You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1337 lines
48KB

  1. /*
  2. * MLP decoder
  3. * Copyright (c) 2007-2008 Ian Caulfield
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * MLP decoder
  24. */
  25. #include <stdint.h>
  26. #include "avcodec.h"
  27. #include "libavutil/internal.h"
  28. #include "libavutil/intreadwrite.h"
  29. #include "libavutil/channel_layout.h"
  30. #include "get_bits.h"
  31. #include "internal.h"
  32. #include "libavutil/crc.h"
  33. #include "parser.h"
  34. #include "mlp_parser.h"
  35. #include "mlpdsp.h"
  36. #include "mlp.h"
  37. #include "config.h"
  38. /** number of bits used for VLC lookup - longest Huffman code is 9 */
  39. #if ARCH_ARM
  40. #define VLC_BITS 5
  41. #define VLC_STATIC_SIZE 64
  42. #else
  43. #define VLC_BITS 9
  44. #define VLC_STATIC_SIZE 512
  45. #endif
  46. typedef struct SubStream {
  47. /// Set if a valid restart header has been read. Otherwise the substream cannot be decoded.
  48. uint8_t restart_seen;
  49. //@{
  50. /** restart header data */
  51. /// The type of noise to be used in the rematrix stage.
  52. uint16_t noise_type;
  53. /// The index of the first channel coded in this substream.
  54. uint8_t min_channel;
  55. /// The index of the last channel coded in this substream.
  56. uint8_t max_channel;
  57. /// The number of channels input into the rematrix stage.
  58. uint8_t max_matrix_channel;
  59. /// For each channel output by the matrix, the output channel to map it to
  60. uint8_t ch_assign[MAX_CHANNELS];
  61. /// The channel layout for this substream
  62. uint64_t ch_layout;
  63. /// The matrix encoding mode for this substream
  64. enum AVMatrixEncoding matrix_encoding;
  65. /// Channel coding parameters for channels in the substream
  66. ChannelParams channel_params[MAX_CHANNELS];
  67. /// The left shift applied to random noise in 0x31ea substreams.
  68. uint8_t noise_shift;
  69. /// The current seed value for the pseudorandom noise generator(s).
  70. uint32_t noisegen_seed;
  71. /// Set if the substream contains extra info to check the size of VLC blocks.
  72. uint8_t data_check_present;
  73. /// Bitmask of which parameter sets are conveyed in a decoding parameter block.
  74. uint8_t param_presence_flags;
  75. #define PARAM_BLOCKSIZE (1 << 7)
  76. #define PARAM_MATRIX (1 << 6)
  77. #define PARAM_OUTSHIFT (1 << 5)
  78. #define PARAM_QUANTSTEP (1 << 4)
  79. #define PARAM_FIR (1 << 3)
  80. #define PARAM_IIR (1 << 2)
  81. #define PARAM_HUFFOFFSET (1 << 1)
  82. #define PARAM_PRESENCE (1 << 0)
  83. //@}
  84. //@{
  85. /** matrix data */
  86. /// Number of matrices to be applied.
  87. uint8_t num_primitive_matrices;
  88. /// matrix output channel
  89. uint8_t matrix_out_ch[MAX_MATRICES];
  90. /// Whether the LSBs of the matrix output are encoded in the bitstream.
  91. uint8_t lsb_bypass[MAX_MATRICES];
  92. /// Matrix coefficients, stored as 2.14 fixed point.
  93. DECLARE_ALIGNED(32, int32_t, matrix_coeff)[MAX_MATRICES][MAX_CHANNELS];
  94. /// Left shift to apply to noise values in 0x31eb substreams.
  95. uint8_t matrix_noise_shift[MAX_MATRICES];
  96. //@}
  97. /// Left shift to apply to Huffman-decoded residuals.
  98. uint8_t quant_step_size[MAX_CHANNELS];
  99. /// number of PCM samples in current audio block
  100. uint16_t blocksize;
  101. /// Number of PCM samples decoded so far in this frame.
  102. uint16_t blockpos;
  103. /// Left shift to apply to decoded PCM values to get final 24-bit output.
  104. int8_t output_shift[MAX_CHANNELS];
  105. /// Running XOR of all output samples.
  106. int32_t lossless_check_data;
  107. } SubStream;
  108. typedef struct MLPDecodeContext {
  109. AVCodecContext *avctx;
  110. /// Current access unit being read has a major sync.
  111. int is_major_sync_unit;
  112. /// Size of the major sync unit, in bytes
  113. int major_sync_header_size;
  114. /// Set if a valid major sync block has been read. Otherwise no decoding is possible.
  115. uint8_t params_valid;
  116. /// Number of substreams contained within this stream.
  117. uint8_t num_substreams;
  118. /// Index of the last substream to decode - further substreams are skipped.
  119. uint8_t max_decoded_substream;
  120. /// Stream needs channel reordering to comply with FFmpeg's channel order
  121. uint8_t needs_reordering;
  122. /// number of PCM samples contained in each frame
  123. int access_unit_size;
  124. /// next power of two above the number of samples in each frame
  125. int access_unit_size_pow2;
  126. SubStream substream[MAX_SUBSTREAMS];
  127. int matrix_changed;
  128. int filter_changed[MAX_CHANNELS][NUM_FILTERS];
  129. int8_t noise_buffer[MAX_BLOCKSIZE_POW2];
  130. int8_t bypassed_lsbs[MAX_BLOCKSIZE][MAX_CHANNELS];
  131. DECLARE_ALIGNED(32, int32_t, sample_buffer)[MAX_BLOCKSIZE][MAX_CHANNELS];
  132. MLPDSPContext dsp;
  133. } MLPDecodeContext;
  134. static const uint64_t thd_channel_order[] = {
  135. AV_CH_FRONT_LEFT, AV_CH_FRONT_RIGHT, // LR
  136. AV_CH_FRONT_CENTER, // C
  137. AV_CH_LOW_FREQUENCY, // LFE
  138. AV_CH_SIDE_LEFT, AV_CH_SIDE_RIGHT, // LRs
  139. AV_CH_TOP_FRONT_LEFT, AV_CH_TOP_FRONT_RIGHT, // LRvh
  140. AV_CH_FRONT_LEFT_OF_CENTER, AV_CH_FRONT_RIGHT_OF_CENTER, // LRc
  141. AV_CH_BACK_LEFT, AV_CH_BACK_RIGHT, // LRrs
  142. AV_CH_BACK_CENTER, // Cs
  143. AV_CH_TOP_CENTER, // Ts
  144. AV_CH_SURROUND_DIRECT_LEFT, AV_CH_SURROUND_DIRECT_RIGHT, // LRsd
  145. AV_CH_WIDE_LEFT, AV_CH_WIDE_RIGHT, // LRw
  146. AV_CH_TOP_FRONT_CENTER, // Cvh
  147. AV_CH_LOW_FREQUENCY_2, // LFE2
  148. };
  149. static uint64_t thd_channel_layout_extract_channel(uint64_t channel_layout,
  150. int index)
  151. {
  152. int i;
  153. if (av_get_channel_layout_nb_channels(channel_layout) <= index)
  154. return 0;
  155. for (i = 0; i < FF_ARRAY_ELEMS(thd_channel_order); i++)
  156. if (channel_layout & thd_channel_order[i] && !index--)
  157. return thd_channel_order[i];
  158. return 0;
  159. }
  160. static VLC huff_vlc[3];
  161. /** Initialize static data, constant between all invocations of the codec. */
  162. static av_cold void init_static(void)
  163. {
  164. if (!huff_vlc[0].bits) {
  165. INIT_VLC_STATIC(&huff_vlc[0], VLC_BITS, 18,
  166. &ff_mlp_huffman_tables[0][0][1], 2, 1,
  167. &ff_mlp_huffman_tables[0][0][0], 2, 1, VLC_STATIC_SIZE);
  168. INIT_VLC_STATIC(&huff_vlc[1], VLC_BITS, 16,
  169. &ff_mlp_huffman_tables[1][0][1], 2, 1,
  170. &ff_mlp_huffman_tables[1][0][0], 2, 1, VLC_STATIC_SIZE);
  171. INIT_VLC_STATIC(&huff_vlc[2], VLC_BITS, 15,
  172. &ff_mlp_huffman_tables[2][0][1], 2, 1,
  173. &ff_mlp_huffman_tables[2][0][0], 2, 1, VLC_STATIC_SIZE);
  174. }
  175. ff_mlp_init_crc();
  176. }
  177. static inline int32_t calculate_sign_huff(MLPDecodeContext *m,
  178. unsigned int substr, unsigned int ch)
  179. {
  180. SubStream *s = &m->substream[substr];
  181. ChannelParams *cp = &s->channel_params[ch];
  182. int lsb_bits = cp->huff_lsbs - s->quant_step_size[ch];
  183. int sign_shift = lsb_bits + (cp->codebook ? 2 - cp->codebook : -1);
  184. int32_t sign_huff_offset = cp->huff_offset;
  185. if (cp->codebook > 0)
  186. sign_huff_offset -= 7 << lsb_bits;
  187. if (sign_shift >= 0)
  188. sign_huff_offset -= 1 << sign_shift;
  189. return sign_huff_offset;
  190. }
  191. /** Read a sample, consisting of either, both or neither of entropy-coded MSBs
  192. * and plain LSBs. */
  193. static inline int read_huff_channels(MLPDecodeContext *m, GetBitContext *gbp,
  194. unsigned int substr, unsigned int pos)
  195. {
  196. SubStream *s = &m->substream[substr];
  197. unsigned int mat, channel;
  198. for (mat = 0; mat < s->num_primitive_matrices; mat++)
  199. if (s->lsb_bypass[mat])
  200. m->bypassed_lsbs[pos + s->blockpos][mat] = get_bits1(gbp);
  201. for (channel = s->min_channel; channel <= s->max_channel; channel++) {
  202. ChannelParams *cp = &s->channel_params[channel];
  203. int codebook = cp->codebook;
  204. int quant_step_size = s->quant_step_size[channel];
  205. int lsb_bits = cp->huff_lsbs - quant_step_size;
  206. int result = 0;
  207. if (codebook > 0)
  208. result = get_vlc2(gbp, huff_vlc[codebook-1].table,
  209. VLC_BITS, (9 + VLC_BITS - 1) / VLC_BITS);
  210. if (result < 0)
  211. return AVERROR_INVALIDDATA;
  212. if (lsb_bits > 0)
  213. result = (result << lsb_bits) + get_bits(gbp, lsb_bits);
  214. result += cp->sign_huff_offset;
  215. result *= 1 << quant_step_size;
  216. m->sample_buffer[pos + s->blockpos][channel] = result;
  217. }
  218. return 0;
  219. }
  220. static av_cold int mlp_decode_init(AVCodecContext *avctx)
  221. {
  222. MLPDecodeContext *m = avctx->priv_data;
  223. int substr;
  224. init_static();
  225. m->avctx = avctx;
  226. for (substr = 0; substr < MAX_SUBSTREAMS; substr++)
  227. m->substream[substr].lossless_check_data = 0xffffffff;
  228. ff_mlpdsp_init(&m->dsp);
  229. return 0;
  230. }
  231. /** Read a major sync info header - contains high level information about
  232. * the stream - sample rate, channel arrangement etc. Most of this
  233. * information is not actually necessary for decoding, only for playback.
  234. */
  235. static int read_major_sync(MLPDecodeContext *m, GetBitContext *gb)
  236. {
  237. MLPHeaderInfo mh;
  238. int substr, ret;
  239. if ((ret = ff_mlp_read_major_sync(m->avctx, &mh, gb)) != 0)
  240. return ret;
  241. if (mh.group1_bits == 0) {
  242. av_log(m->avctx, AV_LOG_ERROR, "invalid/unknown bits per sample\n");
  243. return AVERROR_INVALIDDATA;
  244. }
  245. if (mh.group2_bits > mh.group1_bits) {
  246. av_log(m->avctx, AV_LOG_ERROR,
  247. "Channel group 2 cannot have more bits per sample than group 1.\n");
  248. return AVERROR_INVALIDDATA;
  249. }
  250. if (mh.group2_samplerate && mh.group2_samplerate != mh.group1_samplerate) {
  251. av_log(m->avctx, AV_LOG_ERROR,
  252. "Channel groups with differing sample rates are not currently supported.\n");
  253. return AVERROR_INVALIDDATA;
  254. }
  255. if (mh.group1_samplerate == 0) {
  256. av_log(m->avctx, AV_LOG_ERROR, "invalid/unknown sampling rate\n");
  257. return AVERROR_INVALIDDATA;
  258. }
  259. if (mh.group1_samplerate > MAX_SAMPLERATE) {
  260. av_log(m->avctx, AV_LOG_ERROR,
  261. "Sampling rate %d is greater than the supported maximum (%d).\n",
  262. mh.group1_samplerate, MAX_SAMPLERATE);
  263. return AVERROR_INVALIDDATA;
  264. }
  265. if (mh.access_unit_size > MAX_BLOCKSIZE) {
  266. av_log(m->avctx, AV_LOG_ERROR,
  267. "Block size %d is greater than the supported maximum (%d).\n",
  268. mh.access_unit_size, MAX_BLOCKSIZE);
  269. return AVERROR_INVALIDDATA;
  270. }
  271. if (mh.access_unit_size_pow2 > MAX_BLOCKSIZE_POW2) {
  272. av_log(m->avctx, AV_LOG_ERROR,
  273. "Block size pow2 %d is greater than the supported maximum (%d).\n",
  274. mh.access_unit_size_pow2, MAX_BLOCKSIZE_POW2);
  275. return AVERROR_INVALIDDATA;
  276. }
  277. if (mh.num_substreams == 0)
  278. return AVERROR_INVALIDDATA;
  279. if (m->avctx->codec_id == AV_CODEC_ID_MLP && mh.num_substreams > 2) {
  280. av_log(m->avctx, AV_LOG_ERROR, "MLP only supports up to 2 substreams.\n");
  281. return AVERROR_INVALIDDATA;
  282. }
  283. if (mh.num_substreams > MAX_SUBSTREAMS) {
  284. avpriv_request_sample(m->avctx,
  285. "%d substreams (more than the "
  286. "maximum supported by the decoder)",
  287. mh.num_substreams);
  288. return AVERROR_PATCHWELCOME;
  289. }
  290. m->major_sync_header_size = mh.header_size;
  291. m->access_unit_size = mh.access_unit_size;
  292. m->access_unit_size_pow2 = mh.access_unit_size_pow2;
  293. m->num_substreams = mh.num_substreams;
  294. /* limit to decoding 3 substreams, as the 4th is used by Dolby Atmos for non-audio data */
  295. m->max_decoded_substream = FFMIN(m->num_substreams - 1, 2);
  296. m->avctx->sample_rate = mh.group1_samplerate;
  297. m->avctx->frame_size = mh.access_unit_size;
  298. m->avctx->bits_per_raw_sample = mh.group1_bits;
  299. if (mh.group1_bits > 16)
  300. m->avctx->sample_fmt = AV_SAMPLE_FMT_S32;
  301. else
  302. m->avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  303. m->dsp.mlp_pack_output = m->dsp.mlp_select_pack_output(m->substream[m->max_decoded_substream].ch_assign,
  304. m->substream[m->max_decoded_substream].output_shift,
  305. m->substream[m->max_decoded_substream].max_matrix_channel,
  306. m->avctx->sample_fmt == AV_SAMPLE_FMT_S32);
  307. m->params_valid = 1;
  308. for (substr = 0; substr < MAX_SUBSTREAMS; substr++)
  309. m->substream[substr].restart_seen = 0;
  310. /* Set the layout for each substream. When there's more than one, the first
  311. * substream is Stereo. Subsequent substreams' layouts are indicated in the
  312. * major sync. */
  313. if (m->avctx->codec_id == AV_CODEC_ID_MLP) {
  314. if (mh.stream_type != 0xbb) {
  315. avpriv_request_sample(m->avctx,
  316. "unexpected stream_type %X in MLP",
  317. mh.stream_type);
  318. return AVERROR_PATCHWELCOME;
  319. }
  320. if ((substr = (mh.num_substreams > 1)))
  321. m->substream[0].ch_layout = AV_CH_LAYOUT_STEREO;
  322. m->substream[substr].ch_layout = mh.channel_layout_mlp;
  323. } else {
  324. if (mh.stream_type != 0xba) {
  325. avpriv_request_sample(m->avctx,
  326. "unexpected stream_type %X in !MLP",
  327. mh.stream_type);
  328. return AVERROR_PATCHWELCOME;
  329. }
  330. if ((substr = (mh.num_substreams > 1)))
  331. m->substream[0].ch_layout = AV_CH_LAYOUT_STEREO;
  332. if (mh.num_substreams > 2)
  333. if (mh.channel_layout_thd_stream2)
  334. m->substream[2].ch_layout = mh.channel_layout_thd_stream2;
  335. else
  336. m->substream[2].ch_layout = mh.channel_layout_thd_stream1;
  337. m->substream[substr].ch_layout = mh.channel_layout_thd_stream1;
  338. if (m->avctx->channels<=2 && m->substream[substr].ch_layout == AV_CH_LAYOUT_MONO && m->max_decoded_substream == 1) {
  339. av_log(m->avctx, AV_LOG_DEBUG, "Mono stream with 2 substreams, ignoring 2nd\n");
  340. m->max_decoded_substream = 0;
  341. if (m->avctx->channels==2)
  342. m->avctx->channel_layout = AV_CH_LAYOUT_STEREO;
  343. }
  344. }
  345. m->needs_reordering = mh.channel_arrangement >= 18 && mh.channel_arrangement <= 20;
  346. /* Parse the TrueHD decoder channel modifiers and set each substream's
  347. * AVMatrixEncoding accordingly.
  348. *
  349. * The meaning of the modifiers depends on the channel layout:
  350. *
  351. * - THD_CH_MODIFIER_LTRT, THD_CH_MODIFIER_LBINRBIN only apply to 2-channel
  352. *
  353. * - THD_CH_MODIFIER_MONO applies to 1-channel or 2-channel (dual mono)
  354. *
  355. * - THD_CH_MODIFIER_SURROUNDEX, THD_CH_MODIFIER_NOTSURROUNDEX only apply to
  356. * layouts with an Ls/Rs channel pair
  357. */
  358. for (substr = 0; substr < MAX_SUBSTREAMS; substr++)
  359. m->substream[substr].matrix_encoding = AV_MATRIX_ENCODING_NONE;
  360. if (m->avctx->codec_id == AV_CODEC_ID_TRUEHD) {
  361. if (mh.num_substreams > 2 &&
  362. mh.channel_layout_thd_stream2 & AV_CH_SIDE_LEFT &&
  363. mh.channel_layout_thd_stream2 & AV_CH_SIDE_RIGHT &&
  364. mh.channel_modifier_thd_stream2 == THD_CH_MODIFIER_SURROUNDEX)
  365. m->substream[2].matrix_encoding = AV_MATRIX_ENCODING_DOLBYEX;
  366. if (mh.num_substreams > 1 &&
  367. mh.channel_layout_thd_stream1 & AV_CH_SIDE_LEFT &&
  368. mh.channel_layout_thd_stream1 & AV_CH_SIDE_RIGHT &&
  369. mh.channel_modifier_thd_stream1 == THD_CH_MODIFIER_SURROUNDEX)
  370. m->substream[1].matrix_encoding = AV_MATRIX_ENCODING_DOLBYEX;
  371. if (mh.num_substreams > 0)
  372. switch (mh.channel_modifier_thd_stream0) {
  373. case THD_CH_MODIFIER_LTRT:
  374. m->substream[0].matrix_encoding = AV_MATRIX_ENCODING_DOLBY;
  375. break;
  376. case THD_CH_MODIFIER_LBINRBIN:
  377. m->substream[0].matrix_encoding = AV_MATRIX_ENCODING_DOLBYHEADPHONE;
  378. break;
  379. default:
  380. break;
  381. }
  382. }
  383. return 0;
  384. }
  385. /** Read a restart header from a block in a substream. This contains parameters
  386. * required to decode the audio that do not change very often. Generally
  387. * (always) present only in blocks following a major sync. */
  388. static int read_restart_header(MLPDecodeContext *m, GetBitContext *gbp,
  389. const uint8_t *buf, unsigned int substr)
  390. {
  391. SubStream *s = &m->substream[substr];
  392. unsigned int ch;
  393. int sync_word, tmp;
  394. uint8_t checksum;
  395. uint8_t lossless_check;
  396. int start_count = get_bits_count(gbp);
  397. int min_channel, max_channel, max_matrix_channel;
  398. const int std_max_matrix_channel = m->avctx->codec_id == AV_CODEC_ID_MLP
  399. ? MAX_MATRIX_CHANNEL_MLP
  400. : MAX_MATRIX_CHANNEL_TRUEHD;
  401. sync_word = get_bits(gbp, 13);
  402. if (sync_word != 0x31ea >> 1) {
  403. av_log(m->avctx, AV_LOG_ERROR,
  404. "restart header sync incorrect (got 0x%04x)\n", sync_word);
  405. return AVERROR_INVALIDDATA;
  406. }
  407. s->noise_type = get_bits1(gbp);
  408. if (m->avctx->codec_id == AV_CODEC_ID_MLP && s->noise_type) {
  409. av_log(m->avctx, AV_LOG_ERROR, "MLP must have 0x31ea sync word.\n");
  410. return AVERROR_INVALIDDATA;
  411. }
  412. skip_bits(gbp, 16); /* Output timestamp */
  413. min_channel = get_bits(gbp, 4);
  414. max_channel = get_bits(gbp, 4);
  415. max_matrix_channel = get_bits(gbp, 4);
  416. if (max_matrix_channel > std_max_matrix_channel) {
  417. av_log(m->avctx, AV_LOG_ERROR,
  418. "Max matrix channel cannot be greater than %d.\n",
  419. std_max_matrix_channel);
  420. return AVERROR_INVALIDDATA;
  421. }
  422. if (max_channel != max_matrix_channel) {
  423. av_log(m->avctx, AV_LOG_ERROR,
  424. "Max channel must be equal max matrix channel.\n");
  425. return AVERROR_INVALIDDATA;
  426. }
  427. /* This should happen for TrueHD streams with >6 channels and MLP's noise
  428. * type. It is not yet known if this is allowed. */
  429. if (max_channel > MAX_MATRIX_CHANNEL_MLP && !s->noise_type) {
  430. avpriv_request_sample(m->avctx,
  431. "%d channels (more than the "
  432. "maximum supported by the decoder)",
  433. max_channel + 2);
  434. return AVERROR_PATCHWELCOME;
  435. }
  436. if (min_channel > max_channel) {
  437. av_log(m->avctx, AV_LOG_ERROR,
  438. "Substream min channel cannot be greater than max channel.\n");
  439. return AVERROR_INVALIDDATA;
  440. }
  441. s->min_channel = min_channel;
  442. s->max_channel = max_channel;
  443. s->max_matrix_channel = max_matrix_channel;
  444. #if FF_API_REQUEST_CHANNELS
  445. FF_DISABLE_DEPRECATION_WARNINGS
  446. if (m->avctx->request_channels > 0 &&
  447. m->avctx->request_channels <= s->max_channel + 1 &&
  448. m->max_decoded_substream > substr) {
  449. av_log(m->avctx, AV_LOG_DEBUG,
  450. "Extracting %d-channel downmix from substream %d. "
  451. "Further substreams will be skipped.\n",
  452. s->max_channel + 1, substr);
  453. m->max_decoded_substream = substr;
  454. FF_ENABLE_DEPRECATION_WARNINGS
  455. } else
  456. #endif
  457. if (m->avctx->request_channel_layout && (s->ch_layout & m->avctx->request_channel_layout) ==
  458. m->avctx->request_channel_layout && m->max_decoded_substream > substr) {
  459. av_log(m->avctx, AV_LOG_DEBUG,
  460. "Extracting %d-channel downmix (0x%"PRIx64") from substream %d. "
  461. "Further substreams will be skipped.\n",
  462. s->max_channel + 1, s->ch_layout, substr);
  463. m->max_decoded_substream = substr;
  464. }
  465. s->noise_shift = get_bits(gbp, 4);
  466. s->noisegen_seed = get_bits(gbp, 23);
  467. skip_bits(gbp, 19);
  468. s->data_check_present = get_bits1(gbp);
  469. lossless_check = get_bits(gbp, 8);
  470. if (substr == m->max_decoded_substream
  471. && s->lossless_check_data != 0xffffffff) {
  472. tmp = xor_32_to_8(s->lossless_check_data);
  473. if (tmp != lossless_check)
  474. av_log(m->avctx, AV_LOG_WARNING,
  475. "Lossless check failed - expected %02x, calculated %02x.\n",
  476. lossless_check, tmp);
  477. }
  478. skip_bits(gbp, 16);
  479. memset(s->ch_assign, 0, sizeof(s->ch_assign));
  480. for (ch = 0; ch <= s->max_matrix_channel; ch++) {
  481. int ch_assign = get_bits(gbp, 6);
  482. if (m->avctx->codec_id == AV_CODEC_ID_TRUEHD) {
  483. uint64_t channel = thd_channel_layout_extract_channel(s->ch_layout,
  484. ch_assign);
  485. ch_assign = av_get_channel_layout_channel_index(s->ch_layout,
  486. channel);
  487. }
  488. if (ch_assign < 0 || ch_assign > s->max_matrix_channel) {
  489. avpriv_request_sample(m->avctx,
  490. "Assignment of matrix channel %d to invalid output channel %d",
  491. ch, ch_assign);
  492. return AVERROR_PATCHWELCOME;
  493. }
  494. s->ch_assign[ch_assign] = ch;
  495. }
  496. checksum = ff_mlp_restart_checksum(buf, get_bits_count(gbp) - start_count);
  497. if (checksum != get_bits(gbp, 8))
  498. av_log(m->avctx, AV_LOG_ERROR, "restart header checksum error\n");
  499. /* Set default decoding parameters. */
  500. s->param_presence_flags = 0xff;
  501. s->num_primitive_matrices = 0;
  502. s->blocksize = 8;
  503. s->lossless_check_data = 0;
  504. memset(s->output_shift , 0, sizeof(s->output_shift ));
  505. memset(s->quant_step_size, 0, sizeof(s->quant_step_size));
  506. for (ch = s->min_channel; ch <= s->max_channel; ch++) {
  507. ChannelParams *cp = &s->channel_params[ch];
  508. cp->filter_params[FIR].order = 0;
  509. cp->filter_params[IIR].order = 0;
  510. cp->filter_params[FIR].shift = 0;
  511. cp->filter_params[IIR].shift = 0;
  512. /* Default audio coding is 24-bit raw PCM. */
  513. cp->huff_offset = 0;
  514. cp->sign_huff_offset = (-1) << 23;
  515. cp->codebook = 0;
  516. cp->huff_lsbs = 24;
  517. }
  518. if (substr == m->max_decoded_substream) {
  519. m->avctx->channels = s->max_matrix_channel + 1;
  520. m->avctx->channel_layout = s->ch_layout;
  521. m->dsp.mlp_pack_output = m->dsp.mlp_select_pack_output(s->ch_assign,
  522. s->output_shift,
  523. s->max_matrix_channel,
  524. m->avctx->sample_fmt == AV_SAMPLE_FMT_S32);
  525. if (m->avctx->codec_id == AV_CODEC_ID_MLP && m->needs_reordering) {
  526. if (m->avctx->channel_layout == (AV_CH_LAYOUT_QUAD|AV_CH_LOW_FREQUENCY) ||
  527. m->avctx->channel_layout == AV_CH_LAYOUT_5POINT0_BACK) {
  528. int i = s->ch_assign[4];
  529. s->ch_assign[4] = s->ch_assign[3];
  530. s->ch_assign[3] = s->ch_assign[2];
  531. s->ch_assign[2] = i;
  532. } else if (m->avctx->channel_layout == AV_CH_LAYOUT_5POINT1_BACK) {
  533. FFSWAP(int, s->ch_assign[2], s->ch_assign[4]);
  534. FFSWAP(int, s->ch_assign[3], s->ch_assign[5]);
  535. }
  536. }
  537. }
  538. return 0;
  539. }
  540. /** Read parameters for one of the prediction filters. */
  541. static int read_filter_params(MLPDecodeContext *m, GetBitContext *gbp,
  542. unsigned int substr, unsigned int channel,
  543. unsigned int filter)
  544. {
  545. SubStream *s = &m->substream[substr];
  546. FilterParams *fp = &s->channel_params[channel].filter_params[filter];
  547. const int max_order = filter ? MAX_IIR_ORDER : MAX_FIR_ORDER;
  548. const char fchar = filter ? 'I' : 'F';
  549. int i, order;
  550. // Filter is 0 for FIR, 1 for IIR.
  551. av_assert0(filter < 2);
  552. if (m->filter_changed[channel][filter]++ > 1) {
  553. av_log(m->avctx, AV_LOG_ERROR, "Filters may change only once per access unit.\n");
  554. return AVERROR_INVALIDDATA;
  555. }
  556. order = get_bits(gbp, 4);
  557. if (order > max_order) {
  558. av_log(m->avctx, AV_LOG_ERROR,
  559. "%cIR filter order %d is greater than maximum %d.\n",
  560. fchar, order, max_order);
  561. return AVERROR_INVALIDDATA;
  562. }
  563. fp->order = order;
  564. if (order > 0) {
  565. int32_t *fcoeff = s->channel_params[channel].coeff[filter];
  566. int coeff_bits, coeff_shift;
  567. fp->shift = get_bits(gbp, 4);
  568. coeff_bits = get_bits(gbp, 5);
  569. coeff_shift = get_bits(gbp, 3);
  570. if (coeff_bits < 1 || coeff_bits > 16) {
  571. av_log(m->avctx, AV_LOG_ERROR,
  572. "%cIR filter coeff_bits must be between 1 and 16.\n",
  573. fchar);
  574. return AVERROR_INVALIDDATA;
  575. }
  576. if (coeff_bits + coeff_shift > 16) {
  577. av_log(m->avctx, AV_LOG_ERROR,
  578. "Sum of coeff_bits and coeff_shift for %cIR filter must be 16 or less.\n",
  579. fchar);
  580. return AVERROR_INVALIDDATA;
  581. }
  582. for (i = 0; i < order; i++)
  583. fcoeff[i] = get_sbits(gbp, coeff_bits) * (1 << coeff_shift);
  584. if (get_bits1(gbp)) {
  585. int state_bits, state_shift;
  586. if (filter == FIR) {
  587. av_log(m->avctx, AV_LOG_ERROR,
  588. "FIR filter has state data specified.\n");
  589. return AVERROR_INVALIDDATA;
  590. }
  591. state_bits = get_bits(gbp, 4);
  592. state_shift = get_bits(gbp, 4);
  593. /* TODO: Check validity of state data. */
  594. for (i = 0; i < order; i++)
  595. fp->state[i] = state_bits ? get_sbits(gbp, state_bits) * (1 << state_shift) : 0;
  596. }
  597. }
  598. return 0;
  599. }
  600. /** Read parameters for primitive matrices. */
  601. static int read_matrix_params(MLPDecodeContext *m, unsigned int substr, GetBitContext *gbp)
  602. {
  603. SubStream *s = &m->substream[substr];
  604. unsigned int mat, ch;
  605. const int max_primitive_matrices = m->avctx->codec_id == AV_CODEC_ID_MLP
  606. ? MAX_MATRICES_MLP
  607. : MAX_MATRICES_TRUEHD;
  608. if (m->matrix_changed++ > 1) {
  609. av_log(m->avctx, AV_LOG_ERROR, "Matrices may change only once per access unit.\n");
  610. return AVERROR_INVALIDDATA;
  611. }
  612. s->num_primitive_matrices = get_bits(gbp, 4);
  613. if (s->num_primitive_matrices > max_primitive_matrices) {
  614. av_log(m->avctx, AV_LOG_ERROR,
  615. "Number of primitive matrices cannot be greater than %d.\n",
  616. max_primitive_matrices);
  617. return AVERROR_INVALIDDATA;
  618. }
  619. for (mat = 0; mat < s->num_primitive_matrices; mat++) {
  620. int frac_bits, max_chan;
  621. s->matrix_out_ch[mat] = get_bits(gbp, 4);
  622. frac_bits = get_bits(gbp, 4);
  623. s->lsb_bypass [mat] = get_bits1(gbp);
  624. if (s->matrix_out_ch[mat] > s->max_matrix_channel) {
  625. av_log(m->avctx, AV_LOG_ERROR,
  626. "Invalid channel %d specified as output from matrix.\n",
  627. s->matrix_out_ch[mat]);
  628. return AVERROR_INVALIDDATA;
  629. }
  630. if (frac_bits > 14) {
  631. av_log(m->avctx, AV_LOG_ERROR,
  632. "Too many fractional bits specified.\n");
  633. return AVERROR_INVALIDDATA;
  634. }
  635. max_chan = s->max_matrix_channel;
  636. if (!s->noise_type)
  637. max_chan+=2;
  638. for (ch = 0; ch <= max_chan; ch++) {
  639. int coeff_val = 0;
  640. if (get_bits1(gbp))
  641. coeff_val = get_sbits(gbp, frac_bits + 2);
  642. s->matrix_coeff[mat][ch] = coeff_val * (1 << (14 - frac_bits));
  643. }
  644. if (s->noise_type)
  645. s->matrix_noise_shift[mat] = get_bits(gbp, 4);
  646. else
  647. s->matrix_noise_shift[mat] = 0;
  648. }
  649. return 0;
  650. }
  651. /** Read channel parameters. */
  652. static int read_channel_params(MLPDecodeContext *m, unsigned int substr,
  653. GetBitContext *gbp, unsigned int ch)
  654. {
  655. SubStream *s = &m->substream[substr];
  656. ChannelParams *cp = &s->channel_params[ch];
  657. FilterParams *fir = &cp->filter_params[FIR];
  658. FilterParams *iir = &cp->filter_params[IIR];
  659. int ret;
  660. if (s->param_presence_flags & PARAM_FIR)
  661. if (get_bits1(gbp))
  662. if ((ret = read_filter_params(m, gbp, substr, ch, FIR)) < 0)
  663. return ret;
  664. if (s->param_presence_flags & PARAM_IIR)
  665. if (get_bits1(gbp))
  666. if ((ret = read_filter_params(m, gbp, substr, ch, IIR)) < 0)
  667. return ret;
  668. if (fir->order + iir->order > 8) {
  669. av_log(m->avctx, AV_LOG_ERROR, "Total filter orders too high.\n");
  670. return AVERROR_INVALIDDATA;
  671. }
  672. if (fir->order && iir->order &&
  673. fir->shift != iir->shift) {
  674. av_log(m->avctx, AV_LOG_ERROR,
  675. "FIR and IIR filters must use the same precision.\n");
  676. return AVERROR_INVALIDDATA;
  677. }
  678. /* The FIR and IIR filters must have the same precision.
  679. * To simplify the filtering code, only the precision of the
  680. * FIR filter is considered. If only the IIR filter is employed,
  681. * the FIR filter precision is set to that of the IIR filter, so
  682. * that the filtering code can use it. */
  683. if (!fir->order && iir->order)
  684. fir->shift = iir->shift;
  685. if (s->param_presence_flags & PARAM_HUFFOFFSET)
  686. if (get_bits1(gbp))
  687. cp->huff_offset = get_sbits(gbp, 15);
  688. cp->codebook = get_bits(gbp, 2);
  689. cp->huff_lsbs = get_bits(gbp, 5);
  690. if (cp->huff_lsbs > 24) {
  691. av_log(m->avctx, AV_LOG_ERROR, "Invalid huff_lsbs.\n");
  692. cp->huff_lsbs = 0;
  693. return AVERROR_INVALIDDATA;
  694. }
  695. cp->sign_huff_offset = calculate_sign_huff(m, substr, ch);
  696. return 0;
  697. }
  698. /** Read decoding parameters that change more often than those in the restart
  699. * header. */
  700. static int read_decoding_params(MLPDecodeContext *m, GetBitContext *gbp,
  701. unsigned int substr)
  702. {
  703. SubStream *s = &m->substream[substr];
  704. unsigned int ch;
  705. int ret;
  706. if (s->param_presence_flags & PARAM_PRESENCE)
  707. if (get_bits1(gbp))
  708. s->param_presence_flags = get_bits(gbp, 8);
  709. if (s->param_presence_flags & PARAM_BLOCKSIZE)
  710. if (get_bits1(gbp)) {
  711. s->blocksize = get_bits(gbp, 9);
  712. if (s->blocksize < 8 || s->blocksize > m->access_unit_size) {
  713. av_log(m->avctx, AV_LOG_ERROR, "Invalid blocksize.\n");
  714. s->blocksize = 0;
  715. return AVERROR_INVALIDDATA;
  716. }
  717. }
  718. if (s->param_presence_flags & PARAM_MATRIX)
  719. if (get_bits1(gbp))
  720. if ((ret = read_matrix_params(m, substr, gbp)) < 0)
  721. return ret;
  722. if (s->param_presence_flags & PARAM_OUTSHIFT)
  723. if (get_bits1(gbp)) {
  724. for (ch = 0; ch <= s->max_matrix_channel; ch++)
  725. s->output_shift[ch] = get_sbits(gbp, 4);
  726. if (substr == m->max_decoded_substream)
  727. m->dsp.mlp_pack_output = m->dsp.mlp_select_pack_output(s->ch_assign,
  728. s->output_shift,
  729. s->max_matrix_channel,
  730. m->avctx->sample_fmt == AV_SAMPLE_FMT_S32);
  731. }
  732. if (s->param_presence_flags & PARAM_QUANTSTEP)
  733. if (get_bits1(gbp))
  734. for (ch = 0; ch <= s->max_channel; ch++) {
  735. ChannelParams *cp = &s->channel_params[ch];
  736. s->quant_step_size[ch] = get_bits(gbp, 4);
  737. cp->sign_huff_offset = calculate_sign_huff(m, substr, ch);
  738. }
  739. for (ch = s->min_channel; ch <= s->max_channel; ch++)
  740. if (get_bits1(gbp))
  741. if ((ret = read_channel_params(m, substr, gbp, ch)) < 0)
  742. return ret;
  743. return 0;
  744. }
  745. #define MSB_MASK(bits) (-1u << (bits))
  746. /** Generate PCM samples using the prediction filters and residual values
  747. * read from the data stream, and update the filter state. */
  748. static void filter_channel(MLPDecodeContext *m, unsigned int substr,
  749. unsigned int channel)
  750. {
  751. SubStream *s = &m->substream[substr];
  752. const int32_t *fircoeff = s->channel_params[channel].coeff[FIR];
  753. int32_t state_buffer[NUM_FILTERS][MAX_BLOCKSIZE + MAX_FIR_ORDER];
  754. int32_t *firbuf = state_buffer[FIR] + MAX_BLOCKSIZE;
  755. int32_t *iirbuf = state_buffer[IIR] + MAX_BLOCKSIZE;
  756. FilterParams *fir = &s->channel_params[channel].filter_params[FIR];
  757. FilterParams *iir = &s->channel_params[channel].filter_params[IIR];
  758. unsigned int filter_shift = fir->shift;
  759. int32_t mask = MSB_MASK(s->quant_step_size[channel]);
  760. memcpy(firbuf, fir->state, MAX_FIR_ORDER * sizeof(int32_t));
  761. memcpy(iirbuf, iir->state, MAX_IIR_ORDER * sizeof(int32_t));
  762. m->dsp.mlp_filter_channel(firbuf, fircoeff,
  763. fir->order, iir->order,
  764. filter_shift, mask, s->blocksize,
  765. &m->sample_buffer[s->blockpos][channel]);
  766. memcpy(fir->state, firbuf - s->blocksize, MAX_FIR_ORDER * sizeof(int32_t));
  767. memcpy(iir->state, iirbuf - s->blocksize, MAX_IIR_ORDER * sizeof(int32_t));
  768. }
  769. /** Read a block of PCM residual data (or actual if no filtering active). */
  770. static int read_block_data(MLPDecodeContext *m, GetBitContext *gbp,
  771. unsigned int substr)
  772. {
  773. SubStream *s = &m->substream[substr];
  774. unsigned int i, ch, expected_stream_pos = 0;
  775. int ret;
  776. if (s->data_check_present) {
  777. expected_stream_pos = get_bits_count(gbp);
  778. expected_stream_pos += get_bits(gbp, 16);
  779. avpriv_request_sample(m->avctx,
  780. "Substreams with VLC block size check info");
  781. }
  782. if (s->blockpos + s->blocksize > m->access_unit_size) {
  783. av_log(m->avctx, AV_LOG_ERROR, "too many audio samples in frame\n");
  784. return AVERROR_INVALIDDATA;
  785. }
  786. memset(&m->bypassed_lsbs[s->blockpos][0], 0,
  787. s->blocksize * sizeof(m->bypassed_lsbs[0]));
  788. for (i = 0; i < s->blocksize; i++)
  789. if ((ret = read_huff_channels(m, gbp, substr, i)) < 0)
  790. return ret;
  791. for (ch = s->min_channel; ch <= s->max_channel; ch++)
  792. filter_channel(m, substr, ch);
  793. s->blockpos += s->blocksize;
  794. if (s->data_check_present) {
  795. if (get_bits_count(gbp) != expected_stream_pos)
  796. av_log(m->avctx, AV_LOG_ERROR, "block data length mismatch\n");
  797. skip_bits(gbp, 8);
  798. }
  799. return 0;
  800. }
  801. /** Data table used for TrueHD noise generation function. */
  802. static const int8_t noise_table[256] = {
  803. 30, 51, 22, 54, 3, 7, -4, 38, 14, 55, 46, 81, 22, 58, -3, 2,
  804. 52, 31, -7, 51, 15, 44, 74, 30, 85, -17, 10, 33, 18, 80, 28, 62,
  805. 10, 32, 23, 69, 72, 26, 35, 17, 73, 60, 8, 56, 2, 6, -2, -5,
  806. 51, 4, 11, 50, 66, 76, 21, 44, 33, 47, 1, 26, 64, 48, 57, 40,
  807. 38, 16, -10, -28, 92, 22, -18, 29, -10, 5, -13, 49, 19, 24, 70, 34,
  808. 61, 48, 30, 14, -6, 25, 58, 33, 42, 60, 67, 17, 54, 17, 22, 30,
  809. 67, 44, -9, 50, -11, 43, 40, 32, 59, 82, 13, 49, -14, 55, 60, 36,
  810. 48, 49, 31, 47, 15, 12, 4, 65, 1, 23, 29, 39, 45, -2, 84, 69,
  811. 0, 72, 37, 57, 27, 41, -15, -16, 35, 31, 14, 61, 24, 0, 27, 24,
  812. 16, 41, 55, 34, 53, 9, 56, 12, 25, 29, 53, 5, 20, -20, -8, 20,
  813. 13, 28, -3, 78, 38, 16, 11, 62, 46, 29, 21, 24, 46, 65, 43, -23,
  814. 89, 18, 74, 21, 38, -12, 19, 12, -19, 8, 15, 33, 4, 57, 9, -8,
  815. 36, 35, 26, 28, 7, 83, 63, 79, 75, 11, 3, 87, 37, 47, 34, 40,
  816. 39, 19, 20, 42, 27, 34, 39, 77, 13, 42, 59, 64, 45, -1, 32, 37,
  817. 45, -5, 53, -6, 7, 36, 50, 23, 6, 32, 9, -21, 18, 71, 27, 52,
  818. -25, 31, 35, 42, -1, 68, 63, 52, 26, 43, 66, 37, 41, 25, 40, 70,
  819. };
  820. /** Noise generation functions.
  821. * I'm not sure what these are for - they seem to be some kind of pseudorandom
  822. * sequence generators, used to generate noise data which is used when the
  823. * channels are rematrixed. I'm not sure if they provide a practical benefit
  824. * to compression, or just obfuscate the decoder. Are they for some kind of
  825. * dithering? */
  826. /** Generate two channels of noise, used in the matrix when
  827. * restart sync word == 0x31ea. */
  828. static void generate_2_noise_channels(MLPDecodeContext *m, unsigned int substr)
  829. {
  830. SubStream *s = &m->substream[substr];
  831. unsigned int i;
  832. uint32_t seed = s->noisegen_seed;
  833. unsigned int maxchan = s->max_matrix_channel;
  834. for (i = 0; i < s->blockpos; i++) {
  835. uint16_t seed_shr7 = seed >> 7;
  836. m->sample_buffer[i][maxchan+1] = ((int8_t)(seed >> 15)) * (1 << s->noise_shift);
  837. m->sample_buffer[i][maxchan+2] = ((int8_t) seed_shr7) * (1 << s->noise_shift);
  838. seed = (seed << 16) ^ seed_shr7 ^ (seed_shr7 << 5);
  839. }
  840. s->noisegen_seed = seed;
  841. }
  842. /** Generate a block of noise, used when restart sync word == 0x31eb. */
  843. static void fill_noise_buffer(MLPDecodeContext *m, unsigned int substr)
  844. {
  845. SubStream *s = &m->substream[substr];
  846. unsigned int i;
  847. uint32_t seed = s->noisegen_seed;
  848. for (i = 0; i < m->access_unit_size_pow2; i++) {
  849. uint8_t seed_shr15 = seed >> 15;
  850. m->noise_buffer[i] = noise_table[seed_shr15];
  851. seed = (seed << 8) ^ seed_shr15 ^ (seed_shr15 << 5);
  852. }
  853. s->noisegen_seed = seed;
  854. }
  855. /** Write the audio data into the output buffer. */
  856. static int output_data(MLPDecodeContext *m, unsigned int substr,
  857. AVFrame *frame, int *got_frame_ptr)
  858. {
  859. AVCodecContext *avctx = m->avctx;
  860. SubStream *s = &m->substream[substr];
  861. unsigned int mat;
  862. unsigned int maxchan;
  863. int ret;
  864. int is32 = (m->avctx->sample_fmt == AV_SAMPLE_FMT_S32);
  865. if (m->avctx->channels != s->max_matrix_channel + 1) {
  866. av_log(m->avctx, AV_LOG_ERROR, "channel count mismatch\n");
  867. return AVERROR_INVALIDDATA;
  868. }
  869. if (!s->blockpos) {
  870. av_log(avctx, AV_LOG_ERROR, "No samples to output.\n");
  871. return AVERROR_INVALIDDATA;
  872. }
  873. maxchan = s->max_matrix_channel;
  874. if (!s->noise_type) {
  875. generate_2_noise_channels(m, substr);
  876. maxchan += 2;
  877. } else {
  878. fill_noise_buffer(m, substr);
  879. }
  880. /* Apply the channel matrices in turn to reconstruct the original audio
  881. * samples. */
  882. for (mat = 0; mat < s->num_primitive_matrices; mat++) {
  883. unsigned int dest_ch = s->matrix_out_ch[mat];
  884. m->dsp.mlp_rematrix_channel(&m->sample_buffer[0][0],
  885. s->matrix_coeff[mat],
  886. &m->bypassed_lsbs[0][mat],
  887. m->noise_buffer,
  888. s->num_primitive_matrices - mat,
  889. dest_ch,
  890. s->blockpos,
  891. maxchan,
  892. s->matrix_noise_shift[mat],
  893. m->access_unit_size_pow2,
  894. MSB_MASK(s->quant_step_size[dest_ch]));
  895. }
  896. /* get output buffer */
  897. frame->nb_samples = s->blockpos;
  898. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
  899. return ret;
  900. s->lossless_check_data = m->dsp.mlp_pack_output(s->lossless_check_data,
  901. s->blockpos,
  902. m->sample_buffer,
  903. frame->data[0],
  904. s->ch_assign,
  905. s->output_shift,
  906. s->max_matrix_channel,
  907. is32);
  908. /* Update matrix encoding side data */
  909. if ((ret = ff_side_data_update_matrix_encoding(frame, s->matrix_encoding)) < 0)
  910. return ret;
  911. *got_frame_ptr = 1;
  912. return 0;
  913. }
  914. /** Read an access unit from the stream.
  915. * @return negative on error, 0 if not enough data is present in the input stream,
  916. * otherwise the number of bytes consumed. */
  917. static int read_access_unit(AVCodecContext *avctx, void* data,
  918. int *got_frame_ptr, AVPacket *avpkt)
  919. {
  920. const uint8_t *buf = avpkt->data;
  921. int buf_size = avpkt->size;
  922. MLPDecodeContext *m = avctx->priv_data;
  923. GetBitContext gb;
  924. unsigned int length, substr;
  925. unsigned int substream_start;
  926. unsigned int header_size = 4;
  927. unsigned int substr_header_size = 0;
  928. uint8_t substream_parity_present[MAX_SUBSTREAMS];
  929. uint16_t substream_data_len[MAX_SUBSTREAMS];
  930. uint8_t parity_bits;
  931. int ret;
  932. if (buf_size < 4)
  933. return AVERROR_INVALIDDATA;
  934. length = (AV_RB16(buf) & 0xfff) * 2;
  935. if (length < 4 || length > buf_size)
  936. return AVERROR_INVALIDDATA;
  937. init_get_bits(&gb, (buf + 4), (length - 4) * 8);
  938. m->is_major_sync_unit = 0;
  939. if (show_bits_long(&gb, 31) == (0xf8726fba >> 1)) {
  940. if (read_major_sync(m, &gb) < 0)
  941. goto error;
  942. m->is_major_sync_unit = 1;
  943. header_size += m->major_sync_header_size;
  944. }
  945. if (!m->params_valid) {
  946. av_log(m->avctx, AV_LOG_WARNING,
  947. "Stream parameters not seen; skipping frame.\n");
  948. *got_frame_ptr = 0;
  949. return length;
  950. }
  951. substream_start = 0;
  952. for (substr = 0; substr < m->num_substreams; substr++) {
  953. int extraword_present, checkdata_present, end, nonrestart_substr;
  954. extraword_present = get_bits1(&gb);
  955. nonrestart_substr = get_bits1(&gb);
  956. checkdata_present = get_bits1(&gb);
  957. skip_bits1(&gb);
  958. end = get_bits(&gb, 12) * 2;
  959. substr_header_size += 2;
  960. if (extraword_present) {
  961. if (m->avctx->codec_id == AV_CODEC_ID_MLP) {
  962. av_log(m->avctx, AV_LOG_ERROR, "There must be no extraword for MLP.\n");
  963. goto error;
  964. }
  965. skip_bits(&gb, 16);
  966. substr_header_size += 2;
  967. }
  968. if (length < header_size + substr_header_size) {
  969. av_log(m->avctx, AV_LOG_ERROR, "Insuffient data for headers\n");
  970. goto error;
  971. }
  972. if (!(nonrestart_substr ^ m->is_major_sync_unit)) {
  973. av_log(m->avctx, AV_LOG_ERROR, "Invalid nonrestart_substr.\n");
  974. goto error;
  975. }
  976. if (end + header_size + substr_header_size > length) {
  977. av_log(m->avctx, AV_LOG_ERROR,
  978. "Indicated length of substream %d data goes off end of "
  979. "packet.\n", substr);
  980. end = length - header_size - substr_header_size;
  981. }
  982. if (end < substream_start) {
  983. av_log(avctx, AV_LOG_ERROR,
  984. "Indicated end offset of substream %d data "
  985. "is smaller than calculated start offset.\n",
  986. substr);
  987. goto error;
  988. }
  989. if (substr > m->max_decoded_substream)
  990. continue;
  991. substream_parity_present[substr] = checkdata_present;
  992. substream_data_len[substr] = end - substream_start;
  993. substream_start = end;
  994. }
  995. parity_bits = ff_mlp_calculate_parity(buf, 4);
  996. parity_bits ^= ff_mlp_calculate_parity(buf + header_size, substr_header_size);
  997. if ((((parity_bits >> 4) ^ parity_bits) & 0xF) != 0xF) {
  998. av_log(avctx, AV_LOG_ERROR, "Parity check failed.\n");
  999. goto error;
  1000. }
  1001. buf += header_size + substr_header_size;
  1002. for (substr = 0; substr <= m->max_decoded_substream; substr++) {
  1003. SubStream *s = &m->substream[substr];
  1004. init_get_bits(&gb, buf, substream_data_len[substr] * 8);
  1005. m->matrix_changed = 0;
  1006. memset(m->filter_changed, 0, sizeof(m->filter_changed));
  1007. s->blockpos = 0;
  1008. do {
  1009. if (get_bits1(&gb)) {
  1010. if (get_bits1(&gb)) {
  1011. /* A restart header should be present. */
  1012. if (read_restart_header(m, &gb, buf, substr) < 0)
  1013. goto next_substr;
  1014. s->restart_seen = 1;
  1015. }
  1016. if (!s->restart_seen)
  1017. goto next_substr;
  1018. if (read_decoding_params(m, &gb, substr) < 0)
  1019. goto next_substr;
  1020. }
  1021. if (!s->restart_seen)
  1022. goto next_substr;
  1023. if ((ret = read_block_data(m, &gb, substr)) < 0)
  1024. return ret;
  1025. if (get_bits_count(&gb) >= substream_data_len[substr] * 8)
  1026. goto substream_length_mismatch;
  1027. } while (!get_bits1(&gb));
  1028. skip_bits(&gb, (-get_bits_count(&gb)) & 15);
  1029. if (substream_data_len[substr] * 8 - get_bits_count(&gb) >= 32) {
  1030. int shorten_by;
  1031. if (get_bits(&gb, 16) != 0xD234)
  1032. return AVERROR_INVALIDDATA;
  1033. shorten_by = get_bits(&gb, 16);
  1034. if (m->avctx->codec_id == AV_CODEC_ID_TRUEHD && shorten_by & 0x2000)
  1035. s->blockpos -= FFMIN(shorten_by & 0x1FFF, s->blockpos);
  1036. else if (m->avctx->codec_id == AV_CODEC_ID_MLP && shorten_by != 0xD234)
  1037. return AVERROR_INVALIDDATA;
  1038. if (substr == m->max_decoded_substream)
  1039. av_log(m->avctx, AV_LOG_INFO, "End of stream indicated.\n");
  1040. }
  1041. if (substream_parity_present[substr]) {
  1042. uint8_t parity, checksum;
  1043. if (substream_data_len[substr] * 8 - get_bits_count(&gb) != 16)
  1044. goto substream_length_mismatch;
  1045. parity = ff_mlp_calculate_parity(buf, substream_data_len[substr] - 2);
  1046. checksum = ff_mlp_checksum8 (buf, substream_data_len[substr] - 2);
  1047. if ((get_bits(&gb, 8) ^ parity) != 0xa9 )
  1048. av_log(m->avctx, AV_LOG_ERROR, "Substream %d parity check failed.\n", substr);
  1049. if ( get_bits(&gb, 8) != checksum)
  1050. av_log(m->avctx, AV_LOG_ERROR, "Substream %d checksum failed.\n" , substr);
  1051. }
  1052. if (substream_data_len[substr] * 8 != get_bits_count(&gb))
  1053. goto substream_length_mismatch;
  1054. next_substr:
  1055. if (!s->restart_seen)
  1056. av_log(m->avctx, AV_LOG_ERROR,
  1057. "No restart header present in substream %d.\n", substr);
  1058. buf += substream_data_len[substr];
  1059. }
  1060. if ((ret = output_data(m, m->max_decoded_substream, data, got_frame_ptr)) < 0)
  1061. return ret;
  1062. return length;
  1063. substream_length_mismatch:
  1064. av_log(m->avctx, AV_LOG_ERROR, "substream %d length mismatch\n", substr);
  1065. return AVERROR_INVALIDDATA;
  1066. error:
  1067. m->params_valid = 0;
  1068. return AVERROR_INVALIDDATA;
  1069. }
  1070. #if CONFIG_MLP_DECODER
  1071. AVCodec ff_mlp_decoder = {
  1072. .name = "mlp",
  1073. .long_name = NULL_IF_CONFIG_SMALL("MLP (Meridian Lossless Packing)"),
  1074. .type = AVMEDIA_TYPE_AUDIO,
  1075. .id = AV_CODEC_ID_MLP,
  1076. .priv_data_size = sizeof(MLPDecodeContext),
  1077. .init = mlp_decode_init,
  1078. .decode = read_access_unit,
  1079. .capabilities = AV_CODEC_CAP_DR1,
  1080. };
  1081. #endif
  1082. #if CONFIG_TRUEHD_DECODER
  1083. AVCodec ff_truehd_decoder = {
  1084. .name = "truehd",
  1085. .long_name = NULL_IF_CONFIG_SMALL("TrueHD"),
  1086. .type = AVMEDIA_TYPE_AUDIO,
  1087. .id = AV_CODEC_ID_TRUEHD,
  1088. .priv_data_size = sizeof(MLPDecodeContext),
  1089. .init = mlp_decode_init,
  1090. .decode = read_access_unit,
  1091. .capabilities = AV_CODEC_CAP_DR1,
  1092. };
  1093. #endif /* CONFIG_TRUEHD_DECODER */