You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1620 lines
51KB

  1. /*
  2. * FFV1 codec for libavcodec
  3. *
  4. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * FF Video Codec 1 (a lossless codec)
  25. */
  26. #include "avcodec.h"
  27. #include "get_bits.h"
  28. #include "put_bits.h"
  29. #include "dsputil.h"
  30. #include "rangecoder.h"
  31. #include "golomb.h"
  32. #include "mathops.h"
  33. #include "libavutil/avassert.h"
  34. #define MAX_PLANES 4
  35. #define CONTEXT_SIZE 32
  36. #define MAX_QUANT_TABLES 8
  37. #define MAX_CONTEXT_INPUTS 5
  38. extern const uint8_t ff_log2_run[32];
  39. static const int8_t quant3[256]={
  40. 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  41. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  42. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  43. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  44. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  45. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  46. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  47. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  48. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  49. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  50. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  51. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  52. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  53. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  54. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  55. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, 0,
  56. };
  57. static const int8_t quant5_10bit[256]={
  58. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
  59. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  60. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  61. 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  62. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  63. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  64. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  65. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  66. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  67. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  68. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  69. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  70. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,
  71. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  72. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  73. -1,-1,-1,-1,-1,-1,-0,-0,-0,-0,-0,-0,-0,-0,-0,-0,
  74. };
  75. static const int8_t quant5[256]={
  76. 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  77. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  78. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  79. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  80. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  81. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  82. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  83. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  84. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  85. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  86. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  87. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  88. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  89. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  90. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  91. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,
  92. };
  93. static const int8_t quant7[256]={
  94. 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  95. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  96. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  97. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  98. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  99. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  100. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  101. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  102. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  103. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  104. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  105. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  106. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  107. -3,-3,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-2,-2,-2,
  108. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  109. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,
  110. };
  111. static const int8_t quant9[256]={
  112. 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  113. 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  114. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  115. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  116. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  117. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  118. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  119. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  120. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  121. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  122. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  123. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  124. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  125. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  126. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,
  127. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-1,-1,
  128. };
  129. static const int8_t quant9_10bit[256]={
  130. 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
  131. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
  132. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  133. 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  134. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  135. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  136. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  137. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  138. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  139. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  140. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  141. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  142. -4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,
  143. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  144. -3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  145. -2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-0,-0,-0,-0,
  146. };
  147. static const int8_t quant11[256]={
  148. 0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
  149. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  150. 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  151. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  152. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  153. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  154. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  155. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  156. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  157. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  158. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  159. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  160. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  161. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-4,-4,
  162. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  163. -4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-1,
  164. };
  165. static const int8_t quant13[256]={
  166. 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  167. 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  168. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  169. 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  170. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  171. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  172. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  173. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  174. -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
  175. -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
  176. -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
  177. -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
  178. -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-5,
  179. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  180. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  181. -4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,-2,-2,-1,
  182. };
  183. static const uint8_t ver2_state[256]= {
  184. 0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,
  185. 59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,
  186. 40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,
  187. 53, 74, 55, 57, 58, 58, 74, 60, 101, 61, 62, 84, 66, 66, 68, 69,
  188. 87, 82, 71, 97, 73, 73, 82, 75, 111, 77, 94, 78, 87, 81, 83, 97,
  189. 85, 83, 94, 86, 99, 89, 90, 99, 111, 92, 93, 134, 95, 98, 105, 98,
  190. 105, 110, 102, 108, 102, 118, 103, 106, 106, 113, 109, 112, 114, 112, 116, 125,
  191. 115, 116, 117, 117, 126, 119, 125, 121, 121, 123, 145, 124, 126, 131, 127, 129,
  192. 165, 130, 132, 138, 133, 135, 145, 136, 137, 139, 146, 141, 143, 142, 144, 148,
  193. 147, 155, 151, 149, 151, 150, 152, 157, 153, 154, 156, 168, 158, 162, 161, 160,
  194. 172, 163, 169, 164, 166, 184, 167, 170, 177, 174, 171, 173, 182, 176, 180, 178,
  195. 175, 189, 179, 181, 186, 183, 192, 185, 200, 187, 191, 188, 190, 197, 193, 196,
  196. 197, 194, 195, 196, 198, 202, 199, 201, 210, 203, 207, 204, 205, 206, 208, 214,
  197. 209, 211, 221, 212, 213, 215, 224, 216, 217, 218, 219, 220, 222, 228, 223, 225,
  198. 226, 224, 227, 229, 240, 230, 231, 232, 233, 234, 235, 236, 238, 239, 237, 242,
  199. 241, 243, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 255,
  200. };
  201. typedef struct VlcState{
  202. int16_t drift;
  203. uint16_t error_sum;
  204. int8_t bias;
  205. uint8_t count;
  206. } VlcState;
  207. typedef struct PlaneContext{
  208. int16_t quant_table[MAX_CONTEXT_INPUTS][256];
  209. int quant_table_index;
  210. int context_count;
  211. uint8_t (*state)[CONTEXT_SIZE];
  212. VlcState *vlc_state;
  213. uint8_t interlace_bit_state[2];
  214. } PlaneContext;
  215. #define MAX_SLICES 256
  216. typedef struct FFV1Context{
  217. AVCodecContext *avctx;
  218. RangeCoder c;
  219. GetBitContext gb;
  220. PutBitContext pb;
  221. uint64_t rc_stat[256][2];
  222. int version;
  223. int width, height;
  224. int chroma_h_shift, chroma_v_shift;
  225. int flags;
  226. int picture_number;
  227. AVFrame picture;
  228. int plane_count;
  229. int ac; ///< 1=range coder <-> 0=golomb rice
  230. PlaneContext plane[MAX_PLANES];
  231. int16_t quant_table[MAX_CONTEXT_INPUTS][256];
  232. int16_t quant_tables[MAX_QUANT_TABLES][MAX_CONTEXT_INPUTS][256];
  233. int context_count[MAX_QUANT_TABLES];
  234. uint8_t state_transition[256];
  235. int run_index;
  236. int colorspace;
  237. int_fast16_t *sample_buffer;
  238. int quant_table_count;
  239. DSPContext dsp;
  240. struct FFV1Context *slice_context[MAX_SLICES];
  241. int slice_count;
  242. int num_v_slices;
  243. int num_h_slices;
  244. int slice_width;
  245. int slice_height;
  246. int slice_x;
  247. int slice_y;
  248. }FFV1Context;
  249. static av_always_inline int fold(int diff, int bits){
  250. if(bits==8)
  251. diff= (int8_t)diff;
  252. else{
  253. diff+= 1<<(bits-1);
  254. diff&=(1<<bits)-1;
  255. diff-= 1<<(bits-1);
  256. }
  257. return diff;
  258. }
  259. static inline int predict(int_fast16_t *src, int_fast16_t *last){
  260. const int LT= last[-1];
  261. const int T= last[ 0];
  262. const int L = src[-1];
  263. return mid_pred(L, L + T - LT, T);
  264. }
  265. static inline int get_context(PlaneContext *p, int_fast16_t *src, int_fast16_t *last, int_fast16_t *last2){
  266. const int LT= last[-1];
  267. const int T= last[ 0];
  268. const int RT= last[ 1];
  269. const int L = src[-1];
  270. if(p->quant_table[3][127]){
  271. const int TT= last2[0];
  272. const int LL= src[-2];
  273. return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF]
  274. +p->quant_table[3][(LL-L) & 0xFF] + p->quant_table[4][(TT-T) & 0xFF];
  275. }else
  276. return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF];
  277. }
  278. static av_always_inline av_flatten void put_symbol_inline(RangeCoder *c, uint8_t *state, int v, int is_signed, uint64_t rc_stat[256][2]){
  279. int i;
  280. #define put_rac(C,S,B) \
  281. do{\
  282. if(rc_stat){\
  283. rc_stat[*(S)][B]++;\
  284. }\
  285. put_rac(C,S,B);\
  286. }while(0)
  287. if(v){
  288. const int a= FFABS(v);
  289. const int e= av_log2(a);
  290. put_rac(c, state+0, 0);
  291. if(e<=9){
  292. for(i=0; i<e; i++){
  293. put_rac(c, state+1+i, 1); //1..10
  294. }
  295. put_rac(c, state+1+i, 0);
  296. for(i=e-1; i>=0; i--){
  297. put_rac(c, state+22+i, (a>>i)&1); //22..31
  298. }
  299. if(is_signed)
  300. put_rac(c, state+11 + e, v < 0); //11..21
  301. }else{
  302. for(i=0; i<e; i++){
  303. put_rac(c, state+1+FFMIN(i,9), 1); //1..10
  304. }
  305. put_rac(c, state+1+9, 0);
  306. for(i=e-1; i>=0; i--){
  307. put_rac(c, state+22+FFMIN(i,9), (a>>i)&1); //22..31
  308. }
  309. if(is_signed)
  310. put_rac(c, state+11 + 10, v < 0); //11..21
  311. }
  312. }else{
  313. put_rac(c, state+0, 1);
  314. }
  315. #undef put_rac
  316. }
  317. static void av_noinline put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed){
  318. put_symbol_inline(c, state, v, is_signed, NULL);
  319. }
  320. static inline av_flatten int get_symbol_inline(RangeCoder *c, uint8_t *state, int is_signed){
  321. if(get_rac(c, state+0))
  322. return 0;
  323. else{
  324. int i, e, a;
  325. e= 0;
  326. while(get_rac(c, state+1 + FFMIN(e,9))){ //1..10
  327. e++;
  328. }
  329. a= 1;
  330. for(i=e-1; i>=0; i--){
  331. a += a + get_rac(c, state+22 + FFMIN(i,9)); //22..31
  332. }
  333. e= -(is_signed && get_rac(c, state+11 + FFMIN(e, 10))); //11..21
  334. return (a^e)-e;
  335. }
  336. }
  337. static int av_noinline get_symbol(RangeCoder *c, uint8_t *state, int is_signed){
  338. return get_symbol_inline(c, state, is_signed);
  339. }
  340. static inline void update_vlc_state(VlcState * const state, const int v){
  341. int drift= state->drift;
  342. int count= state->count;
  343. state->error_sum += FFABS(v);
  344. drift += v;
  345. if(count == 128){ //FIXME variable
  346. count >>= 1;
  347. drift >>= 1;
  348. state->error_sum >>= 1;
  349. }
  350. count++;
  351. if(drift <= -count){
  352. if(state->bias > -128) state->bias--;
  353. drift += count;
  354. if(drift <= -count)
  355. drift= -count + 1;
  356. }else if(drift > 0){
  357. if(state->bias < 127) state->bias++;
  358. drift -= count;
  359. if(drift > 0)
  360. drift= 0;
  361. }
  362. state->drift= drift;
  363. state->count= count;
  364. }
  365. static inline void put_vlc_symbol(PutBitContext *pb, VlcState * const state, int v, int bits){
  366. int i, k, code;
  367. //printf("final: %d ", v);
  368. v = fold(v - state->bias, bits);
  369. i= state->count;
  370. k=0;
  371. while(i < state->error_sum){ //FIXME optimize
  372. k++;
  373. i += i;
  374. }
  375. assert(k<=8);
  376. #if 0 // JPEG LS
  377. if(k==0 && 2*state->drift <= - state->count) code= v ^ (-1);
  378. else code= v;
  379. #else
  380. code= v ^ ((2*state->drift + state->count)>>31);
  381. #endif
  382. //printf("v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code, state->bias, state->error_sum, state->drift, state->count, k);
  383. set_sr_golomb(pb, code, k, 12, bits);
  384. update_vlc_state(state, v);
  385. }
  386. static inline int get_vlc_symbol(GetBitContext *gb, VlcState * const state, int bits){
  387. int k, i, v, ret;
  388. i= state->count;
  389. k=0;
  390. while(i < state->error_sum){ //FIXME optimize
  391. k++;
  392. i += i;
  393. }
  394. assert(k<=8);
  395. v= get_sr_golomb(gb, k, 12, bits);
  396. //printf("v:%d bias:%d error:%d drift:%d count:%d k:%d", v, state->bias, state->error_sum, state->drift, state->count, k);
  397. #if 0 // JPEG LS
  398. if(k==0 && 2*state->drift <= - state->count) v ^= (-1);
  399. #else
  400. v ^= ((2*state->drift + state->count)>>31);
  401. #endif
  402. ret= fold(v + state->bias, bits);
  403. update_vlc_state(state, v);
  404. //printf("final: %d\n", ret);
  405. return ret;
  406. }
  407. #if CONFIG_FFV1_ENCODER
  408. static av_always_inline int encode_line(FFV1Context *s, int w, int_fast16_t *sample[2], int plane_index, int bits){
  409. PlaneContext * const p= &s->plane[plane_index];
  410. RangeCoder * const c= &s->c;
  411. int x;
  412. int run_index= s->run_index;
  413. int run_count=0;
  414. int run_mode=0;
  415. if(s->ac){
  416. if(c->bytestream_end - c->bytestream < w*20){
  417. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  418. return -1;
  419. }
  420. }else{
  421. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < w*4){
  422. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  423. return -1;
  424. }
  425. }
  426. for(x=0; x<w; x++){
  427. int diff, context;
  428. context= get_context(p, sample[0]+x, sample[1]+x, sample[2]+x);
  429. diff= sample[0][x] - predict(sample[0]+x, sample[1]+x);
  430. if(context < 0){
  431. context = -context;
  432. diff= -diff;
  433. }
  434. diff= fold(diff, bits);
  435. if(s->ac){
  436. if(s->flags & CODEC_FLAG_PASS1){
  437. put_symbol_inline(c, p->state[context], diff, 1, s->rc_stat);
  438. }else{
  439. put_symbol_inline(c, p->state[context], diff, 1, NULL);
  440. }
  441. }else{
  442. if(context == 0) run_mode=1;
  443. if(run_mode){
  444. if(diff){
  445. while(run_count >= 1<<ff_log2_run[run_index]){
  446. run_count -= 1<<ff_log2_run[run_index];
  447. run_index++;
  448. put_bits(&s->pb, 1, 1);
  449. }
  450. put_bits(&s->pb, 1 + ff_log2_run[run_index], run_count);
  451. if(run_index) run_index--;
  452. run_count=0;
  453. run_mode=0;
  454. if(diff>0) diff--;
  455. }else{
  456. run_count++;
  457. }
  458. }
  459. // printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, (int)put_bits_count(&s->pb));
  460. if(run_mode == 0)
  461. put_vlc_symbol(&s->pb, &p->vlc_state[context], diff, bits);
  462. }
  463. }
  464. if(run_mode){
  465. while(run_count >= 1<<ff_log2_run[run_index]){
  466. run_count -= 1<<ff_log2_run[run_index];
  467. run_index++;
  468. put_bits(&s->pb, 1, 1);
  469. }
  470. if(run_count)
  471. put_bits(&s->pb, 1, 1);
  472. }
  473. s->run_index= run_index;
  474. return 0;
  475. }
  476. static void encode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){
  477. int x,y,i;
  478. const int ring_size= s->avctx->context_model ? 3 : 2;
  479. int_fast16_t *sample[3];
  480. s->run_index=0;
  481. memset(s->sample_buffer, 0, ring_size*(w+6)*sizeof(*s->sample_buffer));
  482. for(y=0; y<h; y++){
  483. for(i=0; i<ring_size; i++)
  484. sample[i]= s->sample_buffer + (w+6)*((h+i-y)%ring_size) + 3;
  485. sample[0][-1]= sample[1][0 ];
  486. sample[1][ w]= sample[1][w-1];
  487. //{START_TIMER
  488. if(s->avctx->bits_per_raw_sample<=8){
  489. for(x=0; x<w; x++){
  490. sample[0][x]= src[x + stride*y];
  491. }
  492. encode_line(s, w, sample, plane_index, 8);
  493. }else{
  494. for(x=0; x<w; x++){
  495. sample[0][x]= ((uint16_t*)(src + stride*y))[x] >> (16 - s->avctx->bits_per_raw_sample);
  496. }
  497. encode_line(s, w, sample, plane_index, s->avctx->bits_per_raw_sample);
  498. }
  499. //STOP_TIMER("encode line")}
  500. }
  501. }
  502. static void encode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){
  503. int x, y, p, i;
  504. const int ring_size= s->avctx->context_model ? 3 : 2;
  505. int_fast16_t *sample[3][3];
  506. s->run_index=0;
  507. memset(s->sample_buffer, 0, ring_size*3*(w+6)*sizeof(*s->sample_buffer));
  508. for(y=0; y<h; y++){
  509. for(i=0; i<ring_size; i++)
  510. for(p=0; p<3; p++)
  511. sample[p][i]= s->sample_buffer + p*ring_size*(w+6) + ((h+i-y)%ring_size)*(w+6) + 3;
  512. for(x=0; x<w; x++){
  513. int v= src[x + stride*y];
  514. int b= v&0xFF;
  515. int g= (v>>8)&0xFF;
  516. int r= (v>>16)&0xFF;
  517. b -= g;
  518. r -= g;
  519. g += (b + r)>>2;
  520. b += 0x100;
  521. r += 0x100;
  522. // assert(g>=0 && b>=0 && r>=0);
  523. // assert(g<256 && b<512 && r<512);
  524. sample[0][0][x]= g;
  525. sample[1][0][x]= b;
  526. sample[2][0][x]= r;
  527. }
  528. for(p=0; p<3; p++){
  529. sample[p][0][-1]= sample[p][1][0 ];
  530. sample[p][1][ w]= sample[p][1][w-1];
  531. encode_line(s, w, sample[p], FFMIN(p, 1), 9);
  532. }
  533. }
  534. }
  535. static void write_quant_table(RangeCoder *c, int16_t *quant_table){
  536. int last=0;
  537. int i;
  538. uint8_t state[CONTEXT_SIZE];
  539. memset(state, 128, sizeof(state));
  540. for(i=1; i<128 ; i++){
  541. if(quant_table[i] != quant_table[i-1]){
  542. put_symbol(c, state, i-last-1, 0);
  543. last= i;
  544. }
  545. }
  546. put_symbol(c, state, i-last-1, 0);
  547. }
  548. static void write_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]){
  549. int i;
  550. for(i=0; i<5; i++)
  551. write_quant_table(c, quant_table[i]);
  552. }
  553. static void write_header(FFV1Context *f){
  554. uint8_t state[CONTEXT_SIZE];
  555. int i, j;
  556. RangeCoder * const c= &f->slice_context[0]->c;
  557. memset(state, 128, sizeof(state));
  558. if(f->version < 2){
  559. put_symbol(c, state, f->version, 0);
  560. put_symbol(c, state, f->ac, 0);
  561. if(f->ac>1){
  562. for(i=1; i<256; i++){
  563. put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
  564. }
  565. }
  566. put_symbol(c, state, f->colorspace, 0); //YUV cs type
  567. if(f->version>0)
  568. put_symbol(c, state, f->avctx->bits_per_raw_sample, 0);
  569. put_rac(c, state, 1); //chroma planes
  570. put_symbol(c, state, f->chroma_h_shift, 0);
  571. put_symbol(c, state, f->chroma_v_shift, 0);
  572. put_rac(c, state, 0); //no transparency plane
  573. write_quant_tables(c, f->quant_table);
  574. }else{
  575. put_symbol(c, state, f->slice_count, 0);
  576. for(i=0; i<f->slice_count; i++){
  577. FFV1Context *fs= f->slice_context[i];
  578. put_symbol(c, state, (fs->slice_x +1)*f->num_h_slices / f->width , 0);
  579. put_symbol(c, state, (fs->slice_y +1)*f->num_v_slices / f->height , 0);
  580. put_symbol(c, state, (fs->slice_width +1)*f->num_h_slices / f->width -1, 0);
  581. put_symbol(c, state, (fs->slice_height+1)*f->num_v_slices / f->height-1, 0);
  582. for(j=0; j<f->plane_count; j++){
  583. put_symbol(c, state, f->plane[j].quant_table_index, 0);
  584. av_assert0(f->plane[j].quant_table_index == f->avctx->context_model);
  585. }
  586. }
  587. }
  588. }
  589. #endif /* CONFIG_FFV1_ENCODER */
  590. static av_cold int common_init(AVCodecContext *avctx){
  591. FFV1Context *s = avctx->priv_data;
  592. s->avctx= avctx;
  593. s->flags= avctx->flags;
  594. dsputil_init(&s->dsp, avctx);
  595. s->width = avctx->width;
  596. s->height= avctx->height;
  597. assert(s->width && s->height);
  598. //defaults
  599. s->num_h_slices=1;
  600. s->num_v_slices=1;
  601. return 0;
  602. }
  603. static int init_slice_state(FFV1Context *f){
  604. int i, j;
  605. for(i=0; i<f->slice_count; i++){
  606. FFV1Context *fs= f->slice_context[i];
  607. for(j=0; j<f->plane_count; j++){
  608. PlaneContext * const p= &fs->plane[j];
  609. if(fs->ac){
  610. if(!p-> state) p-> state= av_malloc(CONTEXT_SIZE*p->context_count*sizeof(uint8_t));
  611. if(!p-> state)
  612. return AVERROR(ENOMEM);
  613. }else{
  614. if(!p->vlc_state) p->vlc_state= av_malloc(p->context_count*sizeof(VlcState));
  615. if(!p->vlc_state)
  616. return AVERROR(ENOMEM);
  617. }
  618. }
  619. if (fs->ac>1){
  620. //FIXME only redo if state_transition changed
  621. for(j=1; j<256; j++){
  622. fs->c.one_state [ j]= fs->state_transition[j];
  623. fs->c.zero_state[256-j]= 256-fs->c.one_state [j];
  624. }
  625. }
  626. }
  627. return 0;
  628. }
  629. static av_cold int init_slice_contexts(FFV1Context *f){
  630. int i;
  631. f->slice_count= f->num_h_slices * f->num_v_slices;
  632. for(i=0; i<f->slice_count; i++){
  633. FFV1Context *fs= av_mallocz(sizeof(*fs));
  634. int sx= i % f->num_h_slices;
  635. int sy= i / f->num_h_slices;
  636. int sxs= f->avctx->width * sx / f->num_h_slices;
  637. int sxe= f->avctx->width *(sx+1) / f->num_h_slices;
  638. int sys= f->avctx->height* sy / f->num_v_slices;
  639. int sye= f->avctx->height*(sy+1) / f->num_v_slices;
  640. f->slice_context[i]= fs;
  641. memcpy(fs, f, sizeof(*fs));
  642. fs->slice_width = sxe - sxs;
  643. fs->slice_height= sye - sys;
  644. fs->slice_x = sxs;
  645. fs->slice_y = sys;
  646. fs->sample_buffer = av_malloc(6 * (fs->width+6) * sizeof(*fs->sample_buffer));
  647. if (!fs->sample_buffer)
  648. return AVERROR(ENOMEM);
  649. }
  650. return 0;
  651. }
  652. #if CONFIG_FFV1_ENCODER
  653. static int write_extra_header(FFV1Context *f){
  654. RangeCoder * const c= &f->c;
  655. uint8_t state[CONTEXT_SIZE];
  656. int i;
  657. memset(state, 128, sizeof(state));
  658. f->avctx->extradata= av_malloc(f->avctx->extradata_size= 10000);
  659. ff_init_range_encoder(c, f->avctx->extradata, f->avctx->extradata_size);
  660. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  661. put_symbol(c, state, f->version, 0);
  662. put_symbol(c, state, f->ac, 0);
  663. if(f->ac>1){
  664. for(i=1; i<256; i++){
  665. put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
  666. }
  667. }
  668. put_symbol(c, state, f->colorspace, 0); //YUV cs type
  669. put_symbol(c, state, f->avctx->bits_per_raw_sample, 0);
  670. put_rac(c, state, 1); //chroma planes
  671. put_symbol(c, state, f->chroma_h_shift, 0);
  672. put_symbol(c, state, f->chroma_v_shift, 0);
  673. put_rac(c, state, 0); //no transparency plane
  674. put_symbol(c, state, f->num_h_slices-1, 0);
  675. put_symbol(c, state, f->num_v_slices-1, 0);
  676. put_symbol(c, state, f->quant_table_count, 0);
  677. for(i=0; i<f->quant_table_count; i++)
  678. write_quant_tables(c, f->quant_tables[i]);
  679. f->avctx->extradata_size= ff_rac_terminate(c);
  680. return 0;
  681. }
  682. static int sort_stt(FFV1Context *s, uint8_t stt[256]){
  683. int i,i2,changed,print=0;
  684. do{
  685. changed=0;
  686. for(i=12; i<244; i++){
  687. for(i2=i+1; i2<245 && i2<i+4; i2++){
  688. #define COST(old, new) \
  689. s->rc_stat[old][0]*-log2((256-(new))/256.0)\
  690. +s->rc_stat[old][1]*-log2( (new) /256.0)
  691. #define COST2(old, new) \
  692. COST(old, new)\
  693. +COST(256-(old), 256-(new))
  694. double size0= COST2(i, i ) + COST2(i2, i2);
  695. double sizeX= COST2(i, i2) + COST2(i2, i );
  696. if(sizeX < size0 && i!=128 && i2!=128){
  697. int j;
  698. FFSWAP(int, stt[ i], stt[ i2]);
  699. FFSWAP(int, s->rc_stat[i ][0],s->rc_stat[ i2][0]);
  700. FFSWAP(int, s->rc_stat[i ][1],s->rc_stat[ i2][1]);
  701. if(i != 256-i2){
  702. FFSWAP(int, stt[256-i], stt[256-i2]);
  703. FFSWAP(int, s->rc_stat[256-i][0],s->rc_stat[256-i2][0]);
  704. FFSWAP(int, s->rc_stat[256-i][1],s->rc_stat[256-i2][1]);
  705. }
  706. for(j=1; j<256; j++){
  707. if (stt[j] == i ) stt[j] = i2;
  708. else if(stt[j] == i2) stt[j] = i ;
  709. if(i != 256-i2){
  710. if (stt[256-j] == 256-i ) stt[256-j] = 256-i2;
  711. else if(stt[256-j] == 256-i2) stt[256-j] = 256-i ;
  712. }
  713. }
  714. print=changed=1;
  715. }
  716. }
  717. }
  718. }while(changed);
  719. return print;
  720. }
  721. static av_cold int encode_init(AVCodecContext *avctx)
  722. {
  723. FFV1Context *s = avctx->priv_data;
  724. int i, j;
  725. common_init(avctx);
  726. s->version=0;
  727. s->ac= avctx->coder_type ? 2:0;
  728. if(s->ac>1)
  729. for(i=1; i<256; i++)
  730. s->state_transition[i]=ver2_state[i];
  731. s->plane_count=2;
  732. for(i=0; i<256; i++){
  733. s->quant_table_count=2;
  734. if(avctx->bits_per_raw_sample <=8){
  735. s->quant_tables[0][0][i]= quant11[i];
  736. s->quant_tables[0][1][i]= 11*quant11[i];
  737. s->quant_tables[0][2][i]= 11*11*quant11[i];
  738. s->quant_tables[1][0][i]= quant11[i];
  739. s->quant_tables[1][1][i]= 11*quant11[i];
  740. s->quant_tables[1][2][i]= 11*11*quant5 [i];
  741. s->quant_tables[1][3][i]= 5*11*11*quant5 [i];
  742. s->quant_tables[1][4][i]= 5*5*11*11*quant5 [i];
  743. }else{
  744. s->quant_tables[0][0][i]= quant9_10bit[i];
  745. s->quant_tables[0][1][i]= 11*quant9_10bit[i];
  746. s->quant_tables[0][2][i]= 11*11*quant9_10bit[i];
  747. s->quant_tables[1][0][i]= quant9_10bit[i];
  748. s->quant_tables[1][1][i]= 11*quant9_10bit[i];
  749. s->quant_tables[1][2][i]= 11*11*quant5_10bit[i];
  750. s->quant_tables[1][3][i]= 5*11*11*quant5_10bit[i];
  751. s->quant_tables[1][4][i]= 5*5*11*11*quant5_10bit[i];
  752. }
  753. }
  754. s->context_count[0]= (11*11*11+1)/2;
  755. s->context_count[1]= (11*11*5*5*5+1)/2;
  756. memcpy(s->quant_table, s->quant_tables[avctx->context_model], sizeof(s->quant_table));
  757. for(i=0; i<s->plane_count; i++){
  758. PlaneContext * const p= &s->plane[i];
  759. memcpy(p->quant_table, s->quant_table, sizeof(p->quant_table));
  760. p->quant_table_index= avctx->context_model;
  761. p->context_count= s->context_count[p->quant_table_index];
  762. }
  763. avctx->coded_frame= &s->picture;
  764. switch(avctx->pix_fmt){
  765. case PIX_FMT_YUV444P16:
  766. case PIX_FMT_YUV422P16:
  767. case PIX_FMT_YUV420P16:
  768. if(avctx->bits_per_raw_sample <=8){
  769. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n");
  770. return -1;
  771. }
  772. if(!s->ac){
  773. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample of more than 8 needs -coder 1 currently\n");
  774. return -1;
  775. }
  776. s->version= FFMAX(s->version, 1);
  777. case PIX_FMT_YUV444P:
  778. case PIX_FMT_YUV422P:
  779. case PIX_FMT_YUV420P:
  780. case PIX_FMT_YUV411P:
  781. case PIX_FMT_YUV410P:
  782. s->colorspace= 0;
  783. break;
  784. case PIX_FMT_RGB32:
  785. s->colorspace= 1;
  786. break;
  787. default:
  788. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  789. return -1;
  790. }
  791. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
  792. s->picture_number=0;
  793. if(avctx->stats_in){
  794. char *p= avctx->stats_in;
  795. for(;;){
  796. for(j=0; j<256; j++){
  797. for(i=0; i<2; i++){
  798. char *next;
  799. s->rc_stat[j][i]= strtol(p, &next, 0);
  800. if(next==p){
  801. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid at %d %d [%s]\n", j,i,p);
  802. return -1;
  803. }
  804. p=next;
  805. }
  806. }
  807. while(*p=='\n' || *p==' ') p++;
  808. if(p[0]==0) break;
  809. }
  810. sort_stt(s, s->state_transition);
  811. }
  812. if(s->version>1){
  813. s->num_h_slices=2;
  814. s->num_v_slices=2;
  815. write_extra_header(s);
  816. }
  817. if(init_slice_contexts(s) < 0)
  818. return -1;
  819. if(init_slice_state(s) < 0)
  820. return -1;
  821. avctx->stats_out= av_mallocz(1024*30);
  822. return 0;
  823. }
  824. #endif /* CONFIG_FFV1_ENCODER */
  825. static void clear_state(FFV1Context *f){
  826. int i, si, j;
  827. for(si=0; si<f->slice_count; si++){
  828. FFV1Context *fs= f->slice_context[si];
  829. for(i=0; i<f->plane_count; i++){
  830. PlaneContext *p= &fs->plane[i];
  831. p->interlace_bit_state[0]= 128;
  832. p->interlace_bit_state[1]= 128;
  833. for(j=0; j<p->context_count; j++){
  834. if(fs->ac){
  835. memset(p->state[j], 128, sizeof(uint8_t)*CONTEXT_SIZE);
  836. }else{
  837. p->vlc_state[j].drift= 0;
  838. p->vlc_state[j].error_sum= 4; //FFMAX((RANGE + 32)/64, 2);
  839. p->vlc_state[j].bias= 0;
  840. p->vlc_state[j].count= 1;
  841. }
  842. }
  843. }
  844. }
  845. }
  846. #if CONFIG_FFV1_ENCODER
  847. static int encode_slice(AVCodecContext *c, void *arg){
  848. FFV1Context *fs= *(void**)arg;
  849. FFV1Context *f= fs->avctx->priv_data;
  850. int width = fs->slice_width;
  851. int height= fs->slice_height;
  852. int x= fs->slice_x;
  853. int y= fs->slice_y;
  854. AVFrame * const p= &f->picture;
  855. if(f->colorspace==0){
  856. const int chroma_width = -((-width )>>f->chroma_h_shift);
  857. const int chroma_height= -((-height)>>f->chroma_v_shift);
  858. const int cx= x>>f->chroma_h_shift;
  859. const int cy= y>>f->chroma_v_shift;
  860. encode_plane(fs, p->data[0] + x + y*p->linesize[0], width, height, p->linesize[0], 0);
  861. encode_plane(fs, p->data[1] + cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
  862. encode_plane(fs, p->data[2] + cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1);
  863. }else{
  864. encode_rgb_frame(fs, (uint32_t*)(p->data[0]) + x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4);
  865. }
  866. emms_c();
  867. return 0;
  868. }
  869. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  870. FFV1Context *f = avctx->priv_data;
  871. RangeCoder * const c= &f->slice_context[0]->c;
  872. AVFrame *pict = data;
  873. AVFrame * const p= &f->picture;
  874. int used_count= 0;
  875. uint8_t keystate=128;
  876. uint8_t *buf_p;
  877. int i;
  878. ff_init_range_encoder(c, buf, buf_size);
  879. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  880. *p = *pict;
  881. p->pict_type= FF_I_TYPE;
  882. if(avctx->gop_size==0 || f->picture_number % avctx->gop_size == 0){
  883. put_rac(c, &keystate, 1);
  884. p->key_frame= 1;
  885. write_header(f);
  886. clear_state(f);
  887. }else{
  888. put_rac(c, &keystate, 0);
  889. p->key_frame= 0;
  890. }
  891. if(!f->ac){
  892. used_count += ff_rac_terminate(c);
  893. //printf("pos=%d\n", used_count);
  894. init_put_bits(&f->slice_context[0]->pb, buf + used_count, buf_size - used_count);
  895. }else if (f->ac>1){
  896. int i;
  897. for(i=1; i<256; i++){
  898. c->one_state[i]= f->state_transition[i];
  899. c->zero_state[256-i]= 256-c->one_state[i];
  900. }
  901. }
  902. for(i=1; i<f->slice_count; i++){
  903. FFV1Context *fs= f->slice_context[i];
  904. uint8_t *start= buf + (buf_size-used_count)*i/f->slice_count;
  905. int len= buf_size/f->slice_count;
  906. if(fs->ac){
  907. ff_init_range_encoder(&fs->c, start, len);
  908. }else{
  909. init_put_bits(&fs->pb, start, len);
  910. }
  911. }
  912. avctx->execute(avctx, encode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*));
  913. buf_p=buf;
  914. for(i=0; i<f->slice_count; i++){
  915. FFV1Context *fs= f->slice_context[i];
  916. int bytes;
  917. if(fs->ac){
  918. uint8_t state=128;
  919. put_rac(&fs->c, &state, 0);
  920. bytes= ff_rac_terminate(&fs->c);
  921. }else{
  922. flush_put_bits(&fs->pb); //nicer padding FIXME
  923. bytes= used_count + (put_bits_count(&fs->pb)+7)/8;
  924. used_count= 0;
  925. }
  926. if(i>0){
  927. av_assert0(bytes < buf_size/f->slice_count);
  928. memmove(buf_p, fs->ac ? fs->c.bytestream_start : fs->pb.buf, bytes);
  929. av_assert0(bytes < (1<<24));
  930. AV_WB24(buf_p+bytes, bytes);
  931. bytes+=3;
  932. }
  933. buf_p += bytes;
  934. }
  935. if((avctx->flags&CODEC_FLAG_PASS1) && (f->picture_number&31)==0){
  936. int j;
  937. char *p= avctx->stats_out;
  938. char *end= p + 1024*30;
  939. memset(f->rc_stat, 0, sizeof(f->rc_stat));
  940. for(j=0; j<f->slice_count; j++){
  941. FFV1Context *fs= f->slice_context[j];
  942. for(i=0; i<256; i++){
  943. f->rc_stat[i][0] += fs->rc_stat[i][0];
  944. f->rc_stat[i][1] += fs->rc_stat[i][1];
  945. }
  946. }
  947. for(j=0; j<256; j++){
  948. snprintf(p, end-p, "%"PRIu64" %"PRIu64" ", f->rc_stat[j][0], f->rc_stat[j][1]);
  949. p+= strlen(p);
  950. }
  951. snprintf(p, end-p, "\n");
  952. } else
  953. avctx->stats_out[0] = '\0';
  954. f->picture_number++;
  955. return buf_p-buf;
  956. }
  957. #endif /* CONFIG_FFV1_ENCODER */
  958. static av_cold int common_end(AVCodecContext *avctx){
  959. FFV1Context *s = avctx->priv_data;
  960. int i, j;
  961. for(j=0; j<s->slice_count; j++){
  962. FFV1Context *fs= s->slice_context[j];
  963. for(i=0; i<s->plane_count; i++){
  964. PlaneContext *p= &fs->plane[i];
  965. av_freep(&p->state);
  966. av_freep(&p->vlc_state);
  967. }
  968. av_freep(&fs->sample_buffer);
  969. }
  970. av_freep(&avctx->stats_out);
  971. return 0;
  972. }
  973. static av_always_inline void decode_line(FFV1Context *s, int w, int_fast16_t *sample[2], int plane_index, int bits){
  974. PlaneContext * const p= &s->plane[plane_index];
  975. RangeCoder * const c= &s->c;
  976. int x;
  977. int run_count=0;
  978. int run_mode=0;
  979. int run_index= s->run_index;
  980. for(x=0; x<w; x++){
  981. int diff, context, sign;
  982. context= get_context(p, sample[1] + x, sample[0] + x, sample[1] + x);
  983. if(context < 0){
  984. context= -context;
  985. sign=1;
  986. }else
  987. sign=0;
  988. av_assert2(context < p->context_count);
  989. if(s->ac){
  990. diff= get_symbol_inline(c, p->state[context], 1);
  991. }else{
  992. if(context == 0 && run_mode==0) run_mode=1;
  993. if(run_mode){
  994. if(run_count==0 && run_mode==1){
  995. if(get_bits1(&s->gb)){
  996. run_count = 1<<ff_log2_run[run_index];
  997. if(x + run_count <= w) run_index++;
  998. }else{
  999. if(ff_log2_run[run_index]) run_count = get_bits(&s->gb, ff_log2_run[run_index]);
  1000. else run_count=0;
  1001. if(run_index) run_index--;
  1002. run_mode=2;
  1003. }
  1004. }
  1005. run_count--;
  1006. if(run_count < 0){
  1007. run_mode=0;
  1008. run_count=0;
  1009. diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
  1010. if(diff>=0) diff++;
  1011. }else
  1012. diff=0;
  1013. }else
  1014. diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
  1015. // printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, get_bits_count(&s->gb));
  1016. }
  1017. if(sign) diff= -diff;
  1018. sample[1][x]= (predict(sample[1] + x, sample[0] + x) + diff) & ((1<<bits)-1);
  1019. }
  1020. s->run_index= run_index;
  1021. }
  1022. static void decode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){
  1023. int x, y;
  1024. int_fast16_t *sample[2];
  1025. sample[0]=s->sample_buffer +3;
  1026. sample[1]=s->sample_buffer+w+6+3;
  1027. s->run_index=0;
  1028. memset(s->sample_buffer, 0, 2*(w+6)*sizeof(*s->sample_buffer));
  1029. for(y=0; y<h; y++){
  1030. int_fast16_t *temp= sample[0]; //FIXME try a normal buffer
  1031. sample[0]= sample[1];
  1032. sample[1]= temp;
  1033. sample[1][-1]= sample[0][0 ];
  1034. sample[0][ w]= sample[0][w-1];
  1035. //{START_TIMER
  1036. if(s->avctx->bits_per_raw_sample <= 8){
  1037. decode_line(s, w, sample, plane_index, 8);
  1038. for(x=0; x<w; x++){
  1039. src[x + stride*y]= sample[1][x];
  1040. }
  1041. }else{
  1042. decode_line(s, w, sample, plane_index, s->avctx->bits_per_raw_sample);
  1043. for(x=0; x<w; x++){
  1044. ((uint16_t*)(src + stride*y))[x]= sample[1][x] << (16 - s->avctx->bits_per_raw_sample);
  1045. }
  1046. }
  1047. //STOP_TIMER("decode-line")}
  1048. }
  1049. }
  1050. static void decode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){
  1051. int x, y, p;
  1052. int_fast16_t *sample[3][2];
  1053. for(x=0; x<3; x++){
  1054. sample[x][0] = s->sample_buffer + x*2 *(w+6) + 3;
  1055. sample[x][1] = s->sample_buffer + (x*2+1)*(w+6) + 3;
  1056. }
  1057. s->run_index=0;
  1058. memset(s->sample_buffer, 0, 6*(w+6)*sizeof(*s->sample_buffer));
  1059. for(y=0; y<h; y++){
  1060. for(p=0; p<3; p++){
  1061. int_fast16_t *temp= sample[p][0]; //FIXME try a normal buffer
  1062. sample[p][0]= sample[p][1];
  1063. sample[p][1]= temp;
  1064. sample[p][1][-1]= sample[p][0][0 ];
  1065. sample[p][0][ w]= sample[p][0][w-1];
  1066. decode_line(s, w, sample[p], FFMIN(p, 1), 9);
  1067. }
  1068. for(x=0; x<w; x++){
  1069. int g= sample[0][1][x];
  1070. int b= sample[1][1][x];
  1071. int r= sample[2][1][x];
  1072. // assert(g>=0 && b>=0 && r>=0);
  1073. // assert(g<256 && b<512 && r<512);
  1074. b -= 0x100;
  1075. r -= 0x100;
  1076. g -= (b + r)>>2;
  1077. b += g;
  1078. r += g;
  1079. src[x + stride*y]= b + (g<<8) + (r<<16) + (0xFF<<24);
  1080. }
  1081. }
  1082. }
  1083. static int decode_slice(AVCodecContext *c, void *arg){
  1084. FFV1Context *fs= *(void**)arg;
  1085. FFV1Context *f= fs->avctx->priv_data;
  1086. int width = fs->slice_width;
  1087. int height= fs->slice_height;
  1088. int x= fs->slice_x;
  1089. int y= fs->slice_y;
  1090. AVFrame * const p= &f->picture;
  1091. av_assert1(width && height);
  1092. if(f->colorspace==0){
  1093. const int chroma_width = -((-width )>>f->chroma_h_shift);
  1094. const int chroma_height= -((-height)>>f->chroma_v_shift);
  1095. const int cx= x>>f->chroma_h_shift;
  1096. const int cy= y>>f->chroma_v_shift;
  1097. decode_plane(fs, p->data[0] + x + y*p->linesize[0], width, height, p->linesize[0], 0);
  1098. decode_plane(fs, p->data[1] + cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
  1099. decode_plane(fs, p->data[2] + cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[2], 1);
  1100. }else{
  1101. decode_rgb_frame(fs, (uint32_t*)p->data[0] + x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4);
  1102. }
  1103. emms_c();
  1104. return 0;
  1105. }
  1106. static int read_quant_table(RangeCoder *c, int16_t *quant_table, int scale){
  1107. int v;
  1108. int i=0;
  1109. uint8_t state[CONTEXT_SIZE];
  1110. memset(state, 128, sizeof(state));
  1111. for(v=0; i<128 ; v++){
  1112. int len= get_symbol(c, state, 0) + 1;
  1113. if(len + i > 128) return -1;
  1114. while(len--){
  1115. quant_table[i] = scale*v;
  1116. i++;
  1117. //printf("%2d ",v);
  1118. //if(i%16==0) printf("\n");
  1119. }
  1120. }
  1121. for(i=1; i<128; i++){
  1122. quant_table[256-i]= -quant_table[i];
  1123. }
  1124. quant_table[128]= -quant_table[127];
  1125. return 2*v - 1;
  1126. }
  1127. static int read_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]){
  1128. int i;
  1129. int context_count=1;
  1130. for(i=0; i<5; i++){
  1131. context_count*= read_quant_table(c, quant_table[i], context_count);
  1132. if(context_count > 32768U){
  1133. return -1;
  1134. }
  1135. }
  1136. return (context_count+1)/2;
  1137. }
  1138. static int read_extra_header(FFV1Context *f){
  1139. RangeCoder * const c= &f->c;
  1140. uint8_t state[CONTEXT_SIZE];
  1141. int i;
  1142. memset(state, 128, sizeof(state));
  1143. ff_init_range_decoder(c, f->avctx->extradata, f->avctx->extradata_size);
  1144. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1145. f->version= get_symbol(c, state, 0);
  1146. f->ac= f->avctx->coder_type= get_symbol(c, state, 0);
  1147. if(f->ac>1){
  1148. for(i=1; i<256; i++){
  1149. f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i];
  1150. }
  1151. }
  1152. f->colorspace= get_symbol(c, state, 0); //YUV cs type
  1153. f->avctx->bits_per_raw_sample= get_symbol(c, state, 0);
  1154. get_rac(c, state); //no chroma = false
  1155. f->chroma_h_shift= get_symbol(c, state, 0);
  1156. f->chroma_v_shift= get_symbol(c, state, 0);
  1157. get_rac(c, state); //transparency plane
  1158. f->plane_count= 2;
  1159. f->num_h_slices= 1 + get_symbol(c, state, 0);
  1160. f->num_v_slices= 1 + get_symbol(c, state, 0);
  1161. if(f->num_h_slices > (unsigned)f->width || f->num_v_slices > (unsigned)f->height){
  1162. av_log(f->avctx, AV_LOG_ERROR, "too many slices\n");
  1163. return -1;
  1164. }
  1165. f->quant_table_count= get_symbol(c, state, 0);
  1166. if(f->quant_table_count > (unsigned)MAX_QUANT_TABLES)
  1167. return -1;
  1168. for(i=0; i<f->quant_table_count; i++){
  1169. if((f->context_count[i]= read_quant_tables(c, f->quant_tables[i])) < 0){
  1170. av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
  1171. return -1;
  1172. }
  1173. }
  1174. return 0;
  1175. }
  1176. static int read_header(FFV1Context *f){
  1177. uint8_t state[CONTEXT_SIZE];
  1178. int i, j, context_count;
  1179. RangeCoder * const c= &f->slice_context[0]->c;
  1180. memset(state, 128, sizeof(state));
  1181. if(f->version < 2){
  1182. f->version= get_symbol(c, state, 0);
  1183. f->ac= f->avctx->coder_type= get_symbol(c, state, 0);
  1184. if(f->ac>1){
  1185. for(i=1; i<256; i++){
  1186. f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i];
  1187. }
  1188. }
  1189. f->colorspace= get_symbol(c, state, 0); //YUV cs type
  1190. if(f->version>0)
  1191. f->avctx->bits_per_raw_sample= get_symbol(c, state, 0);
  1192. get_rac(c, state); //no chroma = false
  1193. f->chroma_h_shift= get_symbol(c, state, 0);
  1194. f->chroma_v_shift= get_symbol(c, state, 0);
  1195. get_rac(c, state); //transparency plane
  1196. f->plane_count= 2;
  1197. }
  1198. if(f->colorspace==0){
  1199. if(f->avctx->bits_per_raw_sample<=8){
  1200. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1201. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P; break;
  1202. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P; break;
  1203. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P; break;
  1204. case 0x20: f->avctx->pix_fmt= PIX_FMT_YUV411P; break;
  1205. case 0x22: f->avctx->pix_fmt= PIX_FMT_YUV410P; break;
  1206. default:
  1207. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1208. return -1;
  1209. }
  1210. }else{
  1211. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1212. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P16; break;
  1213. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P16; break;
  1214. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P16; break;
  1215. default:
  1216. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1217. return -1;
  1218. }
  1219. }
  1220. }else if(f->colorspace==1){
  1221. if(f->chroma_h_shift || f->chroma_v_shift){
  1222. av_log(f->avctx, AV_LOG_ERROR, "chroma subsampling not supported in this colorspace\n");
  1223. return -1;
  1224. }
  1225. f->avctx->pix_fmt= PIX_FMT_RGB32;
  1226. }else{
  1227. av_log(f->avctx, AV_LOG_ERROR, "colorspace not supported\n");
  1228. return -1;
  1229. }
  1230. //printf("%d %d %d\n", f->chroma_h_shift, f->chroma_v_shift,f->avctx->pix_fmt);
  1231. if(f->version < 2){
  1232. context_count= read_quant_tables(c, f->quant_table);
  1233. if(context_count < 0){
  1234. av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
  1235. return -1;
  1236. }
  1237. }else{
  1238. f->slice_count= get_symbol(c, state, 0);
  1239. if(f->slice_count > (unsigned)MAX_SLICES)
  1240. return -1;
  1241. }
  1242. for(j=0; j<f->slice_count; j++){
  1243. FFV1Context *fs= f->slice_context[j];
  1244. fs->ac= f->ac;
  1245. if(f->version >= 2){
  1246. fs->slice_x = get_symbol(c, state, 0) *f->width ;
  1247. fs->slice_y = get_symbol(c, state, 0) *f->height;
  1248. fs->slice_width =(get_symbol(c, state, 0)+1)*f->width + fs->slice_x;
  1249. fs->slice_height=(get_symbol(c, state, 0)+1)*f->height + fs->slice_y;
  1250. fs->slice_x /= f->num_h_slices;
  1251. fs->slice_y /= f->num_v_slices;
  1252. fs->slice_width = fs->slice_width /f->num_h_slices - fs->slice_x;
  1253. fs->slice_height = fs->slice_height/f->num_v_slices - fs->slice_y;
  1254. if((unsigned)fs->slice_width > f->width || (unsigned)fs->slice_height > f->height)
  1255. return -1;
  1256. if( (unsigned)fs->slice_x + (uint64_t)fs->slice_width > f->width
  1257. || (unsigned)fs->slice_y + (uint64_t)fs->slice_height > f->height)
  1258. return -1;
  1259. }
  1260. for(i=0; i<f->plane_count; i++){
  1261. PlaneContext * const p= &fs->plane[i];
  1262. if(f->version >= 2){
  1263. int idx=get_symbol(c, state, 0);
  1264. if(idx > (unsigned)f->quant_table_count){
  1265. av_log(f->avctx, AV_LOG_ERROR, "quant_table_index out of range\n");
  1266. return -1;
  1267. }
  1268. p->quant_table_index= idx;
  1269. memcpy(p->quant_table, f->quant_tables[idx], sizeof(p->quant_table));
  1270. context_count= f->context_count[idx];
  1271. }else{
  1272. memcpy(p->quant_table, f->quant_table, sizeof(p->quant_table));
  1273. }
  1274. if(p->context_count < context_count){
  1275. av_freep(&p->state);
  1276. av_freep(&p->vlc_state);
  1277. }
  1278. p->context_count= context_count;
  1279. }
  1280. }
  1281. return 0;
  1282. }
  1283. static av_cold int decode_init(AVCodecContext *avctx)
  1284. {
  1285. FFV1Context *f = avctx->priv_data;
  1286. common_init(avctx);
  1287. if(avctx->extradata && read_extra_header(f) < 0)
  1288. return -1;
  1289. if(init_slice_contexts(f) < 0)
  1290. return -1;
  1291. return 0;
  1292. }
  1293. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  1294. const uint8_t *buf = avpkt->data;
  1295. int buf_size = avpkt->size;
  1296. FFV1Context *f = avctx->priv_data;
  1297. RangeCoder * const c= &f->slice_context[0]->c;
  1298. AVFrame * const p= &f->picture;
  1299. int bytes_read, i;
  1300. uint8_t keystate= 128;
  1301. const uint8_t *buf_p;
  1302. AVFrame *picture = data;
  1303. ff_init_range_decoder(c, buf, buf_size);
  1304. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1305. p->pict_type= FF_I_TYPE; //FIXME I vs. P
  1306. if(get_rac(c, &keystate)){
  1307. p->key_frame= 1;
  1308. if(read_header(f) < 0)
  1309. return -1;
  1310. if(init_slice_state(f) < 0)
  1311. return -1;
  1312. clear_state(f);
  1313. }else{
  1314. p->key_frame= 0;
  1315. }
  1316. if(f->ac>1){
  1317. int i;
  1318. for(i=1; i<256; i++){
  1319. c->one_state[i]= f->state_transition[i];
  1320. c->zero_state[256-i]= 256-c->one_state[i];
  1321. }
  1322. }
  1323. p->reference= 0;
  1324. if(avctx->get_buffer(avctx, p) < 0){
  1325. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1326. return -1;
  1327. }
  1328. if(avctx->debug&FF_DEBUG_PICT_INFO)
  1329. av_log(avctx, AV_LOG_ERROR, "keyframe:%d coder:%d\n", p->key_frame, f->ac);
  1330. if(!f->ac){
  1331. bytes_read = c->bytestream - c->bytestream_start - 1;
  1332. if(bytes_read ==0) av_log(avctx, AV_LOG_ERROR, "error at end of AC stream\n"); //FIXME
  1333. //printf("pos=%d\n", bytes_read);
  1334. init_get_bits(&f->slice_context[0]->gb, buf + bytes_read, buf_size - bytes_read);
  1335. } else {
  1336. bytes_read = 0; /* avoid warning */
  1337. }
  1338. buf_p= buf + buf_size;
  1339. for(i=f->slice_count-1; i>0; i--){
  1340. FFV1Context *fs= f->slice_context[i];
  1341. int v= AV_RB24(buf_p-3)+3;
  1342. if(buf_p - buf <= v){
  1343. av_log(avctx, AV_LOG_ERROR, "Slice pointer chain broken\n");
  1344. return -1;
  1345. }
  1346. buf_p -= v;
  1347. if(fs->ac){
  1348. ff_init_range_decoder(&fs->c, buf_p, v);
  1349. }else{
  1350. init_get_bits(&fs->gb, buf_p, v);
  1351. }
  1352. }
  1353. avctx->execute(avctx, decode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*));
  1354. f->picture_number++;
  1355. *picture= *p;
  1356. avctx->release_buffer(avctx, p); //FIXME
  1357. *data_size = sizeof(AVFrame);
  1358. return buf_size;
  1359. }
  1360. AVCodec ffv1_decoder = {
  1361. "ffv1",
  1362. AVMEDIA_TYPE_VIDEO,
  1363. CODEC_ID_FFV1,
  1364. sizeof(FFV1Context),
  1365. decode_init,
  1366. NULL,
  1367. common_end,
  1368. decode_frame,
  1369. CODEC_CAP_DR1 /*| CODEC_CAP_DRAW_HORIZ_BAND*/,
  1370. NULL,
  1371. .long_name= NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
  1372. };
  1373. #if CONFIG_FFV1_ENCODER
  1374. AVCodec ffv1_encoder = {
  1375. "ffv1",
  1376. AVMEDIA_TYPE_VIDEO,
  1377. CODEC_ID_FFV1,
  1378. sizeof(FFV1Context),
  1379. encode_init,
  1380. encode_frame,
  1381. common_end,
  1382. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV444P, PIX_FMT_YUV422P, PIX_FMT_YUV411P, PIX_FMT_YUV410P, PIX_FMT_RGB32, PIX_FMT_YUV420P16, PIX_FMT_YUV422P16, PIX_FMT_YUV444P16, PIX_FMT_NONE},
  1383. .long_name= NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
  1384. };
  1385. #endif