100. specified then the filter will automatically convert between its input
  101. and output sample rates.
  102. For example, to resample the input audio to 44100Hz:
  103. @example
  104. aresample=44100
  105. @end example
  106. @section ashowinfo
  107. Show a line containing various information for each input audio frame.
  108. The input audio is not modified.
  109. The shown line contains a sequence of key/value pairs of the form
  110. @var{key}:@var{value}.
  111. A description of each shown parameter follows:
  112. @table @option
  113. @item n
  114. sequential number of the input frame, starting from 0
  115. @item pts
  116. presentation TimeStamp of the input frame, expressed as a number of
  117. time base units. The time base unit depends on the filter input pad, and
  118. is usually 1/@var{sample_rate}.
  119. @item pts_time
  120. presentation TimeStamp of the input frame, expressed as a number of
  121. seconds
  122. @item pos
  123. position of the frame in the input stream, -1 if this information in
  124. unavailable and/or meanigless (for example in case of synthetic audio)
  125. @item fmt
  126. sample format name
  127. @item chlayout
  128. channel layout description
  129. @item nb_samples
  130. number of samples (per each channel) contained in the filtered frame
  131. @item rate
  132. sample rate for the audio frame
  133. @item planar
  134. if the packing format is planar, 0 if packed
  135. @item checksum
  136. Adler-32 checksum of all the planes of the input frame
  137. @item plane_checksum
  138. Adler-32 checksum for each input frame plane, expressed in the form
  139. "[@var{c0} @var{c1} @var{c2} @var{c3} @var{c4} @var{c5} @var{c6} @var{c7}]"
  140. @end table
  141. @c man end AUDIO FILTERS
  142. @chapter Audio Sources
  143. @c man begin AUDIO SOURCES
  144. Below is a description of the currently available audio sources.
  145. @section abuffer
  146. Buffer audio frames, and make them available to the filter chain.
  147. This source is mainly intended for a programmatic use, in particular
  148. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  149. It accepts the following mandatory parameters:
  150. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}:@var{packing}
  151. @table @option
  152. @item sample_rate
  153. The sample rate of the incoming audio buffers.
  154. @item sample_fmt
  155. The sample format of the incoming audio buffers.
  156. Either a sample format name or its corresponging integer representation from
  157. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  158. @item channel_layout
  159. The channel layout of the incoming audio buffers.
  160. Either a channel layout name from channel_layout_map in
  161. @file{libavutil/audioconvert.c} or its corresponding integer representation
  162. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  163. @item packing
  164. Either "packed" or "planar", or their integer representation: 0 or 1
  165. respectively.
  166. @end table
  167. For example:
  168. @example
  169. abuffer=44100:s16:stereo:planar
  170. @end example
  171. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  172. Since the sample format with name "s16" corresponds to the number
  173. 1 and the "stereo" channel layout corresponds to the value 3, this is
  174. equivalent to:
  175. @example
  176. abuffer=44100:1:3:1
  177. @end example
  178. @section anullsrc
  179. Null audio source, never return audio frames. It is mainly useful as a
  180. template and to be employed in analysis / debugging tools.
  181. It accepts as optional parameter a string of the form
  182. @var{sample_rate}:@var{channel_layout}.
  183. @var{sample_rate} specify the sample rate, and defaults to 44100.
  184. @var{channel_layout} specify the channel layout, and can be either an
  185. integer or a string representing a channel layout. The default value
  186. of @var{channel_layout} is 3, which corresponds to CH_LAYOUT_STEREO.
  187. Check the channel_layout_map definition in
  188. @file{libavcodec/audioconvert.c} for the mapping between strings and
  189. channel layout values.
  190. Follow some examples:
  191. @example
  192. # set the sample rate to 48000 Hz and the channel layout to CH_LAYOUT_MONO.
  193. anullsrc=48000:4
  194. # same as
  195. anullsrc=48000:mono
  196. @end example
  197. @c man end AUDIO SOURCES
  198. @chapter Audio Sinks
  199. @c man begin AUDIO SINKS
  200. Below is a description of the currently available audio sinks.
  201. @section abuffersink
  202. Buffer audio frames, and make them available to the end of filter chain.
  203. This sink is mainly intended for programmatic use, in particular
  204. through the interface defined in @file{libavfilter/asink_abuffer.h}.
  205. It requires a pointer to a ABufferSinkContext structure, which defines the
  206. incoming buffers' format, to be passed as the opaque parameter to
  207. @code{avfilter_init_filter} for initialization.
  208. @section anullsink
  209. Null audio sink, do absolutely nothing with the input audio. It is
  210. mainly useful as a template and to be employed in analysis / debugging
  211. tools.
  212. @c man end AUDIO SINKS
  213. @chapter Video Filters
  214. @c man begin VIDEO FILTERS
  215. When you configure your FFmpeg build, you can disable any of the
  216. existing filters using --disable-filters.
  217. The configure output will show the video filters included in your
  218. build.
  219. Below is a description of the currently available video filters.
  220. @section blackframe
  221. Detect frames that are (almost) completely black. Can be useful to
  222. detect chapter transitions or commercials. Output lines consist of
  223. the frame number of the detected frame, the percentage of blackness,
  224. the position in the file if known or -1 and the timestamp in seconds.
  225. In order to display the output lines, you need to set the loglevel at
  226. least to the AV_LOG_INFO value.
  227. The filter accepts the syntax:
  228. @example
  229. blackframe[=@var{amount}:[@var{threshold}]]
  230. @end example
  231. @var{amount} is the percentage of the pixels that have to be below the
  232. threshold, and defaults to 98.
  233. @var{threshold} is the threshold below which a pixel value is
  234. considered black, and defaults to 32.
  235. @section boxblur
  236. Apply boxblur algorithm to the input video.
  237. This filter accepts the parameters:
  238. @var{luma_power}:@var{luma_radius}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  239. Chroma and alpha parameters are optional, if not specified they default
  240. to the corresponding values set for @var{luma_radius} and
  241. @var{luma_power}.
  242. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  243. the radius in pixels of the box used for blurring the corresponding
  244. input plane. They are expressions, and can contain the following
  245. constants:
  246. @table @option
  247. @item w, h
  248. the input width and heigth in pixels
  249. @item cw, ch
  250. the input chroma image width and height in pixels
  251. @item hsub, vsub
  252. horizontal and vertical chroma subsample values. For example for the
  253. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  254. @end table
  255. The radius must be a non-negative number, and must be not greater than
  256. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  257. and of @code{min(cw,ch)/2} for the chroma planes.
  258. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  259. how many times the boxblur filter is applied to the corresponding
  260. plane.
  261. Some examples follow:
  262. @itemize
  263. @item
  264. Apply a boxblur filter with luma, chroma, and alpha radius
  265. set to 2:
  266. @example
  267. boxblur=2:1
  268. @end example
  269. @item
  270. Set luma radius to 2, alpha and chroma radius to 0
  271. @example
  272. boxblur=2:1:0:0:0:0
  273. @end example
  274. @item
  275. Set luma and chroma radius to a fraction of the video dimension
  276. @example
  277. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  278. @end example
  279. @end itemize
  280. @section copy
  281. Copy the input source unchanged to the output. Mainly useful for
  282. testing purposes.
  283. @section crop
  284. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}.
  285. The parameters are expressions containing the following constants:
  286. @table @option
  287. @item E, PI, PHI
  288. the corresponding mathematical approximated values for e
  289. (euler number), pi (greek PI), PHI (golden ratio)
  290. @item x, y
  291. the computed values for @var{x} and @var{y}. They are evaluated for
  292. each new frame.
  293. @item in_w, in_h
  294. the input width and heigth
  295. @item iw, ih
  296. same as @var{in_w} and @var{in_h}
  297. @item out_w, out_h
  298. the output (cropped) width and heigth
  299. @item ow, oh
  300. same as @var{out_w} and @var{out_h}
  301. @item a
  302. same as @var{iw} / @var{ih}
  303. @item sar
  304. input sample aspect ratio
  305. @item dar
  306. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  307. @item hsub, vsub
  308. horizontal and vertical chroma subsample values. For example for the
  309. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  310. @item n
  311. the number of input frame, starting from 0
  312. @item pos
  313. the position in the file of the input frame, NAN if unknown
  314. @item t
  315. timestamp expressed in seconds, NAN if the input timestamp is unknown
  316. @end table
  317. The @var{out_w} and @var{out_h} parameters specify the expressions for
  318. the width and height of the output (cropped) video. They are
  319. evaluated just at the configuration of the filter.
  320. The default value of @var{out_w} is "in_w", and the default value of
  321. @var{out_h} is "in_h".
  322. The expression for @var{out_w} may depend on the value of @var{out_h},
  323. and the expression for @var{out_h} may depend on @var{out_w}, but they
  324. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  325. evaluated after @var{out_w} and @var{out_h}.
  326. The @var{x} and @var{y} parameters specify the expressions for the
  327. position of the top-left corner of the output (non-cropped) area. They
  328. are evaluated for each frame. If the evaluated value is not valid, it
  329. is approximated to the nearest valid value.
  330. The default value of @var{x} is "(in_w-out_w)/2", and the default
  331. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  332. the center of the input image.
  333. The expression for @var{x} may depend on @var{y}, and the expression
  334. for @var{y} may depend on @var{x}.
  335. Follow some examples:
  336. @example
  337. # crop the central input area with size 100x100
  338. crop=100:100
  339. # crop the central input area with size 2/3 of the input video
  340. "crop=2/3*in_w:2/3*in_h"
  341. # crop the input video central square
  342. crop=in_h
  343. # delimit the rectangle with the top-left corner placed at position
  344. # 100:100 and the right-bottom corner corresponding to the right-bottom
  345. # corner of the input image.
  346. crop=in_w-100:in_h-100:100:100
  347. # crop 10 pixels from the left and right borders, and 20 pixels from
  348. # the top and bottom borders
  349. "crop=in_w-2*10:in_h-2*20"
  350. # keep only the bottom right quarter of the input image
  351. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  352. # crop height for getting Greek harmony
  353. "crop=in_w:1/PHI*in_w"
  354. # trembling effect
  355. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  356. # erratic camera effect depending on timestamp
  357. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  358. # set x depending on the value of y
  359. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  360. @end example
  361. @section cropdetect
  362. Auto-detect crop size.
  363. Calculate necessary cropping parameters and prints the recommended
  364. parameters through the logging system. The detected dimensions
  365. correspond to the non-black area of the input video.
  366. It accepts the syntax:
  367. @example
  368. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  369. @end example
  370. @table @option
  371. @item limit
  372. Threshold, which can be optionally specified from nothing (0) to
  373. everything (255), defaults to 24.
  374. @item round
  375. Value which the width/height should be divisible by, defaults to
  376. 16. The offset is automatically adjusted to center the video. Use 2 to
  377. get only even dimensions (needed for 4:2:2 video). 16 is best when
  378. encoding to most video codecs.
  379. @item reset
  380. Counter that determines after how many frames cropdetect will reset
  381. the previously detected largest video area and start over to detect
  382. the current optimal crop area. Defaults to 0.
  383. This can be useful when channel logos distort the video area. 0
  384. indicates never reset and return the largest area encountered during
  385. playback.
  386. @end table
  387. @section delogo
  388. Suppress a TV station logo by a simple interpolation of the surrounding
  389. pixels. Just set a rectangle covering the logo and watch it disappear
  390. (and sometimes something even uglier appear - your mileage may vary).
  391. The filter accepts parameters as a string of the form
  392. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  393. @var{key}=@var{value} pairs, separated by ":".
  394. The description of the accepted parameters follows.
  395. @table @option
  396. @item x, y
  397. Specify the top left corner coordinates of the logo. They must be
  398. specified.
  399. @item w, h
  400. Specify the width and height of the logo to clear. They must be
  401. specified.
  402. @item band, t
  403. Specify the thickness of the fuzzy edge of the rectangle (added to
  404. @var{w} and @var{h}). The default value is 4.
  405. @item show
  406. When set to 1, a green rectangle is drawn on the screen to simplify
  407. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  408. @var{band} is set to 4. The default value is 0.
  409. @end table
  410. Some examples follow.
  411. @itemize
  412. @item
  413. Set a rectangle covering the area with top left corner coordinates 0,0
  414. and size 100x77, setting a band of size 10:
  415. @example
  416. delogo=0:0:100:77:10
  417. @end example
  418. @item
  419. As the previous example, but use named options:
  420. @example
  421. delogo=x=0:y=0:w=100:h=77:band=10
  422. @end example
  423. @end itemize
  424. @section drawbox
  425. Draw a colored box on the input image.
  426. It accepts the syntax:
  427. @example
  428. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  429. @end example
  430. @table @option
  431. @item x, y
  432. Specify the top left corner coordinates of the box. Default to 0.
  433. @item width, height
  434. Specify the width and height of the box, if 0 they are interpreted as
  435. the input width and height. Default to 0.
  436. @item color
  437. Specify the color of the box to write, it can be the name of a color
  438. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  439. @end table
  440. Follow some examples:
  441. @example
  442. # draw a black box around the edge of the input image
  443. drawbox
  444. # draw a box with color red and an opacity of 50%
  445. drawbox=10:20:200:60:red@@0.5"
  446. @end example
  447. @section drawtext
  448. Draw text string or text from specified file on top of video using the
  449. libfreetype library.
  450. To enable compilation of this filter you need to configure FFmpeg with
  451. @code{--enable-libfreetype}.
  452. The filter also recognizes strftime() sequences in the provided text
  453. and expands them accordingly. Check the documentation of strftime().
  454. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  455. separated by ":".
  456. The description of the accepted parameters follows.
  457. @table @option
  458. @item fontfile
  459. The font file to be used for drawing text. Path must be included.
  460. This parameter is mandatory.
  461. @item text
  462. The text string to be drawn. The text must be a sequence of UTF-8
  463. encoded characters.
  464. This parameter is mandatory if no file is specified with the parameter
  465. @var{textfile}.
  466. @item textfile
  467. A text file containing text to be drawn. The text must be a sequence
  468. of UTF-8 encoded characters.
  469. This parameter is mandatory if no text string is specified with the
  470. parameter @var{text}.
  471. If both text and textfile are specified, an error is thrown.
  472. @item x, y
  473. The offsets where text will be drawn within the video frame.
  474. Relative to the top/left border of the output image.
  475. The default value of @var{x} and @var{y} is 0.
  476. @item fontsize
  477. The font size to be used for drawing text.
  478. The default value of @var{fontsize} is 16.
  479. @item fontcolor
  480. The color to be used for drawing fonts.
  481. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  482. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  483. The default value of @var{fontcolor} is "black".
  484. @item boxcolor
  485. The color to be used for drawing box around text.
  486. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  487. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  488. The default value of @var{boxcolor} is "white".
  489. @item box
  490. Used to draw a box around text using background color.
  491. Value should be either 1 (enable) or 0 (disable).
  492. The default value of @var{box} is 0.
  493. @item shadowx, shadowy
  494. The x and y offsets for the text shadow position with respect to the
  495. position of the text. They can be either positive or negative
  496. values. Default value for both is "0".
  497. @item shadowcolor
  498. The color to be used for drawing a shadow behind the drawn text. It
  499. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  500. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  501. The default value of @var{shadowcolor} is "black".
  502. @item ft_load_flags
  503. Flags to be used for loading the fonts.
  504. The flags map the corresponding flags supported by libfreetype, and are
  505. a combination of the following values:
  506. @table @var
  507. @item default
  508. @item no_scale
  509. @item no_hinting
  510. @item render
  511. @item no_bitmap
  512. @item vertical_layout
  513. @item force_autohint
  514. @item crop_bitmap
  515. @item pedantic
  516. @item ignore_global_advance_width
  517. @item no_recurse
  518. @item ignore_transform
  519. @item monochrome
  520. @item linear_design
  521. @item no_autohint
  522. @item end table
  523. @end table
  524. Default value is "render".
  525. For more information consult the documentation for the FT_LOAD_*
  526. libfreetype flags.
  527. @item tabsize
  528. The size in number of spaces to use for rendering the tab.
  529. Default value is 4.
  530. @end table
  531. For example the command:
  532. @example
  533. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  534. @end example
  535. will draw "Test Text" with font FreeSerif, using the default values
  536. for the optional parameters.
  537. The command:
  538. @example
  539. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  540. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  541. @end example
  542. will draw 'Test Text' with font FreeSerif of size 24 at position x=100
  543. and y=50 (counting from the top-left corner of the screen), text is
  544. yellow with a red box around it. Both the text and the box have an
  545. opacity of 20%.
  546. Note that the double quotes are not necessary if spaces are not used
  547. within the parameter list.
  548. For more information about libfreetype, check:
  549. @url{http://www.freetype.org/}.
  550. @section fade
  551. Apply fade-in/out effect to input video.
  552. It accepts the parameters:
  553. @var{type}:@var{start_frame}:@var{nb_frames}
  554. @var{type} specifies if the effect type, can be either "in" for
  555. fade-in, or "out" for a fade-out effect.
  556. @var{start_frame} specifies the number of the start frame for starting
  557. to apply the fade effect.
  558. @var{nb_frames} specifies the number of frames for which the fade
  559. effect has to last. At the end of the fade-in effect the output video
  560. will have the same intensity as the input video, at the end of the
  561. fade-out transition the output video will be completely black.
  562. A few usage examples follow, usable too as test scenarios.
  563. @example
  564. # fade in first 30 frames of video
  565. fade=in:0:30
  566. # fade out last 45 frames of a 200-frame video
  567. fade=out:155:45
  568. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  569. fade=in:0:25, fade=out:975:25
  570. # make first 5 frames black, then fade in from frame 5-24
  571. fade=in:5:20
  572. @end example
  573. @section fieldorder
  574. Transform the field order of the input video.
  575. It accepts one parameter which specifies the required field order that
  576. the input interlaced video will be transformed to. The parameter can
  577. assume one of the following values:
  578. @table @option
  579. @item 0 or bff
  580. output bottom field first
  581. @item 1 or tff
  582. output top field first
  583. @end table
  584. Default value is "tff".
  585. Transformation is achieved by shifting the picture content up or down
  586. by one line, and filling the remaining line with appropriate picture content.
  587. This method is consistent with most broadcast field order converters.
  588. If the input video is not flagged as being interlaced, or it is already
  589. flagged as being of the required output field order then this filter does
  590. not alter the incoming video.
  591. This filter is very useful when converting to or from PAL DV material,
  592. which is bottom field first.
  593. For example:
  594. @example
  595. ./ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  596. @end example
  597. @section fifo
  598. Buffer input images and send them when they are requested.
  599. This filter is mainly useful when auto-inserted by the libavfilter
  600. framework.
  601. The filter does not take parameters.
  602. @section format
  603. Convert the input video to one of the specified pixel formats.
  604. Libavfilter will try to pick one that is supported for the input to
  605. the next filter.
  606. The filter accepts a list of pixel format names, separated by ":",
  607. for example "yuv420p:monow:rgb24".
  608. Some examples follow:
  609. @example
  610. # convert the input video to the format "yuv420p"
  611. format=yuv420p
  612. # convert the input video to any of the formats in the list
  613. format=yuv420p:yuv444p:yuv410p
  614. @end example
  615. @anchor{frei0r}
  616. @section frei0r
  617. Apply a frei0r effect to the input video.
  618. To enable compilation of this filter you need to install the frei0r
  619. header and configure FFmpeg with --enable-frei0r.
  620. The filter supports the syntax:
  621. @example
  622. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  623. @end example
  624. @var{filter_name} is the name to the frei0r effect to load. If the
  625. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  626. is searched in each one of the directories specified by the colon
  627. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  628. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  629. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  630. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  631. for the frei0r effect.
  632. A frei0r effect parameter can be a boolean (whose values are specified
  633. with "y" and "n"), a double, a color (specified by the syntax
  634. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  635. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  636. description), a position (specified by the syntax @var{X}/@var{Y},
  637. @var{X} and @var{Y} being float numbers) and a string.
  638. The number and kind of parameters depend on the loaded effect. If an
  639. effect parameter is not specified the default value is set.
  640. Some examples follow:
  641. @example
  642. # apply the distort0r effect, set the first two double parameters
  643. frei0r=distort0r:0.5:0.01
  644. # apply the colordistance effect, takes a color as first parameter
  645. frei0r=colordistance:0.2/0.3/0.4
  646. frei0r=colordistance:violet
  647. frei0r=colordistance:0x112233
  648. # apply the perspective effect, specify the top left and top right
  649. # image positions
  650. frei0r=perspective:0.2/0.2:0.8/0.2
  651. @end example
  652. For more information see:
  653. @url{http://piksel.org/frei0r}
  654. @section gradfun
  655. Fix the banding artifacts that are sometimes introduced into nearly flat
  656. regions by truncation to 8bit colordepth.
  657. Interpolate the gradients that should go where the bands are, and
  658. dither them.
  659. This filter is designed for playback only. Do not use it prior to
  660. lossy compression, because compression tends to lose the dither and
  661. bring back the bands.
  662. The filter takes two optional parameters, separated by ':':
  663. @var{strength}:@var{radius}
  664. @var{strength} is the maximum amount by which the filter will change
  665. any one pixel. Also the threshold for detecting nearly flat
  666. regions. Acceptable values range from .51 to 255, default value is
  667. 1.2, out-of-range values will be clipped to the valid range.
  668. @var{radius} is the neighborhood to fit the gradient to. A larger
  669. radius makes for smoother gradients, but also prevents the filter from
  670. modifying the pixels near detailed regions. Acceptable values are
  671. 8-32, default value is 16, out-of-range values will be clipped to the
  672. valid range.
  673. @example
  674. # default parameters
  675. gradfun=1.2:16
  676. # omitting radius
  677. gradfun=1.2
  678. @end example
  679. @section hflip
  680. Flip the input video horizontally.
  681. For example to horizontally flip the video in input with
  682. @file{ffmpeg}:
  683. @example
  684. ffmpeg -i in.avi -vf "hflip" out.avi
  685. @end example
  686. @section hqdn3d
  687. High precision/quality 3d denoise filter. This filter aims to reduce
  688. image noise producing smooth images and making still images really
  689. still. It should enhance compressibility.
  690. It accepts the following optional parameters:
  691. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  692. @table @option
  693. @item luma_spatial
  694. a non-negative float number which specifies spatial luma strength,
  695. defaults to 4.0
  696. @item chroma_spatial
  697. a non-negative float number which specifies spatial chroma strength,
  698. defaults to 3.0*@var{luma_spatial}/4.0
  699. @item luma_tmp
  700. a float number which specifies luma temporal strength, defaults to
  701. 6.0*@var{luma_spatial}/4.0
  702. @item chroma_tmp
  703. a float number which specifies chroma temporal strength, defaults to
  704. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  705. @end table
  706. @section lut, lutrgb, lutyuv
  707. Compute a look-up table for binding each pixel component input value
  708. to an output value, and apply it to input video.
  709. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  710. to an RGB input video.
  711. These filters accept in input a ":"-separated list of options, which
  712. specify the expressions used for computing the lookup table for the
  713. corresponding pixel component values.
  714. The @var{lut} filter requires either YUV or RGB pixel formats in
  715. input, and accepts the options:
  716. @table @option
  717. @var{c0} (first pixel component)
  718. @var{c1} (second pixel component)
  719. @var{c2} (third pixel component)
  720. @var{c3} (fourth pixel component, corresponds to the alpha component)
  721. @end table
  722. The exact component associated to each option depends on the format in
  723. input.
  724. The @var{lutrgb} filter requires RGB pixel formats in input, and
  725. accepts the options:
  726. @table @option
  727. @var{r} (red component)
  728. @var{g} (green component)
  729. @var{b} (blue component)
  730. @var{a} (alpha component)
  731. @end table
  732. The @var{lutyuv} filter requires YUV pixel formats in input, and
  733. accepts the options:
  734. @table @option
  735. @var{y} (Y/luminance component)
  736. @var{u} (U/Cb component)
  737. @var{v} (V/Cr component)
  738. @var{a} (alpha component)
  739. @end table
  740. The expressions can contain the following constants and functions:
  741. @table @option
  742. @item E, PI, PHI
  743. the corresponding mathematical approximated values for e
  744. (euler number), pi (greek PI), PHI (golden ratio)
  745. @item w, h
  746. the input width and heigth
  747. @item val
  748. input value for the pixel component
  749. @item clipval
  750. the input value clipped in the @var{minval}-@var{maxval} range
  751. @item maxval
  752. maximum value for the pixel component
  753. @item minval
  754. minimum value for the pixel component
  755. @item negval
  756. the negated value for the pixel component value clipped in the
  757. @var{minval}-@var{maxval} range , it corresponds to the expression
  758. "maxval-clipval+minval"
  759. @item clip(val)
  760. the computed value in @var{val} clipped in the
  761. @var{minval}-@var{maxval} range
  762. @item gammaval(gamma)
  763. the computed gamma correction value of the pixel component value
  764. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  765. expression
  766. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  767. @end table
  768. All expressions default to "val".
  769. Some examples follow:
  770. @example
  771. # negate input video
  772. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  773. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  774. # the above is the same as
  775. lutrgb="r=negval:g=negval:b=negval"
  776. lutyuv="y=negval:u=negval:v=negval"
  777. # negate luminance
  778. lutyuv=negval
  779. # remove chroma components, turns the video into a graytone image
  780. lutyuv="u=128:v=128"
  781. # apply a luma burning effect
  782. lutyuv="y=2*val"
  783. # remove green and blue components
  784. lutrgb="g=0:b=0"
  785. # set a constant alpha channel value on input
  786. format=rgba,lutrgb=a="maxval-minval/2"
  787. # correct luminance gamma by a 0.5 factor
  788. lutyuv=y=gammaval(0.5)
  789. @end example
  790. @section mp
  791. Apply an MPlayer filter to the input video.
  792. This filter provides a wrapper around most of the filters of
  793. MPlayer/MEncoder.
  794. This wrapper is considered experimental. Some of the wrapped filters
  795. may not work properly and we may drop support for them, as they will
  796. be implemented natively into FFmpeg. Thus you should avoid
  797. depending on them when writing portable scripts.
  798. The filters accepts the parameters:
  799. @var{filter_name}[:=]@var{filter_params}
  800. @var{filter_name} is the name of a supported MPlayer filter,
  801. @var{filter_params} is a string containing the parameters accepted by
  802. the named filter.
  803. The list of the currently supported filters follows:
  804. @table @var
  805. @item 2xsai
  806. @item decimate
  807. @item denoise3d
  808. @item detc
  809. @item dint
  810. @item divtc
  811. @item down3dright
  812. @item dsize
  813. @item eq2
  814. @item eq
  815. @item field
  816. @item fil
  817. @item fixpts
  818. @item framestep
  819. @item fspp
  820. @item geq
  821. @item harddup
  822. @item hqdn3d
  823. @item hue
  824. @item il
  825. @item ilpack
  826. @item ivtc
  827. @item kerndeint
  828. @item mcdeint
  829. @item mirror
  830. @item noise
  831. @item ow
  832. @item palette
  833. @item perspective
  834. @item phase
  835. @item pp7
  836. @item pullup
  837. @item qp
  838. @item rectangle
  839. @item remove-logo
  840. @item rotate
  841. @item sab
  842. @item screenshot
  843. @item smartblur
  844. @item softpulldown
  845. @item softskip
  846. @item spp
  847. @item swapuv
  848. @item telecine
  849. @item tile
  850. @item tinterlace
  851. @item unsharp
  852. @item uspp
  853. @item yuvcsp
  854. @item yvu9
  855. @end table
  856. The parameter syntax and behavior for the listed filters are the same
  857. of the corresponding MPlayer filters. For detailed instructions check
  858. the "VIDEO FILTERS" section in the MPlayer manual.
  859. Some examples follow:
  860. @example
  861. # remove a logo by interpolating the surrounding pixels
  862. mp=delogo=200:200:80:20:1
  863. # adjust gamma, brightness, contrast
  864. mp=eq2=1.0:2:0.5
  865. # tweak hue and saturation
  866. mp=hue=100:-10
  867. @end example
  868. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  869. @section negate
  870. Negate input video.
  871. This filter accepts an integer in input, if non-zero it negates the
  872. alpha component (if available). The default value in input is 0.
  873. @section noformat
  874. Force libavfilter not to use any of the specified pixel formats for the
  875. input to the next filter.
  876. The filter accepts a list of pixel format names, separated by ":",
  877. for example "yuv420p:monow:rgb24".
  878. Some examples follow:
  879. @example
  880. # force libavfilter to use a format different from "yuv420p" for the
  881. # input to the vflip filter
  882. noformat=yuv420p,vflip
  883. # convert the input video to any of the formats not contained in the list
  884. noformat=yuv420p:yuv444p:yuv410p
  885. @end example
  886. @section null
  887. Pass the video source unchanged to the output.
  888. @section ocv
  889. Apply video transform using libopencv.
  890. To enable this filter install libopencv library and headers and
  891. configure FFmpeg with --enable-libopencv.
  892. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  893. @var{filter_name} is the name of the libopencv filter to apply.
  894. @var{filter_params} specifies the parameters to pass to the libopencv
  895. filter. If not specified the default values are assumed.
  896. Refer to the official libopencv documentation for more precise
  897. informations:
  898. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  899. Follows the list of supported libopencv filters.
  900. @anchor{dilate}
  901. @subsection dilate
  902. Dilate an image by using a specific structuring element.
  903. This filter corresponds to the libopencv function @code{cvDilate}.
  904. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  905. @var{struct_el} represents a structuring element, and has the syntax:
  906. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  907. @var{cols} and @var{rows} represent the number of colums and rows of
  908. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  909. point, and @var{shape} the shape for the structuring element, and
  910. can be one of the values "rect", "cross", "ellipse", "custom".
  911. If the value for @var{shape} is "custom", it must be followed by a
  912. string of the form "=@var{filename}". The file with name
  913. @var{filename} is assumed to represent a binary image, with each
  914. printable character corresponding to a bright pixel. When a custom
  915. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  916. or columns and rows of the read file are assumed instead.
  917. The default value for @var{struct_el} is "3x3+0x0/rect".
  918. @var{nb_iterations} specifies the number of times the transform is
  919. applied to the image, and defaults to 1.
  920. Follow some example:
  921. @example
  922. # use the default values
  923. ocv=dilate
  924. # dilate using a structuring element with a 5x5 cross, iterate two times
  925. ocv=dilate=5x5+2x2/cross:2
  926. # read the shape from the file diamond.shape, iterate two times
  927. # the file diamond.shape may contain a pattern of characters like this:
  928. # *
  929. # ***
  930. # *****
  931. # ***
  932. # *
  933. # the specified cols and rows are ignored (but not the anchor point coordinates)
  934. ocv=0x0+2x2/custom=diamond.shape:2
  935. @end example
  936. @subsection erode
  937. Erode an image by using a specific structuring element.
  938. This filter corresponds to the libopencv function @code{cvErode}.
  939. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  940. with the same syntax and semantics as the @ref{dilate} filter.
  941. @subsection smooth
  942. Smooth the input video.
  943. The filter takes the following parameters:
  944. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  945. @var{type} is the type of smooth filter to apply, and can be one of
  946. the following values: "blur", "blur_no_scale", "median", "gaussian",
  947. "bilateral". The default value is "gaussian".
  948. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  949. parameters whose meanings depend on smooth type. @var{param1} and
  950. @var{param2} accept integer positive values or 0, @var{param3} and
  951. @var{param4} accept float values.
  952. The default value for @var{param1} is 3, the default value for the
  953. other parameters is 0.
  954. These parameters correspond to the parameters assigned to the
  955. libopencv function @code{cvSmooth}.
  956. @section overlay
  957. Overlay one video on top of another.
  958. It takes two inputs and one output, the first input is the "main"
  959. video on which the second input is overlayed.
  960. It accepts the parameters: @var{x}:@var{y}.
  961. @var{x} is the x coordinate of the overlayed video on the main video,
  962. @var{y} is the y coordinate. The parameters are expressions containing
  963. the following parameters:
  964. @table @option
  965. @item main_w, main_h
  966. main input width and height
  967. @item W, H
  968. same as @var{main_w} and @var{main_h}
  969. @item overlay_w, overlay_h
  970. overlay input width and height
  971. @item w, h
  972. same as @var{overlay_w} and @var{overlay_h}
  973. @end table
  974. Be aware that frames are taken from each input video in timestamp
  975. order, hence, if their initial timestamps differ, it is a a good idea
  976. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  977. have them begin in the same zero timestamp, as it does the example for
  978. the @var{movie} filter.
  979. Follow some examples:
  980. @example
  981. # draw the overlay at 10 pixels from the bottom right
  982. # corner of the main video.
  983. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  984. # insert a transparent PNG logo in the bottom left corner of the input
  985. movie=logo.png [logo];
  986. [in][logo] overlay=10:main_h-overlay_h-10 [out]
  987. # insert 2 different transparent PNG logos (second logo on bottom
  988. # right corner):
  989. movie=logo1.png [logo1];
  990. movie=logo2.png [logo2];
  991. [in][logo1] overlay=10:H-h-10 [in+logo1];
  992. [in+logo1][logo2] overlay=W-w-10:H-h-10 [out]
  993. # add a transparent color layer on top of the main video,
  994. # WxH specifies the size of the main input to the overlay filter
  995. color=red@.3:WxH [over]; [in][over] overlay [out]
  996. @end example
  997. You can chain togheter more overlays but the efficiency of such
  998. approach is yet to be tested.
  999. @section pad
  1000. Add paddings to the input image, and places the original input at the
  1001. given coordinates @var{x}, @var{y}.
  1002. It accepts the following parameters:
  1003. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  1004. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1005. expressions containing the following constants:
  1006. @table @option
  1007. @item E, PI, PHI
  1008. the corresponding mathematical approximated values for e
  1009. (euler number), pi (greek PI), phi (golden ratio)
  1010. @item in_w, in_h
  1011. the input video width and heigth
  1012. @item iw, ih
  1013. same as @var{in_w} and @var{in_h}
  1014. @item out_w, out_h
  1015. the output width and heigth, that is the size of the padded area as
  1016. specified by the @var{width} and @var{height} expressions
  1017. @item ow, oh
  1018. same as @var{out_w} and @var{out_h}
  1019. @item x, y
  1020. x and y offsets as specified by the @var{x} and @var{y}
  1021. expressions, or NAN if not yet specified
  1022. @item a
  1023. same as @var{iw} / @var{ih}
  1024. @item sar
  1025. input sample aspect ratio
  1026. @item dar
  1027. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1028. @item hsub, vsub
  1029. horizontal and vertical chroma subsample values. For example for the
  1030. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1031. @end table
  1032. Follows the description of the accepted parameters.
  1033. @table @option
  1034. @item width, height
  1035. Specify the size of the output image with the paddings added. If the
  1036. value for @var{width} or @var{height} is 0, the corresponding input size
  1037. is used for the output.
  1038. The @var{width} expression can reference the value set by the
  1039. @var{height} expression, and viceversa.
  1040. The default value of @var{width} and @var{height} is 0.
  1041. @item x, y
  1042. Specify the offsets where to place the input image in the padded area
  1043. with respect to the top/left border of the output image.
  1044. The @var{x} expression can reference the value set by the @var{y}
  1045. expression, and viceversa.
  1046. The default value of @var{x} and @var{y} is 0.
  1047. @item color
  1048. Specify the color of the padded area, it can be the name of a color
  1049. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1050. The default value of @var{color} is "black".
  1051. @end table
  1052. Some examples follow:
  1053. @example
  1054. # Add paddings with color "violet" to the input video. Output video
  1055. # size is 640x480, the top-left corner of the input video is placed at
  1056. # column 0, row 40.
  1057. pad=640:480:0:40:violet
  1058. # pad the input to get an output with dimensions increased bt 3/2,
  1059. # and put the input video at the center of the padded area
  1060. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1061. # pad the input to get a squared output with size equal to the maximum
  1062. # value between the input width and height, and put the input video at
  1063. # the center of the padded area
  1064. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1065. # pad the input to get a final w/h ratio of 16:9
  1066. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1067. # for anamorphic video, in order to set the output display aspect ratio,
  1068. # it is necessary to use sar in the expression, according to the relation:
  1069. # (ih * X / ih) * sar = output_dar
  1070. # X = output_dar / sar
  1071. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  1072. # double output size and put the input video in the bottom-right
  1073. # corner of the output padded area
  1074. pad="2*iw:2*ih:ow-iw:oh-ih"
  1075. @end example
  1076. @section pixdesctest
  1077. Pixel format descriptor test filter, mainly useful for internal
  1078. testing. The output video should be equal to the input video.
  1079. For example:
  1080. @example
  1081. format=monow, pixdesctest
  1082. @end example
  1083. can be used to test the monowhite pixel format descriptor definition.
  1084. @section scale
  1085. Scale the input video to @var{width}:@var{height} and/or convert the image format.
  1086. The parameters @var{width} and @var{height} are expressions containing
  1087. the following constants:
  1088. @table @option
  1089. @item E, PI, PHI
  1090. the corresponding mathematical approximated values for e
  1091. (euler number), pi (greek PI), phi (golden ratio)
  1092. @item in_w, in_h
  1093. the input width and heigth
  1094. @item iw, ih
  1095. same as @var{in_w} and @var{in_h}
  1096. @item out_w, out_h
  1097. the output (cropped) width and heigth
  1098. @item ow, oh
  1099. same as @var{out_w} and @var{out_h}
  1100. @item a
  1101. same as @var{iw} / @var{ih}
  1102. @item sar
  1103. input sample aspect ratio
  1104. @item dar
  1105. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1106. @item hsub, vsub
  1107. horizontal and vertical chroma subsample values. For example for the
  1108. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1109. @end table
  1110. If the input image format is different from the format requested by
  1111. the next filter, the scale filter will convert the input to the
  1112. requested format.
  1113. If the value for @var{width} or @var{height} is 0, the respective input
  1114. size is used for the output.
  1115. If the value for @var{width} or @var{height} is -1, the scale filter will
  1116. use, for the respective output size, a value that maintains the aspect
  1117. ratio of the input image.
  1118. The default value of @var{width} and @var{height} is 0.
  1119. Some examples follow:
  1120. @example
  1121. # scale the input video to a size of 200x100.
  1122. scale=200:100
  1123. # scale the input to 2x
  1124. scale=2*iw:2*ih
  1125. # the above is the same as
  1126. scale=2*in_w:2*in_h
  1127. # scale the input to half size
  1128. scale=iw/2:ih/2
  1129. # increase the width, and set the height to the same size
  1130. scale=3/2*iw:ow
  1131. # seek for Greek harmony
  1132. scale=iw:1/PHI*iw
  1133. scale=ih*PHI:ih
  1134. # increase the height, and set the width to 3/2 of the height
  1135. scale=3/2*oh:3/5*ih
  1136. # increase the size, but make the size a multiple of the chroma
  1137. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1138. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1139. scale='min(500\, iw*3/2):-1'
  1140. @end example
  1141. @section select
  1142. Select frames to pass in output.
  1143. It accepts in input an expression, which is evaluated for each input
  1144. frame. If the expression is evaluated to a non-zero value, the frame
  1145. is selected and passed to the output, otherwise it is discarded.
  1146. The expression can contain the following constants:
  1147. @table @option
  1148. @item PI
  1149. Greek PI
  1150. @item PHI
  1151. golden ratio
  1152. @item E
  1153. Euler number
  1154. @item n
  1155. the sequential number of the filtered frame, starting from 0
  1156. @item selected_n
  1157. the sequential number of the selected frame, starting from 0
  1158. @item prev_selected_n
  1159. the sequential number of the last selected frame, NAN if undefined
  1160. @item TB
  1161. timebase of the input timestamps
  1162. @item pts
  1163. the PTS (Presentation TimeStamp) of the filtered video frame,
  1164. expressed in @var{TB} units, NAN if undefined
  1165. @item t
  1166. the PTS (Presentation TimeStamp) of the filtered video frame,
  1167. expressed in seconds, NAN if undefined
  1168. @item prev_pts
  1169. the PTS of the previously filtered video frame, NAN if undefined
  1170. @item prev_selected_pts
  1171. the PTS of the last previously filtered video frame, NAN if undefined
  1172. @item prev_selected_t
  1173. the PTS of the last previously selected video frame, NAN if undefined
  1174. @item start_pts
  1175. the PTS of the first video frame in the video, NAN if undefined
  1176. @item start_t
  1177. the time of the first video frame in the video, NAN if undefined
  1178. @item pict_type
  1179. the picture type of the filtered frame, can assume one of the following
  1180. values:
  1181. @table @option
  1182. @item PICT_TYPE_I
  1183. @item PICT_TYPE_P
  1184. @item PICT_TYPE_B
  1185. @item PICT_TYPE_S
  1186. @item PICT_TYPE_SI
  1187. @item PICT_TYPE_SP
  1188. @item PICT_TYPE_BI
  1189. @end table
  1190. @item interlace_type
  1191. the frame interlace type, can assume one of the following values:
  1192. @table @option
  1193. @item INTERLACE_TYPE_P
  1194. the frame is progressive (not interlaced)
  1195. @item INTERLACE_TYPE_T
  1196. the frame is top-field-first
  1197. @item INTERLACE_TYPE_B
  1198. the frame is bottom-field-first
  1199. @end table
  1200. @item key
  1201. 1 if the filtered frame is a key-frame, 0 otherwise
  1202. @item pos
  1203. the position in the file of the filtered frame, -1 if the information
  1204. is not available (e.g. for synthetic video)
  1205. @end table
  1206. The default value of the select expression is "1".
  1207. Some examples follow:
  1208. @example
  1209. # select all frames in input
  1210. select
  1211. # the above is the same as:
  1212. select=1
  1213. # skip all frames:
  1214. select=0
  1215. # select only I-frames
  1216. select='eq(pict_type\,PICT_TYPE_I)'
  1217. # select one frame every 100
  1218. select='not(mod(n\,100))'
  1219. # select only frames contained in the 10-20 time interval
  1220. select='gte(t\,10)*lte(t\,20)'
  1221. # select only I frames contained in the 10-20 time interval
  1222. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,PICT_TYPE_I)'
  1223. # select frames with a minimum distance of 10 seconds
  1224. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1225. @end example
  1226. @anchor{setdar}
  1227. @section setdar
  1228. Set the Display Aspect Ratio for the filter output video.
  1229. This is done by changing the specified Sample (aka Pixel) Aspect
  1230. Ratio, according to the following equation:
  1231. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1232. Keep in mind that this filter does not modify the pixel dimensions of
  1233. the video frame. Also the display aspect ratio set by this filter may
  1234. be changed by later filters in the filterchain, e.g. in case of
  1235. scaling or if another "setdar" or a "setsar" filter is applied.
  1236. The filter accepts a parameter string which represents the wanted
  1237. display aspect ratio.
  1238. The parameter can be a floating point number string, or an expression
  1239. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1240. numerator and denominator of the aspect ratio.
  1241. If the parameter is not specified, it is assumed the value "0:1".
  1242. For example to change the display aspect ratio to 16:9, specify:
  1243. @example
  1244. setdar=16:9
  1245. # the above is equivalent to
  1246. setdar=1.77777
  1247. @end example
  1248. See also the @ref{setsar} filter documentation.
  1249. @section setpts
  1250. Change the PTS (presentation timestamp) of the input video frames.
  1251. Accept in input an expression evaluated through the eval API, which
  1252. can contain the following constants:
  1253. @table @option
  1254. @item PTS
  1255. the presentation timestamp in input
  1256. @item PI
  1257. Greek PI
  1258. @item PHI
  1259. golden ratio
  1260. @item E
  1261. Euler number
  1262. @item N
  1263. the count of the input frame, starting from 0.
  1264. @item STARTPTS
  1265. the PTS of the first video frame
  1266. @item INTERLACED
  1267. tell if the current frame is interlaced
  1268. @item POS
  1269. original position in the file of the frame, or undefined if undefined
  1270. for the current frame
  1271. @item PREV_INPTS
  1272. previous input PTS
  1273. @item PREV_OUTPTS
  1274. previous output PTS
  1275. @end table
  1276. Some examples follow:
  1277. @example
  1278. # start counting PTS from zero
  1279. setpts=PTS-STARTPTS
  1280. # fast motion
  1281. setpts=0.5*PTS
  1282. # slow motion
  1283. setpts=2.0*PTS
  1284. # fixed rate 25 fps
  1285. setpts=N/(25*TB)
  1286. # fixed rate 25 fps with some jitter
  1287. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1288. @end example
  1289. @anchor{setsar}
  1290. @section setsar
  1291. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1292. Note that as a consequence of the application of this filter, the
  1293. output display aspect ratio will change according to the following
  1294. equation:
  1295. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1296. Keep in mind that the sample aspect ratio set by this filter may be
  1297. changed by later filters in the filterchain, e.g. if another "setsar"
  1298. or a "setdar" filter is applied.
  1299. The filter accepts a parameter string which represents the wanted
  1300. sample aspect ratio.
  1301. The parameter can be a floating point number string, or an expression
  1302. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1303. numerator and denominator of the aspect ratio.
  1304. If the parameter is not specified, it is assumed the value "0:1".
  1305. For example to change the sample aspect ratio to 10:11, specify:
  1306. @example
  1307. setsar=10:11
  1308. @end example
  1309. @section settb
  1310. Set the timebase to use for the output frames timestamps.
  1311. It is mainly useful for testing timebase configuration.
  1312. It accepts in input an arithmetic expression representing a rational.
  1313. The expression can contain the constants "PI", "E", "PHI", "AVTB" (the
  1314. default timebase), and "intb" (the input timebase).
  1315. The default value for the input is "intb".
  1316. Follow some examples.
  1317. @example
  1318. # set the timebase to 1/25
  1319. settb=1/25
  1320. # set the timebase to 1/10
  1321. settb=0.1
  1322. #set the timebase to 1001/1000
  1323. settb=1+0.001
  1324. #set the timebase to 2*intb
  1325. settb=2*intb
  1326. #set the default timebase value
  1327. settb=AVTB
  1328. @end example
  1329. @section showinfo
  1330. Show a line containing various information for each input video frame.
  1331. The input video is not modified.
  1332. The shown line contains a sequence of key/value pairs of the form
  1333. @var{key}:@var{value}.
  1334. A description of each shown parameter follows:
  1335. @table @option
  1336. @item n
  1337. sequential number of the input frame, starting from 0
  1338. @item pts
  1339. Presentation TimeStamp of the input frame, expressed as a number of
  1340. time base units. The time base unit depends on the filter input pad.
  1341. @item pts_time
  1342. Presentation TimeStamp of the input frame, expressed as a number of
  1343. seconds
  1344. @item pos
  1345. position of the frame in the input stream, -1 if this information in
  1346. unavailable and/or meanigless (for example in case of synthetic video)
  1347. @item fmt
  1348. pixel format name
  1349. @item sar
  1350. sample aspect ratio of the input frame, expressed in the form
  1351. @var{num}/@var{den}
  1352. @item s
  1353. size of the input frame, expressed in the form
  1354. @var{width}x@var{height}
  1355. @item i
  1356. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1357. for bottom field first)
  1358. @item iskey
  1359. 1 if the frame is a key frame, 0 otherwise
  1360. @item type
  1361. picture type of the input frame ("I" for an I-frame, "P" for a
  1362. P-frame, "B" for a B-frame, "?" for unknown type).
  1363. Check also the documentation of the @code{AVPictureType} enum and of
  1364. the @code{av_get_picture_type_char} function defined in
  1365. @file{libavutil/avutil.h}.
  1366. @item checksum
  1367. Adler-32 checksum of all the planes of the input frame
  1368. @item plane_checksum
  1369. Adler-32 checksum of each plane of the input frame, expressed in the form
  1370. "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1371. @end table
  1372. @section slicify
  1373. Pass the images of input video on to next video filter as multiple
  1374. slices.
  1375. @example
  1376. ./ffmpeg -i in.avi -vf "slicify=32" out.avi
  1377. @end example
  1378. The filter accepts the slice height as parameter. If the parameter is
  1379. not specified it will use the default value of 16.
  1380. Adding this in the beginning of filter chains should make filtering
  1381. faster due to better use of the memory cache.
  1382. @section split
  1383. Pass on the input video to two outputs. Both outputs are identical to
  1384. the input video.
  1385. For example:
  1386. @example
  1387. [in] split [splitout1][splitout2];
  1388. [splitout1] crop=100:100:0:0 [cropout];
  1389. [splitout2] pad=200:200:100:100 [padout];
  1390. @end example
  1391. will create two separate outputs from the same input, one cropped and
  1392. one padded.
  1393. @section transpose
  1394. Transpose rows with columns in the input video and optionally flip it.
  1395. It accepts a parameter representing an integer, which can assume the
  1396. values:
  1397. @table @samp
  1398. @item 0
  1399. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1400. @example
  1401. L.R L.l
  1402. . . -> . .
  1403. l.r R.r
  1404. @end example
  1405. @item 1
  1406. Rotate by 90 degrees clockwise, that is:
  1407. @example
  1408. L.R l.L
  1409. . . -> . .
  1410. l.r r.R
  1411. @end example
  1412. @item 2
  1413. Rotate by 90 degrees counterclockwise, that is:
  1414. @example
  1415. L.R R.r
  1416. . . -> . .
  1417. l.r L.l
  1418. @end example
  1419. @item 3
  1420. Rotate by 90 degrees clockwise and vertically flip, that is:
  1421. @example
  1422. L.R r.R
  1423. . . -> . .
  1424. l.r l.L
  1425. @end example
  1426. @end table
  1427. @section unsharp
  1428. Sharpen or blur the input video.
  1429. It accepts the following parameters:
  1430. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  1431. Negative values for the amount will blur the input video, while positive
  1432. values will sharpen. All parameters are optional and default to the
  1433. equivalent of the string '5:5:1.0:5:5:0.0'.
  1434. @table @option
  1435. @item luma_msize_x
  1436. Set the luma matrix horizontal size. It can be an integer between 3
  1437. and 13, default value is 5.
  1438. @item luma_msize_y
  1439. Set the luma matrix vertical size. It can be an integer between 3
  1440. and 13, default value is 5.
  1441. @item luma_amount
  1442. Set the luma effect strength. It can be a float number between -2.0
  1443. and 5.0, default value is 1.0.
  1444. @item chroma_msize_x
  1445. Set the chroma matrix horizontal size. It can be an integer between 3
  1446. and 13, default value is 5.
  1447. @item chroma_msize_y
  1448. Set the chroma matrix vertical size. It can be an integer between 3
  1449. and 13, default value is 5.
  1450. @item chroma_amount
  1451. Set the chroma effect strength. It can be a float number between -2.0
  1452. and 5.0, default value is 0.0.
  1453. @end table
  1454. @example
  1455. # Strong luma sharpen effect parameters
  1456. unsharp=7:7:2.5
  1457. # Strong blur of both luma and chroma parameters
  1458. unsharp=7:7:-2:7:7:-2
  1459. # Use the default values with @command{ffmpeg}
  1460. ./ffmpeg -i in.avi -vf "unsharp" out.mp4
  1461. @end example
  1462. @section vflip
  1463. Flip the input video vertically.
  1464. @example
  1465. ./ffmpeg -i in.avi -vf "vflip" out.avi
  1466. @end example
  1467. @section yadif
  1468. Deinterlace the input video ("yadif" means "yet another deinterlacing
  1469. filter").
  1470. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  1471. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  1472. following values:
  1473. @table @option
  1474. @item 0
  1475. output 1 frame for each frame
  1476. @item 1
  1477. output 1 frame for each field
  1478. @item 2
  1479. like 0 but skips spatial interlacing check
  1480. @item 3
  1481. like 1 but skips spatial interlacing check
  1482. @end table
  1483. Default value is 0.
  1484. @var{parity} specifies the picture field parity assumed for the input
  1485. interlaced video, accepts one of the following values:
  1486. @table @option
  1487. @item 0
  1488. assume top field first
  1489. @item 1
  1490. assume bottom field first
  1491. @item -1
  1492. enable automatic detection
  1493. @end table
  1494. Default value is -1.
  1495. If interlacing is unknown or decoder does not export this information,
  1496. top field first will be assumed.
  1497. @var{auto} specifies if deinterlacer should trust the interlaced flag
  1498. and only deinterlace frames marked as interlaced
  1499. @table @option
  1500. @item 0
  1501. deinterlace all frames
  1502. @item 1
  1503. only deinterlace frames marked as interlaced
  1504. @end table
  1505. Default value is 0.
  1506. @c man end VIDEO FILTERS
  1507. @chapter Video Sources
  1508. @c man begin VIDEO SOURCES
  1509. Below is a description of the currently available video sources.
  1510. @section buffer
  1511. Buffer video frames, and make them available to the filter chain.
  1512. This source is mainly intended for a programmatic use, in particular
  1513. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  1514. It accepts the following parameters:
  1515. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}:@var{sample_aspect_ratio_num}:@var{sample_aspect_ratio.den}:@var{scale_params}
  1516. All the parameters but @var{scale_params} need to be explicitely
  1517. defined.
  1518. Follows the list of the accepted parameters.
  1519. @table @option
  1520. @item width, height
  1521. Specify the width and height of the buffered video frames.
  1522. @item pix_fmt_string
  1523. A string representing the pixel format of the buffered video frames.
  1524. It may be a number corresponding to a pixel format, or a pixel format
  1525. name.
  1526. @item timebase_num, timebase_den
  1527. Specify numerator and denomitor of the timebase assumed by the
  1528. timestamps of the buffered frames.
  1529. @item sample_aspect_ratio.num, sample_aspect_ratio.den
  1530. Specify numerator and denominator of the sample aspect ratio assumed
  1531. by the video frames.
  1532. @item scale_params
  1533. Specify the optional parameters to be used for the scale filter which
  1534. is automatically inserted when an input change is detected in the
  1535. input size or format.
  1536. @end table
  1537. For example:
  1538. @example
  1539. buffer=320:240:yuv410p:1:24:1:1
  1540. @end example
  1541. will instruct the source to accept video frames with size 320x240 and
  1542. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  1543. square pixels (1:1 sample aspect ratio).
  1544. Since the pixel format with name "yuv410p" corresponds to the number 6
  1545. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  1546. this example corresponds to:
  1547. @example
  1548. buffer=320:240:6:1:24:1:1
  1549. @end example
  1550. @section color
  1551. Provide an uniformly colored input.
  1552. It accepts the following parameters:
  1553. @var{color}:@var{frame_size}:@var{frame_rate}
  1554. Follows the description of the accepted parameters.
  1555. @table @option
  1556. @item color
  1557. Specify the color of the source. It can be the name of a color (case
  1558. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  1559. alpha specifier. The default value is "black".
  1560. @item frame_size
  1561. Specify the size of the sourced video, it may be a string of the form
  1562. @var{width}x@var{heigth}, or the name of a size abbreviation. The
  1563. default value is "320x240".
  1564. @item frame_rate
  1565. Specify the frame rate of the sourced video, as the number of frames
  1566. generated per second. It has to be a string in the format
  1567. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1568. number or a valid video frame rate abbreviation. The default value is
  1569. "25".
  1570. @end table
  1571. For example the following graph description will generate a red source
  1572. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  1573. frames per second, which will be overlayed over the source connected
  1574. to the pad with identifier "in".
  1575. @example
  1576. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  1577. @end example
  1578. @section movie
  1579. Read a video stream from a movie container.
  1580. It accepts the syntax: @var{movie_name}[:@var{options}] where
  1581. @var{movie_name} is the name of the resource to read (not necessarily
  1582. a file but also a device or a stream accessed through some protocol),
  1583. and @var{options} is an optional sequence of @var{key}=@var{value}
  1584. pairs, separated by ":".
  1585. The description of the accepted options follows.
  1586. @table @option
  1587. @item format_name, f
  1588. Specifies the format assumed for the movie to read, and can be either
  1589. the name of a container or an input device. If not specified the
  1590. format is guessed from @var{movie_name} or by probing.
  1591. @item seek_point, sp
  1592. Specifies the seek point in seconds, the frames will be output
  1593. starting from this seek point, the parameter is evaluated with
  1594. @code{av_strtod} so the numerical value may be suffixed by an IS
  1595. postfix. Default value is "0".
  1596. @item stream_index, si
  1597. Specifies the index of the video stream to read. If the value is -1,
  1598. the best suited video stream will be automatically selected. Default
  1599. value is "-1".
  1600. @end table
  1601. This filter allows to overlay a second video on top of main input of
  1602. a filtergraph as shown in this graph:
  1603. @example
  1604. input -----------> deltapts0 --> overlay --> output
  1605. ^
  1606. |
  1607. movie --> scale--> deltapts1 -------+
  1608. @end example
  1609. Some examples follow:
  1610. @example
  1611. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  1612. # on top of the input labelled as "in".
  1613. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1614. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1615. # read from a video4linux2 device, and overlay it on top of the input
  1616. # labelled as "in"
  1617. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1618. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1619. @end example
  1620. @section mptestsrc
  1621. Generate various test patterns, as generated by the MPlayer test filter.
  1622. The size of the generated video is fixed, and is 256x256.
  1623. This source is useful in particular for testing encoding features.
  1624. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  1625. separated by ":". The description of the accepted options follows.
  1626. @table @option
  1627. @item rate, r
  1628. Specify the frame rate of the sourced video, as the number of frames
  1629. generated per second. It has to be a string in the format
  1630. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1631. number or a valid video frame rate abbreviation. The default value is
  1632. "25".
  1633. @item duration, d
  1634. Set the video duration of the sourced video. The accepted syntax is:
  1635. @example
  1636. [-]HH[:MM[:SS[.m...]]]
  1637. [-]S+[.m...]
  1638. @end example
  1639. See also the function @code{av_parse_time()}.
  1640. If not specified, or the expressed duration is negative, the video is
  1641. supposed to be generated forever.
  1642. @item test, t
  1643. Set the number or the name of the test to perform. Supported tests are:
  1644. @table @option
  1645. @item dc_luma
  1646. @item dc_chroma
  1647. @item freq_luma
  1648. @item freq_chroma
  1649. @item amp_luma
  1650. @item amp_chroma
  1651. @item cbp
  1652. @item mv
  1653. @item ring1
  1654. @item ring2
  1655. @item all
  1656. @end table
  1657. Default value is "all", which will cycle through the list of all tests.
  1658. @end table
  1659. For example the following:
  1660. @example
  1661. testsrc=t=dc_luma
  1662. @end example
  1663. will generate a "dc_luma" test pattern.
  1664. @section nullsrc
  1665. Null video source, never return images. It is mainly useful as a
  1666. template and to be employed in analysis / debugging tools.
  1667. It accepts as optional parameter a string of the form
  1668. @var{width}:@var{height}:@var{timebase}.
  1669. @var{width} and @var{height} specify the size of the configured
  1670. source. The default values of @var{width} and @var{height} are
  1671. respectively 352 and 288 (corresponding to the CIF size format).
  1672. @var{timebase} specifies an arithmetic expression representing a
  1673. timebase. The expression can contain the constants "PI", "E", "PHI",
  1674. "AVTB" (the default timebase), and defaults to the value "AVTB".
  1675. @section frei0r_src
  1676. Provide a frei0r source.
  1677. To enable compilation of this filter you need to install the frei0r
  1678. header and configure FFmpeg with --enable-frei0r.
  1679. The source supports the syntax:
  1680. @example
  1681. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  1682. @end example
  1683. @var{size} is the size of the video to generate, may be a string of the
  1684. form @var{width}x@var{height} or a frame size abbreviation.
  1685. @var{rate} is the rate of the video to generate, may be a string of
  1686. the form @var{num}/@var{den} or a frame rate abbreviation.
  1687. @var{src_name} is the name to the frei0r source to load. For more
  1688. information regarding frei0r and how to set the parameters read the
  1689. section @ref{frei0r} in the description of the video filters.
  1690. Some examples follow:
  1691. @example
  1692. # generate a frei0r partik0l source with size 200x200 and framerate 10
  1693. # which is overlayed on the overlay filter main input
  1694. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  1695. @end example
  1696. @section rgbtestsrc, testsrc
  1697. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  1698. detecting RGB vs BGR issues. You should see a red, green and blue
  1699. stripe from top to bottom.
  1700. The @code{testsrc} source generates a test video pattern, showing a
  1701. color pattern, a scrolling gradient and a timestamp. This is mainly
  1702. intended for testing purposes.
  1703. Both sources accept an optional sequence of @var{key}=@var{value} pairs,
  1704. separated by ":". The description of the accepted options follows.
  1705. @table @option
  1706. @item size, s
  1707. Specify the size of the sourced video, it may be a string of the form
  1708. @var{width}x@var{heigth}, or the name of a size abbreviation. The
  1709. default value is "320x240".
  1710. @item rate, r
  1711. Specify the frame rate of the sourced video, as the number of frames
  1712. generated per second. It has to be a string in the format
  1713. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1714. number or a valid video frame rate abbreviation. The default value is
  1715. "25".
  1716. @item sar
  1717. Set the sample aspect ratio of the sourced video.
  1718. @item duration
  1719. Set the video duration of the sourced video. The accepted syntax is:
  1720. @example
  1721. [-]HH[:MM[:SS[.m...]]]
  1722. [-]S+[.m...]
  1723. @end example
  1724. See also the function @code{av_parse_time()}.
  1725. If not specified, or the expressed duration is negative, the video is
  1726. supposed to be generated forever.
  1727. @end table
  1728. For example the following:
  1729. @example
  1730. testsrc=duration=5.3:size=qcif:rate=10
  1731. @end example
  1732. will generate a video with a duration of 5.3 seconds, with size
  1733. 176x144 and a framerate of 10 frames per second.
  1734. @c man end VIDEO SOURCES
  1735. @chapter Video Sinks
  1736. @c man begin VIDEO SINKS
  1737. Below is a description of the currently available video sinks.
  1738. @section buffersink
  1739. Buffer video frames, and make them available to the end of the filter
  1740. graph.
  1741. This sink is mainly intended for a programmatic use, in particular
  1742. through the interface defined in @file{libavfilter/vsink_buffer.h}.
  1743. It does not require a string parameter in input, but you need to
  1744. specify a pointer to a list of supported pixel formats terminated by
  1745. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  1746. when initializing this sink.
  1747. @section nullsink
  1748. Null video sink, do absolutely nothing with the input video. It is
  1749. mainly useful as a template and to be employed in analysis / debugging
  1750. tools.
  1751. @c man end VIDEO SINKS