You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

8067 lines
300KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  18. *
  19. */
  20. /**
  21. * @file h264.c
  22. * H.264 / AVC / MPEG4 part10 codec.
  23. * @author Michael Niedermayer <michaelni@gmx.at>
  24. */
  25. #include "common.h"
  26. #include "dsputil.h"
  27. #include "avcodec.h"
  28. #include "mpegvideo.h"
  29. #include "h264data.h"
  30. #include "golomb.h"
  31. #include "cabac.h"
  32. #undef NDEBUG
  33. #include <assert.h>
  34. #define interlaced_dct interlaced_dct_is_a_bad_name
  35. #define mb_intra mb_intra_isnt_initalized_see_mb_type
  36. #define LUMA_DC_BLOCK_INDEX 25
  37. #define CHROMA_DC_BLOCK_INDEX 26
  38. #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
  39. #define COEFF_TOKEN_VLC_BITS 8
  40. #define TOTAL_ZEROS_VLC_BITS 9
  41. #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
  42. #define RUN_VLC_BITS 3
  43. #define RUN7_VLC_BITS 6
  44. #define MAX_SPS_COUNT 32
  45. #define MAX_PPS_COUNT 256
  46. #define MAX_MMCO_COUNT 66
  47. /**
  48. * Sequence parameter set
  49. */
  50. typedef struct SPS{
  51. int profile_idc;
  52. int level_idc;
  53. int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
  54. int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
  55. int poc_type; ///< pic_order_cnt_type
  56. int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
  57. int delta_pic_order_always_zero_flag;
  58. int offset_for_non_ref_pic;
  59. int offset_for_top_to_bottom_field;
  60. int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
  61. int ref_frame_count; ///< num_ref_frames
  62. int gaps_in_frame_num_allowed_flag;
  63. int mb_width; ///< frame_width_in_mbs_minus1 + 1
  64. int mb_height; ///< frame_height_in_mbs_minus1 + 1
  65. int frame_mbs_only_flag;
  66. int mb_aff; ///<mb_adaptive_frame_field_flag
  67. int direct_8x8_inference_flag;
  68. int crop; ///< frame_cropping_flag
  69. int crop_left; ///< frame_cropping_rect_left_offset
  70. int crop_right; ///< frame_cropping_rect_right_offset
  71. int crop_top; ///< frame_cropping_rect_top_offset
  72. int crop_bottom; ///< frame_cropping_rect_bottom_offset
  73. int vui_parameters_present_flag;
  74. AVRational sar;
  75. int timing_info_present_flag;
  76. uint32_t num_units_in_tick;
  77. uint32_t time_scale;
  78. int fixed_frame_rate_flag;
  79. short offset_for_ref_frame[256]; //FIXME dyn aloc?
  80. int bitstream_restriction_flag;
  81. int num_reorder_frames;
  82. int scaling_matrix_present;
  83. uint8_t scaling_matrix4[6][16];
  84. uint8_t scaling_matrix8[2][64];
  85. }SPS;
  86. /**
  87. * Picture parameter set
  88. */
  89. typedef struct PPS{
  90. int sps_id;
  91. int cabac; ///< entropy_coding_mode_flag
  92. int pic_order_present; ///< pic_order_present_flag
  93. int slice_group_count; ///< num_slice_groups_minus1 + 1
  94. int mb_slice_group_map_type;
  95. int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
  96. int weighted_pred; ///< weighted_pred_flag
  97. int weighted_bipred_idc;
  98. int init_qp; ///< pic_init_qp_minus26 + 26
  99. int init_qs; ///< pic_init_qs_minus26 + 26
  100. int chroma_qp_index_offset;
  101. int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
  102. int constrained_intra_pred; ///< constrained_intra_pred_flag
  103. int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
  104. int transform_8x8_mode; ///< transform_8x8_mode_flag
  105. uint8_t scaling_matrix4[6][16];
  106. uint8_t scaling_matrix8[2][64];
  107. }PPS;
  108. /**
  109. * Memory management control operation opcode.
  110. */
  111. typedef enum MMCOOpcode{
  112. MMCO_END=0,
  113. MMCO_SHORT2UNUSED,
  114. MMCO_LONG2UNUSED,
  115. MMCO_SHORT2LONG,
  116. MMCO_SET_MAX_LONG,
  117. MMCO_RESET,
  118. MMCO_LONG,
  119. } MMCOOpcode;
  120. /**
  121. * Memory management control operation.
  122. */
  123. typedef struct MMCO{
  124. MMCOOpcode opcode;
  125. int short_frame_num;
  126. int long_index;
  127. } MMCO;
  128. /**
  129. * H264Context
  130. */
  131. typedef struct H264Context{
  132. MpegEncContext s;
  133. int nal_ref_idc;
  134. int nal_unit_type;
  135. #define NAL_SLICE 1
  136. #define NAL_DPA 2
  137. #define NAL_DPB 3
  138. #define NAL_DPC 4
  139. #define NAL_IDR_SLICE 5
  140. #define NAL_SEI 6
  141. #define NAL_SPS 7
  142. #define NAL_PPS 8
  143. #define NAL_AUD 9
  144. #define NAL_END_SEQUENCE 10
  145. #define NAL_END_STREAM 11
  146. #define NAL_FILLER_DATA 12
  147. #define NAL_SPS_EXT 13
  148. #define NAL_AUXILIARY_SLICE 19
  149. uint8_t *rbsp_buffer;
  150. unsigned int rbsp_buffer_size;
  151. /**
  152. * Used to parse AVC variant of h264
  153. */
  154. int is_avc; ///< this flag is != 0 if codec is avc1
  155. int got_avcC; ///< flag used to parse avcC data only once
  156. int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
  157. int chroma_qp; //QPc
  158. int prev_mb_skipped; //FIXME remove (IMHO not used)
  159. //prediction stuff
  160. int chroma_pred_mode;
  161. int intra16x16_pred_mode;
  162. int top_mb_xy;
  163. int left_mb_xy[2];
  164. int8_t intra4x4_pred_mode_cache[5*8];
  165. int8_t (*intra4x4_pred_mode)[8];
  166. void (*pred4x4 [9+3])(uint8_t *src, uint8_t *topright, int stride);//FIXME move to dsp?
  167. void (*pred8x8l [9+3])(uint8_t *src, int topleft, int topright, int stride);
  168. void (*pred8x8 [4+3])(uint8_t *src, int stride);
  169. void (*pred16x16[4+3])(uint8_t *src, int stride);
  170. unsigned int topleft_samples_available;
  171. unsigned int top_samples_available;
  172. unsigned int topright_samples_available;
  173. unsigned int left_samples_available;
  174. uint8_t (*top_borders[2])[16+2*8];
  175. uint8_t left_border[2*(17+2*9)];
  176. /**
  177. * non zero coeff count cache.
  178. * is 64 if not available.
  179. */
  180. DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache[6*8]);
  181. uint8_t (*non_zero_count)[16];
  182. /**
  183. * Motion vector cache.
  184. */
  185. DECLARE_ALIGNED_8(int16_t, mv_cache[2][5*8][2]);
  186. DECLARE_ALIGNED_8(int8_t, ref_cache[2][5*8]);
  187. #define LIST_NOT_USED -1 //FIXME rename?
  188. #define PART_NOT_AVAILABLE -2
  189. /**
  190. * is 1 if the specific list MV&references are set to 0,0,-2.
  191. */
  192. int mv_cache_clean[2];
  193. /**
  194. * number of neighbors (top and/or left) that used 8x8 dct
  195. */
  196. int neighbor_transform_size;
  197. /**
  198. * block_offset[ 0..23] for frame macroblocks
  199. * block_offset[24..47] for field macroblocks
  200. */
  201. int block_offset[2*(16+8)];
  202. uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
  203. uint32_t *mb2b8_xy;
  204. int b_stride; //FIXME use s->b4_stride
  205. int b8_stride;
  206. int halfpel_flag;
  207. int thirdpel_flag;
  208. int unknown_svq3_flag;
  209. int next_slice_index;
  210. SPS sps_buffer[MAX_SPS_COUNT];
  211. SPS sps; ///< current sps
  212. PPS pps_buffer[MAX_PPS_COUNT];
  213. /**
  214. * current pps
  215. */
  216. PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
  217. uint32_t dequant4_buffer[6][52][16];
  218. uint32_t dequant8_buffer[2][52][64];
  219. uint32_t (*dequant4_coeff[6])[16];
  220. uint32_t (*dequant8_coeff[2])[64];
  221. int dequant_coeff_pps; ///< reinit tables when pps changes
  222. int slice_num;
  223. uint8_t *slice_table_base;
  224. uint8_t *slice_table; ///< slice_table_base + mb_stride + 1
  225. int slice_type;
  226. int slice_type_fixed;
  227. //interlacing specific flags
  228. int mb_aff_frame;
  229. int mb_field_decoding_flag;
  230. int sub_mb_type[4];
  231. //POC stuff
  232. int poc_lsb;
  233. int poc_msb;
  234. int delta_poc_bottom;
  235. int delta_poc[2];
  236. int frame_num;
  237. int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
  238. int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
  239. int frame_num_offset; ///< for POC type 2
  240. int prev_frame_num_offset; ///< for POC type 2
  241. int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
  242. /**
  243. * frame_num for frames or 2*frame_num for field pics.
  244. */
  245. int curr_pic_num;
  246. /**
  247. * max_frame_num or 2*max_frame_num for field pics.
  248. */
  249. int max_pic_num;
  250. //Weighted pred stuff
  251. int use_weight;
  252. int use_weight_chroma;
  253. int luma_log2_weight_denom;
  254. int chroma_log2_weight_denom;
  255. int luma_weight[2][16];
  256. int luma_offset[2][16];
  257. int chroma_weight[2][16][2];
  258. int chroma_offset[2][16][2];
  259. int implicit_weight[16][16];
  260. //deblock
  261. int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
  262. int slice_alpha_c0_offset;
  263. int slice_beta_offset;
  264. int redundant_pic_count;
  265. int direct_spatial_mv_pred;
  266. int dist_scale_factor[16];
  267. int map_col_to_list0[2][16];
  268. /**
  269. * num_ref_idx_l0/1_active_minus1 + 1
  270. */
  271. int ref_count[2];// FIXME split for AFF
  272. Picture *short_ref[32];
  273. Picture *long_ref[32];
  274. Picture default_ref_list[2][32];
  275. Picture ref_list[2][32]; //FIXME size?
  276. Picture field_ref_list[2][32]; //FIXME size?
  277. Picture *delayed_pic[16]; //FIXME size?
  278. Picture *delayed_output_pic;
  279. /**
  280. * memory management control operations buffer.
  281. */
  282. MMCO mmco[MAX_MMCO_COUNT];
  283. int mmco_index;
  284. int long_ref_count; ///< number of actual long term references
  285. int short_ref_count; ///< number of actual short term references
  286. //data partitioning
  287. GetBitContext intra_gb;
  288. GetBitContext inter_gb;
  289. GetBitContext *intra_gb_ptr;
  290. GetBitContext *inter_gb_ptr;
  291. DECLARE_ALIGNED_8(DCTELEM, mb[16*24]);
  292. /**
  293. * Cabac
  294. */
  295. CABACContext cabac;
  296. uint8_t cabac_state[460];
  297. int cabac_init_idc;
  298. /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
  299. uint16_t *cbp_table;
  300. int top_cbp;
  301. int left_cbp;
  302. /* chroma_pred_mode for i4x4 or i16x16, else 0 */
  303. uint8_t *chroma_pred_mode_table;
  304. int last_qscale_diff;
  305. int16_t (*mvd_table[2])[2];
  306. DECLARE_ALIGNED_8(int16_t, mvd_cache[2][5*8][2]);
  307. uint8_t *direct_table;
  308. uint8_t direct_cache[5*8];
  309. uint8_t zigzag_scan[16];
  310. uint8_t field_scan[16];
  311. const uint8_t *zigzag_scan_q0;
  312. const uint8_t *field_scan_q0;
  313. int x264_build;
  314. }H264Context;
  315. static VLC coeff_token_vlc[4];
  316. static VLC chroma_dc_coeff_token_vlc;
  317. static VLC total_zeros_vlc[15];
  318. static VLC chroma_dc_total_zeros_vlc[3];
  319. static VLC run_vlc[6];
  320. static VLC run7_vlc;
  321. static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
  322. static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
  323. static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  324. static always_inline uint32_t pack16to32(int a, int b){
  325. #ifdef WORDS_BIGENDIAN
  326. return (b&0xFFFF) + (a<<16);
  327. #else
  328. return (a&0xFFFF) + (b<<16);
  329. #endif
  330. }
  331. /**
  332. * fill a rectangle.
  333. * @param h height of the rectangle, should be a constant
  334. * @param w width of the rectangle, should be a constant
  335. * @param size the size of val (1 or 4), should be a constant
  336. */
  337. static always_inline void fill_rectangle(void *vp, int w, int h, int stride, uint32_t val, int size){
  338. uint8_t *p= (uint8_t*)vp;
  339. assert(size==1 || size==4);
  340. w *= size;
  341. stride *= size;
  342. assert((((long)vp)&(FFMIN(w, STRIDE_ALIGN)-1)) == 0);
  343. assert((stride&(w-1))==0);
  344. //FIXME check what gcc generates for 64 bit on x86 and possibly write a 32 bit ver of it
  345. if(w==2 && h==2){
  346. *(uint16_t*)(p + 0)=
  347. *(uint16_t*)(p + stride)= size==4 ? val : val*0x0101;
  348. }else if(w==2 && h==4){
  349. *(uint16_t*)(p + 0*stride)=
  350. *(uint16_t*)(p + 1*stride)=
  351. *(uint16_t*)(p + 2*stride)=
  352. *(uint16_t*)(p + 3*stride)= size==4 ? val : val*0x0101;
  353. }else if(w==4 && h==1){
  354. *(uint32_t*)(p + 0*stride)= size==4 ? val : val*0x01010101;
  355. }else if(w==4 && h==2){
  356. *(uint32_t*)(p + 0*stride)=
  357. *(uint32_t*)(p + 1*stride)= size==4 ? val : val*0x01010101;
  358. }else if(w==4 && h==4){
  359. *(uint32_t*)(p + 0*stride)=
  360. *(uint32_t*)(p + 1*stride)=
  361. *(uint32_t*)(p + 2*stride)=
  362. *(uint32_t*)(p + 3*stride)= size==4 ? val : val*0x01010101;
  363. }else if(w==8 && h==1){
  364. *(uint32_t*)(p + 0)=
  365. *(uint32_t*)(p + 4)= size==4 ? val : val*0x01010101;
  366. }else if(w==8 && h==2){
  367. *(uint32_t*)(p + 0 + 0*stride)=
  368. *(uint32_t*)(p + 4 + 0*stride)=
  369. *(uint32_t*)(p + 0 + 1*stride)=
  370. *(uint32_t*)(p + 4 + 1*stride)= size==4 ? val : val*0x01010101;
  371. }else if(w==8 && h==4){
  372. *(uint64_t*)(p + 0*stride)=
  373. *(uint64_t*)(p + 1*stride)=
  374. *(uint64_t*)(p + 2*stride)=
  375. *(uint64_t*)(p + 3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
  376. }else if(w==16 && h==2){
  377. *(uint64_t*)(p + 0+0*stride)=
  378. *(uint64_t*)(p + 8+0*stride)=
  379. *(uint64_t*)(p + 0+1*stride)=
  380. *(uint64_t*)(p + 8+1*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
  381. }else if(w==16 && h==4){
  382. *(uint64_t*)(p + 0+0*stride)=
  383. *(uint64_t*)(p + 8+0*stride)=
  384. *(uint64_t*)(p + 0+1*stride)=
  385. *(uint64_t*)(p + 8+1*stride)=
  386. *(uint64_t*)(p + 0+2*stride)=
  387. *(uint64_t*)(p + 8+2*stride)=
  388. *(uint64_t*)(p + 0+3*stride)=
  389. *(uint64_t*)(p + 8+3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
  390. }else
  391. assert(0);
  392. }
  393. static void fill_caches(H264Context *h, int mb_type, int for_deblock){
  394. MpegEncContext * const s = &h->s;
  395. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  396. int topleft_xy, top_xy, topright_xy, left_xy[2];
  397. int topleft_type, top_type, topright_type, left_type[2];
  398. int left_block[8];
  399. int i;
  400. //FIXME deblocking can skip fill_caches much of the time with multiple slices too.
  401. // the actual condition is whether we're on the edge of a slice,
  402. // and even then the intra and nnz parts are unnecessary.
  403. if(for_deblock && h->slice_num == 1)
  404. return;
  405. //wow what a mess, why didn't they simplify the interlacing&intra stuff, i can't imagine that these complex rules are worth it
  406. top_xy = mb_xy - s->mb_stride;
  407. topleft_xy = top_xy - 1;
  408. topright_xy= top_xy + 1;
  409. left_xy[1] = left_xy[0] = mb_xy-1;
  410. left_block[0]= 0;
  411. left_block[1]= 1;
  412. left_block[2]= 2;
  413. left_block[3]= 3;
  414. left_block[4]= 7;
  415. left_block[5]= 10;
  416. left_block[6]= 8;
  417. left_block[7]= 11;
  418. if(h->mb_aff_frame){
  419. const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
  420. const int top_pair_xy = pair_xy - s->mb_stride;
  421. const int topleft_pair_xy = top_pair_xy - 1;
  422. const int topright_pair_xy = top_pair_xy + 1;
  423. const int topleft_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
  424. const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
  425. const int topright_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
  426. const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
  427. const int curr_mb_frame_flag = !IS_INTERLACED(mb_type);
  428. const int bottom = (s->mb_y & 1);
  429. tprintf("fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag, left_mb_frame_flag, topleft_mb_frame_flag, top_mb_frame_flag, topright_mb_frame_flag);
  430. if (bottom
  431. ? !curr_mb_frame_flag // bottom macroblock
  432. : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
  433. ) {
  434. top_xy -= s->mb_stride;
  435. }
  436. if (bottom
  437. ? !curr_mb_frame_flag // bottom macroblock
  438. : (!curr_mb_frame_flag && !topleft_mb_frame_flag) // top macroblock
  439. ) {
  440. topleft_xy -= s->mb_stride;
  441. }
  442. if (bottom
  443. ? !curr_mb_frame_flag // bottom macroblock
  444. : (!curr_mb_frame_flag && !topright_mb_frame_flag) // top macroblock
  445. ) {
  446. topright_xy -= s->mb_stride;
  447. }
  448. if (left_mb_frame_flag != curr_mb_frame_flag) {
  449. left_xy[1] = left_xy[0] = pair_xy - 1;
  450. if (curr_mb_frame_flag) {
  451. if (bottom) {
  452. left_block[0]= 2;
  453. left_block[1]= 2;
  454. left_block[2]= 3;
  455. left_block[3]= 3;
  456. left_block[4]= 8;
  457. left_block[5]= 11;
  458. left_block[6]= 8;
  459. left_block[7]= 11;
  460. } else {
  461. left_block[0]= 0;
  462. left_block[1]= 0;
  463. left_block[2]= 1;
  464. left_block[3]= 1;
  465. left_block[4]= 7;
  466. left_block[5]= 10;
  467. left_block[6]= 7;
  468. left_block[7]= 10;
  469. }
  470. } else {
  471. left_xy[1] += s->mb_stride;
  472. //left_block[0]= 0;
  473. left_block[1]= 2;
  474. left_block[2]= 0;
  475. left_block[3]= 2;
  476. //left_block[4]= 7;
  477. left_block[5]= 10;
  478. left_block[6]= 7;
  479. left_block[7]= 10;
  480. }
  481. }
  482. }
  483. h->top_mb_xy = top_xy;
  484. h->left_mb_xy[0] = left_xy[0];
  485. h->left_mb_xy[1] = left_xy[1];
  486. if(for_deblock){
  487. topleft_type = h->slice_table[topleft_xy ] < 255 ? s->current_picture.mb_type[topleft_xy] : 0;
  488. top_type = h->slice_table[top_xy ] < 255 ? s->current_picture.mb_type[top_xy] : 0;
  489. topright_type= h->slice_table[topright_xy] < 255 ? s->current_picture.mb_type[topright_xy]: 0;
  490. left_type[0] = h->slice_table[left_xy[0] ] < 255 ? s->current_picture.mb_type[left_xy[0]] : 0;
  491. left_type[1] = h->slice_table[left_xy[1] ] < 255 ? s->current_picture.mb_type[left_xy[1]] : 0;
  492. }else{
  493. topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
  494. top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
  495. topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
  496. left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
  497. left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
  498. }
  499. if(IS_INTRA(mb_type)){
  500. h->topleft_samples_available=
  501. h->top_samples_available=
  502. h->left_samples_available= 0xFFFF;
  503. h->topright_samples_available= 0xEEEA;
  504. if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
  505. h->topleft_samples_available= 0xB3FF;
  506. h->top_samples_available= 0x33FF;
  507. h->topright_samples_available= 0x26EA;
  508. }
  509. for(i=0; i<2; i++){
  510. if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
  511. h->topleft_samples_available&= 0xDF5F;
  512. h->left_samples_available&= 0x5F5F;
  513. }
  514. }
  515. if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
  516. h->topleft_samples_available&= 0x7FFF;
  517. if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
  518. h->topright_samples_available&= 0xFBFF;
  519. if(IS_INTRA4x4(mb_type)){
  520. if(IS_INTRA4x4(top_type)){
  521. h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
  522. h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
  523. h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
  524. h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
  525. }else{
  526. int pred;
  527. if(!top_type || (IS_INTER(top_type) && h->pps.constrained_intra_pred))
  528. pred= -1;
  529. else{
  530. pred= 2;
  531. }
  532. h->intra4x4_pred_mode_cache[4+8*0]=
  533. h->intra4x4_pred_mode_cache[5+8*0]=
  534. h->intra4x4_pred_mode_cache[6+8*0]=
  535. h->intra4x4_pred_mode_cache[7+8*0]= pred;
  536. }
  537. for(i=0; i<2; i++){
  538. if(IS_INTRA4x4(left_type[i])){
  539. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
  540. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
  541. }else{
  542. int pred;
  543. if(!left_type[i] || (IS_INTER(left_type[i]) && h->pps.constrained_intra_pred))
  544. pred= -1;
  545. else{
  546. pred= 2;
  547. }
  548. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
  549. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
  550. }
  551. }
  552. }
  553. }
  554. /*
  555. 0 . T T. T T T T
  556. 1 L . .L . . . .
  557. 2 L . .L . . . .
  558. 3 . T TL . . . .
  559. 4 L . .L . . . .
  560. 5 L . .. . . . .
  561. */
  562. //FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
  563. if(top_type){
  564. h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
  565. h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
  566. h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
  567. h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
  568. h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
  569. h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
  570. h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
  571. h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
  572. }else{
  573. h->non_zero_count_cache[4+8*0]=
  574. h->non_zero_count_cache[5+8*0]=
  575. h->non_zero_count_cache[6+8*0]=
  576. h->non_zero_count_cache[7+8*0]=
  577. h->non_zero_count_cache[1+8*0]=
  578. h->non_zero_count_cache[2+8*0]=
  579. h->non_zero_count_cache[1+8*3]=
  580. h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
  581. }
  582. for (i=0; i<2; i++) {
  583. if(left_type[i]){
  584. h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
  585. h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
  586. h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
  587. h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
  588. }else{
  589. h->non_zero_count_cache[3+8*1 + 2*8*i]=
  590. h->non_zero_count_cache[3+8*2 + 2*8*i]=
  591. h->non_zero_count_cache[0+8*1 + 8*i]=
  592. h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
  593. }
  594. }
  595. if( h->pps.cabac ) {
  596. // top_cbp
  597. if(top_type) {
  598. h->top_cbp = h->cbp_table[top_xy];
  599. } else if(IS_INTRA(mb_type)) {
  600. h->top_cbp = 0x1C0;
  601. } else {
  602. h->top_cbp = 0;
  603. }
  604. // left_cbp
  605. if (left_type[0]) {
  606. h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
  607. } else if(IS_INTRA(mb_type)) {
  608. h->left_cbp = 0x1C0;
  609. } else {
  610. h->left_cbp = 0;
  611. }
  612. if (left_type[0]) {
  613. h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
  614. }
  615. if (left_type[1]) {
  616. h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
  617. }
  618. }
  619. #if 1
  620. //FIXME direct mb can skip much of this
  621. if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
  622. int list;
  623. for(list=0; list<1+(h->slice_type==B_TYPE); list++){
  624. if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
  625. /*if(!h->mv_cache_clean[list]){
  626. memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
  627. memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
  628. h->mv_cache_clean[list]= 1;
  629. }*/
  630. continue;
  631. }
  632. h->mv_cache_clean[list]= 0;
  633. if(IS_INTER(top_type)){
  634. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  635. const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
  636. *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
  637. *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
  638. *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
  639. *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
  640. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  641. h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
  642. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  643. h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
  644. }else{
  645. *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
  646. *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
  647. *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
  648. *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
  649. *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
  650. }
  651. //FIXME unify cleanup or sth
  652. if(IS_INTER(left_type[0])){
  653. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  654. const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1;
  655. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]];
  656. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1]];
  657. h->ref_cache[list][scan8[0] - 1 + 0*8]=
  658. h->ref_cache[list][scan8[0] - 1 + 1*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0]>>1)];
  659. }else{
  660. *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 0*8]=
  661. *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 1*8]= 0;
  662. h->ref_cache[list][scan8[0] - 1 + 0*8]=
  663. h->ref_cache[list][scan8[0] - 1 + 1*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  664. }
  665. if(IS_INTER(left_type[1])){
  666. const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
  667. const int b8_xy= h->mb2b8_xy[left_xy[1]] + 1;
  668. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[2]];
  669. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[3]];
  670. h->ref_cache[list][scan8[0] - 1 + 2*8]=
  671. h->ref_cache[list][scan8[0] - 1 + 3*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[2]>>1)];
  672. }else{
  673. *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 2*8]=
  674. *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 3*8]= 0;
  675. h->ref_cache[list][scan8[0] - 1 + 2*8]=
  676. h->ref_cache[list][scan8[0] - 1 + 3*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  677. assert((!left_type[0]) == (!left_type[1]));
  678. }
  679. if(for_deblock || (IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred))
  680. continue;
  681. if(IS_INTER(topleft_type)){
  682. const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
  683. const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + h->b8_stride;
  684. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  685. h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  686. }else{
  687. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
  688. h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  689. }
  690. if(IS_INTER(topright_type)){
  691. const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
  692. const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
  693. *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  694. h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  695. }else{
  696. *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
  697. h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  698. }
  699. h->ref_cache[list][scan8[5 ]+1] =
  700. h->ref_cache[list][scan8[7 ]+1] =
  701. h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
  702. h->ref_cache[list][scan8[4 ]] =
  703. h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
  704. *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
  705. *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
  706. *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  707. *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
  708. *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
  709. if( h->pps.cabac ) {
  710. /* XXX beurk, Load mvd */
  711. if(IS_INTER(topleft_type)){
  712. const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
  713. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy];
  714. }else{
  715. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 - 1*8]= 0;
  716. }
  717. if(IS_INTER(top_type)){
  718. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  719. *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
  720. *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
  721. *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
  722. *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
  723. }else{
  724. *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
  725. *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
  726. *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
  727. *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
  728. }
  729. if(IS_INTER(left_type[0])){
  730. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  731. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
  732. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
  733. }else{
  734. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
  735. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
  736. }
  737. if(IS_INTER(left_type[1])){
  738. const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
  739. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
  740. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
  741. }else{
  742. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
  743. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
  744. }
  745. *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
  746. *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
  747. *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  748. *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
  749. *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
  750. if(h->slice_type == B_TYPE){
  751. fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
  752. if(IS_DIRECT(top_type)){
  753. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
  754. }else if(IS_8X8(top_type)){
  755. int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
  756. h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
  757. h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
  758. }else{
  759. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
  760. }
  761. //FIXME interlacing
  762. if(IS_DIRECT(left_type[0])){
  763. h->direct_cache[scan8[0] - 1 + 0*8]=
  764. h->direct_cache[scan8[0] - 1 + 2*8]= 1;
  765. }else if(IS_8X8(left_type[0])){
  766. int b8_xy = h->mb2b8_xy[left_xy[0]] + 1;
  767. h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[b8_xy];
  768. h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[b8_xy + h->b8_stride];
  769. }else{
  770. h->direct_cache[scan8[0] - 1 + 0*8]=
  771. h->direct_cache[scan8[0] - 1 + 2*8]= 0;
  772. }
  773. }
  774. }
  775. }
  776. }
  777. #endif
  778. h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
  779. }
  780. static inline void write_back_intra_pred_mode(H264Context *h){
  781. MpegEncContext * const s = &h->s;
  782. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  783. h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
  784. h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
  785. h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
  786. h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
  787. h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
  788. h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
  789. h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
  790. }
  791. /**
  792. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  793. */
  794. static inline int check_intra4x4_pred_mode(H264Context *h){
  795. MpegEncContext * const s = &h->s;
  796. static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
  797. static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
  798. int i;
  799. if(!(h->top_samples_available&0x8000)){
  800. for(i=0; i<4; i++){
  801. int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
  802. if(status<0){
  803. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  804. return -1;
  805. } else if(status){
  806. h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
  807. }
  808. }
  809. }
  810. if(!(h->left_samples_available&0x8000)){
  811. for(i=0; i<4; i++){
  812. int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
  813. if(status<0){
  814. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  815. return -1;
  816. } else if(status){
  817. h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
  818. }
  819. }
  820. }
  821. return 0;
  822. } //FIXME cleanup like next
  823. /**
  824. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  825. */
  826. static inline int check_intra_pred_mode(H264Context *h, int mode){
  827. MpegEncContext * const s = &h->s;
  828. static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
  829. static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
  830. if(mode < 0 || mode > 6) {
  831. av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
  832. return -1;
  833. }
  834. if(!(h->top_samples_available&0x8000)){
  835. mode= top[ mode ];
  836. if(mode<0){
  837. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  838. return -1;
  839. }
  840. }
  841. if(!(h->left_samples_available&0x8000)){
  842. mode= left[ mode ];
  843. if(mode<0){
  844. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  845. return -1;
  846. }
  847. }
  848. return mode;
  849. }
  850. /**
  851. * gets the predicted intra4x4 prediction mode.
  852. */
  853. static inline int pred_intra_mode(H264Context *h, int n){
  854. const int index8= scan8[n];
  855. const int left= h->intra4x4_pred_mode_cache[index8 - 1];
  856. const int top = h->intra4x4_pred_mode_cache[index8 - 8];
  857. const int min= FFMIN(left, top);
  858. tprintf("mode:%d %d min:%d\n", left ,top, min);
  859. if(min<0) return DC_PRED;
  860. else return min;
  861. }
  862. static inline void write_back_non_zero_count(H264Context *h){
  863. MpegEncContext * const s = &h->s;
  864. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  865. h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
  866. h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
  867. h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
  868. h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
  869. h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
  870. h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
  871. h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
  872. h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
  873. h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
  874. h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
  875. h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
  876. h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
  877. h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
  878. }
  879. /**
  880. * gets the predicted number of non zero coefficients.
  881. * @param n block index
  882. */
  883. static inline int pred_non_zero_count(H264Context *h, int n){
  884. const int index8= scan8[n];
  885. const int left= h->non_zero_count_cache[index8 - 1];
  886. const int top = h->non_zero_count_cache[index8 - 8];
  887. int i= left + top;
  888. if(i<64) i= (i+1)>>1;
  889. tprintf("pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
  890. return i&31;
  891. }
  892. static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
  893. const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
  894. if(topright_ref != PART_NOT_AVAILABLE){
  895. *C= h->mv_cache[list][ i - 8 + part_width ];
  896. return topright_ref;
  897. }else{
  898. tprintf("topright MV not available\n");
  899. *C= h->mv_cache[list][ i - 8 - 1 ];
  900. return h->ref_cache[list][ i - 8 - 1 ];
  901. }
  902. }
  903. /**
  904. * gets the predicted MV.
  905. * @param n the block index
  906. * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
  907. * @param mx the x component of the predicted motion vector
  908. * @param my the y component of the predicted motion vector
  909. */
  910. static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
  911. const int index8= scan8[n];
  912. const int top_ref= h->ref_cache[list][ index8 - 8 ];
  913. const int left_ref= h->ref_cache[list][ index8 - 1 ];
  914. const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
  915. const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
  916. const int16_t * C;
  917. int diagonal_ref, match_count;
  918. assert(part_width==1 || part_width==2 || part_width==4);
  919. /* mv_cache
  920. B . . A T T T T
  921. U . . L . . , .
  922. U . . L . . . .
  923. U . . L . . , .
  924. . . . L . . . .
  925. */
  926. diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
  927. match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
  928. tprintf("pred_motion match_count=%d\n", match_count);
  929. if(match_count > 1){ //most common
  930. *mx= mid_pred(A[0], B[0], C[0]);
  931. *my= mid_pred(A[1], B[1], C[1]);
  932. }else if(match_count==1){
  933. if(left_ref==ref){
  934. *mx= A[0];
  935. *my= A[1];
  936. }else if(top_ref==ref){
  937. *mx= B[0];
  938. *my= B[1];
  939. }else{
  940. *mx= C[0];
  941. *my= C[1];
  942. }
  943. }else{
  944. if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
  945. *mx= A[0];
  946. *my= A[1];
  947. }else{
  948. *mx= mid_pred(A[0], B[0], C[0]);
  949. *my= mid_pred(A[1], B[1], C[1]);
  950. }
  951. }
  952. tprintf("pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
  953. }
  954. /**
  955. * gets the directionally predicted 16x8 MV.
  956. * @param n the block index
  957. * @param mx the x component of the predicted motion vector
  958. * @param my the y component of the predicted motion vector
  959. */
  960. static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
  961. if(n==0){
  962. const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
  963. const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
  964. tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
  965. if(top_ref == ref){
  966. *mx= B[0];
  967. *my= B[1];
  968. return;
  969. }
  970. }else{
  971. const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
  972. const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
  973. tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
  974. if(left_ref == ref){
  975. *mx= A[0];
  976. *my= A[1];
  977. return;
  978. }
  979. }
  980. //RARE
  981. pred_motion(h, n, 4, list, ref, mx, my);
  982. }
  983. /**
  984. * gets the directionally predicted 8x16 MV.
  985. * @param n the block index
  986. * @param mx the x component of the predicted motion vector
  987. * @param my the y component of the predicted motion vector
  988. */
  989. static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
  990. if(n==0){
  991. const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
  992. const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
  993. tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
  994. if(left_ref == ref){
  995. *mx= A[0];
  996. *my= A[1];
  997. return;
  998. }
  999. }else{
  1000. const int16_t * C;
  1001. int diagonal_ref;
  1002. diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
  1003. tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
  1004. if(diagonal_ref == ref){
  1005. *mx= C[0];
  1006. *my= C[1];
  1007. return;
  1008. }
  1009. }
  1010. //RARE
  1011. pred_motion(h, n, 2, list, ref, mx, my);
  1012. }
  1013. static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
  1014. const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
  1015. const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
  1016. tprintf("pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
  1017. if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
  1018. || (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
  1019. || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
  1020. *mx = *my = 0;
  1021. return;
  1022. }
  1023. pred_motion(h, 0, 4, 0, 0, mx, my);
  1024. return;
  1025. }
  1026. static inline void direct_dist_scale_factor(H264Context * const h){
  1027. const int poc = h->s.current_picture_ptr->poc;
  1028. const int poc1 = h->ref_list[1][0].poc;
  1029. int i;
  1030. for(i=0; i<h->ref_count[0]; i++){
  1031. int poc0 = h->ref_list[0][i].poc;
  1032. int td = clip(poc1 - poc0, -128, 127);
  1033. if(td == 0 /* FIXME || pic0 is a long-term ref */){
  1034. h->dist_scale_factor[i] = 256;
  1035. }else{
  1036. int tb = clip(poc - poc0, -128, 127);
  1037. int tx = (16384 + (ABS(td) >> 1)) / td;
  1038. h->dist_scale_factor[i] = clip((tb*tx + 32) >> 6, -1024, 1023);
  1039. }
  1040. }
  1041. }
  1042. static inline void direct_ref_list_init(H264Context * const h){
  1043. MpegEncContext * const s = &h->s;
  1044. Picture * const ref1 = &h->ref_list[1][0];
  1045. Picture * const cur = s->current_picture_ptr;
  1046. int list, i, j;
  1047. if(cur->pict_type == I_TYPE)
  1048. cur->ref_count[0] = 0;
  1049. if(cur->pict_type != B_TYPE)
  1050. cur->ref_count[1] = 0;
  1051. for(list=0; list<2; list++){
  1052. cur->ref_count[list] = h->ref_count[list];
  1053. for(j=0; j<h->ref_count[list]; j++)
  1054. cur->ref_poc[list][j] = h->ref_list[list][j].poc;
  1055. }
  1056. if(cur->pict_type != B_TYPE || h->direct_spatial_mv_pred)
  1057. return;
  1058. for(list=0; list<2; list++){
  1059. for(i=0; i<ref1->ref_count[list]; i++){
  1060. const int poc = ref1->ref_poc[list][i];
  1061. h->map_col_to_list0[list][i] = 0; /* bogus; fills in for missing frames */
  1062. for(j=0; j<h->ref_count[list]; j++)
  1063. if(h->ref_list[list][j].poc == poc){
  1064. h->map_col_to_list0[list][i] = j;
  1065. break;
  1066. }
  1067. }
  1068. }
  1069. }
  1070. static inline void pred_direct_motion(H264Context * const h, int *mb_type){
  1071. MpegEncContext * const s = &h->s;
  1072. const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  1073. const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride;
  1074. const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  1075. const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy];
  1076. const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy];
  1077. const int16_t (*l1mv1)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[1][b4_xy];
  1078. const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy];
  1079. const int8_t *l1ref1 = &h->ref_list[1][0].ref_index[1][b8_xy];
  1080. const int is_b8x8 = IS_8X8(*mb_type);
  1081. int sub_mb_type;
  1082. int i8, i4;
  1083. if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){
  1084. /* FIXME save sub mb types from previous frames (or derive from MVs)
  1085. * so we know exactly what block size to use */
  1086. sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
  1087. *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
  1088. }else if(!is_b8x8 && (IS_16X16(mb_type_col) || IS_INTRA(mb_type_col))){
  1089. sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
  1090. *mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
  1091. }else{
  1092. sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
  1093. *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
  1094. }
  1095. if(!is_b8x8)
  1096. *mb_type |= MB_TYPE_DIRECT2;
  1097. tprintf("mb_type = %08x, sub_mb_type = %08x, is_b8x8 = %d, mb_type_col = %08x\n", *mb_type, sub_mb_type, is_b8x8, mb_type_col);
  1098. if(h->direct_spatial_mv_pred){
  1099. int ref[2];
  1100. int mv[2][2];
  1101. int list;
  1102. /* ref = min(neighbors) */
  1103. for(list=0; list<2; list++){
  1104. int refa = h->ref_cache[list][scan8[0] - 1];
  1105. int refb = h->ref_cache[list][scan8[0] - 8];
  1106. int refc = h->ref_cache[list][scan8[0] - 8 + 4];
  1107. if(refc == -2)
  1108. refc = h->ref_cache[list][scan8[0] - 8 - 1];
  1109. ref[list] = refa;
  1110. if(ref[list] < 0 || (refb < ref[list] && refb >= 0))
  1111. ref[list] = refb;
  1112. if(ref[list] < 0 || (refc < ref[list] && refc >= 0))
  1113. ref[list] = refc;
  1114. if(ref[list] < 0)
  1115. ref[list] = -1;
  1116. }
  1117. if(ref[0] < 0 && ref[1] < 0){
  1118. ref[0] = ref[1] = 0;
  1119. mv[0][0] = mv[0][1] =
  1120. mv[1][0] = mv[1][1] = 0;
  1121. }else{
  1122. for(list=0; list<2; list++){
  1123. if(ref[list] >= 0)
  1124. pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
  1125. else
  1126. mv[list][0] = mv[list][1] = 0;
  1127. }
  1128. }
  1129. if(ref[1] < 0){
  1130. *mb_type &= ~MB_TYPE_P0L1;
  1131. sub_mb_type &= ~MB_TYPE_P0L1;
  1132. }else if(ref[0] < 0){
  1133. *mb_type &= ~MB_TYPE_P0L0;
  1134. sub_mb_type &= ~MB_TYPE_P0L0;
  1135. }
  1136. if(IS_16X16(*mb_type)){
  1137. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
  1138. fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
  1139. if(!IS_INTRA(mb_type_col)
  1140. && ( (l1ref0[0] == 0 && ABS(l1mv0[0][0]) <= 1 && ABS(l1mv0[0][1]) <= 1)
  1141. || (l1ref0[0] < 0 && l1ref1[0] == 0 && ABS(l1mv1[0][0]) <= 1 && ABS(l1mv1[0][1]) <= 1
  1142. && (h->x264_build>33 || !h->x264_build)))){
  1143. if(ref[0] > 0)
  1144. fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv[0][0],mv[0][1]), 4);
  1145. else
  1146. fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
  1147. if(ref[1] > 0)
  1148. fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv[1][0],mv[1][1]), 4);
  1149. else
  1150. fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
  1151. }else{
  1152. fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv[0][0],mv[0][1]), 4);
  1153. fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv[1][0],mv[1][1]), 4);
  1154. }
  1155. }else{
  1156. for(i8=0; i8<4; i8++){
  1157. const int x8 = i8&1;
  1158. const int y8 = i8>>1;
  1159. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  1160. continue;
  1161. h->sub_mb_type[i8] = sub_mb_type;
  1162. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
  1163. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
  1164. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
  1165. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
  1166. /* col_zero_flag */
  1167. if(!IS_INTRA(mb_type_col) && ( l1ref0[x8 + y8*h->b8_stride] == 0
  1168. || (l1ref0[x8 + y8*h->b8_stride] < 0 && l1ref1[x8 + y8*h->b8_stride] == 0
  1169. && (h->x264_build>33 || !h->x264_build)))){
  1170. const int16_t (*l1mv)[2]= l1ref0[x8 + y8*h->b8_stride] == 0 ? l1mv0 : l1mv1;
  1171. if(IS_SUB_8X8(sub_mb_type)){
  1172. const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
  1173. if(ABS(mv_col[0]) <= 1 && ABS(mv_col[1]) <= 1){
  1174. if(ref[0] == 0)
  1175. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1176. if(ref[1] == 0)
  1177. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1178. }
  1179. }else
  1180. for(i4=0; i4<4; i4++){
  1181. const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
  1182. if(ABS(mv_col[0]) <= 1 && ABS(mv_col[1]) <= 1){
  1183. if(ref[0] == 0)
  1184. *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
  1185. if(ref[1] == 0)
  1186. *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
  1187. }
  1188. }
  1189. }
  1190. }
  1191. }
  1192. }else{ /* direct temporal mv pred */
  1193. if(IS_16X16(*mb_type)){
  1194. fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
  1195. if(IS_INTRA(mb_type_col)){
  1196. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
  1197. fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
  1198. fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
  1199. }else{
  1200. const int ref0 = l1ref0[0] >= 0 ? h->map_col_to_list0[0][l1ref0[0]]
  1201. : h->map_col_to_list0[1][l1ref1[0]];
  1202. const int dist_scale_factor = h->dist_scale_factor[ref0];
  1203. const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
  1204. int mv_l0[2];
  1205. mv_l0[0] = (dist_scale_factor * mv_col[0] + 128) >> 8;
  1206. mv_l0[1] = (dist_scale_factor * mv_col[1] + 128) >> 8;
  1207. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref0, 1);
  1208. fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv_l0[0],mv_l0[1]), 4);
  1209. fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]), 4);
  1210. }
  1211. }else{
  1212. for(i8=0; i8<4; i8++){
  1213. const int x8 = i8&1;
  1214. const int y8 = i8>>1;
  1215. int ref0, dist_scale_factor;
  1216. const int16_t (*l1mv)[2]= l1mv0;
  1217. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  1218. continue;
  1219. h->sub_mb_type[i8] = sub_mb_type;
  1220. if(IS_INTRA(mb_type_col)){
  1221. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
  1222. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
  1223. fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1224. fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1225. continue;
  1226. }
  1227. ref0 = l1ref0[x8 + y8*h->b8_stride];
  1228. if(ref0 >= 0)
  1229. ref0 = h->map_col_to_list0[0][ref0];
  1230. else{
  1231. ref0 = h->map_col_to_list0[1][l1ref1[x8 + y8*h->b8_stride]];
  1232. l1mv= l1mv1;
  1233. }
  1234. dist_scale_factor = h->dist_scale_factor[ref0];
  1235. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
  1236. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
  1237. if(IS_SUB_8X8(sub_mb_type)){
  1238. const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
  1239. int mx = (dist_scale_factor * mv_col[0] + 128) >> 8;
  1240. int my = (dist_scale_factor * mv_col[1] + 128) >> 8;
  1241. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
  1242. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
  1243. }else
  1244. for(i4=0; i4<4; i4++){
  1245. const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
  1246. int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
  1247. mv_l0[0] = (dist_scale_factor * mv_col[0] + 128) >> 8;
  1248. mv_l0[1] = (dist_scale_factor * mv_col[1] + 128) >> 8;
  1249. *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
  1250. pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
  1251. }
  1252. }
  1253. }
  1254. }
  1255. }
  1256. static inline void write_back_motion(H264Context *h, int mb_type){
  1257. MpegEncContext * const s = &h->s;
  1258. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  1259. const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
  1260. int list;
  1261. for(list=0; list<2; list++){
  1262. int y;
  1263. if(!USES_LIST(mb_type, list)){
  1264. if(1){ //FIXME skip or never read if mb_type doesn't use it
  1265. for(y=0; y<4; y++){
  1266. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]=
  1267. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= 0;
  1268. }
  1269. if( h->pps.cabac ) {
  1270. /* FIXME needed ? */
  1271. for(y=0; y<4; y++){
  1272. *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]=
  1273. *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= 0;
  1274. }
  1275. }
  1276. for(y=0; y<2; y++){
  1277. s->current_picture.ref_index[list][b8_xy + 0 + y*h->b8_stride]=
  1278. s->current_picture.ref_index[list][b8_xy + 1 + y*h->b8_stride]= LIST_NOT_USED;
  1279. }
  1280. }
  1281. continue;
  1282. }
  1283. for(y=0; y<4; y++){
  1284. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
  1285. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
  1286. }
  1287. if( h->pps.cabac ) {
  1288. for(y=0; y<4; y++){
  1289. *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
  1290. *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
  1291. }
  1292. }
  1293. for(y=0; y<2; y++){
  1294. s->current_picture.ref_index[list][b8_xy + 0 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+0 + 16*y];
  1295. s->current_picture.ref_index[list][b8_xy + 1 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+2 + 16*y];
  1296. }
  1297. }
  1298. if(h->slice_type == B_TYPE && h->pps.cabac){
  1299. if(IS_8X8(mb_type)){
  1300. h->direct_table[b8_xy+1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
  1301. h->direct_table[b8_xy+0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
  1302. h->direct_table[b8_xy+1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
  1303. }
  1304. }
  1305. }
  1306. /**
  1307. * Decodes a network abstraction layer unit.
  1308. * @param consumed is the number of bytes used as input
  1309. * @param length is the length of the array
  1310. * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
  1311. * @returns decoded bytes, might be src+1 if no escapes
  1312. */
  1313. static uint8_t *decode_nal(H264Context *h, uint8_t *src, int *dst_length, int *consumed, int length){
  1314. int i, si, di;
  1315. uint8_t *dst;
  1316. // src[0]&0x80; //forbidden bit
  1317. h->nal_ref_idc= src[0]>>5;
  1318. h->nal_unit_type= src[0]&0x1F;
  1319. src++; length--;
  1320. #if 0
  1321. for(i=0; i<length; i++)
  1322. printf("%2X ", src[i]);
  1323. #endif
  1324. for(i=0; i+1<length; i+=2){
  1325. if(src[i]) continue;
  1326. if(i>0 && src[i-1]==0) i--;
  1327. if(i+2<length && src[i+1]==0 && src[i+2]<=3){
  1328. if(src[i+2]!=3){
  1329. /* startcode, so we must be past the end */
  1330. length=i;
  1331. }
  1332. break;
  1333. }
  1334. }
  1335. if(i>=length-1){ //no escaped 0
  1336. *dst_length= length;
  1337. *consumed= length+1; //+1 for the header
  1338. return src;
  1339. }
  1340. h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length);
  1341. dst= h->rbsp_buffer;
  1342. //printf("decoding esc\n");
  1343. si=di=0;
  1344. while(si<length){
  1345. //remove escapes (very rare 1:2^22)
  1346. if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
  1347. if(src[si+2]==3){ //escape
  1348. dst[di++]= 0;
  1349. dst[di++]= 0;
  1350. si+=3;
  1351. continue;
  1352. }else //next start code
  1353. break;
  1354. }
  1355. dst[di++]= src[si++];
  1356. }
  1357. *dst_length= di;
  1358. *consumed= si + 1;//+1 for the header
  1359. //FIXME store exact number of bits in the getbitcontext (its needed for decoding)
  1360. return dst;
  1361. }
  1362. #if 0
  1363. /**
  1364. * @param src the data which should be escaped
  1365. * @param dst the target buffer, dst+1 == src is allowed as a special case
  1366. * @param length the length of the src data
  1367. * @param dst_length the length of the dst array
  1368. * @returns length of escaped data in bytes or -1 if an error occured
  1369. */
  1370. static int encode_nal(H264Context *h, uint8_t *dst, uint8_t *src, int length, int dst_length){
  1371. int i, escape_count, si, di;
  1372. uint8_t *temp;
  1373. assert(length>=0);
  1374. assert(dst_length>0);
  1375. dst[0]= (h->nal_ref_idc<<5) + h->nal_unit_type;
  1376. if(length==0) return 1;
  1377. escape_count= 0;
  1378. for(i=0; i<length; i+=2){
  1379. if(src[i]) continue;
  1380. if(i>0 && src[i-1]==0)
  1381. i--;
  1382. if(i+2<length && src[i+1]==0 && src[i+2]<=3){
  1383. escape_count++;
  1384. i+=2;
  1385. }
  1386. }
  1387. if(escape_count==0){
  1388. if(dst+1 != src)
  1389. memcpy(dst+1, src, length);
  1390. return length + 1;
  1391. }
  1392. if(length + escape_count + 1> dst_length)
  1393. return -1;
  1394. //this should be damn rare (hopefully)
  1395. h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length + escape_count);
  1396. temp= h->rbsp_buffer;
  1397. //printf("encoding esc\n");
  1398. si= 0;
  1399. di= 0;
  1400. while(si < length){
  1401. if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
  1402. temp[di++]= 0; si++;
  1403. temp[di++]= 0; si++;
  1404. temp[di++]= 3;
  1405. temp[di++]= src[si++];
  1406. }
  1407. else
  1408. temp[di++]= src[si++];
  1409. }
  1410. memcpy(dst+1, temp, length+escape_count);
  1411. assert(di == length+escape_count);
  1412. return di + 1;
  1413. }
  1414. /**
  1415. * write 1,10,100,1000,... for alignment, yes its exactly inverse to mpeg4
  1416. */
  1417. static void encode_rbsp_trailing(PutBitContext *pb){
  1418. int length;
  1419. put_bits(pb, 1, 1);
  1420. length= (-put_bits_count(pb))&7;
  1421. if(length) put_bits(pb, length, 0);
  1422. }
  1423. #endif
  1424. /**
  1425. * identifies the exact end of the bitstream
  1426. * @return the length of the trailing, or 0 if damaged
  1427. */
  1428. static int decode_rbsp_trailing(uint8_t *src){
  1429. int v= *src;
  1430. int r;
  1431. tprintf("rbsp trailing %X\n", v);
  1432. for(r=1; r<9; r++){
  1433. if(v&1) return r;
  1434. v>>=1;
  1435. }
  1436. return 0;
  1437. }
  1438. /**
  1439. * idct tranforms the 16 dc values and dequantize them.
  1440. * @param qp quantization parameter
  1441. */
  1442. static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  1443. #define stride 16
  1444. int i;
  1445. int temp[16]; //FIXME check if this is a good idea
  1446. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  1447. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  1448. //memset(block, 64, 2*256);
  1449. //return;
  1450. for(i=0; i<4; i++){
  1451. const int offset= y_offset[i];
  1452. const int z0= block[offset+stride*0] + block[offset+stride*4];
  1453. const int z1= block[offset+stride*0] - block[offset+stride*4];
  1454. const int z2= block[offset+stride*1] - block[offset+stride*5];
  1455. const int z3= block[offset+stride*1] + block[offset+stride*5];
  1456. temp[4*i+0]= z0+z3;
  1457. temp[4*i+1]= z1+z2;
  1458. temp[4*i+2]= z1-z2;
  1459. temp[4*i+3]= z0-z3;
  1460. }
  1461. for(i=0; i<4; i++){
  1462. const int offset= x_offset[i];
  1463. const int z0= temp[4*0+i] + temp[4*2+i];
  1464. const int z1= temp[4*0+i] - temp[4*2+i];
  1465. const int z2= temp[4*1+i] - temp[4*3+i];
  1466. const int z3= temp[4*1+i] + temp[4*3+i];
  1467. block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_resdual
  1468. block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
  1469. block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
  1470. block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
  1471. }
  1472. }
  1473. #if 0
  1474. /**
  1475. * dct tranforms the 16 dc values.
  1476. * @param qp quantization parameter ??? FIXME
  1477. */
  1478. static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
  1479. // const int qmul= dequant_coeff[qp][0];
  1480. int i;
  1481. int temp[16]; //FIXME check if this is a good idea
  1482. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  1483. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  1484. for(i=0; i<4; i++){
  1485. const int offset= y_offset[i];
  1486. const int z0= block[offset+stride*0] + block[offset+stride*4];
  1487. const int z1= block[offset+stride*0] - block[offset+stride*4];
  1488. const int z2= block[offset+stride*1] - block[offset+stride*5];
  1489. const int z3= block[offset+stride*1] + block[offset+stride*5];
  1490. temp[4*i+0]= z0+z3;
  1491. temp[4*i+1]= z1+z2;
  1492. temp[4*i+2]= z1-z2;
  1493. temp[4*i+3]= z0-z3;
  1494. }
  1495. for(i=0; i<4; i++){
  1496. const int offset= x_offset[i];
  1497. const int z0= temp[4*0+i] + temp[4*2+i];
  1498. const int z1= temp[4*0+i] - temp[4*2+i];
  1499. const int z2= temp[4*1+i] - temp[4*3+i];
  1500. const int z3= temp[4*1+i] + temp[4*3+i];
  1501. block[stride*0 +offset]= (z0 + z3)>>1;
  1502. block[stride*2 +offset]= (z1 + z2)>>1;
  1503. block[stride*8 +offset]= (z1 - z2)>>1;
  1504. block[stride*10+offset]= (z0 - z3)>>1;
  1505. }
  1506. }
  1507. #endif
  1508. #undef xStride
  1509. #undef stride
  1510. static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  1511. const int stride= 16*2;
  1512. const int xStride= 16;
  1513. int a,b,c,d,e;
  1514. a= block[stride*0 + xStride*0];
  1515. b= block[stride*0 + xStride*1];
  1516. c= block[stride*1 + xStride*0];
  1517. d= block[stride*1 + xStride*1];
  1518. e= a-b;
  1519. a= a+b;
  1520. b= c-d;
  1521. c= c+d;
  1522. block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
  1523. block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
  1524. block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
  1525. block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
  1526. }
  1527. #if 0
  1528. static void chroma_dc_dct_c(DCTELEM *block){
  1529. const int stride= 16*2;
  1530. const int xStride= 16;
  1531. int a,b,c,d,e;
  1532. a= block[stride*0 + xStride*0];
  1533. b= block[stride*0 + xStride*1];
  1534. c= block[stride*1 + xStride*0];
  1535. d= block[stride*1 + xStride*1];
  1536. e= a-b;
  1537. a= a+b;
  1538. b= c-d;
  1539. c= c+d;
  1540. block[stride*0 + xStride*0]= (a+c);
  1541. block[stride*0 + xStride*1]= (e+b);
  1542. block[stride*1 + xStride*0]= (a-c);
  1543. block[stride*1 + xStride*1]= (e-b);
  1544. }
  1545. #endif
  1546. /**
  1547. * gets the chroma qp.
  1548. */
  1549. static inline int get_chroma_qp(int chroma_qp_index_offset, int qscale){
  1550. return chroma_qp[clip(qscale + chroma_qp_index_offset, 0, 51)];
  1551. }
  1552. #if 0
  1553. static void h264_diff_dct_c(DCTELEM *block, uint8_t *src1, uint8_t *src2, int stride){
  1554. int i;
  1555. //FIXME try int temp instead of block
  1556. for(i=0; i<4; i++){
  1557. const int d0= src1[0 + i*stride] - src2[0 + i*stride];
  1558. const int d1= src1[1 + i*stride] - src2[1 + i*stride];
  1559. const int d2= src1[2 + i*stride] - src2[2 + i*stride];
  1560. const int d3= src1[3 + i*stride] - src2[3 + i*stride];
  1561. const int z0= d0 + d3;
  1562. const int z3= d0 - d3;
  1563. const int z1= d1 + d2;
  1564. const int z2= d1 - d2;
  1565. block[0 + 4*i]= z0 + z1;
  1566. block[1 + 4*i]= 2*z3 + z2;
  1567. block[2 + 4*i]= z0 - z1;
  1568. block[3 + 4*i]= z3 - 2*z2;
  1569. }
  1570. for(i=0; i<4; i++){
  1571. const int z0= block[0*4 + i] + block[3*4 + i];
  1572. const int z3= block[0*4 + i] - block[3*4 + i];
  1573. const int z1= block[1*4 + i] + block[2*4 + i];
  1574. const int z2= block[1*4 + i] - block[2*4 + i];
  1575. block[0*4 + i]= z0 + z1;
  1576. block[1*4 + i]= 2*z3 + z2;
  1577. block[2*4 + i]= z0 - z1;
  1578. block[3*4 + i]= z3 - 2*z2;
  1579. }
  1580. }
  1581. #endif
  1582. //FIXME need to check that this doesnt overflow signed 32 bit for low qp, i am not sure, it's very close
  1583. //FIXME check that gcc inlines this (and optimizes intra & seperate_dc stuff away)
  1584. static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int seperate_dc){
  1585. int i;
  1586. const int * const quant_table= quant_coeff[qscale];
  1587. const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
  1588. const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
  1589. const unsigned int threshold2= (threshold1<<1);
  1590. int last_non_zero;
  1591. if(seperate_dc){
  1592. if(qscale<=18){
  1593. //avoid overflows
  1594. const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
  1595. const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
  1596. const unsigned int dc_threshold2= (dc_threshold1<<1);
  1597. int level= block[0]*quant_coeff[qscale+18][0];
  1598. if(((unsigned)(level+dc_threshold1))>dc_threshold2){
  1599. if(level>0){
  1600. level= (dc_bias + level)>>(QUANT_SHIFT-2);
  1601. block[0]= level;
  1602. }else{
  1603. level= (dc_bias - level)>>(QUANT_SHIFT-2);
  1604. block[0]= -level;
  1605. }
  1606. // last_non_zero = i;
  1607. }else{
  1608. block[0]=0;
  1609. }
  1610. }else{
  1611. const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
  1612. const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
  1613. const unsigned int dc_threshold2= (dc_threshold1<<1);
  1614. int level= block[0]*quant_table[0];
  1615. if(((unsigned)(level+dc_threshold1))>dc_threshold2){
  1616. if(level>0){
  1617. level= (dc_bias + level)>>(QUANT_SHIFT+1);
  1618. block[0]= level;
  1619. }else{
  1620. level= (dc_bias - level)>>(QUANT_SHIFT+1);
  1621. block[0]= -level;
  1622. }
  1623. // last_non_zero = i;
  1624. }else{
  1625. block[0]=0;
  1626. }
  1627. }
  1628. last_non_zero= 0;
  1629. i=1;
  1630. }else{
  1631. last_non_zero= -1;
  1632. i=0;
  1633. }
  1634. for(; i<16; i++){
  1635. const int j= scantable[i];
  1636. int level= block[j]*quant_table[j];
  1637. // if( bias+level >= (1<<(QMAT_SHIFT - 3))
  1638. // || bias-level >= (1<<(QMAT_SHIFT - 3))){
  1639. if(((unsigned)(level+threshold1))>threshold2){
  1640. if(level>0){
  1641. level= (bias + level)>>QUANT_SHIFT;
  1642. block[j]= level;
  1643. }else{
  1644. level= (bias - level)>>QUANT_SHIFT;
  1645. block[j]= -level;
  1646. }
  1647. last_non_zero = i;
  1648. }else{
  1649. block[j]=0;
  1650. }
  1651. }
  1652. return last_non_zero;
  1653. }
  1654. static void pred4x4_vertical_c(uint8_t *src, uint8_t *topright, int stride){
  1655. const uint32_t a= ((uint32_t*)(src-stride))[0];
  1656. ((uint32_t*)(src+0*stride))[0]= a;
  1657. ((uint32_t*)(src+1*stride))[0]= a;
  1658. ((uint32_t*)(src+2*stride))[0]= a;
  1659. ((uint32_t*)(src+3*stride))[0]= a;
  1660. }
  1661. static void pred4x4_horizontal_c(uint8_t *src, uint8_t *topright, int stride){
  1662. ((uint32_t*)(src+0*stride))[0]= src[-1+0*stride]*0x01010101;
  1663. ((uint32_t*)(src+1*stride))[0]= src[-1+1*stride]*0x01010101;
  1664. ((uint32_t*)(src+2*stride))[0]= src[-1+2*stride]*0x01010101;
  1665. ((uint32_t*)(src+3*stride))[0]= src[-1+3*stride]*0x01010101;
  1666. }
  1667. static void pred4x4_dc_c(uint8_t *src, uint8_t *topright, int stride){
  1668. const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride]
  1669. + src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 4) >>3;
  1670. ((uint32_t*)(src+0*stride))[0]=
  1671. ((uint32_t*)(src+1*stride))[0]=
  1672. ((uint32_t*)(src+2*stride))[0]=
  1673. ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
  1674. }
  1675. static void pred4x4_left_dc_c(uint8_t *src, uint8_t *topright, int stride){
  1676. const int dc= ( src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 2) >>2;
  1677. ((uint32_t*)(src+0*stride))[0]=
  1678. ((uint32_t*)(src+1*stride))[0]=
  1679. ((uint32_t*)(src+2*stride))[0]=
  1680. ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
  1681. }
  1682. static void pred4x4_top_dc_c(uint8_t *src, uint8_t *topright, int stride){
  1683. const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride] + 2) >>2;
  1684. ((uint32_t*)(src+0*stride))[0]=
  1685. ((uint32_t*)(src+1*stride))[0]=
  1686. ((uint32_t*)(src+2*stride))[0]=
  1687. ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
  1688. }
  1689. static void pred4x4_128_dc_c(uint8_t *src, uint8_t *topright, int stride){
  1690. ((uint32_t*)(src+0*stride))[0]=
  1691. ((uint32_t*)(src+1*stride))[0]=
  1692. ((uint32_t*)(src+2*stride))[0]=
  1693. ((uint32_t*)(src+3*stride))[0]= 128U*0x01010101U;
  1694. }
  1695. #define LOAD_TOP_RIGHT_EDGE\
  1696. const int t4= topright[0];\
  1697. const int t5= topright[1];\
  1698. const int t6= topright[2];\
  1699. const int t7= topright[3];\
  1700. #define LOAD_LEFT_EDGE\
  1701. const int l0= src[-1+0*stride];\
  1702. const int l1= src[-1+1*stride];\
  1703. const int l2= src[-1+2*stride];\
  1704. const int l3= src[-1+3*stride];\
  1705. #define LOAD_TOP_EDGE\
  1706. const int t0= src[ 0-1*stride];\
  1707. const int t1= src[ 1-1*stride];\
  1708. const int t2= src[ 2-1*stride];\
  1709. const int t3= src[ 3-1*stride];\
  1710. static void pred4x4_down_right_c(uint8_t *src, uint8_t *topright, int stride){
  1711. const int lt= src[-1-1*stride];
  1712. LOAD_TOP_EDGE
  1713. LOAD_LEFT_EDGE
  1714. src[0+3*stride]=(l3 + 2*l2 + l1 + 2)>>2;
  1715. src[0+2*stride]=
  1716. src[1+3*stride]=(l2 + 2*l1 + l0 + 2)>>2;
  1717. src[0+1*stride]=
  1718. src[1+2*stride]=
  1719. src[2+3*stride]=(l1 + 2*l0 + lt + 2)>>2;
  1720. src[0+0*stride]=
  1721. src[1+1*stride]=
  1722. src[2+2*stride]=
  1723. src[3+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
  1724. src[1+0*stride]=
  1725. src[2+1*stride]=
  1726. src[3+2*stride]=(lt + 2*t0 + t1 + 2)>>2;
  1727. src[2+0*stride]=
  1728. src[3+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
  1729. src[3+0*stride]=(t1 + 2*t2 + t3 + 2)>>2;
  1730. }
  1731. static void pred4x4_down_left_c(uint8_t *src, uint8_t *topright, int stride){
  1732. LOAD_TOP_EDGE
  1733. LOAD_TOP_RIGHT_EDGE
  1734. // LOAD_LEFT_EDGE
  1735. src[0+0*stride]=(t0 + t2 + 2*t1 + 2)>>2;
  1736. src[1+0*stride]=
  1737. src[0+1*stride]=(t1 + t3 + 2*t2 + 2)>>2;
  1738. src[2+0*stride]=
  1739. src[1+1*stride]=
  1740. src[0+2*stride]=(t2 + t4 + 2*t3 + 2)>>2;
  1741. src[3+0*stride]=
  1742. src[2+1*stride]=
  1743. src[1+2*stride]=
  1744. src[0+3*stride]=(t3 + t5 + 2*t4 + 2)>>2;
  1745. src[3+1*stride]=
  1746. src[2+2*stride]=
  1747. src[1+3*stride]=(t4 + t6 + 2*t5 + 2)>>2;
  1748. src[3+2*stride]=
  1749. src[2+3*stride]=(t5 + t7 + 2*t6 + 2)>>2;
  1750. src[3+3*stride]=(t6 + 3*t7 + 2)>>2;
  1751. }
  1752. static void pred4x4_vertical_right_c(uint8_t *src, uint8_t *topright, int stride){
  1753. const int lt= src[-1-1*stride];
  1754. LOAD_TOP_EDGE
  1755. LOAD_LEFT_EDGE
  1756. const __attribute__((unused)) int unu= l3;
  1757. src[0+0*stride]=
  1758. src[1+2*stride]=(lt + t0 + 1)>>1;
  1759. src[1+0*stride]=
  1760. src[2+2*stride]=(t0 + t1 + 1)>>1;
  1761. src[2+0*stride]=
  1762. src[3+2*stride]=(t1 + t2 + 1)>>1;
  1763. src[3+0*stride]=(t2 + t3 + 1)>>1;
  1764. src[0+1*stride]=
  1765. src[1+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
  1766. src[1+1*stride]=
  1767. src[2+3*stride]=(lt + 2*t0 + t1 + 2)>>2;
  1768. src[2+1*stride]=
  1769. src[3+3*stride]=(t0 + 2*t1 + t2 + 2)>>2;
  1770. src[3+1*stride]=(t1 + 2*t2 + t3 + 2)>>2;
  1771. src[0+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
  1772. src[0+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
  1773. }
  1774. static void pred4x4_vertical_left_c(uint8_t *src, uint8_t *topright, int stride){
  1775. LOAD_TOP_EDGE
  1776. LOAD_TOP_RIGHT_EDGE
  1777. const __attribute__((unused)) int unu= t7;
  1778. src[0+0*stride]=(t0 + t1 + 1)>>1;
  1779. src[1+0*stride]=
  1780. src[0+2*stride]=(t1 + t2 + 1)>>1;
  1781. src[2+0*stride]=
  1782. src[1+2*stride]=(t2 + t3 + 1)>>1;
  1783. src[3+0*stride]=
  1784. src[2+2*stride]=(t3 + t4+ 1)>>1;
  1785. src[3+2*stride]=(t4 + t5+ 1)>>1;
  1786. src[0+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
  1787. src[1+1*stride]=
  1788. src[0+3*stride]=(t1 + 2*t2 + t3 + 2)>>2;
  1789. src[2+1*stride]=
  1790. src[1+3*stride]=(t2 + 2*t3 + t4 + 2)>>2;
  1791. src[3+1*stride]=
  1792. src[2+3*stride]=(t3 + 2*t4 + t5 + 2)>>2;
  1793. src[3+3*stride]=(t4 + 2*t5 + t6 + 2)>>2;
  1794. }
  1795. static void pred4x4_horizontal_up_c(uint8_t *src, uint8_t *topright, int stride){
  1796. LOAD_LEFT_EDGE
  1797. src[0+0*stride]=(l0 + l1 + 1)>>1;
  1798. src[1+0*stride]=(l0 + 2*l1 + l2 + 2)>>2;
  1799. src[2+0*stride]=
  1800. src[0+1*stride]=(l1 + l2 + 1)>>1;
  1801. src[3+0*stride]=
  1802. src[1+1*stride]=(l1 + 2*l2 + l3 + 2)>>2;
  1803. src[2+1*stride]=
  1804. src[0+2*stride]=(l2 + l3 + 1)>>1;
  1805. src[3+1*stride]=
  1806. src[1+2*stride]=(l2 + 2*l3 + l3 + 2)>>2;
  1807. src[3+2*stride]=
  1808. src[1+3*stride]=
  1809. src[0+3*stride]=
  1810. src[2+2*stride]=
  1811. src[2+3*stride]=
  1812. src[3+3*stride]=l3;
  1813. }
  1814. static void pred4x4_horizontal_down_c(uint8_t *src, uint8_t *topright, int stride){
  1815. const int lt= src[-1-1*stride];
  1816. LOAD_TOP_EDGE
  1817. LOAD_LEFT_EDGE
  1818. const __attribute__((unused)) int unu= t3;
  1819. src[0+0*stride]=
  1820. src[2+1*stride]=(lt + l0 + 1)>>1;
  1821. src[1+0*stride]=
  1822. src[3+1*stride]=(l0 + 2*lt + t0 + 2)>>2;
  1823. src[2+0*stride]=(lt + 2*t0 + t1 + 2)>>2;
  1824. src[3+0*stride]=(t0 + 2*t1 + t2 + 2)>>2;
  1825. src[0+1*stride]=
  1826. src[2+2*stride]=(l0 + l1 + 1)>>1;
  1827. src[1+1*stride]=
  1828. src[3+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
  1829. src[0+2*stride]=
  1830. src[2+3*stride]=(l1 + l2+ 1)>>1;
  1831. src[1+2*stride]=
  1832. src[3+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
  1833. src[0+3*stride]=(l2 + l3 + 1)>>1;
  1834. src[1+3*stride]=(l1 + 2*l2 + l3 + 2)>>2;
  1835. }
  1836. static void pred16x16_vertical_c(uint8_t *src, int stride){
  1837. int i;
  1838. const uint32_t a= ((uint32_t*)(src-stride))[0];
  1839. const uint32_t b= ((uint32_t*)(src-stride))[1];
  1840. const uint32_t c= ((uint32_t*)(src-stride))[2];
  1841. const uint32_t d= ((uint32_t*)(src-stride))[3];
  1842. for(i=0; i<16; i++){
  1843. ((uint32_t*)(src+i*stride))[0]= a;
  1844. ((uint32_t*)(src+i*stride))[1]= b;
  1845. ((uint32_t*)(src+i*stride))[2]= c;
  1846. ((uint32_t*)(src+i*stride))[3]= d;
  1847. }
  1848. }
  1849. static void pred16x16_horizontal_c(uint8_t *src, int stride){
  1850. int i;
  1851. for(i=0; i<16; i++){
  1852. ((uint32_t*)(src+i*stride))[0]=
  1853. ((uint32_t*)(src+i*stride))[1]=
  1854. ((uint32_t*)(src+i*stride))[2]=
  1855. ((uint32_t*)(src+i*stride))[3]= src[-1+i*stride]*0x01010101;
  1856. }
  1857. }
  1858. static void pred16x16_dc_c(uint8_t *src, int stride){
  1859. int i, dc=0;
  1860. for(i=0;i<16; i++){
  1861. dc+= src[-1+i*stride];
  1862. }
  1863. for(i=0;i<16; i++){
  1864. dc+= src[i-stride];
  1865. }
  1866. dc= 0x01010101*((dc + 16)>>5);
  1867. for(i=0; i<16; i++){
  1868. ((uint32_t*)(src+i*stride))[0]=
  1869. ((uint32_t*)(src+i*stride))[1]=
  1870. ((uint32_t*)(src+i*stride))[2]=
  1871. ((uint32_t*)(src+i*stride))[3]= dc;
  1872. }
  1873. }
  1874. static void pred16x16_left_dc_c(uint8_t *src, int stride){
  1875. int i, dc=0;
  1876. for(i=0;i<16; i++){
  1877. dc+= src[-1+i*stride];
  1878. }
  1879. dc= 0x01010101*((dc + 8)>>4);
  1880. for(i=0; i<16; i++){
  1881. ((uint32_t*)(src+i*stride))[0]=
  1882. ((uint32_t*)(src+i*stride))[1]=
  1883. ((uint32_t*)(src+i*stride))[2]=
  1884. ((uint32_t*)(src+i*stride))[3]= dc;
  1885. }
  1886. }
  1887. static void pred16x16_top_dc_c(uint8_t *src, int stride){
  1888. int i, dc=0;
  1889. for(i=0;i<16; i++){
  1890. dc+= src[i-stride];
  1891. }
  1892. dc= 0x01010101*((dc + 8)>>4);
  1893. for(i=0; i<16; i++){
  1894. ((uint32_t*)(src+i*stride))[0]=
  1895. ((uint32_t*)(src+i*stride))[1]=
  1896. ((uint32_t*)(src+i*stride))[2]=
  1897. ((uint32_t*)(src+i*stride))[3]= dc;
  1898. }
  1899. }
  1900. static void pred16x16_128_dc_c(uint8_t *src, int stride){
  1901. int i;
  1902. for(i=0; i<16; i++){
  1903. ((uint32_t*)(src+i*stride))[0]=
  1904. ((uint32_t*)(src+i*stride))[1]=
  1905. ((uint32_t*)(src+i*stride))[2]=
  1906. ((uint32_t*)(src+i*stride))[3]= 0x01010101U*128U;
  1907. }
  1908. }
  1909. static inline void pred16x16_plane_compat_c(uint8_t *src, int stride, const int svq3){
  1910. int i, j, k;
  1911. int a;
  1912. uint8_t *cm = cropTbl + MAX_NEG_CROP;
  1913. const uint8_t * const src0 = src+7-stride;
  1914. const uint8_t *src1 = src+8*stride-1;
  1915. const uint8_t *src2 = src1-2*stride; // == src+6*stride-1;
  1916. int H = src0[1] - src0[-1];
  1917. int V = src1[0] - src2[ 0];
  1918. for(k=2; k<=8; ++k) {
  1919. src1 += stride; src2 -= stride;
  1920. H += k*(src0[k] - src0[-k]);
  1921. V += k*(src1[0] - src2[ 0]);
  1922. }
  1923. if(svq3){
  1924. H = ( 5*(H/4) ) / 16;
  1925. V = ( 5*(V/4) ) / 16;
  1926. /* required for 100% accuracy */
  1927. i = H; H = V; V = i;
  1928. }else{
  1929. H = ( 5*H+32 ) >> 6;
  1930. V = ( 5*V+32 ) >> 6;
  1931. }
  1932. a = 16*(src1[0] + src2[16] + 1) - 7*(V+H);
  1933. for(j=16; j>0; --j) {
  1934. int b = a;
  1935. a += V;
  1936. for(i=-16; i<0; i+=4) {
  1937. src[16+i] = cm[ (b ) >> 5 ];
  1938. src[17+i] = cm[ (b+ H) >> 5 ];
  1939. src[18+i] = cm[ (b+2*H) >> 5 ];
  1940. src[19+i] = cm[ (b+3*H) >> 5 ];
  1941. b += 4*H;
  1942. }
  1943. src += stride;
  1944. }
  1945. }
  1946. static void pred16x16_plane_c(uint8_t *src, int stride){
  1947. pred16x16_plane_compat_c(src, stride, 0);
  1948. }
  1949. static void pred8x8_vertical_c(uint8_t *src, int stride){
  1950. int i;
  1951. const uint32_t a= ((uint32_t*)(src-stride))[0];
  1952. const uint32_t b= ((uint32_t*)(src-stride))[1];
  1953. for(i=0; i<8; i++){
  1954. ((uint32_t*)(src+i*stride))[0]= a;
  1955. ((uint32_t*)(src+i*stride))[1]= b;
  1956. }
  1957. }
  1958. static void pred8x8_horizontal_c(uint8_t *src, int stride){
  1959. int i;
  1960. for(i=0; i<8; i++){
  1961. ((uint32_t*)(src+i*stride))[0]=
  1962. ((uint32_t*)(src+i*stride))[1]= src[-1+i*stride]*0x01010101;
  1963. }
  1964. }
  1965. static void pred8x8_128_dc_c(uint8_t *src, int stride){
  1966. int i;
  1967. for(i=0; i<8; i++){
  1968. ((uint32_t*)(src+i*stride))[0]=
  1969. ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
  1970. }
  1971. }
  1972. static void pred8x8_left_dc_c(uint8_t *src, int stride){
  1973. int i;
  1974. int dc0, dc2;
  1975. dc0=dc2=0;
  1976. for(i=0;i<4; i++){
  1977. dc0+= src[-1+i*stride];
  1978. dc2+= src[-1+(i+4)*stride];
  1979. }
  1980. dc0= 0x01010101*((dc0 + 2)>>2);
  1981. dc2= 0x01010101*((dc2 + 2)>>2);
  1982. for(i=0; i<4; i++){
  1983. ((uint32_t*)(src+i*stride))[0]=
  1984. ((uint32_t*)(src+i*stride))[1]= dc0;
  1985. }
  1986. for(i=4; i<8; i++){
  1987. ((uint32_t*)(src+i*stride))[0]=
  1988. ((uint32_t*)(src+i*stride))[1]= dc2;
  1989. }
  1990. }
  1991. static void pred8x8_top_dc_c(uint8_t *src, int stride){
  1992. int i;
  1993. int dc0, dc1;
  1994. dc0=dc1=0;
  1995. for(i=0;i<4; i++){
  1996. dc0+= src[i-stride];
  1997. dc1+= src[4+i-stride];
  1998. }
  1999. dc0= 0x01010101*((dc0 + 2)>>2);
  2000. dc1= 0x01010101*((dc1 + 2)>>2);
  2001. for(i=0; i<4; i++){
  2002. ((uint32_t*)(src+i*stride))[0]= dc0;
  2003. ((uint32_t*)(src+i*stride))[1]= dc1;
  2004. }
  2005. for(i=4; i<8; i++){
  2006. ((uint32_t*)(src+i*stride))[0]= dc0;
  2007. ((uint32_t*)(src+i*stride))[1]= dc1;
  2008. }
  2009. }
  2010. static void pred8x8_dc_c(uint8_t *src, int stride){
  2011. int i;
  2012. int dc0, dc1, dc2, dc3;
  2013. dc0=dc1=dc2=0;
  2014. for(i=0;i<4; i++){
  2015. dc0+= src[-1+i*stride] + src[i-stride];
  2016. dc1+= src[4+i-stride];
  2017. dc2+= src[-1+(i+4)*stride];
  2018. }
  2019. dc3= 0x01010101*((dc1 + dc2 + 4)>>3);
  2020. dc0= 0x01010101*((dc0 + 4)>>3);
  2021. dc1= 0x01010101*((dc1 + 2)>>2);
  2022. dc2= 0x01010101*((dc2 + 2)>>2);
  2023. for(i=0; i<4; i++){
  2024. ((uint32_t*)(src+i*stride))[0]= dc0;
  2025. ((uint32_t*)(src+i*stride))[1]= dc1;
  2026. }
  2027. for(i=4; i<8; i++){
  2028. ((uint32_t*)(src+i*stride))[0]= dc2;
  2029. ((uint32_t*)(src+i*stride))[1]= dc3;
  2030. }
  2031. }
  2032. static void pred8x8_plane_c(uint8_t *src, int stride){
  2033. int j, k;
  2034. int a;
  2035. uint8_t *cm = cropTbl + MAX_NEG_CROP;
  2036. const uint8_t * const src0 = src+3-stride;
  2037. const uint8_t *src1 = src+4*stride-1;
  2038. const uint8_t *src2 = src1-2*stride; // == src+2*stride-1;
  2039. int H = src0[1] - src0[-1];
  2040. int V = src1[0] - src2[ 0];
  2041. for(k=2; k<=4; ++k) {
  2042. src1 += stride; src2 -= stride;
  2043. H += k*(src0[k] - src0[-k]);
  2044. V += k*(src1[0] - src2[ 0]);
  2045. }
  2046. H = ( 17*H+16 ) >> 5;
  2047. V = ( 17*V+16 ) >> 5;
  2048. a = 16*(src1[0] + src2[8]+1) - 3*(V+H);
  2049. for(j=8; j>0; --j) {
  2050. int b = a;
  2051. a += V;
  2052. src[0] = cm[ (b ) >> 5 ];
  2053. src[1] = cm[ (b+ H) >> 5 ];
  2054. src[2] = cm[ (b+2*H) >> 5 ];
  2055. src[3] = cm[ (b+3*H) >> 5 ];
  2056. src[4] = cm[ (b+4*H) >> 5 ];
  2057. src[5] = cm[ (b+5*H) >> 5 ];
  2058. src[6] = cm[ (b+6*H) >> 5 ];
  2059. src[7] = cm[ (b+7*H) >> 5 ];
  2060. src += stride;
  2061. }
  2062. }
  2063. #define SRC(x,y) src[(x)+(y)*stride]
  2064. #define PL(y) \
  2065. const int l##y = (SRC(-1,y-1) + 2*SRC(-1,y) + SRC(-1,y+1) + 2) >> 2;
  2066. #define PREDICT_8x8_LOAD_LEFT \
  2067. const int l0 = ((has_topleft ? SRC(-1,-1) : SRC(-1,0)) \
  2068. + 2*SRC(-1,0) + SRC(-1,1) + 2) >> 2; \
  2069. PL(1) PL(2) PL(3) PL(4) PL(5) PL(6) \
  2070. const int l7 attribute_unused = (SRC(-1,6) + 3*SRC(-1,7) + 2) >> 2
  2071. #define PT(x) \
  2072. const int t##x = (SRC(x-1,-1) + 2*SRC(x,-1) + SRC(x+1,-1) + 2) >> 2;
  2073. #define PREDICT_8x8_LOAD_TOP \
  2074. const int t0 = ((has_topleft ? SRC(-1,-1) : SRC(0,-1)) \
  2075. + 2*SRC(0,-1) + SRC(1,-1) + 2) >> 2; \
  2076. PT(1) PT(2) PT(3) PT(4) PT(5) PT(6) \
  2077. const int t7 attribute_unused = ((has_topright ? SRC(8,-1) : SRC(7,-1)) \
  2078. + 2*SRC(7,-1) + SRC(6,-1) + 2) >> 2
  2079. #define PTR(x) \
  2080. t##x = (SRC(x-1,-1) + 2*SRC(x,-1) + SRC(x+1,-1) + 2) >> 2;
  2081. #define PREDICT_8x8_LOAD_TOPRIGHT \
  2082. int t8, t9, t10, t11, t12, t13, t14, t15; \
  2083. if(has_topright) { \
  2084. PTR(8) PTR(9) PTR(10) PTR(11) PTR(12) PTR(13) PTR(14) \
  2085. t15 = (SRC(14,-1) + 3*SRC(15,-1) + 2) >> 2; \
  2086. } else t8=t9=t10=t11=t12=t13=t14=t15= SRC(7,-1);
  2087. #define PREDICT_8x8_LOAD_TOPLEFT \
  2088. const int lt = (SRC(-1,0) + 2*SRC(-1,-1) + SRC(0,-1) + 2) >> 2
  2089. #define PREDICT_8x8_DC(v) \
  2090. int y; \
  2091. for( y = 0; y < 8; y++ ) { \
  2092. ((uint32_t*)src)[0] = \
  2093. ((uint32_t*)src)[1] = v; \
  2094. src += stride; \
  2095. }
  2096. static void pred8x8l_128_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2097. {
  2098. PREDICT_8x8_DC(0x80808080);
  2099. }
  2100. static void pred8x8l_left_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2101. {
  2102. PREDICT_8x8_LOAD_LEFT;
  2103. const uint32_t dc = ((l0+l1+l2+l3+l4+l5+l6+l7+4) >> 3) * 0x01010101;
  2104. PREDICT_8x8_DC(dc);
  2105. }
  2106. static void pred8x8l_top_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2107. {
  2108. PREDICT_8x8_LOAD_TOP;
  2109. const uint32_t dc = ((t0+t1+t2+t3+t4+t5+t6+t7+4) >> 3) * 0x01010101;
  2110. PREDICT_8x8_DC(dc);
  2111. }
  2112. static void pred8x8l_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2113. {
  2114. PREDICT_8x8_LOAD_LEFT;
  2115. PREDICT_8x8_LOAD_TOP;
  2116. const uint32_t dc = ((l0+l1+l2+l3+l4+l5+l6+l7
  2117. +t0+t1+t2+t3+t4+t5+t6+t7+8) >> 4) * 0x01010101;
  2118. PREDICT_8x8_DC(dc);
  2119. }
  2120. static void pred8x8l_horizontal_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2121. {
  2122. PREDICT_8x8_LOAD_LEFT;
  2123. #define ROW(y) ((uint32_t*)(src+y*stride))[0] =\
  2124. ((uint32_t*)(src+y*stride))[1] = 0x01010101 * l##y
  2125. ROW(0); ROW(1); ROW(2); ROW(3); ROW(4); ROW(5); ROW(6); ROW(7);
  2126. #undef ROW
  2127. }
  2128. static void pred8x8l_vertical_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2129. {
  2130. int y;
  2131. PREDICT_8x8_LOAD_TOP;
  2132. src[0] = t0;
  2133. src[1] = t1;
  2134. src[2] = t2;
  2135. src[3] = t3;
  2136. src[4] = t4;
  2137. src[5] = t5;
  2138. src[6] = t6;
  2139. src[7] = t7;
  2140. for( y = 1; y < 8; y++ )
  2141. *(uint64_t*)(src+y*stride) = *(uint64_t*)src;
  2142. }
  2143. static void pred8x8l_down_left_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2144. {
  2145. PREDICT_8x8_LOAD_TOP;
  2146. PREDICT_8x8_LOAD_TOPRIGHT;
  2147. SRC(0,0)= (t0 + 2*t1 + t2 + 2) >> 2;
  2148. SRC(0,1)=SRC(1,0)= (t1 + 2*t2 + t3 + 2) >> 2;
  2149. SRC(0,2)=SRC(1,1)=SRC(2,0)= (t2 + 2*t3 + t4 + 2) >> 2;
  2150. SRC(0,3)=SRC(1,2)=SRC(2,1)=SRC(3,0)= (t3 + 2*t4 + t5 + 2) >> 2;
  2151. SRC(0,4)=SRC(1,3)=SRC(2,2)=SRC(3,1)=SRC(4,0)= (t4 + 2*t5 + t6 + 2) >> 2;
  2152. SRC(0,5)=SRC(1,4)=SRC(2,3)=SRC(3,2)=SRC(4,1)=SRC(5,0)= (t5 + 2*t6 + t7 + 2) >> 2;
  2153. SRC(0,6)=SRC(1,5)=SRC(2,4)=SRC(3,3)=SRC(4,2)=SRC(5,1)=SRC(6,0)= (t6 + 2*t7 + t8 + 2) >> 2;
  2154. SRC(0,7)=SRC(1,6)=SRC(2,5)=SRC(3,4)=SRC(4,3)=SRC(5,2)=SRC(6,1)=SRC(7,0)= (t7 + 2*t8 + t9 + 2) >> 2;
  2155. SRC(1,7)=SRC(2,6)=SRC(3,5)=SRC(4,4)=SRC(5,3)=SRC(6,2)=SRC(7,1)= (t8 + 2*t9 + t10 + 2) >> 2;
  2156. SRC(2,7)=SRC(3,6)=SRC(4,5)=SRC(5,4)=SRC(6,3)=SRC(7,2)= (t9 + 2*t10 + t11 + 2) >> 2;
  2157. SRC(3,7)=SRC(4,6)=SRC(5,5)=SRC(6,4)=SRC(7,3)= (t10 + 2*t11 + t12 + 2) >> 2;
  2158. SRC(4,7)=SRC(5,6)=SRC(6,5)=SRC(7,4)= (t11 + 2*t12 + t13 + 2) >> 2;
  2159. SRC(5,7)=SRC(6,6)=SRC(7,5)= (t12 + 2*t13 + t14 + 2) >> 2;
  2160. SRC(6,7)=SRC(7,6)= (t13 + 2*t14 + t15 + 2) >> 2;
  2161. SRC(7,7)= (t14 + 3*t15 + 2) >> 2;
  2162. }
  2163. static void pred8x8l_down_right_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2164. {
  2165. PREDICT_8x8_LOAD_TOP;
  2166. PREDICT_8x8_LOAD_LEFT;
  2167. PREDICT_8x8_LOAD_TOPLEFT;
  2168. SRC(0,7)= (l7 + 2*l6 + l5 + 2) >> 2;
  2169. SRC(0,6)=SRC(1,7)= (l6 + 2*l5 + l4 + 2) >> 2;
  2170. SRC(0,5)=SRC(1,6)=SRC(2,7)= (l5 + 2*l4 + l3 + 2) >> 2;
  2171. SRC(0,4)=SRC(1,5)=SRC(2,6)=SRC(3,7)= (l4 + 2*l3 + l2 + 2) >> 2;
  2172. SRC(0,3)=SRC(1,4)=SRC(2,5)=SRC(3,6)=SRC(4,7)= (l3 + 2*l2 + l1 + 2) >> 2;
  2173. SRC(0,2)=SRC(1,3)=SRC(2,4)=SRC(3,5)=SRC(4,6)=SRC(5,7)= (l2 + 2*l1 + l0 + 2) >> 2;
  2174. SRC(0,1)=SRC(1,2)=SRC(2,3)=SRC(3,4)=SRC(4,5)=SRC(5,6)=SRC(6,7)= (l1 + 2*l0 + lt + 2) >> 2;
  2175. SRC(0,0)=SRC(1,1)=SRC(2,2)=SRC(3,3)=SRC(4,4)=SRC(5,5)=SRC(6,6)=SRC(7,7)= (l0 + 2*lt + t0 + 2) >> 2;
  2176. SRC(1,0)=SRC(2,1)=SRC(3,2)=SRC(4,3)=SRC(5,4)=SRC(6,5)=SRC(7,6)= (lt + 2*t0 + t1 + 2) >> 2;
  2177. SRC(2,0)=SRC(3,1)=SRC(4,2)=SRC(5,3)=SRC(6,4)=SRC(7,5)= (t0 + 2*t1 + t2 + 2) >> 2;
  2178. SRC(3,0)=SRC(4,1)=SRC(5,2)=SRC(6,3)=SRC(7,4)= (t1 + 2*t2 + t3 + 2) >> 2;
  2179. SRC(4,0)=SRC(5,1)=SRC(6,2)=SRC(7,3)= (t2 + 2*t3 + t4 + 2) >> 2;
  2180. SRC(5,0)=SRC(6,1)=SRC(7,2)= (t3 + 2*t4 + t5 + 2) >> 2;
  2181. SRC(6,0)=SRC(7,1)= (t4 + 2*t5 + t6 + 2) >> 2;
  2182. SRC(7,0)= (t5 + 2*t6 + t7 + 2) >> 2;
  2183. }
  2184. static void pred8x8l_vertical_right_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2185. {
  2186. PREDICT_8x8_LOAD_TOP;
  2187. PREDICT_8x8_LOAD_LEFT;
  2188. PREDICT_8x8_LOAD_TOPLEFT;
  2189. SRC(0,6)= (l5 + 2*l4 + l3 + 2) >> 2;
  2190. SRC(0,7)= (l6 + 2*l5 + l4 + 2) >> 2;
  2191. SRC(0,4)=SRC(1,6)= (l3 + 2*l2 + l1 + 2) >> 2;
  2192. SRC(0,5)=SRC(1,7)= (l4 + 2*l3 + l2 + 2) >> 2;
  2193. SRC(0,2)=SRC(1,4)=SRC(2,6)= (l1 + 2*l0 + lt + 2) >> 2;
  2194. SRC(0,3)=SRC(1,5)=SRC(2,7)= (l2 + 2*l1 + l0 + 2) >> 2;
  2195. SRC(0,1)=SRC(1,3)=SRC(2,5)=SRC(3,7)= (l0 + 2*lt + t0 + 2) >> 2;
  2196. SRC(0,0)=SRC(1,2)=SRC(2,4)=SRC(3,6)= (lt + t0 + 1) >> 1;
  2197. SRC(1,1)=SRC(2,3)=SRC(3,5)=SRC(4,7)= (lt + 2*t0 + t1 + 2) >> 2;
  2198. SRC(1,0)=SRC(2,2)=SRC(3,4)=SRC(4,6)= (t0 + t1 + 1) >> 1;
  2199. SRC(2,1)=SRC(3,3)=SRC(4,5)=SRC(5,7)= (t0 + 2*t1 + t2 + 2) >> 2;
  2200. SRC(2,0)=SRC(3,2)=SRC(4,4)=SRC(5,6)= (t1 + t2 + 1) >> 1;
  2201. SRC(3,1)=SRC(4,3)=SRC(5,5)=SRC(6,7)= (t1 + 2*t2 + t3 + 2) >> 2;
  2202. SRC(3,0)=SRC(4,2)=SRC(5,4)=SRC(6,6)= (t2 + t3 + 1) >> 1;
  2203. SRC(4,1)=SRC(5,3)=SRC(6,5)=SRC(7,7)= (t2 + 2*t3 + t4 + 2) >> 2;
  2204. SRC(4,0)=SRC(5,2)=SRC(6,4)=SRC(7,6)= (t3 + t4 + 1) >> 1;
  2205. SRC(5,1)=SRC(6,3)=SRC(7,5)= (t3 + 2*t4 + t5 + 2) >> 2;
  2206. SRC(5,0)=SRC(6,2)=SRC(7,4)= (t4 + t5 + 1) >> 1;
  2207. SRC(6,1)=SRC(7,3)= (t4 + 2*t5 + t6 + 2) >> 2;
  2208. SRC(6,0)=SRC(7,2)= (t5 + t6 + 1) >> 1;
  2209. SRC(7,1)= (t5 + 2*t6 + t7 + 2) >> 2;
  2210. SRC(7,0)= (t6 + t7 + 1) >> 1;
  2211. }
  2212. static void pred8x8l_horizontal_down_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2213. {
  2214. PREDICT_8x8_LOAD_TOP;
  2215. PREDICT_8x8_LOAD_LEFT;
  2216. PREDICT_8x8_LOAD_TOPLEFT;
  2217. SRC(0,7)= (l6 + l7 + 1) >> 1;
  2218. SRC(1,7)= (l5 + 2*l6 + l7 + 2) >> 2;
  2219. SRC(0,6)=SRC(2,7)= (l5 + l6 + 1) >> 1;
  2220. SRC(1,6)=SRC(3,7)= (l4 + 2*l5 + l6 + 2) >> 2;
  2221. SRC(0,5)=SRC(2,6)=SRC(4,7)= (l4 + l5 + 1) >> 1;
  2222. SRC(1,5)=SRC(3,6)=SRC(5,7)= (l3 + 2*l4 + l5 + 2) >> 2;
  2223. SRC(0,4)=SRC(2,5)=SRC(4,6)=SRC(6,7)= (l3 + l4 + 1) >> 1;
  2224. SRC(1,4)=SRC(3,5)=SRC(5,6)=SRC(7,7)= (l2 + 2*l3 + l4 + 2) >> 2;
  2225. SRC(0,3)=SRC(2,4)=SRC(4,5)=SRC(6,6)= (l2 + l3 + 1) >> 1;
  2226. SRC(1,3)=SRC(3,4)=SRC(5,5)=SRC(7,6)= (l1 + 2*l2 + l3 + 2) >> 2;
  2227. SRC(0,2)=SRC(2,3)=SRC(4,4)=SRC(6,5)= (l1 + l2 + 1) >> 1;
  2228. SRC(1,2)=SRC(3,3)=SRC(5,4)=SRC(7,5)= (l0 + 2*l1 + l2 + 2) >> 2;
  2229. SRC(0,1)=SRC(2,2)=SRC(4,3)=SRC(6,4)= (l0 + l1 + 1) >> 1;
  2230. SRC(1,1)=SRC(3,2)=SRC(5,3)=SRC(7,4)= (lt + 2*l0 + l1 + 2) >> 2;
  2231. SRC(0,0)=SRC(2,1)=SRC(4,2)=SRC(6,3)= (lt + l0 + 1) >> 1;
  2232. SRC(1,0)=SRC(3,1)=SRC(5,2)=SRC(7,3)= (l0 + 2*lt + t0 + 2) >> 2;
  2233. SRC(2,0)=SRC(4,1)=SRC(6,2)= (t1 + 2*t0 + lt + 2) >> 2;
  2234. SRC(3,0)=SRC(5,1)=SRC(7,2)= (t2 + 2*t1 + t0 + 2) >> 2;
  2235. SRC(4,0)=SRC(6,1)= (t3 + 2*t2 + t1 + 2) >> 2;
  2236. SRC(5,0)=SRC(7,1)= (t4 + 2*t3 + t2 + 2) >> 2;
  2237. SRC(6,0)= (t5 + 2*t4 + t3 + 2) >> 2;
  2238. SRC(7,0)= (t6 + 2*t5 + t4 + 2) >> 2;
  2239. }
  2240. static void pred8x8l_vertical_left_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2241. {
  2242. PREDICT_8x8_LOAD_TOP;
  2243. PREDICT_8x8_LOAD_TOPRIGHT;
  2244. SRC(0,0)= (t0 + t1 + 1) >> 1;
  2245. SRC(0,1)= (t0 + 2*t1 + t2 + 2) >> 2;
  2246. SRC(0,2)=SRC(1,0)= (t1 + t2 + 1) >> 1;
  2247. SRC(0,3)=SRC(1,1)= (t1 + 2*t2 + t3 + 2) >> 2;
  2248. SRC(0,4)=SRC(1,2)=SRC(2,0)= (t2 + t3 + 1) >> 1;
  2249. SRC(0,5)=SRC(1,3)=SRC(2,1)= (t2 + 2*t3 + t4 + 2) >> 2;
  2250. SRC(0,6)=SRC(1,4)=SRC(2,2)=SRC(3,0)= (t3 + t4 + 1) >> 1;
  2251. SRC(0,7)=SRC(1,5)=SRC(2,3)=SRC(3,1)= (t3 + 2*t4 + t5 + 2) >> 2;
  2252. SRC(1,6)=SRC(2,4)=SRC(3,2)=SRC(4,0)= (t4 + t5 + 1) >> 1;
  2253. SRC(1,7)=SRC(2,5)=SRC(3,3)=SRC(4,1)= (t4 + 2*t5 + t6 + 2) >> 2;
  2254. SRC(2,6)=SRC(3,4)=SRC(4,2)=SRC(5,0)= (t5 + t6 + 1) >> 1;
  2255. SRC(2,7)=SRC(3,5)=SRC(4,3)=SRC(5,1)= (t5 + 2*t6 + t7 + 2) >> 2;
  2256. SRC(3,6)=SRC(4,4)=SRC(5,2)=SRC(6,0)= (t6 + t7 + 1) >> 1;
  2257. SRC(3,7)=SRC(4,5)=SRC(5,3)=SRC(6,1)= (t6 + 2*t7 + t8 + 2) >> 2;
  2258. SRC(4,6)=SRC(5,4)=SRC(6,2)=SRC(7,0)= (t7 + t8 + 1) >> 1;
  2259. SRC(4,7)=SRC(5,5)=SRC(6,3)=SRC(7,1)= (t7 + 2*t8 + t9 + 2) >> 2;
  2260. SRC(5,6)=SRC(6,4)=SRC(7,2)= (t8 + t9 + 1) >> 1;
  2261. SRC(5,7)=SRC(6,5)=SRC(7,3)= (t8 + 2*t9 + t10 + 2) >> 2;
  2262. SRC(6,6)=SRC(7,4)= (t9 + t10 + 1) >> 1;
  2263. SRC(6,7)=SRC(7,5)= (t9 + 2*t10 + t11 + 2) >> 2;
  2264. SRC(7,6)= (t10 + t11 + 1) >> 1;
  2265. SRC(7,7)= (t10 + 2*t11 + t12 + 2) >> 2;
  2266. }
  2267. static void pred8x8l_horizontal_up_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2268. {
  2269. PREDICT_8x8_LOAD_LEFT;
  2270. SRC(0,0)= (l0 + l1 + 1) >> 1;
  2271. SRC(1,0)= (l0 + 2*l1 + l2 + 2) >> 2;
  2272. SRC(0,1)=SRC(2,0)= (l1 + l2 + 1) >> 1;
  2273. SRC(1,1)=SRC(3,0)= (l1 + 2*l2 + l3 + 2) >> 2;
  2274. SRC(0,2)=SRC(2,1)=SRC(4,0)= (l2 + l3 + 1) >> 1;
  2275. SRC(1,2)=SRC(3,1)=SRC(5,0)= (l2 + 2*l3 + l4 + 2) >> 2;
  2276. SRC(0,3)=SRC(2,2)=SRC(4,1)=SRC(6,0)= (l3 + l4 + 1) >> 1;
  2277. SRC(1,3)=SRC(3,2)=SRC(5,1)=SRC(7,0)= (l3 + 2*l4 + l5 + 2) >> 2;
  2278. SRC(0,4)=SRC(2,3)=SRC(4,2)=SRC(6,1)= (l4 + l5 + 1) >> 1;
  2279. SRC(1,4)=SRC(3,3)=SRC(5,2)=SRC(7,1)= (l4 + 2*l5 + l6 + 2) >> 2;
  2280. SRC(0,5)=SRC(2,4)=SRC(4,3)=SRC(6,2)= (l5 + l6 + 1) >> 1;
  2281. SRC(1,5)=SRC(3,4)=SRC(5,3)=SRC(7,2)= (l5 + 2*l6 + l7 + 2) >> 2;
  2282. SRC(0,6)=SRC(2,5)=SRC(4,4)=SRC(6,3)= (l6 + l7 + 1) >> 1;
  2283. SRC(1,6)=SRC(3,5)=SRC(5,4)=SRC(7,3)= (l6 + 3*l7 + 2) >> 2;
  2284. SRC(0,7)=SRC(1,7)=SRC(2,6)=SRC(2,7)=SRC(3,6)=
  2285. SRC(3,7)=SRC(4,5)=SRC(4,6)=SRC(4,7)=SRC(5,5)=
  2286. SRC(5,6)=SRC(5,7)=SRC(6,4)=SRC(6,5)=SRC(6,6)=
  2287. SRC(6,7)=SRC(7,4)=SRC(7,5)=SRC(7,6)=SRC(7,7)= l7;
  2288. }
  2289. #undef PREDICT_8x8_LOAD_LEFT
  2290. #undef PREDICT_8x8_LOAD_TOP
  2291. #undef PREDICT_8x8_LOAD_TOPLEFT
  2292. #undef PREDICT_8x8_LOAD_TOPRIGHT
  2293. #undef PREDICT_8x8_DC
  2294. #undef PTR
  2295. #undef PT
  2296. #undef PL
  2297. #undef SRC
  2298. static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
  2299. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  2300. int src_x_offset, int src_y_offset,
  2301. qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
  2302. MpegEncContext * const s = &h->s;
  2303. const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
  2304. const int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
  2305. const int luma_xy= (mx&3) + ((my&3)<<2);
  2306. uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*s->linesize;
  2307. uint8_t * src_cb= pic->data[1] + (mx>>3) + (my>>3)*s->uvlinesize;
  2308. uint8_t * src_cr= pic->data[2] + (mx>>3) + (my>>3)*s->uvlinesize;
  2309. int extra_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16; //FIXME increase edge?, IMHO not worth it
  2310. int extra_height= extra_width;
  2311. int emu=0;
  2312. const int full_mx= mx>>2;
  2313. const int full_my= my>>2;
  2314. const int pic_width = 16*s->mb_width;
  2315. const int pic_height = 16*s->mb_height;
  2316. if(!pic->data[0])
  2317. return;
  2318. if(mx&7) extra_width -= 3;
  2319. if(my&7) extra_height -= 3;
  2320. if( full_mx < 0-extra_width
  2321. || full_my < 0-extra_height
  2322. || full_mx + 16/*FIXME*/ > pic_width + extra_width
  2323. || full_my + 16/*FIXME*/ > pic_height + extra_height){
  2324. ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*s->linesize, s->linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  2325. src_y= s->edge_emu_buffer + 2 + 2*s->linesize;
  2326. emu=1;
  2327. }
  2328. qpix_op[luma_xy](dest_y, src_y, s->linesize); //FIXME try variable height perhaps?
  2329. if(!square){
  2330. qpix_op[luma_xy](dest_y + delta, src_y + delta, s->linesize);
  2331. }
  2332. if(s->flags&CODEC_FLAG_GRAY) return;
  2333. if(emu){
  2334. ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  2335. src_cb= s->edge_emu_buffer;
  2336. }
  2337. chroma_op(dest_cb, src_cb, s->uvlinesize, chroma_height, mx&7, my&7);
  2338. if(emu){
  2339. ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  2340. src_cr= s->edge_emu_buffer;
  2341. }
  2342. chroma_op(dest_cr, src_cr, s->uvlinesize, chroma_height, mx&7, my&7);
  2343. }
  2344. static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
  2345. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  2346. int x_offset, int y_offset,
  2347. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  2348. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  2349. int list0, int list1){
  2350. MpegEncContext * const s = &h->s;
  2351. qpel_mc_func *qpix_op= qpix_put;
  2352. h264_chroma_mc_func chroma_op= chroma_put;
  2353. dest_y += 2*x_offset + 2*y_offset*s-> linesize;
  2354. dest_cb += x_offset + y_offset*s->uvlinesize;
  2355. dest_cr += x_offset + y_offset*s->uvlinesize;
  2356. x_offset += 8*s->mb_x;
  2357. y_offset += 8*s->mb_y;
  2358. if(list0){
  2359. Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
  2360. mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
  2361. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  2362. qpix_op, chroma_op);
  2363. qpix_op= qpix_avg;
  2364. chroma_op= chroma_avg;
  2365. }
  2366. if(list1){
  2367. Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
  2368. mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
  2369. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  2370. qpix_op, chroma_op);
  2371. }
  2372. }
  2373. static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
  2374. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  2375. int x_offset, int y_offset,
  2376. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  2377. h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
  2378. h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
  2379. int list0, int list1){
  2380. MpegEncContext * const s = &h->s;
  2381. dest_y += 2*x_offset + 2*y_offset*s-> linesize;
  2382. dest_cb += x_offset + y_offset*s->uvlinesize;
  2383. dest_cr += x_offset + y_offset*s->uvlinesize;
  2384. x_offset += 8*s->mb_x;
  2385. y_offset += 8*s->mb_y;
  2386. if(list0 && list1){
  2387. /* don't optimize for luma-only case, since B-frames usually
  2388. * use implicit weights => chroma too. */
  2389. uint8_t *tmp_cb = s->obmc_scratchpad;
  2390. uint8_t *tmp_cr = tmp_cb + 8*s->uvlinesize;
  2391. uint8_t *tmp_y = tmp_cr + 8*s->uvlinesize;
  2392. int refn0 = h->ref_cache[0][ scan8[n] ];
  2393. int refn1 = h->ref_cache[1][ scan8[n] ];
  2394. mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
  2395. dest_y, dest_cb, dest_cr,
  2396. x_offset, y_offset, qpix_put, chroma_put);
  2397. mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
  2398. tmp_y, tmp_cb, tmp_cr,
  2399. x_offset, y_offset, qpix_put, chroma_put);
  2400. if(h->use_weight == 2){
  2401. int weight0 = h->implicit_weight[refn0][refn1];
  2402. int weight1 = 64 - weight0;
  2403. luma_weight_avg( dest_y, tmp_y, s-> linesize, 5, weight0, weight1, 0);
  2404. chroma_weight_avg(dest_cb, tmp_cb, s->uvlinesize, 5, weight0, weight1, 0);
  2405. chroma_weight_avg(dest_cr, tmp_cr, s->uvlinesize, 5, weight0, weight1, 0);
  2406. }else{
  2407. luma_weight_avg(dest_y, tmp_y, s->linesize, h->luma_log2_weight_denom,
  2408. h->luma_weight[0][refn0], h->luma_weight[1][refn1],
  2409. h->luma_offset[0][refn0] + h->luma_offset[1][refn1]);
  2410. chroma_weight_avg(dest_cb, tmp_cb, s->uvlinesize, h->chroma_log2_weight_denom,
  2411. h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
  2412. h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]);
  2413. chroma_weight_avg(dest_cr, tmp_cr, s->uvlinesize, h->chroma_log2_weight_denom,
  2414. h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
  2415. h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]);
  2416. }
  2417. }else{
  2418. int list = list1 ? 1 : 0;
  2419. int refn = h->ref_cache[list][ scan8[n] ];
  2420. Picture *ref= &h->ref_list[list][refn];
  2421. mc_dir_part(h, ref, n, square, chroma_height, delta, list,
  2422. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  2423. qpix_put, chroma_put);
  2424. luma_weight_op(dest_y, s->linesize, h->luma_log2_weight_denom,
  2425. h->luma_weight[list][refn], h->luma_offset[list][refn]);
  2426. if(h->use_weight_chroma){
  2427. chroma_weight_op(dest_cb, s->uvlinesize, h->chroma_log2_weight_denom,
  2428. h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
  2429. chroma_weight_op(dest_cr, s->uvlinesize, h->chroma_log2_weight_denom,
  2430. h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
  2431. }
  2432. }
  2433. }
  2434. static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
  2435. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  2436. int x_offset, int y_offset,
  2437. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  2438. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  2439. h264_weight_func *weight_op, h264_biweight_func *weight_avg,
  2440. int list0, int list1){
  2441. if((h->use_weight==2 && list0 && list1
  2442. && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
  2443. || h->use_weight==1)
  2444. mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  2445. x_offset, y_offset, qpix_put, chroma_put,
  2446. weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
  2447. else
  2448. mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  2449. x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
  2450. }
  2451. static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  2452. qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
  2453. qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
  2454. h264_weight_func *weight_op, h264_biweight_func *weight_avg){
  2455. MpegEncContext * const s = &h->s;
  2456. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  2457. const int mb_type= s->current_picture.mb_type[mb_xy];
  2458. assert(IS_INTER(mb_type));
  2459. if(IS_16X16(mb_type)){
  2460. mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
  2461. qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
  2462. &weight_op[0], &weight_avg[0],
  2463. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  2464. }else if(IS_16X8(mb_type)){
  2465. mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
  2466. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  2467. &weight_op[1], &weight_avg[1],
  2468. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  2469. mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
  2470. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  2471. &weight_op[1], &weight_avg[1],
  2472. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  2473. }else if(IS_8X16(mb_type)){
  2474. mc_part(h, 0, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 0, 0,
  2475. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  2476. &weight_op[2], &weight_avg[2],
  2477. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  2478. mc_part(h, 4, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 4, 0,
  2479. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  2480. &weight_op[2], &weight_avg[2],
  2481. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  2482. }else{
  2483. int i;
  2484. assert(IS_8X8(mb_type));
  2485. for(i=0; i<4; i++){
  2486. const int sub_mb_type= h->sub_mb_type[i];
  2487. const int n= 4*i;
  2488. int x_offset= (i&1)<<2;
  2489. int y_offset= (i&2)<<1;
  2490. if(IS_SUB_8X8(sub_mb_type)){
  2491. mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  2492. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  2493. &weight_op[3], &weight_avg[3],
  2494. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  2495. }else if(IS_SUB_8X4(sub_mb_type)){
  2496. mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  2497. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  2498. &weight_op[4], &weight_avg[4],
  2499. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  2500. mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
  2501. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  2502. &weight_op[4], &weight_avg[4],
  2503. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  2504. }else if(IS_SUB_4X8(sub_mb_type)){
  2505. mc_part(h, n , 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  2506. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  2507. &weight_op[5], &weight_avg[5],
  2508. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  2509. mc_part(h, n+1, 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
  2510. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  2511. &weight_op[5], &weight_avg[5],
  2512. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  2513. }else{
  2514. int j;
  2515. assert(IS_SUB_4X4(sub_mb_type));
  2516. for(j=0; j<4; j++){
  2517. int sub_x_offset= x_offset + 2*(j&1);
  2518. int sub_y_offset= y_offset + (j&2);
  2519. mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
  2520. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  2521. &weight_op[6], &weight_avg[6],
  2522. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  2523. }
  2524. }
  2525. }
  2526. }
  2527. }
  2528. static void decode_init_vlc(H264Context *h){
  2529. static int done = 0;
  2530. if (!done) {
  2531. int i;
  2532. done = 1;
  2533. init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
  2534. &chroma_dc_coeff_token_len [0], 1, 1,
  2535. &chroma_dc_coeff_token_bits[0], 1, 1, 1);
  2536. for(i=0; i<4; i++){
  2537. init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
  2538. &coeff_token_len [i][0], 1, 1,
  2539. &coeff_token_bits[i][0], 1, 1, 1);
  2540. }
  2541. for(i=0; i<3; i++){
  2542. init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
  2543. &chroma_dc_total_zeros_len [i][0], 1, 1,
  2544. &chroma_dc_total_zeros_bits[i][0], 1, 1, 1);
  2545. }
  2546. for(i=0; i<15; i++){
  2547. init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16,
  2548. &total_zeros_len [i][0], 1, 1,
  2549. &total_zeros_bits[i][0], 1, 1, 1);
  2550. }
  2551. for(i=0; i<6; i++){
  2552. init_vlc(&run_vlc[i], RUN_VLC_BITS, 7,
  2553. &run_len [i][0], 1, 1,
  2554. &run_bits[i][0], 1, 1, 1);
  2555. }
  2556. init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
  2557. &run_len [6][0], 1, 1,
  2558. &run_bits[6][0], 1, 1, 1);
  2559. }
  2560. }
  2561. /**
  2562. * Sets the intra prediction function pointers.
  2563. */
  2564. static void init_pred_ptrs(H264Context *h){
  2565. // MpegEncContext * const s = &h->s;
  2566. h->pred4x4[VERT_PRED ]= pred4x4_vertical_c;
  2567. h->pred4x4[HOR_PRED ]= pred4x4_horizontal_c;
  2568. h->pred4x4[DC_PRED ]= pred4x4_dc_c;
  2569. h->pred4x4[DIAG_DOWN_LEFT_PRED ]= pred4x4_down_left_c;
  2570. h->pred4x4[DIAG_DOWN_RIGHT_PRED]= pred4x4_down_right_c;
  2571. h->pred4x4[VERT_RIGHT_PRED ]= pred4x4_vertical_right_c;
  2572. h->pred4x4[HOR_DOWN_PRED ]= pred4x4_horizontal_down_c;
  2573. h->pred4x4[VERT_LEFT_PRED ]= pred4x4_vertical_left_c;
  2574. h->pred4x4[HOR_UP_PRED ]= pred4x4_horizontal_up_c;
  2575. h->pred4x4[LEFT_DC_PRED ]= pred4x4_left_dc_c;
  2576. h->pred4x4[TOP_DC_PRED ]= pred4x4_top_dc_c;
  2577. h->pred4x4[DC_128_PRED ]= pred4x4_128_dc_c;
  2578. h->pred8x8l[VERT_PRED ]= pred8x8l_vertical_c;
  2579. h->pred8x8l[HOR_PRED ]= pred8x8l_horizontal_c;
  2580. h->pred8x8l[DC_PRED ]= pred8x8l_dc_c;
  2581. h->pred8x8l[DIAG_DOWN_LEFT_PRED ]= pred8x8l_down_left_c;
  2582. h->pred8x8l[DIAG_DOWN_RIGHT_PRED]= pred8x8l_down_right_c;
  2583. h->pred8x8l[VERT_RIGHT_PRED ]= pred8x8l_vertical_right_c;
  2584. h->pred8x8l[HOR_DOWN_PRED ]= pred8x8l_horizontal_down_c;
  2585. h->pred8x8l[VERT_LEFT_PRED ]= pred8x8l_vertical_left_c;
  2586. h->pred8x8l[HOR_UP_PRED ]= pred8x8l_horizontal_up_c;
  2587. h->pred8x8l[LEFT_DC_PRED ]= pred8x8l_left_dc_c;
  2588. h->pred8x8l[TOP_DC_PRED ]= pred8x8l_top_dc_c;
  2589. h->pred8x8l[DC_128_PRED ]= pred8x8l_128_dc_c;
  2590. h->pred8x8[DC_PRED8x8 ]= pred8x8_dc_c;
  2591. h->pred8x8[VERT_PRED8x8 ]= pred8x8_vertical_c;
  2592. h->pred8x8[HOR_PRED8x8 ]= pred8x8_horizontal_c;
  2593. h->pred8x8[PLANE_PRED8x8 ]= pred8x8_plane_c;
  2594. h->pred8x8[LEFT_DC_PRED8x8]= pred8x8_left_dc_c;
  2595. h->pred8x8[TOP_DC_PRED8x8 ]= pred8x8_top_dc_c;
  2596. h->pred8x8[DC_128_PRED8x8 ]= pred8x8_128_dc_c;
  2597. h->pred16x16[DC_PRED8x8 ]= pred16x16_dc_c;
  2598. h->pred16x16[VERT_PRED8x8 ]= pred16x16_vertical_c;
  2599. h->pred16x16[HOR_PRED8x8 ]= pred16x16_horizontal_c;
  2600. h->pred16x16[PLANE_PRED8x8 ]= pred16x16_plane_c;
  2601. h->pred16x16[LEFT_DC_PRED8x8]= pred16x16_left_dc_c;
  2602. h->pred16x16[TOP_DC_PRED8x8 ]= pred16x16_top_dc_c;
  2603. h->pred16x16[DC_128_PRED8x8 ]= pred16x16_128_dc_c;
  2604. }
  2605. static void free_tables(H264Context *h){
  2606. av_freep(&h->intra4x4_pred_mode);
  2607. av_freep(&h->chroma_pred_mode_table);
  2608. av_freep(&h->cbp_table);
  2609. av_freep(&h->mvd_table[0]);
  2610. av_freep(&h->mvd_table[1]);
  2611. av_freep(&h->direct_table);
  2612. av_freep(&h->non_zero_count);
  2613. av_freep(&h->slice_table_base);
  2614. av_freep(&h->top_borders[1]);
  2615. av_freep(&h->top_borders[0]);
  2616. h->slice_table= NULL;
  2617. av_freep(&h->mb2b_xy);
  2618. av_freep(&h->mb2b8_xy);
  2619. av_freep(&h->s.obmc_scratchpad);
  2620. }
  2621. static void init_dequant8_coeff_table(H264Context *h){
  2622. int i,q,x;
  2623. h->dequant8_coeff[0] = h->dequant8_buffer[0];
  2624. h->dequant8_coeff[1] = h->dequant8_buffer[1];
  2625. for(i=0; i<2; i++ ){
  2626. if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
  2627. h->dequant8_coeff[1] = h->dequant8_buffer[0];
  2628. break;
  2629. }
  2630. for(q=0; q<52; q++){
  2631. int shift = div6[q];
  2632. int idx = rem6[q];
  2633. for(x=0; x<64; x++)
  2634. h->dequant8_coeff[i][q][x] = ((uint32_t)dequant8_coeff_init[idx][
  2635. dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] * h->pps.scaling_matrix8[i][x]) << shift;
  2636. }
  2637. }
  2638. }
  2639. static void init_dequant4_coeff_table(H264Context *h){
  2640. int i,j,q,x;
  2641. const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
  2642. for(i=0; i<6; i++ ){
  2643. h->dequant4_coeff[i] = h->dequant4_buffer[i];
  2644. for(j=0; j<i; j++){
  2645. if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
  2646. h->dequant4_coeff[i] = h->dequant4_buffer[j];
  2647. break;
  2648. }
  2649. }
  2650. if(j<i)
  2651. continue;
  2652. for(q=0; q<52; q++){
  2653. int shift = div6[q] + 2;
  2654. int idx = rem6[q];
  2655. for(x=0; x<16; x++)
  2656. h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
  2657. ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
  2658. h->pps.scaling_matrix4[i][x]) << shift;
  2659. }
  2660. }
  2661. }
  2662. static void init_dequant_tables(H264Context *h){
  2663. int i,x;
  2664. init_dequant4_coeff_table(h);
  2665. if(h->pps.transform_8x8_mode)
  2666. init_dequant8_coeff_table(h);
  2667. if(h->sps.transform_bypass){
  2668. for(i=0; i<6; i++)
  2669. for(x=0; x<16; x++)
  2670. h->dequant4_coeff[i][0][x] = 1<<6;
  2671. if(h->pps.transform_8x8_mode)
  2672. for(i=0; i<2; i++)
  2673. for(x=0; x<64; x++)
  2674. h->dequant8_coeff[i][0][x] = 1<<6;
  2675. }
  2676. }
  2677. /**
  2678. * allocates tables.
  2679. * needs width/height
  2680. */
  2681. static int alloc_tables(H264Context *h){
  2682. MpegEncContext * const s = &h->s;
  2683. const int big_mb_num= s->mb_stride * (s->mb_height+1);
  2684. int x,y;
  2685. CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t))
  2686. CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t))
  2687. CHECKED_ALLOCZ(h->slice_table_base , big_mb_num * sizeof(uint8_t))
  2688. CHECKED_ALLOCZ(h->top_borders[0] , s->mb_width * (16+8+8) * sizeof(uint8_t))
  2689. CHECKED_ALLOCZ(h->top_borders[1] , s->mb_width * (16+8+8) * sizeof(uint8_t))
  2690. CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
  2691. if( h->pps.cabac ) {
  2692. CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
  2693. CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
  2694. CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
  2695. CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
  2696. }
  2697. memset(h->slice_table_base, -1, big_mb_num * sizeof(uint8_t));
  2698. h->slice_table= h->slice_table_base + s->mb_stride + 1;
  2699. CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint32_t));
  2700. CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint32_t));
  2701. for(y=0; y<s->mb_height; y++){
  2702. for(x=0; x<s->mb_width; x++){
  2703. const int mb_xy= x + y*s->mb_stride;
  2704. const int b_xy = 4*x + 4*y*h->b_stride;
  2705. const int b8_xy= 2*x + 2*y*h->b8_stride;
  2706. h->mb2b_xy [mb_xy]= b_xy;
  2707. h->mb2b8_xy[mb_xy]= b8_xy;
  2708. }
  2709. }
  2710. s->obmc_scratchpad = NULL;
  2711. if(!h->dequant4_coeff[0])
  2712. init_dequant_tables(h);
  2713. return 0;
  2714. fail:
  2715. free_tables(h);
  2716. return -1;
  2717. }
  2718. static void common_init(H264Context *h){
  2719. MpegEncContext * const s = &h->s;
  2720. s->width = s->avctx->width;
  2721. s->height = s->avctx->height;
  2722. s->codec_id= s->avctx->codec->id;
  2723. init_pred_ptrs(h);
  2724. h->dequant_coeff_pps= -1;
  2725. s->unrestricted_mv=1;
  2726. s->decode=1; //FIXME
  2727. memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  2728. memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  2729. }
  2730. static int decode_init(AVCodecContext *avctx){
  2731. H264Context *h= avctx->priv_data;
  2732. MpegEncContext * const s = &h->s;
  2733. MPV_decode_defaults(s);
  2734. s->avctx = avctx;
  2735. common_init(h);
  2736. s->out_format = FMT_H264;
  2737. s->workaround_bugs= avctx->workaround_bugs;
  2738. // set defaults
  2739. // s->decode_mb= ff_h263_decode_mb;
  2740. s->low_delay= 1;
  2741. avctx->pix_fmt= PIX_FMT_YUV420P;
  2742. decode_init_vlc(h);
  2743. if(avctx->extradata_size > 0 && avctx->extradata &&
  2744. *(char *)avctx->extradata == 1){
  2745. h->is_avc = 1;
  2746. h->got_avcC = 0;
  2747. } else {
  2748. h->is_avc = 0;
  2749. }
  2750. return 0;
  2751. }
  2752. static int frame_start(H264Context *h){
  2753. MpegEncContext * const s = &h->s;
  2754. int i;
  2755. if(MPV_frame_start(s, s->avctx) < 0)
  2756. return -1;
  2757. ff_er_frame_start(s);
  2758. assert(s->linesize && s->uvlinesize);
  2759. for(i=0; i<16; i++){
  2760. h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
  2761. h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
  2762. }
  2763. for(i=0; i<4; i++){
  2764. h->block_offset[16+i]=
  2765. h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  2766. h->block_offset[24+16+i]=
  2767. h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  2768. }
  2769. /* can't be in alloc_tables because linesize isn't known there.
  2770. * FIXME: redo bipred weight to not require extra buffer? */
  2771. if(!s->obmc_scratchpad)
  2772. s->obmc_scratchpad = av_malloc(16*s->linesize + 2*8*s->uvlinesize);
  2773. // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
  2774. return 0;
  2775. }
  2776. static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
  2777. MpegEncContext * const s = &h->s;
  2778. int i;
  2779. src_y -= linesize;
  2780. src_cb -= uvlinesize;
  2781. src_cr -= uvlinesize;
  2782. // There are two lines saved, the line above the the top macroblock of a pair,
  2783. // and the line above the bottom macroblock
  2784. h->left_border[0]= h->top_borders[0][s->mb_x][15];
  2785. for(i=1; i<17; i++){
  2786. h->left_border[i]= src_y[15+i* linesize];
  2787. }
  2788. *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
  2789. *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
  2790. if(!(s->flags&CODEC_FLAG_GRAY)){
  2791. h->left_border[17 ]= h->top_borders[0][s->mb_x][16+7];
  2792. h->left_border[17+9]= h->top_borders[0][s->mb_x][24+7];
  2793. for(i=1; i<9; i++){
  2794. h->left_border[i+17 ]= src_cb[7+i*uvlinesize];
  2795. h->left_border[i+17+9]= src_cr[7+i*uvlinesize];
  2796. }
  2797. *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
  2798. *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
  2799. }
  2800. }
  2801. static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
  2802. MpegEncContext * const s = &h->s;
  2803. int temp8, i;
  2804. uint64_t temp64;
  2805. int deblock_left = (s->mb_x > 0);
  2806. int deblock_top = (s->mb_y > 0);
  2807. src_y -= linesize + 1;
  2808. src_cb -= uvlinesize + 1;
  2809. src_cr -= uvlinesize + 1;
  2810. #define XCHG(a,b,t,xchg)\
  2811. t= a;\
  2812. if(xchg)\
  2813. a= b;\
  2814. b= t;
  2815. if(deblock_left){
  2816. for(i = !deblock_top; i<17; i++){
  2817. XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
  2818. }
  2819. }
  2820. if(deblock_top){
  2821. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
  2822. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
  2823. if(s->mb_x+1 < s->mb_width){
  2824. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
  2825. }
  2826. }
  2827. if(!(s->flags&CODEC_FLAG_GRAY)){
  2828. if(deblock_left){
  2829. for(i = !deblock_top; i<9; i++){
  2830. XCHG(h->left_border[i+17 ], src_cb[i*uvlinesize], temp8, xchg);
  2831. XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg);
  2832. }
  2833. }
  2834. if(deblock_top){
  2835. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
  2836. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
  2837. }
  2838. }
  2839. }
  2840. static inline void backup_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
  2841. MpegEncContext * const s = &h->s;
  2842. int i;
  2843. src_y -= 2 * linesize;
  2844. src_cb -= 2 * uvlinesize;
  2845. src_cr -= 2 * uvlinesize;
  2846. // There are two lines saved, the line above the the top macroblock of a pair,
  2847. // and the line above the bottom macroblock
  2848. h->left_border[0]= h->top_borders[0][s->mb_x][15];
  2849. h->left_border[1]= h->top_borders[1][s->mb_x][15];
  2850. for(i=2; i<34; i++){
  2851. h->left_border[i]= src_y[15+i* linesize];
  2852. }
  2853. *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 32*linesize);
  2854. *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+32*linesize);
  2855. *(uint64_t*)(h->top_borders[1][s->mb_x]+0)= *(uint64_t*)(src_y + 33*linesize);
  2856. *(uint64_t*)(h->top_borders[1][s->mb_x]+8)= *(uint64_t*)(src_y +8+33*linesize);
  2857. if(!(s->flags&CODEC_FLAG_GRAY)){
  2858. h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7];
  2859. h->left_border[34+ 1]= h->top_borders[1][s->mb_x][16+7];
  2860. h->left_border[34+18 ]= h->top_borders[0][s->mb_x][24+7];
  2861. h->left_border[34+18+1]= h->top_borders[1][s->mb_x][24+7];
  2862. for(i=2; i<18; i++){
  2863. h->left_border[i+34 ]= src_cb[7+i*uvlinesize];
  2864. h->left_border[i+34+18]= src_cr[7+i*uvlinesize];
  2865. }
  2866. *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+16*uvlinesize);
  2867. *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+16*uvlinesize);
  2868. *(uint64_t*)(h->top_borders[1][s->mb_x]+16)= *(uint64_t*)(src_cb+17*uvlinesize);
  2869. *(uint64_t*)(h->top_borders[1][s->mb_x]+24)= *(uint64_t*)(src_cr+17*uvlinesize);
  2870. }
  2871. }
  2872. static inline void xchg_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
  2873. MpegEncContext * const s = &h->s;
  2874. int temp8, i;
  2875. uint64_t temp64;
  2876. int deblock_left = (s->mb_x > 0);
  2877. int deblock_top = (s->mb_y > 0);
  2878. tprintf("xchg_pair_border: src_y:%p src_cb:%p src_cr:%p ls:%d uvls:%d\n", src_y, src_cb, src_cr, linesize, uvlinesize);
  2879. src_y -= 2 * linesize + 1;
  2880. src_cb -= 2 * uvlinesize + 1;
  2881. src_cr -= 2 * uvlinesize + 1;
  2882. #define XCHG(a,b,t,xchg)\
  2883. t= a;\
  2884. if(xchg)\
  2885. a= b;\
  2886. b= t;
  2887. if(deblock_left){
  2888. for(i = (!deblock_top)<<1; i<34; i++){
  2889. XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
  2890. }
  2891. }
  2892. if(deblock_top){
  2893. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
  2894. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
  2895. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+0), *(uint64_t*)(src_y +1 +linesize), temp64, xchg);
  2896. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+8), *(uint64_t*)(src_y +9 +linesize), temp64, 1);
  2897. }
  2898. if(!(s->flags&CODEC_FLAG_GRAY)){
  2899. if(deblock_left){
  2900. for(i = (!deblock_top) << 1; i<18; i++){
  2901. XCHG(h->left_border[i+34 ], src_cb[i*uvlinesize], temp8, xchg);
  2902. XCHG(h->left_border[i+34+18], src_cr[i*uvlinesize], temp8, xchg);
  2903. }
  2904. }
  2905. if(deblock_top){
  2906. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
  2907. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
  2908. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+16), *(uint64_t*)(src_cb+1 +uvlinesize), temp64, 1);
  2909. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+24), *(uint64_t*)(src_cr+1 +uvlinesize), temp64, 1);
  2910. }
  2911. }
  2912. }
  2913. static void hl_decode_mb(H264Context *h){
  2914. MpegEncContext * const s = &h->s;
  2915. const int mb_x= s->mb_x;
  2916. const int mb_y= s->mb_y;
  2917. const int mb_xy= mb_x + mb_y*s->mb_stride;
  2918. const int mb_type= s->current_picture.mb_type[mb_xy];
  2919. uint8_t *dest_y, *dest_cb, *dest_cr;
  2920. int linesize, uvlinesize /*dct_offset*/;
  2921. int i;
  2922. int *block_offset = &h->block_offset[0];
  2923. const unsigned int bottom = mb_y & 1;
  2924. const int transform_bypass = (s->qscale == 0 && h->sps.transform_bypass);
  2925. void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
  2926. void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
  2927. if(!s->decode)
  2928. return;
  2929. dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
  2930. dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2931. dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2932. if (h->mb_field_decoding_flag) {
  2933. linesize = s->linesize * 2;
  2934. uvlinesize = s->uvlinesize * 2;
  2935. block_offset = &h->block_offset[24];
  2936. if(mb_y&1){ //FIXME move out of this func?
  2937. dest_y -= s->linesize*15;
  2938. dest_cb-= s->uvlinesize*7;
  2939. dest_cr-= s->uvlinesize*7;
  2940. }
  2941. } else {
  2942. linesize = s->linesize;
  2943. uvlinesize = s->uvlinesize;
  2944. // dct_offset = s->linesize * 16;
  2945. }
  2946. if(transform_bypass){
  2947. idct_dc_add =
  2948. idct_add = IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
  2949. }else if(IS_8x8DCT(mb_type)){
  2950. idct_dc_add = s->dsp.h264_idct8_dc_add;
  2951. idct_add = s->dsp.h264_idct8_add;
  2952. }else{
  2953. idct_dc_add = s->dsp.h264_idct_dc_add;
  2954. idct_add = s->dsp.h264_idct_add;
  2955. }
  2956. if (IS_INTRA_PCM(mb_type)) {
  2957. unsigned int x, y;
  2958. // The pixels are stored in h->mb array in the same order as levels,
  2959. // copy them in output in the correct order.
  2960. for(i=0; i<16; i++) {
  2961. for (y=0; y<4; y++) {
  2962. for (x=0; x<4; x++) {
  2963. *(dest_y + block_offset[i] + y*linesize + x) = h->mb[i*16+y*4+x];
  2964. }
  2965. }
  2966. }
  2967. for(i=16; i<16+4; i++) {
  2968. for (y=0; y<4; y++) {
  2969. for (x=0; x<4; x++) {
  2970. *(dest_cb + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
  2971. }
  2972. }
  2973. }
  2974. for(i=20; i<20+4; i++) {
  2975. for (y=0; y<4; y++) {
  2976. for (x=0; x<4; x++) {
  2977. *(dest_cr + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
  2978. }
  2979. }
  2980. }
  2981. } else {
  2982. if(IS_INTRA(mb_type)){
  2983. if(h->deblocking_filter) {
  2984. if (h->mb_aff_frame) {
  2985. if (!bottom)
  2986. xchg_pair_border(h, dest_y, dest_cb, dest_cr, s->linesize, s->uvlinesize, 1);
  2987. } else {
  2988. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1);
  2989. }
  2990. }
  2991. if(!(s->flags&CODEC_FLAG_GRAY)){
  2992. h->pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
  2993. h->pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
  2994. }
  2995. if(IS_INTRA4x4(mb_type)){
  2996. if(!s->encoding){
  2997. if(IS_8x8DCT(mb_type)){
  2998. for(i=0; i<16; i+=4){
  2999. uint8_t * const ptr= dest_y + block_offset[i];
  3000. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  3001. const int nnz = h->non_zero_count_cache[ scan8[i] ];
  3002. h->pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
  3003. (h->topright_samples_available<<(i+1))&0x8000, linesize);
  3004. if(nnz){
  3005. if(nnz == 1 && h->mb[i*16])
  3006. idct_dc_add(ptr, h->mb + i*16, linesize);
  3007. else
  3008. idct_add(ptr, h->mb + i*16, linesize);
  3009. }
  3010. }
  3011. }else
  3012. for(i=0; i<16; i++){
  3013. uint8_t * const ptr= dest_y + block_offset[i];
  3014. uint8_t *topright;
  3015. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  3016. int nnz, tr;
  3017. if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
  3018. const int topright_avail= (h->topright_samples_available<<i)&0x8000;
  3019. assert(mb_y || linesize <= block_offset[i]);
  3020. if(!topright_avail){
  3021. tr= ptr[3 - linesize]*0x01010101;
  3022. topright= (uint8_t*) &tr;
  3023. }else
  3024. topright= ptr + 4 - linesize;
  3025. }else
  3026. topright= NULL;
  3027. h->pred4x4[ dir ](ptr, topright, linesize);
  3028. nnz = h->non_zero_count_cache[ scan8[i] ];
  3029. if(nnz){
  3030. if(s->codec_id == CODEC_ID_H264){
  3031. if(nnz == 1 && h->mb[i*16])
  3032. idct_dc_add(ptr, h->mb + i*16, linesize);
  3033. else
  3034. idct_add(ptr, h->mb + i*16, linesize);
  3035. }else
  3036. svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
  3037. }
  3038. }
  3039. }
  3040. }else{
  3041. h->pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
  3042. if(s->codec_id == CODEC_ID_H264){
  3043. if(!transform_bypass)
  3044. h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[IS_INTRA(mb_type) ? 0:3][s->qscale][0]);
  3045. }else
  3046. svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
  3047. }
  3048. if(h->deblocking_filter) {
  3049. if (h->mb_aff_frame) {
  3050. if (bottom) {
  3051. uint8_t *pair_dest_y = s->current_picture.data[0] + ((mb_y-1) * 16* s->linesize ) + mb_x * 16;
  3052. uint8_t *pair_dest_cb = s->current_picture.data[1] + ((mb_y-1) * 8 * s->uvlinesize) + mb_x * 8;
  3053. uint8_t *pair_dest_cr = s->current_picture.data[2] + ((mb_y-1) * 8 * s->uvlinesize) + mb_x * 8;
  3054. s->mb_y--;
  3055. xchg_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize, 0);
  3056. s->mb_y++;
  3057. }
  3058. } else {
  3059. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0);
  3060. }
  3061. }
  3062. }else if(s->codec_id == CODEC_ID_H264){
  3063. hl_motion(h, dest_y, dest_cb, dest_cr,
  3064. s->dsp.put_h264_qpel_pixels_tab, s->dsp.put_h264_chroma_pixels_tab,
  3065. s->dsp.avg_h264_qpel_pixels_tab, s->dsp.avg_h264_chroma_pixels_tab,
  3066. s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
  3067. }
  3068. if(!IS_INTRA4x4(mb_type)){
  3069. if(s->codec_id == CODEC_ID_H264){
  3070. if(IS_INTRA16x16(mb_type)){
  3071. for(i=0; i<16; i++){
  3072. if(h->non_zero_count_cache[ scan8[i] ])
  3073. idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  3074. else if(h->mb[i*16])
  3075. idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  3076. }
  3077. }else{
  3078. const int di = IS_8x8DCT(mb_type) ? 4 : 1;
  3079. for(i=0; i<16; i+=di){
  3080. int nnz = h->non_zero_count_cache[ scan8[i] ];
  3081. if(nnz){
  3082. if(nnz==1 && h->mb[i*16])
  3083. idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  3084. else
  3085. idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  3086. }
  3087. }
  3088. }
  3089. }else{
  3090. for(i=0; i<16; i++){
  3091. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
  3092. uint8_t * const ptr= dest_y + block_offset[i];
  3093. svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
  3094. }
  3095. }
  3096. }
  3097. }
  3098. if(!(s->flags&CODEC_FLAG_GRAY)){
  3099. uint8_t *dest[2] = {dest_cb, dest_cr};
  3100. if(transform_bypass){
  3101. idct_add = idct_dc_add = s->dsp.add_pixels4;
  3102. }else{
  3103. idct_add = s->dsp.h264_idct_add;
  3104. idct_dc_add = s->dsp.h264_idct_dc_add;
  3105. chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp, h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp][0]);
  3106. chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp, h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp][0]);
  3107. }
  3108. if(s->codec_id == CODEC_ID_H264){
  3109. for(i=16; i<16+8; i++){
  3110. if(h->non_zero_count_cache[ scan8[i] ])
  3111. idct_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  3112. else if(h->mb[i*16])
  3113. idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  3114. }
  3115. }else{
  3116. for(i=16; i<16+8; i++){
  3117. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
  3118. uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i];
  3119. svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
  3120. }
  3121. }
  3122. }
  3123. }
  3124. }
  3125. if(h->deblocking_filter) {
  3126. if (h->mb_aff_frame) {
  3127. const int mb_y = s->mb_y - 1;
  3128. uint8_t *pair_dest_y, *pair_dest_cb, *pair_dest_cr;
  3129. const int mb_xy= mb_x + mb_y*s->mb_stride;
  3130. const int mb_type_top = s->current_picture.mb_type[mb_xy];
  3131. const int mb_type_bottom= s->current_picture.mb_type[mb_xy+s->mb_stride];
  3132. uint8_t tmp = s->current_picture.data[1][384];
  3133. if (!bottom) return;
  3134. pair_dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
  3135. pair_dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  3136. pair_dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  3137. backup_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize);
  3138. // TODO deblock a pair
  3139. // top
  3140. s->mb_y--;
  3141. tprintf("call mbaff filter_mb mb_x:%d mb_y:%d pair_dest_y = %p, dest_y = %p\n", mb_x, mb_y, pair_dest_y, dest_y);
  3142. fill_caches(h, mb_type_top, 1); //FIXME don't fill stuff which isn't used by filter_mb
  3143. filter_mb(h, mb_x, mb_y, pair_dest_y, pair_dest_cb, pair_dest_cr, linesize, uvlinesize);
  3144. if (tmp != s->current_picture.data[1][384]) {
  3145. tprintf("modified pixel 8,1 (1)\n");
  3146. }
  3147. // bottom
  3148. s->mb_y++;
  3149. tprintf("call mbaff filter_mb\n");
  3150. fill_caches(h, mb_type_bottom, 1); //FIXME don't fill stuff which isn't used by filter_mb
  3151. filter_mb(h, mb_x, mb_y+1, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  3152. if (tmp != s->current_picture.data[1][384]) {
  3153. tprintf("modified pixel 8,1 (2)\n");
  3154. }
  3155. } else {
  3156. tprintf("call filter_mb\n");
  3157. backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  3158. fill_caches(h, mb_type, 1); //FIXME don't fill stuff which isn't used by filter_mb
  3159. filter_mb(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  3160. }
  3161. }
  3162. }
  3163. /**
  3164. * fills the default_ref_list.
  3165. */
  3166. static int fill_default_ref_list(H264Context *h){
  3167. MpegEncContext * const s = &h->s;
  3168. int i;
  3169. int smallest_poc_greater_than_current = -1;
  3170. Picture sorted_short_ref[32];
  3171. if(h->slice_type==B_TYPE){
  3172. int out_i;
  3173. int limit= INT_MIN;
  3174. /* sort frame according to poc in B slice */
  3175. for(out_i=0; out_i<h->short_ref_count; out_i++){
  3176. int best_i=INT_MIN;
  3177. int best_poc=INT_MAX;
  3178. for(i=0; i<h->short_ref_count; i++){
  3179. const int poc= h->short_ref[i]->poc;
  3180. if(poc > limit && poc < best_poc){
  3181. best_poc= poc;
  3182. best_i= i;
  3183. }
  3184. }
  3185. assert(best_i != INT_MIN);
  3186. limit= best_poc;
  3187. sorted_short_ref[out_i]= *h->short_ref[best_i];
  3188. tprintf("sorted poc: %d->%d poc:%d fn:%d\n", best_i, out_i, sorted_short_ref[out_i].poc, sorted_short_ref[out_i].frame_num);
  3189. if (-1 == smallest_poc_greater_than_current) {
  3190. if (h->short_ref[best_i]->poc >= s->current_picture_ptr->poc) {
  3191. smallest_poc_greater_than_current = out_i;
  3192. }
  3193. }
  3194. }
  3195. }
  3196. if(s->picture_structure == PICT_FRAME){
  3197. if(h->slice_type==B_TYPE){
  3198. int list;
  3199. tprintf("current poc: %d, smallest_poc_greater_than_current: %d\n", s->current_picture_ptr->poc, smallest_poc_greater_than_current);
  3200. // find the largest poc
  3201. for(list=0; list<2; list++){
  3202. int index = 0;
  3203. int j= -99;
  3204. int step= list ? -1 : 1;
  3205. for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++, j+=step) {
  3206. while(j<0 || j>= h->short_ref_count){
  3207. if(j != -99 && step == (list ? -1 : 1))
  3208. return -1;
  3209. step = -step;
  3210. j= smallest_poc_greater_than_current + (step>>1);
  3211. }
  3212. if(sorted_short_ref[j].reference != 3) continue;
  3213. h->default_ref_list[list][index ]= sorted_short_ref[j];
  3214. h->default_ref_list[list][index++].pic_id= sorted_short_ref[j].frame_num;
  3215. }
  3216. for(i = 0; i < 16 && index < h->ref_count[ list ]; i++){
  3217. if(h->long_ref[i] == NULL) continue;
  3218. if(h->long_ref[i]->reference != 3) continue;
  3219. h->default_ref_list[ list ][index ]= *h->long_ref[i];
  3220. h->default_ref_list[ list ][index++].pic_id= i;;
  3221. }
  3222. if(list && (smallest_poc_greater_than_current<=0 || smallest_poc_greater_than_current>=h->short_ref_count) && (1 < index)){
  3223. // swap the two first elements of L1 when
  3224. // L0 and L1 are identical
  3225. Picture temp= h->default_ref_list[1][0];
  3226. h->default_ref_list[1][0] = h->default_ref_list[1][1];
  3227. h->default_ref_list[1][1] = temp;
  3228. }
  3229. if(index < h->ref_count[ list ])
  3230. memset(&h->default_ref_list[list][index], 0, sizeof(Picture)*(h->ref_count[ list ] - index));
  3231. }
  3232. }else{
  3233. int index=0;
  3234. for(i=0; i<h->short_ref_count; i++){
  3235. if(h->short_ref[i]->reference != 3) continue; //FIXME refernce field shit
  3236. h->default_ref_list[0][index ]= *h->short_ref[i];
  3237. h->default_ref_list[0][index++].pic_id= h->short_ref[i]->frame_num;
  3238. }
  3239. for(i = 0; i < 16; i++){
  3240. if(h->long_ref[i] == NULL) continue;
  3241. if(h->long_ref[i]->reference != 3) continue;
  3242. h->default_ref_list[0][index ]= *h->long_ref[i];
  3243. h->default_ref_list[0][index++].pic_id= i;;
  3244. }
  3245. if(index < h->ref_count[0])
  3246. memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
  3247. }
  3248. }else{ //FIELD
  3249. if(h->slice_type==B_TYPE){
  3250. }else{
  3251. //FIXME second field balh
  3252. }
  3253. }
  3254. #ifdef TRACE
  3255. for (i=0; i<h->ref_count[0]; i++) {
  3256. tprintf("List0: %s fn:%d 0x%p\n", (h->default_ref_list[0][i].long_ref ? "LT" : "ST"), h->default_ref_list[0][i].pic_id, h->default_ref_list[0][i].data[0]);
  3257. }
  3258. if(h->slice_type==B_TYPE){
  3259. for (i=0; i<h->ref_count[1]; i++) {
  3260. tprintf("List1: %s fn:%d 0x%p\n", (h->default_ref_list[1][i].long_ref ? "LT" : "ST"), h->default_ref_list[1][i].pic_id, h->default_ref_list[0][i].data[0]);
  3261. }
  3262. }
  3263. #endif
  3264. return 0;
  3265. }
  3266. static void print_short_term(H264Context *h);
  3267. static void print_long_term(H264Context *h);
  3268. static int decode_ref_pic_list_reordering(H264Context *h){
  3269. MpegEncContext * const s = &h->s;
  3270. int list, index;
  3271. print_short_term(h);
  3272. print_long_term(h);
  3273. if(h->slice_type==I_TYPE || h->slice_type==SI_TYPE) return 0; //FIXME move before func
  3274. for(list=0; list<2; list++){
  3275. memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
  3276. if(get_bits1(&s->gb)){
  3277. int pred= h->curr_pic_num;
  3278. for(index=0; ; index++){
  3279. int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
  3280. int pic_id;
  3281. int i;
  3282. Picture *ref = NULL;
  3283. if(reordering_of_pic_nums_idc==3)
  3284. break;
  3285. if(index >= h->ref_count[list]){
  3286. av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
  3287. return -1;
  3288. }
  3289. if(reordering_of_pic_nums_idc<3){
  3290. if(reordering_of_pic_nums_idc<2){
  3291. const int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
  3292. if(abs_diff_pic_num >= h->max_pic_num){
  3293. av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
  3294. return -1;
  3295. }
  3296. if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
  3297. else pred+= abs_diff_pic_num;
  3298. pred &= h->max_pic_num - 1;
  3299. for(i= h->short_ref_count-1; i>=0; i--){
  3300. ref = h->short_ref[i];
  3301. assert(ref->reference == 3);
  3302. assert(!ref->long_ref);
  3303. if(ref->data[0] != NULL && ref->frame_num == pred && ref->long_ref == 0) // ignore non existing pictures by testing data[0] pointer
  3304. break;
  3305. }
  3306. if(i>=0)
  3307. ref->pic_id= ref->frame_num;
  3308. }else{
  3309. pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
  3310. ref = h->long_ref[pic_id];
  3311. ref->pic_id= pic_id;
  3312. assert(ref->reference == 3);
  3313. assert(ref->long_ref);
  3314. i=0;
  3315. }
  3316. if (i < 0) {
  3317. av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
  3318. memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
  3319. } else {
  3320. for(i=index; i+1<h->ref_count[list]; i++){
  3321. if(ref->long_ref == h->ref_list[list][i].long_ref && ref->pic_id == h->ref_list[list][i].pic_id)
  3322. break;
  3323. }
  3324. for(; i > index; i--){
  3325. h->ref_list[list][i]= h->ref_list[list][i-1];
  3326. }
  3327. h->ref_list[list][index]= *ref;
  3328. }
  3329. }else{
  3330. av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
  3331. return -1;
  3332. }
  3333. }
  3334. }
  3335. if(h->slice_type!=B_TYPE) break;
  3336. }
  3337. for(list=0; list<2; list++){
  3338. for(index= 0; index < h->ref_count[list]; index++){
  3339. if(!h->ref_list[list][index].data[0])
  3340. h->ref_list[list][index]= s->current_picture;
  3341. }
  3342. if(h->slice_type!=B_TYPE) break;
  3343. }
  3344. if(h->slice_type==B_TYPE && !h->direct_spatial_mv_pred)
  3345. direct_dist_scale_factor(h);
  3346. direct_ref_list_init(h);
  3347. return 0;
  3348. }
  3349. static int pred_weight_table(H264Context *h){
  3350. MpegEncContext * const s = &h->s;
  3351. int list, i;
  3352. int luma_def, chroma_def;
  3353. h->use_weight= 0;
  3354. h->use_weight_chroma= 0;
  3355. h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
  3356. h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
  3357. luma_def = 1<<h->luma_log2_weight_denom;
  3358. chroma_def = 1<<h->chroma_log2_weight_denom;
  3359. for(list=0; list<2; list++){
  3360. for(i=0; i<h->ref_count[list]; i++){
  3361. int luma_weight_flag, chroma_weight_flag;
  3362. luma_weight_flag= get_bits1(&s->gb);
  3363. if(luma_weight_flag){
  3364. h->luma_weight[list][i]= get_se_golomb(&s->gb);
  3365. h->luma_offset[list][i]= get_se_golomb(&s->gb);
  3366. if( h->luma_weight[list][i] != luma_def
  3367. || h->luma_offset[list][i] != 0)
  3368. h->use_weight= 1;
  3369. }else{
  3370. h->luma_weight[list][i]= luma_def;
  3371. h->luma_offset[list][i]= 0;
  3372. }
  3373. chroma_weight_flag= get_bits1(&s->gb);
  3374. if(chroma_weight_flag){
  3375. int j;
  3376. for(j=0; j<2; j++){
  3377. h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
  3378. h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
  3379. if( h->chroma_weight[list][i][j] != chroma_def
  3380. || h->chroma_offset[list][i][j] != 0)
  3381. h->use_weight_chroma= 1;
  3382. }
  3383. }else{
  3384. int j;
  3385. for(j=0; j<2; j++){
  3386. h->chroma_weight[list][i][j]= chroma_def;
  3387. h->chroma_offset[list][i][j]= 0;
  3388. }
  3389. }
  3390. }
  3391. if(h->slice_type != B_TYPE) break;
  3392. }
  3393. h->use_weight= h->use_weight || h->use_weight_chroma;
  3394. return 0;
  3395. }
  3396. static void implicit_weight_table(H264Context *h){
  3397. MpegEncContext * const s = &h->s;
  3398. int ref0, ref1;
  3399. int cur_poc = s->current_picture_ptr->poc;
  3400. if( h->ref_count[0] == 1 && h->ref_count[1] == 1
  3401. && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
  3402. h->use_weight= 0;
  3403. h->use_weight_chroma= 0;
  3404. return;
  3405. }
  3406. h->use_weight= 2;
  3407. h->use_weight_chroma= 2;
  3408. h->luma_log2_weight_denom= 5;
  3409. h->chroma_log2_weight_denom= 5;
  3410. /* FIXME: MBAFF */
  3411. for(ref0=0; ref0 < h->ref_count[0]; ref0++){
  3412. int poc0 = h->ref_list[0][ref0].poc;
  3413. for(ref1=0; ref1 < h->ref_count[1]; ref1++){
  3414. int poc1 = h->ref_list[1][ref1].poc;
  3415. int td = clip(poc1 - poc0, -128, 127);
  3416. if(td){
  3417. int tb = clip(cur_poc - poc0, -128, 127);
  3418. int tx = (16384 + (ABS(td) >> 1)) / td;
  3419. int dist_scale_factor = clip((tb*tx + 32) >> 6, -1024, 1023) >> 2;
  3420. if(dist_scale_factor < -64 || dist_scale_factor > 128)
  3421. h->implicit_weight[ref0][ref1] = 32;
  3422. else
  3423. h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
  3424. }else
  3425. h->implicit_weight[ref0][ref1] = 32;
  3426. }
  3427. }
  3428. }
  3429. static inline void unreference_pic(H264Context *h, Picture *pic){
  3430. int i;
  3431. pic->reference=0;
  3432. if(pic == h->delayed_output_pic)
  3433. pic->reference=1;
  3434. else{
  3435. for(i = 0; h->delayed_pic[i]; i++)
  3436. if(pic == h->delayed_pic[i]){
  3437. pic->reference=1;
  3438. break;
  3439. }
  3440. }
  3441. }
  3442. /**
  3443. * instantaneous decoder refresh.
  3444. */
  3445. static void idr(H264Context *h){
  3446. int i;
  3447. for(i=0; i<16; i++){
  3448. if (h->long_ref[i] != NULL) {
  3449. unreference_pic(h, h->long_ref[i]);
  3450. h->long_ref[i]= NULL;
  3451. }
  3452. }
  3453. h->long_ref_count=0;
  3454. for(i=0; i<h->short_ref_count; i++){
  3455. unreference_pic(h, h->short_ref[i]);
  3456. h->short_ref[i]= NULL;
  3457. }
  3458. h->short_ref_count=0;
  3459. }
  3460. /* forget old pics after a seek */
  3461. static void flush_dpb(AVCodecContext *avctx){
  3462. H264Context *h= avctx->priv_data;
  3463. int i;
  3464. for(i=0; i<16; i++)
  3465. h->delayed_pic[i]= NULL;
  3466. h->delayed_output_pic= NULL;
  3467. idr(h);
  3468. if(h->s.current_picture_ptr)
  3469. h->s.current_picture_ptr->reference= 0;
  3470. }
  3471. /**
  3472. *
  3473. * @return the removed picture or NULL if an error occurs
  3474. */
  3475. static Picture * remove_short(H264Context *h, int frame_num){
  3476. MpegEncContext * const s = &h->s;
  3477. int i;
  3478. if(s->avctx->debug&FF_DEBUG_MMCO)
  3479. av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
  3480. for(i=0; i<h->short_ref_count; i++){
  3481. Picture *pic= h->short_ref[i];
  3482. if(s->avctx->debug&FF_DEBUG_MMCO)
  3483. av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
  3484. if(pic->frame_num == frame_num){
  3485. h->short_ref[i]= NULL;
  3486. memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i - 1)*sizeof(Picture*));
  3487. h->short_ref_count--;
  3488. return pic;
  3489. }
  3490. }
  3491. return NULL;
  3492. }
  3493. /**
  3494. *
  3495. * @return the removed picture or NULL if an error occurs
  3496. */
  3497. static Picture * remove_long(H264Context *h, int i){
  3498. Picture *pic;
  3499. pic= h->long_ref[i];
  3500. h->long_ref[i]= NULL;
  3501. if(pic) h->long_ref_count--;
  3502. return pic;
  3503. }
  3504. /**
  3505. * print short term list
  3506. */
  3507. static void print_short_term(H264Context *h) {
  3508. uint32_t i;
  3509. if(h->s.avctx->debug&FF_DEBUG_MMCO) {
  3510. av_log(h->s.avctx, AV_LOG_DEBUG, "short term list:\n");
  3511. for(i=0; i<h->short_ref_count; i++){
  3512. Picture *pic= h->short_ref[i];
  3513. av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
  3514. }
  3515. }
  3516. }
  3517. /**
  3518. * print long term list
  3519. */
  3520. static void print_long_term(H264Context *h) {
  3521. uint32_t i;
  3522. if(h->s.avctx->debug&FF_DEBUG_MMCO) {
  3523. av_log(h->s.avctx, AV_LOG_DEBUG, "long term list:\n");
  3524. for(i = 0; i < 16; i++){
  3525. Picture *pic= h->long_ref[i];
  3526. if (pic) {
  3527. av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
  3528. }
  3529. }
  3530. }
  3531. }
  3532. /**
  3533. * Executes the reference picture marking (memory management control operations).
  3534. */
  3535. static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){
  3536. MpegEncContext * const s = &h->s;
  3537. int i, j;
  3538. int current_is_long=0;
  3539. Picture *pic;
  3540. if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0)
  3541. av_log(h->s.avctx, AV_LOG_DEBUG, "no mmco here\n");
  3542. for(i=0; i<mmco_count; i++){
  3543. if(s->avctx->debug&FF_DEBUG_MMCO)
  3544. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_frame_num, h->mmco[i].long_index);
  3545. switch(mmco[i].opcode){
  3546. case MMCO_SHORT2UNUSED:
  3547. pic= remove_short(h, mmco[i].short_frame_num);
  3548. if(pic)
  3549. unreference_pic(h, pic);
  3550. else if(s->avctx->debug&FF_DEBUG_MMCO)
  3551. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: remove_short() failure\n");
  3552. break;
  3553. case MMCO_SHORT2LONG:
  3554. pic= remove_long(h, mmco[i].long_index);
  3555. if(pic) unreference_pic(h, pic);
  3556. h->long_ref[ mmco[i].long_index ]= remove_short(h, mmco[i].short_frame_num);
  3557. h->long_ref[ mmco[i].long_index ]->long_ref=1;
  3558. h->long_ref_count++;
  3559. break;
  3560. case MMCO_LONG2UNUSED:
  3561. pic= remove_long(h, mmco[i].long_index);
  3562. if(pic)
  3563. unreference_pic(h, pic);
  3564. else if(s->avctx->debug&FF_DEBUG_MMCO)
  3565. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: remove_long() failure\n");
  3566. break;
  3567. case MMCO_LONG:
  3568. pic= remove_long(h, mmco[i].long_index);
  3569. if(pic) unreference_pic(h, pic);
  3570. h->long_ref[ mmco[i].long_index ]= s->current_picture_ptr;
  3571. h->long_ref[ mmco[i].long_index ]->long_ref=1;
  3572. h->long_ref_count++;
  3573. current_is_long=1;
  3574. break;
  3575. case MMCO_SET_MAX_LONG:
  3576. assert(mmco[i].long_index <= 16);
  3577. // just remove the long term which index is greater than new max
  3578. for(j = mmco[i].long_index; j<16; j++){
  3579. pic = remove_long(h, j);
  3580. if (pic) unreference_pic(h, pic);
  3581. }
  3582. break;
  3583. case MMCO_RESET:
  3584. while(h->short_ref_count){
  3585. pic= remove_short(h, h->short_ref[0]->frame_num);
  3586. unreference_pic(h, pic);
  3587. }
  3588. for(j = 0; j < 16; j++) {
  3589. pic= remove_long(h, j);
  3590. if(pic) unreference_pic(h, pic);
  3591. }
  3592. break;
  3593. default: assert(0);
  3594. }
  3595. }
  3596. if(!current_is_long){
  3597. pic= remove_short(h, s->current_picture_ptr->frame_num);
  3598. if(pic){
  3599. unreference_pic(h, pic);
  3600. av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term buffer state detected\n");
  3601. }
  3602. if(h->short_ref_count)
  3603. memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*));
  3604. h->short_ref[0]= s->current_picture_ptr;
  3605. h->short_ref[0]->long_ref=0;
  3606. h->short_ref_count++;
  3607. }
  3608. print_short_term(h);
  3609. print_long_term(h);
  3610. return 0;
  3611. }
  3612. static int decode_ref_pic_marking(H264Context *h){
  3613. MpegEncContext * const s = &h->s;
  3614. int i;
  3615. if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields
  3616. s->broken_link= get_bits1(&s->gb) -1;
  3617. h->mmco[0].long_index= get_bits1(&s->gb) - 1; // current_long_term_idx
  3618. if(h->mmco[0].long_index == -1)
  3619. h->mmco_index= 0;
  3620. else{
  3621. h->mmco[0].opcode= MMCO_LONG;
  3622. h->mmco_index= 1;
  3623. }
  3624. }else{
  3625. if(get_bits1(&s->gb)){ // adaptive_ref_pic_marking_mode_flag
  3626. for(i= 0; i<MAX_MMCO_COUNT; i++) {
  3627. MMCOOpcode opcode= get_ue_golomb(&s->gb);;
  3628. h->mmco[i].opcode= opcode;
  3629. if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){
  3630. h->mmco[i].short_frame_num= (h->frame_num - get_ue_golomb(&s->gb) - 1) & ((1<<h->sps.log2_max_frame_num)-1); //FIXME fields
  3631. /* if(h->mmco[i].short_frame_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_frame_num ] == NULL){
  3632. av_log(s->avctx, AV_LOG_ERROR, "illegal short ref in memory management control operation %d\n", mmco);
  3633. return -1;
  3634. }*/
  3635. }
  3636. if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){
  3637. h->mmco[i].long_index= get_ue_golomb(&s->gb);
  3638. if(/*h->mmco[i].long_index >= h->long_ref_count || h->long_ref[ h->mmco[i].long_index ] == NULL*/ h->mmco[i].long_index >= 16){
  3639. av_log(h->s.avctx, AV_LOG_ERROR, "illegal long ref in memory management control operation %d\n", opcode);
  3640. return -1;
  3641. }
  3642. }
  3643. if(opcode > MMCO_LONG){
  3644. av_log(h->s.avctx, AV_LOG_ERROR, "illegal memory management control operation %d\n", opcode);
  3645. return -1;
  3646. }
  3647. if(opcode == MMCO_END)
  3648. break;
  3649. }
  3650. h->mmco_index= i;
  3651. }else{
  3652. assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count);
  3653. if(h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count){ //FIXME fields
  3654. h->mmco[0].opcode= MMCO_SHORT2UNUSED;
  3655. h->mmco[0].short_frame_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num;
  3656. h->mmco_index= 1;
  3657. }else
  3658. h->mmco_index= 0;
  3659. }
  3660. }
  3661. return 0;
  3662. }
  3663. static int init_poc(H264Context *h){
  3664. MpegEncContext * const s = &h->s;
  3665. const int max_frame_num= 1<<h->sps.log2_max_frame_num;
  3666. int field_poc[2];
  3667. if(h->nal_unit_type == NAL_IDR_SLICE){
  3668. h->frame_num_offset= 0;
  3669. }else{
  3670. if(h->frame_num < h->prev_frame_num)
  3671. h->frame_num_offset= h->prev_frame_num_offset + max_frame_num;
  3672. else
  3673. h->frame_num_offset= h->prev_frame_num_offset;
  3674. }
  3675. if(h->sps.poc_type==0){
  3676. const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
  3677. if(h->nal_unit_type == NAL_IDR_SLICE){
  3678. h->prev_poc_msb=
  3679. h->prev_poc_lsb= 0;
  3680. }
  3681. if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
  3682. h->poc_msb = h->prev_poc_msb + max_poc_lsb;
  3683. else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
  3684. h->poc_msb = h->prev_poc_msb - max_poc_lsb;
  3685. else
  3686. h->poc_msb = h->prev_poc_msb;
  3687. //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
  3688. field_poc[0] =
  3689. field_poc[1] = h->poc_msb + h->poc_lsb;
  3690. if(s->picture_structure == PICT_FRAME)
  3691. field_poc[1] += h->delta_poc_bottom;
  3692. }else if(h->sps.poc_type==1){
  3693. int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
  3694. int i;
  3695. if(h->sps.poc_cycle_length != 0)
  3696. abs_frame_num = h->frame_num_offset + h->frame_num;
  3697. else
  3698. abs_frame_num = 0;
  3699. if(h->nal_ref_idc==0 && abs_frame_num > 0)
  3700. abs_frame_num--;
  3701. expected_delta_per_poc_cycle = 0;
  3702. for(i=0; i < h->sps.poc_cycle_length; i++)
  3703. expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
  3704. if(abs_frame_num > 0){
  3705. int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
  3706. int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
  3707. expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
  3708. for(i = 0; i <= frame_num_in_poc_cycle; i++)
  3709. expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
  3710. } else
  3711. expectedpoc = 0;
  3712. if(h->nal_ref_idc == 0)
  3713. expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
  3714. field_poc[0] = expectedpoc + h->delta_poc[0];
  3715. field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
  3716. if(s->picture_structure == PICT_FRAME)
  3717. field_poc[1] += h->delta_poc[1];
  3718. }else{
  3719. int poc;
  3720. if(h->nal_unit_type == NAL_IDR_SLICE){
  3721. poc= 0;
  3722. }else{
  3723. if(h->nal_ref_idc) poc= 2*(h->frame_num_offset + h->frame_num);
  3724. else poc= 2*(h->frame_num_offset + h->frame_num) - 1;
  3725. }
  3726. field_poc[0]= poc;
  3727. field_poc[1]= poc;
  3728. }
  3729. if(s->picture_structure != PICT_BOTTOM_FIELD)
  3730. s->current_picture_ptr->field_poc[0]= field_poc[0];
  3731. if(s->picture_structure != PICT_TOP_FIELD)
  3732. s->current_picture_ptr->field_poc[1]= field_poc[1];
  3733. if(s->picture_structure == PICT_FRAME) // FIXME field pix?
  3734. s->current_picture_ptr->poc= FFMIN(field_poc[0], field_poc[1]);
  3735. return 0;
  3736. }
  3737. /**
  3738. * decodes a slice header.
  3739. * this will allso call MPV_common_init() and frame_start() as needed
  3740. */
  3741. static int decode_slice_header(H264Context *h){
  3742. MpegEncContext * const s = &h->s;
  3743. int first_mb_in_slice, pps_id;
  3744. int num_ref_idx_active_override_flag;
  3745. static const uint8_t slice_type_map[5]= {P_TYPE, B_TYPE, I_TYPE, SP_TYPE, SI_TYPE};
  3746. int slice_type;
  3747. int default_ref_list_done = 0;
  3748. s->current_picture.reference= h->nal_ref_idc != 0;
  3749. s->dropable= h->nal_ref_idc == 0;
  3750. first_mb_in_slice= get_ue_golomb(&s->gb);
  3751. slice_type= get_ue_golomb(&s->gb);
  3752. if(slice_type > 9){
  3753. av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
  3754. return -1;
  3755. }
  3756. if(slice_type > 4){
  3757. slice_type -= 5;
  3758. h->slice_type_fixed=1;
  3759. }else
  3760. h->slice_type_fixed=0;
  3761. slice_type= slice_type_map[ slice_type ];
  3762. if (slice_type == I_TYPE
  3763. || (h->slice_num != 0 && slice_type == h->slice_type) ) {
  3764. default_ref_list_done = 1;
  3765. }
  3766. h->slice_type= slice_type;
  3767. s->pict_type= h->slice_type; // to make a few old func happy, it's wrong though
  3768. pps_id= get_ue_golomb(&s->gb);
  3769. if(pps_id>255){
  3770. av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
  3771. return -1;
  3772. }
  3773. h->pps= h->pps_buffer[pps_id];
  3774. if(h->pps.slice_group_count == 0){
  3775. av_log(h->s.avctx, AV_LOG_ERROR, "non existing PPS referenced\n");
  3776. return -1;
  3777. }
  3778. h->sps= h->sps_buffer[ h->pps.sps_id ];
  3779. if(h->sps.log2_max_frame_num == 0){
  3780. av_log(h->s.avctx, AV_LOG_ERROR, "non existing SPS referenced\n");
  3781. return -1;
  3782. }
  3783. if(h->dequant_coeff_pps != pps_id){
  3784. h->dequant_coeff_pps = pps_id;
  3785. init_dequant_tables(h);
  3786. }
  3787. s->mb_width= h->sps.mb_width;
  3788. s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
  3789. h->b_stride= s->mb_width*4 + 1;
  3790. h->b8_stride= s->mb_width*2 + 1;
  3791. s->width = 16*s->mb_width - 2*(h->sps.crop_left + h->sps.crop_right );
  3792. if(h->sps.frame_mbs_only_flag)
  3793. s->height= 16*s->mb_height - 2*(h->sps.crop_top + h->sps.crop_bottom);
  3794. else
  3795. s->height= 16*s->mb_height - 4*(h->sps.crop_top + h->sps.crop_bottom); //FIXME recheck
  3796. if (s->context_initialized
  3797. && ( s->width != s->avctx->width || s->height != s->avctx->height)) {
  3798. free_tables(h);
  3799. MPV_common_end(s);
  3800. }
  3801. if (!s->context_initialized) {
  3802. if (MPV_common_init(s) < 0)
  3803. return -1;
  3804. if(s->dsp.h264_idct_add == ff_h264_idct_add_c){ //FIXME little ugly
  3805. memcpy(h->zigzag_scan, zigzag_scan, 16*sizeof(uint8_t));
  3806. memcpy(h-> field_scan, field_scan, 16*sizeof(uint8_t));
  3807. }else{
  3808. int i;
  3809. for(i=0; i<16; i++){
  3810. #define T(x) (x>>2) | ((x<<2) & 0xF)
  3811. h->zigzag_scan[i] = T(zigzag_scan[i]);
  3812. h-> field_scan[i] = T( field_scan[i]);
  3813. }
  3814. }
  3815. if(h->sps.transform_bypass){ //FIXME same ugly
  3816. h->zigzag_scan_q0 = zigzag_scan;
  3817. h->field_scan_q0 = field_scan;
  3818. }else{
  3819. h->zigzag_scan_q0 = h->zigzag_scan;
  3820. h->field_scan_q0 = h->field_scan;
  3821. }
  3822. alloc_tables(h);
  3823. s->avctx->width = s->width;
  3824. s->avctx->height = s->height;
  3825. s->avctx->sample_aspect_ratio= h->sps.sar;
  3826. if(!s->avctx->sample_aspect_ratio.den)
  3827. s->avctx->sample_aspect_ratio.den = 1;
  3828. if(h->sps.timing_info_present_flag){
  3829. s->avctx->time_base= (AVRational){h->sps.num_units_in_tick * 2, h->sps.time_scale};
  3830. if(h->x264_build > 0 && h->x264_build < 44)
  3831. s->avctx->time_base.den *= 2;
  3832. av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
  3833. s->avctx->time_base.num, s->avctx->time_base.den, 1<<30);
  3834. }
  3835. }
  3836. if(h->slice_num == 0){
  3837. if(frame_start(h) < 0)
  3838. return -1;
  3839. }
  3840. s->current_picture_ptr->frame_num= //FIXME frame_num cleanup
  3841. h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
  3842. h->mb_aff_frame = 0;
  3843. if(h->sps.frame_mbs_only_flag){
  3844. s->picture_structure= PICT_FRAME;
  3845. }else{
  3846. if(get_bits1(&s->gb)) { //field_pic_flag
  3847. s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
  3848. } else {
  3849. s->picture_structure= PICT_FRAME;
  3850. first_mb_in_slice <<= h->sps.mb_aff;
  3851. h->mb_aff_frame = h->sps.mb_aff;
  3852. }
  3853. }
  3854. s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
  3855. s->resync_mb_y = s->mb_y = first_mb_in_slice / s->mb_width;
  3856. if(s->mb_y >= s->mb_height){
  3857. return -1;
  3858. }
  3859. if(s->picture_structure==PICT_FRAME){
  3860. h->curr_pic_num= h->frame_num;
  3861. h->max_pic_num= 1<< h->sps.log2_max_frame_num;
  3862. }else{
  3863. h->curr_pic_num= 2*h->frame_num;
  3864. h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
  3865. }
  3866. if(h->nal_unit_type == NAL_IDR_SLICE){
  3867. get_ue_golomb(&s->gb); /* idr_pic_id */
  3868. }
  3869. if(h->sps.poc_type==0){
  3870. h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
  3871. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
  3872. h->delta_poc_bottom= get_se_golomb(&s->gb);
  3873. }
  3874. }
  3875. if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
  3876. h->delta_poc[0]= get_se_golomb(&s->gb);
  3877. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
  3878. h->delta_poc[1]= get_se_golomb(&s->gb);
  3879. }
  3880. init_poc(h);
  3881. if(h->pps.redundant_pic_cnt_present){
  3882. h->redundant_pic_count= get_ue_golomb(&s->gb);
  3883. }
  3884. //set defaults, might be overriden a few line later
  3885. h->ref_count[0]= h->pps.ref_count[0];
  3886. h->ref_count[1]= h->pps.ref_count[1];
  3887. if(h->slice_type == P_TYPE || h->slice_type == SP_TYPE || h->slice_type == B_TYPE){
  3888. if(h->slice_type == B_TYPE){
  3889. h->direct_spatial_mv_pred= get_bits1(&s->gb);
  3890. }
  3891. num_ref_idx_active_override_flag= get_bits1(&s->gb);
  3892. if(num_ref_idx_active_override_flag){
  3893. h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  3894. if(h->slice_type==B_TYPE)
  3895. h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  3896. if(h->ref_count[0] > 32 || h->ref_count[1] > 32){
  3897. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
  3898. return -1;
  3899. }
  3900. }
  3901. }
  3902. if(!default_ref_list_done){
  3903. fill_default_ref_list(h);
  3904. }
  3905. if(decode_ref_pic_list_reordering(h) < 0)
  3906. return -1;
  3907. if( (h->pps.weighted_pred && (h->slice_type == P_TYPE || h->slice_type == SP_TYPE ))
  3908. || (h->pps.weighted_bipred_idc==1 && h->slice_type==B_TYPE ) )
  3909. pred_weight_table(h);
  3910. else if(h->pps.weighted_bipred_idc==2 && h->slice_type==B_TYPE)
  3911. implicit_weight_table(h);
  3912. else
  3913. h->use_weight = 0;
  3914. if(s->current_picture.reference)
  3915. decode_ref_pic_marking(h);
  3916. if( h->slice_type != I_TYPE && h->slice_type != SI_TYPE && h->pps.cabac )
  3917. h->cabac_init_idc = get_ue_golomb(&s->gb);
  3918. h->last_qscale_diff = 0;
  3919. s->qscale = h->pps.init_qp + get_se_golomb(&s->gb);
  3920. if(s->qscale<0 || s->qscale>51){
  3921. av_log(s->avctx, AV_LOG_ERROR, "QP %d out of range\n", s->qscale);
  3922. return -1;
  3923. }
  3924. h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, s->qscale);
  3925. //FIXME qscale / qp ... stuff
  3926. if(h->slice_type == SP_TYPE){
  3927. get_bits1(&s->gb); /* sp_for_switch_flag */
  3928. }
  3929. if(h->slice_type==SP_TYPE || h->slice_type == SI_TYPE){
  3930. get_se_golomb(&s->gb); /* slice_qs_delta */
  3931. }
  3932. h->deblocking_filter = 1;
  3933. h->slice_alpha_c0_offset = 0;
  3934. h->slice_beta_offset = 0;
  3935. if( h->pps.deblocking_filter_parameters_present ) {
  3936. h->deblocking_filter= get_ue_golomb(&s->gb);
  3937. if(h->deblocking_filter < 2)
  3938. h->deblocking_filter^= 1; // 1<->0
  3939. if( h->deblocking_filter ) {
  3940. h->slice_alpha_c0_offset = get_se_golomb(&s->gb) << 1;
  3941. h->slice_beta_offset = get_se_golomb(&s->gb) << 1;
  3942. }
  3943. }
  3944. if( s->avctx->skip_loop_filter >= AVDISCARD_ALL
  3945. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type != I_TYPE)
  3946. ||(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type == B_TYPE)
  3947. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  3948. h->deblocking_filter= 0;
  3949. #if 0 //FMO
  3950. if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
  3951. slice_group_change_cycle= get_bits(&s->gb, ?);
  3952. #endif
  3953. h->slice_num++;
  3954. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  3955. av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c pps:%d frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s\n",
  3956. h->slice_num,
  3957. (s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"),
  3958. first_mb_in_slice,
  3959. av_get_pict_type_char(h->slice_type),
  3960. pps_id, h->frame_num,
  3961. s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
  3962. h->ref_count[0], h->ref_count[1],
  3963. s->qscale,
  3964. h->deblocking_filter, h->slice_alpha_c0_offset/2, h->slice_beta_offset/2,
  3965. h->use_weight,
  3966. h->use_weight==1 && h->use_weight_chroma ? "c" : ""
  3967. );
  3968. }
  3969. return 0;
  3970. }
  3971. /**
  3972. *
  3973. */
  3974. static inline int get_level_prefix(GetBitContext *gb){
  3975. unsigned int buf;
  3976. int log;
  3977. OPEN_READER(re, gb);
  3978. UPDATE_CACHE(re, gb);
  3979. buf=GET_CACHE(re, gb);
  3980. log= 32 - av_log2(buf);
  3981. #ifdef TRACE
  3982. print_bin(buf>>(32-log), log);
  3983. av_log(NULL, AV_LOG_DEBUG, "%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
  3984. #endif
  3985. LAST_SKIP_BITS(re, gb, log);
  3986. CLOSE_READER(re, gb);
  3987. return log-1;
  3988. }
  3989. static inline int get_dct8x8_allowed(H264Context *h){
  3990. int i;
  3991. for(i=0; i<4; i++){
  3992. if(!IS_SUB_8X8(h->sub_mb_type[i])
  3993. || (!h->sps.direct_8x8_inference_flag && IS_DIRECT(h->sub_mb_type[i])))
  3994. return 0;
  3995. }
  3996. return 1;
  3997. }
  3998. /**
  3999. * decodes a residual block.
  4000. * @param n block index
  4001. * @param scantable scantable
  4002. * @param max_coeff number of coefficients in the block
  4003. * @return <0 if an error occured
  4004. */
  4005. static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff){
  4006. MpegEncContext * const s = &h->s;
  4007. static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
  4008. int level[16];
  4009. int zeros_left, coeff_num, coeff_token, total_coeff, i, j, trailing_ones, run_before;
  4010. //FIXME put trailing_onex into the context
  4011. if(n == CHROMA_DC_BLOCK_INDEX){
  4012. coeff_token= get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
  4013. total_coeff= coeff_token>>2;
  4014. }else{
  4015. if(n == LUMA_DC_BLOCK_INDEX){
  4016. total_coeff= pred_non_zero_count(h, 0);
  4017. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  4018. total_coeff= coeff_token>>2;
  4019. }else{
  4020. total_coeff= pred_non_zero_count(h, n);
  4021. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  4022. total_coeff= coeff_token>>2;
  4023. h->non_zero_count_cache[ scan8[n] ]= total_coeff;
  4024. }
  4025. }
  4026. //FIXME set last_non_zero?
  4027. if(total_coeff==0)
  4028. return 0;
  4029. trailing_ones= coeff_token&3;
  4030. tprintf("trailing:%d, total:%d\n", trailing_ones, total_coeff);
  4031. assert(total_coeff<=16);
  4032. for(i=0; i<trailing_ones; i++){
  4033. level[i]= 1 - 2*get_bits1(gb);
  4034. }
  4035. if(i<total_coeff) {
  4036. int level_code, mask;
  4037. int suffix_length = total_coeff > 10 && trailing_ones < 3;
  4038. int prefix= get_level_prefix(gb);
  4039. //first coefficient has suffix_length equal to 0 or 1
  4040. if(prefix<14){ //FIXME try to build a large unified VLC table for all this
  4041. if(suffix_length)
  4042. level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
  4043. else
  4044. level_code= (prefix<<suffix_length); //part
  4045. }else if(prefix==14){
  4046. if(suffix_length)
  4047. level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
  4048. else
  4049. level_code= prefix + get_bits(gb, 4); //part
  4050. }else if(prefix==15){
  4051. level_code= (prefix<<suffix_length) + get_bits(gb, 12); //part
  4052. if(suffix_length==0) level_code+=15; //FIXME doesn't make (much)sense
  4053. }else{
  4054. av_log(h->s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
  4055. return -1;
  4056. }
  4057. if(trailing_ones < 3) level_code += 2;
  4058. suffix_length = 1;
  4059. if(level_code > 5)
  4060. suffix_length++;
  4061. mask= -(level_code&1);
  4062. level[i]= (((2+level_code)>>1) ^ mask) - mask;
  4063. i++;
  4064. //remaining coefficients have suffix_length > 0
  4065. for(;i<total_coeff;i++) {
  4066. static const int suffix_limit[7] = {0,5,11,23,47,95,INT_MAX };
  4067. prefix = get_level_prefix(gb);
  4068. if(prefix<15){
  4069. level_code = (prefix<<suffix_length) + get_bits(gb, suffix_length);
  4070. }else if(prefix==15){
  4071. level_code = (prefix<<suffix_length) + get_bits(gb, 12);
  4072. }else{
  4073. av_log(h->s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
  4074. return -1;
  4075. }
  4076. mask= -(level_code&1);
  4077. level[i]= (((2+level_code)>>1) ^ mask) - mask;
  4078. if(level_code > suffix_limit[suffix_length])
  4079. suffix_length++;
  4080. }
  4081. }
  4082. if(total_coeff == max_coeff)
  4083. zeros_left=0;
  4084. else{
  4085. if(n == CHROMA_DC_BLOCK_INDEX)
  4086. zeros_left= get_vlc2(gb, chroma_dc_total_zeros_vlc[ total_coeff-1 ].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
  4087. else
  4088. zeros_left= get_vlc2(gb, total_zeros_vlc[ total_coeff-1 ].table, TOTAL_ZEROS_VLC_BITS, 1);
  4089. }
  4090. coeff_num = zeros_left + total_coeff - 1;
  4091. j = scantable[coeff_num];
  4092. if(n > 24){
  4093. block[j] = level[0];
  4094. for(i=1;i<total_coeff;i++) {
  4095. if(zeros_left <= 0)
  4096. run_before = 0;
  4097. else if(zeros_left < 7){
  4098. run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
  4099. }else{
  4100. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
  4101. }
  4102. zeros_left -= run_before;
  4103. coeff_num -= 1 + run_before;
  4104. j= scantable[ coeff_num ];
  4105. block[j]= level[i];
  4106. }
  4107. }else{
  4108. block[j] = (level[0] * qmul[j] + 32)>>6;
  4109. for(i=1;i<total_coeff;i++) {
  4110. if(zeros_left <= 0)
  4111. run_before = 0;
  4112. else if(zeros_left < 7){
  4113. run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
  4114. }else{
  4115. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
  4116. }
  4117. zeros_left -= run_before;
  4118. coeff_num -= 1 + run_before;
  4119. j= scantable[ coeff_num ];
  4120. block[j]= (level[i] * qmul[j] + 32)>>6;
  4121. }
  4122. }
  4123. if(zeros_left<0){
  4124. av_log(h->s.avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", s->mb_x, s->mb_y);
  4125. return -1;
  4126. }
  4127. return 0;
  4128. }
  4129. /**
  4130. * decodes a P_SKIP or B_SKIP macroblock
  4131. */
  4132. static void decode_mb_skip(H264Context *h){
  4133. MpegEncContext * const s = &h->s;
  4134. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  4135. int mb_type=0;
  4136. memset(h->non_zero_count[mb_xy], 0, 16);
  4137. memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
  4138. if(h->mb_aff_frame && s->mb_skip_run==0 && (s->mb_y&1)==0){
  4139. h->mb_field_decoding_flag= get_bits1(&s->gb);
  4140. }
  4141. if(h->mb_field_decoding_flag)
  4142. mb_type|= MB_TYPE_INTERLACED;
  4143. if( h->slice_type == B_TYPE )
  4144. {
  4145. // just for fill_caches. pred_direct_motion will set the real mb_type
  4146. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
  4147. fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
  4148. pred_direct_motion(h, &mb_type);
  4149. if(h->pps.cabac){
  4150. fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4);
  4151. fill_rectangle(h->mvd_cache[1][scan8[0]], 4, 4, 8, 0, 4);
  4152. }
  4153. }
  4154. else
  4155. {
  4156. int mx, my;
  4157. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
  4158. fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
  4159. pred_pskip_motion(h, &mx, &my);
  4160. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
  4161. fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
  4162. if(h->pps.cabac)
  4163. fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4);
  4164. }
  4165. write_back_motion(h, mb_type);
  4166. s->current_picture.mb_type[mb_xy]= mb_type|MB_TYPE_SKIP;
  4167. s->current_picture.qscale_table[mb_xy]= s->qscale;
  4168. h->slice_table[ mb_xy ]= h->slice_num;
  4169. h->prev_mb_skipped= 1;
  4170. }
  4171. /**
  4172. * decodes a macroblock
  4173. * @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  4174. */
  4175. static int decode_mb_cavlc(H264Context *h){
  4176. MpegEncContext * const s = &h->s;
  4177. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  4178. int mb_type, partition_count, cbp;
  4179. int dct8x8_allowed= h->pps.transform_8x8_mode;
  4180. s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?
  4181. tprintf("pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
  4182. cbp = 0; /* avoid warning. FIXME: find a solution without slowing
  4183. down the code */
  4184. if(h->slice_type != I_TYPE && h->slice_type != SI_TYPE){
  4185. if(s->mb_skip_run==-1)
  4186. s->mb_skip_run= get_ue_golomb(&s->gb);
  4187. if (s->mb_skip_run--) {
  4188. decode_mb_skip(h);
  4189. return 0;
  4190. }
  4191. }
  4192. if(h->mb_aff_frame){
  4193. if ( ((s->mb_y&1) == 0) || h->prev_mb_skipped)
  4194. h->mb_field_decoding_flag = get_bits1(&s->gb);
  4195. }else
  4196. h->mb_field_decoding_flag= (s->picture_structure!=PICT_FRAME);
  4197. h->prev_mb_skipped= 0;
  4198. mb_type= get_ue_golomb(&s->gb);
  4199. if(h->slice_type == B_TYPE){
  4200. if(mb_type < 23){
  4201. partition_count= b_mb_type_info[mb_type].partition_count;
  4202. mb_type= b_mb_type_info[mb_type].type;
  4203. }else{
  4204. mb_type -= 23;
  4205. goto decode_intra_mb;
  4206. }
  4207. }else if(h->slice_type == P_TYPE /*|| h->slice_type == SP_TYPE */){
  4208. if(mb_type < 5){
  4209. partition_count= p_mb_type_info[mb_type].partition_count;
  4210. mb_type= p_mb_type_info[mb_type].type;
  4211. }else{
  4212. mb_type -= 5;
  4213. goto decode_intra_mb;
  4214. }
  4215. }else{
  4216. assert(h->slice_type == I_TYPE);
  4217. decode_intra_mb:
  4218. if(mb_type > 25){
  4219. av_log(h->s.avctx, AV_LOG_ERROR, "mb_type %d in %c slice to large at %d %d\n", mb_type, av_get_pict_type_char(h->slice_type), s->mb_x, s->mb_y);
  4220. return -1;
  4221. }
  4222. partition_count=0;
  4223. cbp= i_mb_type_info[mb_type].cbp;
  4224. h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
  4225. mb_type= i_mb_type_info[mb_type].type;
  4226. }
  4227. if(h->mb_field_decoding_flag)
  4228. mb_type |= MB_TYPE_INTERLACED;
  4229. h->slice_table[ mb_xy ]= h->slice_num;
  4230. if(IS_INTRA_PCM(mb_type)){
  4231. unsigned int x, y;
  4232. // we assume these blocks are very rare so we dont optimize it
  4233. align_get_bits(&s->gb);
  4234. // The pixels are stored in the same order as levels in h->mb array.
  4235. for(y=0; y<16; y++){
  4236. const int index= 4*(y&3) + 32*((y>>2)&1) + 128*(y>>3);
  4237. for(x=0; x<16; x++){
  4238. tprintf("LUMA ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4239. h->mb[index + (x&3) + 16*((x>>2)&1) + 64*(x>>3)]= get_bits(&s->gb, 8);
  4240. }
  4241. }
  4242. for(y=0; y<8; y++){
  4243. const int index= 256 + 4*(y&3) + 32*(y>>2);
  4244. for(x=0; x<8; x++){
  4245. tprintf("CHROMA U ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4246. h->mb[index + (x&3) + 16*(x>>2)]= get_bits(&s->gb, 8);
  4247. }
  4248. }
  4249. for(y=0; y<8; y++){
  4250. const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
  4251. for(x=0; x<8; x++){
  4252. tprintf("CHROMA V ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4253. h->mb[index + (x&3) + 16*(x>>2)]= get_bits(&s->gb, 8);
  4254. }
  4255. }
  4256. // In deblocking, the quantizer is 0
  4257. s->current_picture.qscale_table[mb_xy]= 0;
  4258. h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, 0);
  4259. // All coeffs are present
  4260. memset(h->non_zero_count[mb_xy], 16, 16);
  4261. s->current_picture.mb_type[mb_xy]= mb_type;
  4262. return 0;
  4263. }
  4264. fill_caches(h, mb_type, 0);
  4265. //mb_pred
  4266. if(IS_INTRA(mb_type)){
  4267. // init_top_left_availability(h);
  4268. if(IS_INTRA4x4(mb_type)){
  4269. int i;
  4270. int di = 1;
  4271. if(dct8x8_allowed && get_bits1(&s->gb)){
  4272. mb_type |= MB_TYPE_8x8DCT;
  4273. di = 4;
  4274. }
  4275. // fill_intra4x4_pred_table(h);
  4276. for(i=0; i<16; i+=di){
  4277. const int mode_coded= !get_bits1(&s->gb);
  4278. const int predicted_mode= pred_intra_mode(h, i);
  4279. int mode;
  4280. if(mode_coded){
  4281. const int rem_mode= get_bits(&s->gb, 3);
  4282. if(rem_mode<predicted_mode)
  4283. mode= rem_mode;
  4284. else
  4285. mode= rem_mode + 1;
  4286. }else{
  4287. mode= predicted_mode;
  4288. }
  4289. if(di==4)
  4290. fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
  4291. else
  4292. h->intra4x4_pred_mode_cache[ scan8[i] ] = mode;
  4293. }
  4294. write_back_intra_pred_mode(h);
  4295. if( check_intra4x4_pred_mode(h) < 0)
  4296. return -1;
  4297. }else{
  4298. h->intra16x16_pred_mode= check_intra_pred_mode(h, h->intra16x16_pred_mode);
  4299. if(h->intra16x16_pred_mode < 0)
  4300. return -1;
  4301. }
  4302. h->chroma_pred_mode= get_ue_golomb(&s->gb);
  4303. h->chroma_pred_mode= check_intra_pred_mode(h, h->chroma_pred_mode);
  4304. if(h->chroma_pred_mode < 0)
  4305. return -1;
  4306. }else if(partition_count==4){
  4307. int i, j, sub_partition_count[4], list, ref[2][4];
  4308. if(h->slice_type == B_TYPE){
  4309. for(i=0; i<4; i++){
  4310. h->sub_mb_type[i]= get_ue_golomb(&s->gb);
  4311. if(h->sub_mb_type[i] >=13){
  4312. av_log(h->s.avctx, AV_LOG_ERROR, "B sub_mb_type %d out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
  4313. return -1;
  4314. }
  4315. sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  4316. h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  4317. }
  4318. if( IS_DIRECT(h->sub_mb_type[0]) || IS_DIRECT(h->sub_mb_type[1])
  4319. || IS_DIRECT(h->sub_mb_type[2]) || IS_DIRECT(h->sub_mb_type[3])) {
  4320. pred_direct_motion(h, &mb_type);
  4321. h->ref_cache[0][scan8[4]] =
  4322. h->ref_cache[1][scan8[4]] =
  4323. h->ref_cache[0][scan8[12]] =
  4324. h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
  4325. }
  4326. }else{
  4327. assert(h->slice_type == P_TYPE || h->slice_type == SP_TYPE); //FIXME SP correct ?
  4328. for(i=0; i<4; i++){
  4329. h->sub_mb_type[i]= get_ue_golomb(&s->gb);
  4330. if(h->sub_mb_type[i] >=4){
  4331. av_log(h->s.avctx, AV_LOG_ERROR, "P sub_mb_type %d out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
  4332. return -1;
  4333. }
  4334. sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  4335. h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  4336. }
  4337. }
  4338. for(list=0; list<2; list++){
  4339. int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
  4340. if(ref_count == 0) continue;
  4341. if (h->mb_aff_frame && h->mb_field_decoding_flag) {
  4342. ref_count <<= 1;
  4343. }
  4344. for(i=0; i<4; i++){
  4345. if(IS_DIRECT(h->sub_mb_type[i])) continue;
  4346. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  4347. ref[list][i] = get_te0_golomb(&s->gb, ref_count); //FIXME init to 0 before and skip?
  4348. }else{
  4349. //FIXME
  4350. ref[list][i] = -1;
  4351. }
  4352. }
  4353. }
  4354. if(dct8x8_allowed)
  4355. dct8x8_allowed = get_dct8x8_allowed(h);
  4356. for(list=0; list<2; list++){
  4357. const int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
  4358. if(ref_count == 0) continue;
  4359. for(i=0; i<4; i++){
  4360. if(IS_DIRECT(h->sub_mb_type[i])) {
  4361. h->ref_cache[list][ scan8[4*i] ] = h->ref_cache[list][ scan8[4*i]+1 ];
  4362. continue;
  4363. }
  4364. h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ]=
  4365. h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  4366. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  4367. const int sub_mb_type= h->sub_mb_type[i];
  4368. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  4369. for(j=0; j<sub_partition_count[i]; j++){
  4370. int mx, my;
  4371. const int index= 4*i + block_width*j;
  4372. int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
  4373. pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my);
  4374. mx += get_se_golomb(&s->gb);
  4375. my += get_se_golomb(&s->gb);
  4376. tprintf("final mv:%d %d\n", mx, my);
  4377. if(IS_SUB_8X8(sub_mb_type)){
  4378. mv_cache[ 0 ][0]= mv_cache[ 1 ][0]=
  4379. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  4380. mv_cache[ 0 ][1]= mv_cache[ 1 ][1]=
  4381. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  4382. }else if(IS_SUB_8X4(sub_mb_type)){
  4383. mv_cache[ 0 ][0]= mv_cache[ 1 ][0]= mx;
  4384. mv_cache[ 0 ][1]= mv_cache[ 1 ][1]= my;
  4385. }else if(IS_SUB_4X8(sub_mb_type)){
  4386. mv_cache[ 0 ][0]= mv_cache[ 8 ][0]= mx;
  4387. mv_cache[ 0 ][1]= mv_cache[ 8 ][1]= my;
  4388. }else{
  4389. assert(IS_SUB_4X4(sub_mb_type));
  4390. mv_cache[ 0 ][0]= mx;
  4391. mv_cache[ 0 ][1]= my;
  4392. }
  4393. }
  4394. }else{
  4395. uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
  4396. p[0] = p[1]=
  4397. p[8] = p[9]= 0;
  4398. }
  4399. }
  4400. }
  4401. }else if(IS_DIRECT(mb_type)){
  4402. pred_direct_motion(h, &mb_type);
  4403. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  4404. }else{
  4405. int list, mx, my, i;
  4406. //FIXME we should set ref_idx_l? to 0 if we use that later ...
  4407. if(IS_16X16(mb_type)){
  4408. for(list=0; list<2; list++){
  4409. if(h->ref_count[list]>0){
  4410. if(IS_DIR(mb_type, 0, list)){
  4411. const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4412. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
  4413. }else
  4414. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, (LIST_NOT_USED&0xFF), 1);
  4415. }
  4416. }
  4417. for(list=0; list<2; list++){
  4418. if(IS_DIR(mb_type, 0, list)){
  4419. pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my);
  4420. mx += get_se_golomb(&s->gb);
  4421. my += get_se_golomb(&s->gb);
  4422. tprintf("final mv:%d %d\n", mx, my);
  4423. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
  4424. }else
  4425. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, 0, 4);
  4426. }
  4427. }
  4428. else if(IS_16X8(mb_type)){
  4429. for(list=0; list<2; list++){
  4430. if(h->ref_count[list]>0){
  4431. for(i=0; i<2; i++){
  4432. if(IS_DIR(mb_type, i, list)){
  4433. const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4434. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
  4435. }else
  4436. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, (LIST_NOT_USED&0xFF), 1);
  4437. }
  4438. }
  4439. }
  4440. for(list=0; list<2; list++){
  4441. for(i=0; i<2; i++){
  4442. if(IS_DIR(mb_type, i, list)){
  4443. pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my);
  4444. mx += get_se_golomb(&s->gb);
  4445. my += get_se_golomb(&s->gb);
  4446. tprintf("final mv:%d %d\n", mx, my);
  4447. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4);
  4448. }else
  4449. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
  4450. }
  4451. }
  4452. }else{
  4453. assert(IS_8X16(mb_type));
  4454. for(list=0; list<2; list++){
  4455. if(h->ref_count[list]>0){
  4456. for(i=0; i<2; i++){
  4457. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  4458. const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4459. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
  4460. }else
  4461. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, (LIST_NOT_USED&0xFF), 1);
  4462. }
  4463. }
  4464. }
  4465. for(list=0; list<2; list++){
  4466. for(i=0; i<2; i++){
  4467. if(IS_DIR(mb_type, i, list)){
  4468. pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
  4469. mx += get_se_golomb(&s->gb);
  4470. my += get_se_golomb(&s->gb);
  4471. tprintf("final mv:%d %d\n", mx, my);
  4472. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4);
  4473. }else
  4474. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
  4475. }
  4476. }
  4477. }
  4478. }
  4479. if(IS_INTER(mb_type))
  4480. write_back_motion(h, mb_type);
  4481. if(!IS_INTRA16x16(mb_type)){
  4482. cbp= get_ue_golomb(&s->gb);
  4483. if(cbp > 47){
  4484. av_log(h->s.avctx, AV_LOG_ERROR, "cbp too large (%d) at %d %d\n", cbp, s->mb_x, s->mb_y);
  4485. return -1;
  4486. }
  4487. if(IS_INTRA4x4(mb_type))
  4488. cbp= golomb_to_intra4x4_cbp[cbp];
  4489. else
  4490. cbp= golomb_to_inter_cbp[cbp];
  4491. }
  4492. if(dct8x8_allowed && (cbp&15) && !IS_INTRA(mb_type)){
  4493. if(get_bits1(&s->gb))
  4494. mb_type |= MB_TYPE_8x8DCT;
  4495. }
  4496. s->current_picture.mb_type[mb_xy]= mb_type;
  4497. if(cbp || IS_INTRA16x16(mb_type)){
  4498. int i8x8, i4x4, chroma_idx;
  4499. int chroma_qp, dquant;
  4500. GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr;
  4501. const uint8_t *scan, *dc_scan;
  4502. // fill_non_zero_count_cache(h);
  4503. if(IS_INTERLACED(mb_type)){
  4504. scan= s->qscale ? h->field_scan : h->field_scan_q0;
  4505. dc_scan= luma_dc_field_scan;
  4506. }else{
  4507. scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  4508. dc_scan= luma_dc_zigzag_scan;
  4509. }
  4510. dquant= get_se_golomb(&s->gb);
  4511. if( dquant > 25 || dquant < -26 ){
  4512. av_log(h->s.avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, s->mb_x, s->mb_y);
  4513. return -1;
  4514. }
  4515. s->qscale += dquant;
  4516. if(((unsigned)s->qscale) > 51){
  4517. if(s->qscale<0) s->qscale+= 52;
  4518. else s->qscale-= 52;
  4519. }
  4520. h->chroma_qp= chroma_qp= get_chroma_qp(h->pps.chroma_qp_index_offset, s->qscale);
  4521. if(IS_INTRA16x16(mb_type)){
  4522. if( decode_residual(h, h->intra_gb_ptr, h->mb, LUMA_DC_BLOCK_INDEX, dc_scan, h->dequant4_coeff[0][s->qscale], 16) < 0){
  4523. return -1; //FIXME continue if partitioned and other return -1 too
  4524. }
  4525. assert((cbp&15) == 0 || (cbp&15) == 15);
  4526. if(cbp&15){
  4527. for(i8x8=0; i8x8<4; i8x8++){
  4528. for(i4x4=0; i4x4<4; i4x4++){
  4529. const int index= i4x4 + 4*i8x8;
  4530. if( decode_residual(h, h->intra_gb_ptr, h->mb + 16*index, index, scan + 1, h->dequant4_coeff[0][s->qscale], 15) < 0 ){
  4531. return -1;
  4532. }
  4533. }
  4534. }
  4535. }else{
  4536. fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
  4537. }
  4538. }else{
  4539. for(i8x8=0; i8x8<4; i8x8++){
  4540. if(cbp & (1<<i8x8)){
  4541. if(IS_8x8DCT(mb_type)){
  4542. DCTELEM *buf = &h->mb[64*i8x8];
  4543. uint8_t *nnz;
  4544. for(i4x4=0; i4x4<4; i4x4++){
  4545. if( decode_residual(h, gb, buf, i4x4+4*i8x8, zigzag_scan8x8_cavlc+16*i4x4,
  4546. h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 16) <0 )
  4547. return -1;
  4548. }
  4549. nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  4550. nnz[0] += nnz[1] + nnz[8] + nnz[9];
  4551. }else{
  4552. for(i4x4=0; i4x4<4; i4x4++){
  4553. const int index= i4x4 + 4*i8x8;
  4554. if( decode_residual(h, gb, h->mb + 16*index, index, scan, h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale], 16) <0 ){
  4555. return -1;
  4556. }
  4557. }
  4558. }
  4559. }else{
  4560. uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  4561. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  4562. }
  4563. }
  4564. }
  4565. if(cbp&0x30){
  4566. for(chroma_idx=0; chroma_idx<2; chroma_idx++)
  4567. if( decode_residual(h, gb, h->mb + 256 + 16*4*chroma_idx, CHROMA_DC_BLOCK_INDEX, chroma_dc_scan, NULL, 4) < 0){
  4568. return -1;
  4569. }
  4570. }
  4571. if(cbp&0x20){
  4572. for(chroma_idx=0; chroma_idx<2; chroma_idx++){
  4573. for(i4x4=0; i4x4<4; i4x4++){
  4574. const int index= 16 + 4*chroma_idx + i4x4;
  4575. if( decode_residual(h, gb, h->mb + 16*index, index, scan + 1, h->dequant4_coeff[chroma_idx+1+(IS_INTRA( mb_type ) ? 0:3)][chroma_qp], 15) < 0){
  4576. return -1;
  4577. }
  4578. }
  4579. }
  4580. }else{
  4581. uint8_t * const nnz= &h->non_zero_count_cache[0];
  4582. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  4583. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  4584. }
  4585. }else{
  4586. uint8_t * const nnz= &h->non_zero_count_cache[0];
  4587. fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
  4588. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  4589. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  4590. }
  4591. s->current_picture.qscale_table[mb_xy]= s->qscale;
  4592. write_back_non_zero_count(h);
  4593. return 0;
  4594. }
  4595. static int decode_cabac_field_decoding_flag(H264Context *h) {
  4596. MpegEncContext * const s = &h->s;
  4597. const int mb_x = s->mb_x;
  4598. const int mb_y = s->mb_y & ~1;
  4599. const int mba_xy = mb_x - 1 + mb_y *s->mb_stride;
  4600. const int mbb_xy = mb_x + (mb_y-2)*s->mb_stride;
  4601. unsigned int ctx = 0;
  4602. if( h->slice_table[mba_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) ) {
  4603. ctx += 1;
  4604. }
  4605. if( h->slice_table[mbb_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) ) {
  4606. ctx += 1;
  4607. }
  4608. return get_cabac( &h->cabac, &h->cabac_state[70 + ctx] );
  4609. }
  4610. static int decode_cabac_intra_mb_type(H264Context *h, int ctx_base, int intra_slice) {
  4611. uint8_t *state= &h->cabac_state[ctx_base];
  4612. int mb_type;
  4613. if(intra_slice){
  4614. MpegEncContext * const s = &h->s;
  4615. const int mba_xy = h->left_mb_xy[0];
  4616. const int mbb_xy = h->top_mb_xy;
  4617. int ctx=0;
  4618. if( h->slice_table[mba_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mba_xy] ) )
  4619. ctx++;
  4620. if( h->slice_table[mbb_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mbb_xy] ) )
  4621. ctx++;
  4622. if( get_cabac( &h->cabac, &state[ctx] ) == 0 )
  4623. return 0; /* I4x4 */
  4624. state += 2;
  4625. }else{
  4626. if( get_cabac( &h->cabac, &state[0] ) == 0 )
  4627. return 0; /* I4x4 */
  4628. }
  4629. if( get_cabac_terminate( &h->cabac ) )
  4630. return 25; /* PCM */
  4631. mb_type = 1; /* I16x16 */
  4632. if( get_cabac( &h->cabac, &state[1] ) )
  4633. mb_type += 12; /* cbp_luma != 0 */
  4634. if( get_cabac( &h->cabac, &state[2] ) ) {
  4635. if( get_cabac( &h->cabac, &state[2+intra_slice] ) )
  4636. mb_type += 4 * 2; /* cbp_chroma == 2 */
  4637. else
  4638. mb_type += 4 * 1; /* cbp_chroma == 1 */
  4639. }
  4640. if( get_cabac( &h->cabac, &state[3+intra_slice] ) )
  4641. mb_type += 2;
  4642. if( get_cabac( &h->cabac, &state[3+2*intra_slice] ) )
  4643. mb_type += 1;
  4644. return mb_type;
  4645. }
  4646. static int decode_cabac_mb_type( H264Context *h ) {
  4647. MpegEncContext * const s = &h->s;
  4648. if( h->slice_type == I_TYPE ) {
  4649. return decode_cabac_intra_mb_type(h, 3, 1);
  4650. } else if( h->slice_type == P_TYPE ) {
  4651. if( get_cabac( &h->cabac, &h->cabac_state[14] ) == 0 ) {
  4652. /* P-type */
  4653. if( get_cabac( &h->cabac, &h->cabac_state[15] ) == 0 ) {
  4654. if( get_cabac( &h->cabac, &h->cabac_state[16] ) == 0 )
  4655. return 0; /* P_L0_D16x16; */
  4656. else
  4657. return 3; /* P_8x8; */
  4658. } else {
  4659. if( get_cabac( &h->cabac, &h->cabac_state[17] ) == 0 )
  4660. return 2; /* P_L0_D8x16; */
  4661. else
  4662. return 1; /* P_L0_D16x8; */
  4663. }
  4664. } else {
  4665. return decode_cabac_intra_mb_type(h, 17, 0) + 5;
  4666. }
  4667. } else if( h->slice_type == B_TYPE ) {
  4668. const int mba_xy = h->left_mb_xy[0];
  4669. const int mbb_xy = h->top_mb_xy;
  4670. int ctx = 0;
  4671. int bits;
  4672. if( h->slice_table[mba_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mba_xy] )
  4673. && !IS_DIRECT( s->current_picture.mb_type[mba_xy] ) )
  4674. ctx++;
  4675. if( h->slice_table[mbb_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mbb_xy] )
  4676. && !IS_DIRECT( s->current_picture.mb_type[mbb_xy] ) )
  4677. ctx++;
  4678. if( !get_cabac( &h->cabac, &h->cabac_state[27+ctx] ) )
  4679. return 0; /* B_Direct_16x16 */
  4680. if( !get_cabac( &h->cabac, &h->cabac_state[27+3] ) ) {
  4681. return 1 + get_cabac( &h->cabac, &h->cabac_state[27+5] ); /* B_L[01]_16x16 */
  4682. }
  4683. bits = get_cabac( &h->cabac, &h->cabac_state[27+4] ) << 3;
  4684. bits|= get_cabac( &h->cabac, &h->cabac_state[27+5] ) << 2;
  4685. bits|= get_cabac( &h->cabac, &h->cabac_state[27+5] ) << 1;
  4686. bits|= get_cabac( &h->cabac, &h->cabac_state[27+5] );
  4687. if( bits < 8 )
  4688. return bits + 3; /* B_Bi_16x16 through B_L1_L0_16x8 */
  4689. else if( bits == 13 ) {
  4690. return decode_cabac_intra_mb_type(h, 32, 0) + 23;
  4691. } else if( bits == 14 )
  4692. return 11; /* B_L1_L0_8x16 */
  4693. else if( bits == 15 )
  4694. return 22; /* B_8x8 */
  4695. bits= ( bits<<1 ) | get_cabac( &h->cabac, &h->cabac_state[27+5] );
  4696. return bits - 4; /* B_L0_Bi_* through B_Bi_Bi_* */
  4697. } else {
  4698. /* TODO SI/SP frames? */
  4699. return -1;
  4700. }
  4701. }
  4702. static int decode_cabac_mb_skip( H264Context *h) {
  4703. MpegEncContext * const s = &h->s;
  4704. const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  4705. const int mba_xy = mb_xy - 1;
  4706. const int mbb_xy = mb_xy - s->mb_stride;
  4707. int ctx = 0;
  4708. if( h->slice_table[mba_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mba_xy] ))
  4709. ctx++;
  4710. if( h->slice_table[mbb_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mbb_xy] ))
  4711. ctx++;
  4712. if( h->slice_type == P_TYPE || h->slice_type == SP_TYPE)
  4713. return get_cabac( &h->cabac, &h->cabac_state[11+ctx] );
  4714. else /* B-frame */
  4715. return get_cabac( &h->cabac, &h->cabac_state[24+ctx] );
  4716. }
  4717. static int decode_cabac_mb_intra4x4_pred_mode( H264Context *h, int pred_mode ) {
  4718. int mode = 0;
  4719. if( get_cabac( &h->cabac, &h->cabac_state[68] ) )
  4720. return pred_mode;
  4721. mode += 1 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4722. mode += 2 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4723. mode += 4 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4724. if( mode >= pred_mode )
  4725. return mode + 1;
  4726. else
  4727. return mode;
  4728. }
  4729. static int decode_cabac_mb_chroma_pre_mode( H264Context *h) {
  4730. const int mba_xy = h->left_mb_xy[0];
  4731. const int mbb_xy = h->top_mb_xy;
  4732. int ctx = 0;
  4733. /* No need to test for IS_INTRA4x4 and IS_INTRA16x16, as we set chroma_pred_mode_table to 0 */
  4734. if( h->slice_table[mba_xy] == h->slice_num && h->chroma_pred_mode_table[mba_xy] != 0 )
  4735. ctx++;
  4736. if( h->slice_table[mbb_xy] == h->slice_num && h->chroma_pred_mode_table[mbb_xy] != 0 )
  4737. ctx++;
  4738. if( get_cabac( &h->cabac, &h->cabac_state[64+ctx] ) == 0 )
  4739. return 0;
  4740. if( get_cabac( &h->cabac, &h->cabac_state[64+3] ) == 0 )
  4741. return 1;
  4742. if( get_cabac( &h->cabac, &h->cabac_state[64+3] ) == 0 )
  4743. return 2;
  4744. else
  4745. return 3;
  4746. }
  4747. static const uint8_t block_idx_x[16] = {
  4748. 0, 1, 0, 1, 2, 3, 2, 3, 0, 1, 0, 1, 2, 3, 2, 3
  4749. };
  4750. static const uint8_t block_idx_y[16] = {
  4751. 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3
  4752. };
  4753. static const uint8_t block_idx_xy[4][4] = {
  4754. { 0, 2, 8, 10},
  4755. { 1, 3, 9, 11},
  4756. { 4, 6, 12, 14},
  4757. { 5, 7, 13, 15}
  4758. };
  4759. static int decode_cabac_mb_cbp_luma( H264Context *h) {
  4760. MpegEncContext * const s = &h->s;
  4761. int cbp = 0;
  4762. int i8x8;
  4763. for( i8x8 = 0; i8x8 < 4; i8x8++ ) {
  4764. int cbp_a = -1;
  4765. int cbp_b = -1;
  4766. int x, y;
  4767. int ctx = 0;
  4768. x = block_idx_x[4*i8x8];
  4769. y = block_idx_y[4*i8x8];
  4770. if( x > 0 )
  4771. cbp_a = cbp;
  4772. else if( s->mb_x > 0 && (h->slice_table[h->left_mb_xy[0]] == h->slice_num)) {
  4773. cbp_a = h->left_cbp;
  4774. tprintf("cbp_a = left_cbp = %x\n", cbp_a);
  4775. }
  4776. if( y > 0 )
  4777. cbp_b = cbp;
  4778. else if( s->mb_y > 0 && (h->slice_table[h->top_mb_xy] == h->slice_num)) {
  4779. cbp_b = h->top_cbp;
  4780. tprintf("cbp_b = top_cbp = %x\n", cbp_b);
  4781. }
  4782. /* No need to test for skip as we put 0 for skip block */
  4783. /* No need to test for IPCM as we put 1 for IPCM block */
  4784. if( cbp_a >= 0 ) {
  4785. int i8x8a = block_idx_xy[(x-1)&0x03][y]/4;
  4786. if( ((cbp_a >> i8x8a)&0x01) == 0 )
  4787. ctx++;
  4788. }
  4789. if( cbp_b >= 0 ) {
  4790. int i8x8b = block_idx_xy[x][(y-1)&0x03]/4;
  4791. if( ((cbp_b >> i8x8b)&0x01) == 0 )
  4792. ctx += 2;
  4793. }
  4794. if( get_cabac( &h->cabac, &h->cabac_state[73 + ctx] ) ) {
  4795. cbp |= 1 << i8x8;
  4796. }
  4797. }
  4798. return cbp;
  4799. }
  4800. static int decode_cabac_mb_cbp_chroma( H264Context *h) {
  4801. int ctx;
  4802. int cbp_a, cbp_b;
  4803. cbp_a = (h->left_cbp>>4)&0x03;
  4804. cbp_b = (h-> top_cbp>>4)&0x03;
  4805. ctx = 0;
  4806. if( cbp_a > 0 ) ctx++;
  4807. if( cbp_b > 0 ) ctx += 2;
  4808. if( get_cabac( &h->cabac, &h->cabac_state[77 + ctx] ) == 0 )
  4809. return 0;
  4810. ctx = 4;
  4811. if( cbp_a == 2 ) ctx++;
  4812. if( cbp_b == 2 ) ctx += 2;
  4813. return 1 + get_cabac( &h->cabac, &h->cabac_state[77 + ctx] );
  4814. }
  4815. static int decode_cabac_mb_dqp( H264Context *h) {
  4816. MpegEncContext * const s = &h->s;
  4817. int mbn_xy;
  4818. int ctx = 0;
  4819. int val = 0;
  4820. if( s->mb_x > 0 )
  4821. mbn_xy = s->mb_x + s->mb_y*s->mb_stride - 1;
  4822. else
  4823. mbn_xy = s->mb_width - 1 + (s->mb_y-1)*s->mb_stride;
  4824. if( h->last_qscale_diff != 0 && ( IS_INTRA16x16(s->current_picture.mb_type[mbn_xy] ) || (h->cbp_table[mbn_xy]&0x3f) ) )
  4825. ctx++;
  4826. while( get_cabac( &h->cabac, &h->cabac_state[60 + ctx] ) ) {
  4827. if( ctx < 2 )
  4828. ctx = 2;
  4829. else
  4830. ctx = 3;
  4831. val++;
  4832. if(val > 102) //prevent infinite loop
  4833. return INT_MIN;
  4834. }
  4835. if( val&0x01 )
  4836. return (val + 1)/2;
  4837. else
  4838. return -(val + 1)/2;
  4839. }
  4840. static int decode_cabac_p_mb_sub_type( H264Context *h ) {
  4841. if( get_cabac( &h->cabac, &h->cabac_state[21] ) )
  4842. return 0; /* 8x8 */
  4843. if( !get_cabac( &h->cabac, &h->cabac_state[22] ) )
  4844. return 1; /* 8x4 */
  4845. if( get_cabac( &h->cabac, &h->cabac_state[23] ) )
  4846. return 2; /* 4x8 */
  4847. return 3; /* 4x4 */
  4848. }
  4849. static int decode_cabac_b_mb_sub_type( H264Context *h ) {
  4850. int type;
  4851. if( !get_cabac( &h->cabac, &h->cabac_state[36] ) )
  4852. return 0; /* B_Direct_8x8 */
  4853. if( !get_cabac( &h->cabac, &h->cabac_state[37] ) )
  4854. return 1 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L0_8x8, B_L1_8x8 */
  4855. type = 3;
  4856. if( get_cabac( &h->cabac, &h->cabac_state[38] ) ) {
  4857. if( get_cabac( &h->cabac, &h->cabac_state[39] ) )
  4858. return 11 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L1_4x4, B_Bi_4x4 */
  4859. type += 4;
  4860. }
  4861. type += 2*get_cabac( &h->cabac, &h->cabac_state[39] );
  4862. type += get_cabac( &h->cabac, &h->cabac_state[39] );
  4863. return type;
  4864. }
  4865. static inline int decode_cabac_mb_transform_size( H264Context *h ) {
  4866. return get_cabac( &h->cabac, &h->cabac_state[399 + h->neighbor_transform_size] );
  4867. }
  4868. static int decode_cabac_mb_ref( H264Context *h, int list, int n ) {
  4869. int refa = h->ref_cache[list][scan8[n] - 1];
  4870. int refb = h->ref_cache[list][scan8[n] - 8];
  4871. int ref = 0;
  4872. int ctx = 0;
  4873. if( h->slice_type == B_TYPE) {
  4874. if( refa > 0 && !h->direct_cache[scan8[n] - 1] )
  4875. ctx++;
  4876. if( refb > 0 && !h->direct_cache[scan8[n] - 8] )
  4877. ctx += 2;
  4878. } else {
  4879. if( refa > 0 )
  4880. ctx++;
  4881. if( refb > 0 )
  4882. ctx += 2;
  4883. }
  4884. while( get_cabac( &h->cabac, &h->cabac_state[54+ctx] ) ) {
  4885. ref++;
  4886. if( ctx < 4 )
  4887. ctx = 4;
  4888. else
  4889. ctx = 5;
  4890. }
  4891. return ref;
  4892. }
  4893. static int decode_cabac_mb_mvd( H264Context *h, int list, int n, int l ) {
  4894. int amvd = abs( h->mvd_cache[list][scan8[n] - 1][l] ) +
  4895. abs( h->mvd_cache[list][scan8[n] - 8][l] );
  4896. int ctxbase = (l == 0) ? 40 : 47;
  4897. int ctx, mvd;
  4898. if( amvd < 3 )
  4899. ctx = 0;
  4900. else if( amvd > 32 )
  4901. ctx = 2;
  4902. else
  4903. ctx = 1;
  4904. if(!get_cabac(&h->cabac, &h->cabac_state[ctxbase+ctx]))
  4905. return 0;
  4906. mvd= 1;
  4907. ctx= 3;
  4908. while( mvd < 9 && get_cabac( &h->cabac, &h->cabac_state[ctxbase+ctx] ) ) {
  4909. mvd++;
  4910. if( ctx < 6 )
  4911. ctx++;
  4912. }
  4913. if( mvd >= 9 ) {
  4914. int k = 3;
  4915. while( get_cabac_bypass( &h->cabac ) ) {
  4916. mvd += 1 << k;
  4917. k++;
  4918. }
  4919. while( k-- ) {
  4920. if( get_cabac_bypass( &h->cabac ) )
  4921. mvd += 1 << k;
  4922. }
  4923. }
  4924. if( get_cabac_bypass( &h->cabac ) ) return -mvd;
  4925. else return mvd;
  4926. }
  4927. static int inline get_cabac_cbf_ctx( H264Context *h, int cat, int idx ) {
  4928. int nza, nzb;
  4929. int ctx = 0;
  4930. if( cat == 0 ) {
  4931. nza = h->left_cbp&0x100;
  4932. nzb = h-> top_cbp&0x100;
  4933. } else if( cat == 1 || cat == 2 ) {
  4934. nza = h->non_zero_count_cache[scan8[idx] - 1];
  4935. nzb = h->non_zero_count_cache[scan8[idx] - 8];
  4936. } else if( cat == 3 ) {
  4937. nza = (h->left_cbp>>(6+idx))&0x01;
  4938. nzb = (h-> top_cbp>>(6+idx))&0x01;
  4939. } else {
  4940. assert(cat == 4);
  4941. nza = h->non_zero_count_cache[scan8[16+idx] - 1];
  4942. nzb = h->non_zero_count_cache[scan8[16+idx] - 8];
  4943. }
  4944. if( nza > 0 )
  4945. ctx++;
  4946. if( nzb > 0 )
  4947. ctx += 2;
  4948. return ctx + 4 * cat;
  4949. }
  4950. static int decode_cabac_residual( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff) {
  4951. const int mb_xy = h->s.mb_x + h->s.mb_y*h->s.mb_stride;
  4952. static const int significant_coeff_flag_field_offset[2] = { 105, 277 };
  4953. static const int last_significant_coeff_flag_field_offset[2] = { 166, 338 };
  4954. static const int significant_coeff_flag_offset[6] = { 0, 15, 29, 44, 47, 297 };
  4955. static const int last_significant_coeff_flag_offset[6] = { 0, 15, 29, 44, 47, 251 };
  4956. static const int coeff_abs_level_m1_offset[6] = { 227+0, 227+10, 227+20, 227+30, 227+39, 426 };
  4957. static const int significant_coeff_flag_offset_8x8[63] = {
  4958. 0, 1, 2, 3, 4, 5, 5, 4, 4, 3, 3, 4, 4, 4, 5, 5,
  4959. 4, 4, 4, 4, 3, 3, 6, 7, 7, 7, 8, 9,10, 9, 8, 7,
  4960. 7, 6,11,12,13,11, 6, 7, 8, 9,14,10, 9, 8, 6,11,
  4961. 12,13,11, 6, 9,14,10, 9,11,12,13,11,14,10,12
  4962. };
  4963. static const int last_coeff_flag_offset_8x8[63] = {
  4964. 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  4965. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  4966. 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  4967. 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8
  4968. };
  4969. int index[64];
  4970. int i, last;
  4971. int coeff_count = 0;
  4972. int abslevel1 = 1;
  4973. int abslevelgt1 = 0;
  4974. uint8_t *significant_coeff_ctx_base;
  4975. uint8_t *last_coeff_ctx_base;
  4976. uint8_t *abs_level_m1_ctx_base;
  4977. /* cat: 0-> DC 16x16 n = 0
  4978. * 1-> AC 16x16 n = luma4x4idx
  4979. * 2-> Luma4x4 n = luma4x4idx
  4980. * 3-> DC Chroma n = iCbCr
  4981. * 4-> AC Chroma n = 4 * iCbCr + chroma4x4idx
  4982. * 5-> Luma8x8 n = 4 * luma8x8idx
  4983. */
  4984. /* read coded block flag */
  4985. if( cat != 5 ) {
  4986. if( get_cabac( &h->cabac, &h->cabac_state[85 + get_cabac_cbf_ctx( h, cat, n ) ] ) == 0 ) {
  4987. if( cat == 1 || cat == 2 )
  4988. h->non_zero_count_cache[scan8[n]] = 0;
  4989. else if( cat == 4 )
  4990. h->non_zero_count_cache[scan8[16+n]] = 0;
  4991. return 0;
  4992. }
  4993. }
  4994. significant_coeff_ctx_base = h->cabac_state
  4995. + significant_coeff_flag_offset[cat]
  4996. + significant_coeff_flag_field_offset[h->mb_field_decoding_flag];
  4997. last_coeff_ctx_base = h->cabac_state
  4998. + last_significant_coeff_flag_offset[cat]
  4999. + last_significant_coeff_flag_field_offset[h->mb_field_decoding_flag];
  5000. abs_level_m1_ctx_base = h->cabac_state
  5001. + coeff_abs_level_m1_offset[cat];
  5002. if( cat == 5 ) {
  5003. #define DECODE_SIGNIFICANCE( coefs, sig_off, last_off ) \
  5004. for(last= 0; last < coefs; last++) { \
  5005. uint8_t *sig_ctx = significant_coeff_ctx_base + sig_off; \
  5006. if( get_cabac( &h->cabac, sig_ctx )) { \
  5007. uint8_t *last_ctx = last_coeff_ctx_base + last_off; \
  5008. index[coeff_count++] = last; \
  5009. if( get_cabac( &h->cabac, last_ctx ) ) { \
  5010. last= max_coeff; \
  5011. break; \
  5012. } \
  5013. } \
  5014. }
  5015. DECODE_SIGNIFICANCE( 63, significant_coeff_flag_offset_8x8[last],
  5016. last_coeff_flag_offset_8x8[last] );
  5017. } else {
  5018. DECODE_SIGNIFICANCE( max_coeff - 1, last, last );
  5019. }
  5020. if( last == max_coeff -1 ) {
  5021. index[coeff_count++] = last;
  5022. }
  5023. assert(coeff_count > 0);
  5024. if( cat == 0 )
  5025. h->cbp_table[mb_xy] |= 0x100;
  5026. else if( cat == 1 || cat == 2 )
  5027. h->non_zero_count_cache[scan8[n]] = coeff_count;
  5028. else if( cat == 3 )
  5029. h->cbp_table[mb_xy] |= 0x40 << n;
  5030. else if( cat == 4 )
  5031. h->non_zero_count_cache[scan8[16+n]] = coeff_count;
  5032. else {
  5033. assert( cat == 5 );
  5034. fill_rectangle(&h->non_zero_count_cache[scan8[n]], 2, 2, 8, coeff_count, 1);
  5035. }
  5036. for( i = coeff_count - 1; i >= 0; i-- ) {
  5037. uint8_t *ctx = (abslevelgt1 != 0 ? 0 : FFMIN( 4, abslevel1 )) + abs_level_m1_ctx_base;
  5038. int j= scantable[index[i]];
  5039. if( get_cabac( &h->cabac, ctx ) == 0 ) {
  5040. if( !qmul ) {
  5041. if( get_cabac_bypass( &h->cabac ) ) block[j] = -1;
  5042. else block[j] = 1;
  5043. }else{
  5044. if( get_cabac_bypass( &h->cabac ) ) block[j] = (-qmul[j] + 32) >> 6;
  5045. else block[j] = ( qmul[j] + 32) >> 6;
  5046. }
  5047. abslevel1++;
  5048. } else {
  5049. int coeff_abs = 2;
  5050. ctx = 5 + FFMIN( 4, abslevelgt1 ) + abs_level_m1_ctx_base;
  5051. while( coeff_abs < 15 && get_cabac( &h->cabac, ctx ) ) {
  5052. coeff_abs++;
  5053. }
  5054. if( coeff_abs >= 15 ) {
  5055. int j = 0;
  5056. while( get_cabac_bypass( &h->cabac ) ) {
  5057. coeff_abs += 1 << j;
  5058. j++;
  5059. }
  5060. while( j-- ) {
  5061. if( get_cabac_bypass( &h->cabac ) )
  5062. coeff_abs += 1 << j ;
  5063. }
  5064. }
  5065. if( !qmul ) {
  5066. if( get_cabac_bypass( &h->cabac ) ) block[j] = -coeff_abs;
  5067. else block[j] = coeff_abs;
  5068. }else{
  5069. if( get_cabac_bypass( &h->cabac ) ) block[j] = (-coeff_abs * qmul[j] + 32) >> 6;
  5070. else block[j] = ( coeff_abs * qmul[j] + 32) >> 6;
  5071. }
  5072. abslevelgt1++;
  5073. }
  5074. }
  5075. return 0;
  5076. }
  5077. static void inline compute_mb_neighbors(H264Context *h)
  5078. {
  5079. MpegEncContext * const s = &h->s;
  5080. const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  5081. h->top_mb_xy = mb_xy - s->mb_stride;
  5082. h->left_mb_xy[0] = mb_xy - 1;
  5083. if(h->mb_aff_frame){
  5084. const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
  5085. const int top_pair_xy = pair_xy - s->mb_stride;
  5086. const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
  5087. const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
  5088. const int curr_mb_frame_flag = !h->mb_field_decoding_flag;
  5089. const int bottom = (s->mb_y & 1);
  5090. if (bottom
  5091. ? !curr_mb_frame_flag // bottom macroblock
  5092. : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
  5093. ) {
  5094. h->top_mb_xy -= s->mb_stride;
  5095. }
  5096. if (left_mb_frame_flag != curr_mb_frame_flag) {
  5097. h->left_mb_xy[0] = pair_xy - 1;
  5098. }
  5099. }
  5100. return;
  5101. }
  5102. /**
  5103. * decodes a macroblock
  5104. * @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  5105. */
  5106. static int decode_mb_cabac(H264Context *h) {
  5107. MpegEncContext * const s = &h->s;
  5108. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  5109. int mb_type, partition_count, cbp = 0;
  5110. int dct8x8_allowed= h->pps.transform_8x8_mode;
  5111. s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?)
  5112. tprintf("pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
  5113. if( h->slice_type != I_TYPE && h->slice_type != SI_TYPE ) {
  5114. /* read skip flags */
  5115. if( decode_cabac_mb_skip( h ) ) {
  5116. decode_mb_skip(h);
  5117. h->cbp_table[mb_xy] = 0;
  5118. h->chroma_pred_mode_table[mb_xy] = 0;
  5119. h->last_qscale_diff = 0;
  5120. return 0;
  5121. }
  5122. }
  5123. if(h->mb_aff_frame){
  5124. if ( ((s->mb_y&1) == 0) || h->prev_mb_skipped)
  5125. h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
  5126. }else
  5127. h->mb_field_decoding_flag= (s->picture_structure!=PICT_FRAME);
  5128. h->prev_mb_skipped = 0;
  5129. compute_mb_neighbors(h);
  5130. if( ( mb_type = decode_cabac_mb_type( h ) ) < 0 ) {
  5131. av_log( h->s.avctx, AV_LOG_ERROR, "decode_cabac_mb_type failed\n" );
  5132. return -1;
  5133. }
  5134. if( h->slice_type == B_TYPE ) {
  5135. if( mb_type < 23 ){
  5136. partition_count= b_mb_type_info[mb_type].partition_count;
  5137. mb_type= b_mb_type_info[mb_type].type;
  5138. }else{
  5139. mb_type -= 23;
  5140. goto decode_intra_mb;
  5141. }
  5142. } else if( h->slice_type == P_TYPE ) {
  5143. if( mb_type < 5) {
  5144. partition_count= p_mb_type_info[mb_type].partition_count;
  5145. mb_type= p_mb_type_info[mb_type].type;
  5146. } else {
  5147. mb_type -= 5;
  5148. goto decode_intra_mb;
  5149. }
  5150. } else {
  5151. assert(h->slice_type == I_TYPE);
  5152. decode_intra_mb:
  5153. partition_count = 0;
  5154. cbp= i_mb_type_info[mb_type].cbp;
  5155. h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
  5156. mb_type= i_mb_type_info[mb_type].type;
  5157. }
  5158. if(h->mb_field_decoding_flag)
  5159. mb_type |= MB_TYPE_INTERLACED;
  5160. h->slice_table[ mb_xy ]= h->slice_num;
  5161. if(IS_INTRA_PCM(mb_type)) {
  5162. const uint8_t *ptr;
  5163. unsigned int x, y;
  5164. // We assume these blocks are very rare so we dont optimize it.
  5165. // FIXME The two following lines get the bitstream position in the cabac
  5166. // decode, I think it should be done by a function in cabac.h (or cabac.c).
  5167. ptr= h->cabac.bytestream;
  5168. if (h->cabac.low&0x1) ptr-=CABAC_BITS/8;
  5169. // The pixels are stored in the same order as levels in h->mb array.
  5170. for(y=0; y<16; y++){
  5171. const int index= 4*(y&3) + 32*((y>>2)&1) + 128*(y>>3);
  5172. for(x=0; x<16; x++){
  5173. tprintf("LUMA ICPM LEVEL (%3d)\n", *ptr);
  5174. h->mb[index + (x&3) + 16*((x>>2)&1) + 64*(x>>3)]= *ptr++;
  5175. }
  5176. }
  5177. for(y=0; y<8; y++){
  5178. const int index= 256 + 4*(y&3) + 32*(y>>2);
  5179. for(x=0; x<8; x++){
  5180. tprintf("CHROMA U ICPM LEVEL (%3d)\n", *ptr);
  5181. h->mb[index + (x&3) + 16*(x>>2)]= *ptr++;
  5182. }
  5183. }
  5184. for(y=0; y<8; y++){
  5185. const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
  5186. for(x=0; x<8; x++){
  5187. tprintf("CHROMA V ICPM LEVEL (%3d)\n", *ptr);
  5188. h->mb[index + (x&3) + 16*(x>>2)]= *ptr++;
  5189. }
  5190. }
  5191. ff_init_cabac_decoder(&h->cabac, ptr, h->cabac.bytestream_end - ptr);
  5192. // All blocks are present
  5193. h->cbp_table[mb_xy] = 0x1ef;
  5194. h->chroma_pred_mode_table[mb_xy] = 0;
  5195. // In deblocking, the quantizer is 0
  5196. s->current_picture.qscale_table[mb_xy]= 0;
  5197. h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, 0);
  5198. // All coeffs are present
  5199. memset(h->non_zero_count[mb_xy], 16, 16);
  5200. s->current_picture.mb_type[mb_xy]= mb_type;
  5201. return 0;
  5202. }
  5203. fill_caches(h, mb_type, 0);
  5204. if( IS_INTRA( mb_type ) ) {
  5205. int i;
  5206. if( IS_INTRA4x4( mb_type ) ) {
  5207. if( dct8x8_allowed && decode_cabac_mb_transform_size( h ) ) {
  5208. mb_type |= MB_TYPE_8x8DCT;
  5209. for( i = 0; i < 16; i+=4 ) {
  5210. int pred = pred_intra_mode( h, i );
  5211. int mode = decode_cabac_mb_intra4x4_pred_mode( h, pred );
  5212. fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
  5213. }
  5214. } else {
  5215. for( i = 0; i < 16; i++ ) {
  5216. int pred = pred_intra_mode( h, i );
  5217. h->intra4x4_pred_mode_cache[ scan8[i] ] = decode_cabac_mb_intra4x4_pred_mode( h, pred );
  5218. //av_log( s->avctx, AV_LOG_ERROR, "i4x4 pred=%d mode=%d\n", pred, h->intra4x4_pred_mode_cache[ scan8[i] ] );
  5219. }
  5220. }
  5221. write_back_intra_pred_mode(h);
  5222. if( check_intra4x4_pred_mode(h) < 0 ) return -1;
  5223. } else {
  5224. h->intra16x16_pred_mode= check_intra_pred_mode( h, h->intra16x16_pred_mode );
  5225. if( h->intra16x16_pred_mode < 0 ) return -1;
  5226. }
  5227. h->chroma_pred_mode_table[mb_xy] =
  5228. h->chroma_pred_mode = decode_cabac_mb_chroma_pre_mode( h );
  5229. h->chroma_pred_mode= check_intra_pred_mode( h, h->chroma_pred_mode );
  5230. if( h->chroma_pred_mode < 0 ) return -1;
  5231. } else if( partition_count == 4 ) {
  5232. int i, j, sub_partition_count[4], list, ref[2][4];
  5233. if( h->slice_type == B_TYPE ) {
  5234. for( i = 0; i < 4; i++ ) {
  5235. h->sub_mb_type[i] = decode_cabac_b_mb_sub_type( h );
  5236. sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  5237. h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  5238. }
  5239. if( IS_DIRECT(h->sub_mb_type[0]) || IS_DIRECT(h->sub_mb_type[1])
  5240. || IS_DIRECT(h->sub_mb_type[2]) || IS_DIRECT(h->sub_mb_type[3])) {
  5241. pred_direct_motion(h, &mb_type);
  5242. if( h->ref_count[0] > 1 || h->ref_count[1] > 1 ) {
  5243. for( i = 0; i < 4; i++ )
  5244. if( IS_DIRECT(h->sub_mb_type[i]) )
  5245. fill_rectangle( &h->direct_cache[scan8[4*i]], 2, 2, 8, 1, 1 );
  5246. }
  5247. }
  5248. } else {
  5249. for( i = 0; i < 4; i++ ) {
  5250. h->sub_mb_type[i] = decode_cabac_p_mb_sub_type( h );
  5251. sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  5252. h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  5253. }
  5254. }
  5255. for( list = 0; list < 2; list++ ) {
  5256. if( h->ref_count[list] > 0 ) {
  5257. for( i = 0; i < 4; i++ ) {
  5258. if(IS_DIRECT(h->sub_mb_type[i])) continue;
  5259. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  5260. if( h->ref_count[list] > 1 )
  5261. ref[list][i] = decode_cabac_mb_ref( h, list, 4*i );
  5262. else
  5263. ref[list][i] = 0;
  5264. } else {
  5265. ref[list][i] = -1;
  5266. }
  5267. h->ref_cache[list][ scan8[4*i]+1 ]=
  5268. h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  5269. }
  5270. }
  5271. }
  5272. if(dct8x8_allowed)
  5273. dct8x8_allowed = get_dct8x8_allowed(h);
  5274. for(list=0; list<2; list++){
  5275. for(i=0; i<4; i++){
  5276. if(IS_DIRECT(h->sub_mb_type[i])){
  5277. fill_rectangle(h->mvd_cache[list][scan8[4*i]], 2, 2, 8, 0, 4);
  5278. continue;
  5279. }
  5280. h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ];
  5281. if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){
  5282. const int sub_mb_type= h->sub_mb_type[i];
  5283. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  5284. for(j=0; j<sub_partition_count[i]; j++){
  5285. int mpx, mpy;
  5286. int mx, my;
  5287. const int index= 4*i + block_width*j;
  5288. int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
  5289. int16_t (* mvd_cache)[2]= &h->mvd_cache[list][ scan8[index] ];
  5290. pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mpx, &mpy);
  5291. mx = mpx + decode_cabac_mb_mvd( h, list, index, 0 );
  5292. my = mpy + decode_cabac_mb_mvd( h, list, index, 1 );
  5293. tprintf("final mv:%d %d\n", mx, my);
  5294. if(IS_SUB_8X8(sub_mb_type)){
  5295. mv_cache[ 0 ][0]= mv_cache[ 1 ][0]=
  5296. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  5297. mv_cache[ 0 ][1]= mv_cache[ 1 ][1]=
  5298. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  5299. mvd_cache[ 0 ][0]= mvd_cache[ 1 ][0]=
  5300. mvd_cache[ 8 ][0]= mvd_cache[ 9 ][0]= mx - mpx;
  5301. mvd_cache[ 0 ][1]= mvd_cache[ 1 ][1]=
  5302. mvd_cache[ 8 ][1]= mvd_cache[ 9 ][1]= my - mpy;
  5303. }else if(IS_SUB_8X4(sub_mb_type)){
  5304. mv_cache[ 0 ][0]= mv_cache[ 1 ][0]= mx;
  5305. mv_cache[ 0 ][1]= mv_cache[ 1 ][1]= my;
  5306. mvd_cache[ 0 ][0]= mvd_cache[ 1 ][0]= mx- mpx;
  5307. mvd_cache[ 0 ][1]= mvd_cache[ 1 ][1]= my - mpy;
  5308. }else if(IS_SUB_4X8(sub_mb_type)){
  5309. mv_cache[ 0 ][0]= mv_cache[ 8 ][0]= mx;
  5310. mv_cache[ 0 ][1]= mv_cache[ 8 ][1]= my;
  5311. mvd_cache[ 0 ][0]= mvd_cache[ 8 ][0]= mx - mpx;
  5312. mvd_cache[ 0 ][1]= mvd_cache[ 8 ][1]= my - mpy;
  5313. }else{
  5314. assert(IS_SUB_4X4(sub_mb_type));
  5315. mv_cache[ 0 ][0]= mx;
  5316. mv_cache[ 0 ][1]= my;
  5317. mvd_cache[ 0 ][0]= mx - mpx;
  5318. mvd_cache[ 0 ][1]= my - mpy;
  5319. }
  5320. }
  5321. }else{
  5322. uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
  5323. uint32_t *pd= (uint32_t *)&h->mvd_cache[list][ scan8[4*i] ][0];
  5324. p[0] = p[1] = p[8] = p[9] = 0;
  5325. pd[0]= pd[1]= pd[8]= pd[9]= 0;
  5326. }
  5327. }
  5328. }
  5329. } else if( IS_DIRECT(mb_type) ) {
  5330. pred_direct_motion(h, &mb_type);
  5331. fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4);
  5332. fill_rectangle(h->mvd_cache[1][scan8[0]], 4, 4, 8, 0, 4);
  5333. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  5334. } else {
  5335. int list, mx, my, i, mpx, mpy;
  5336. if(IS_16X16(mb_type)){
  5337. for(list=0; list<2; list++){
  5338. if(IS_DIR(mb_type, 0, list)){
  5339. if(h->ref_count[list] > 0 ){
  5340. const int ref = h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 0 ) : 0;
  5341. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, ref, 1);
  5342. }
  5343. }else
  5344. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1);
  5345. }
  5346. for(list=0; list<2; list++){
  5347. if(IS_DIR(mb_type, 0, list)){
  5348. pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mpx, &mpy);
  5349. mx = mpx + decode_cabac_mb_mvd( h, list, 0, 0 );
  5350. my = mpy + decode_cabac_mb_mvd( h, list, 0, 1 );
  5351. tprintf("final mv:%d %d\n", mx, my);
  5352. fill_rectangle(h->mvd_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
  5353. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
  5354. }else
  5355. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, 0, 4);
  5356. }
  5357. }
  5358. else if(IS_16X8(mb_type)){
  5359. for(list=0; list<2; list++){
  5360. if(h->ref_count[list]>0){
  5361. for(i=0; i<2; i++){
  5362. if(IS_DIR(mb_type, i, list)){
  5363. const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 8*i ) : 0;
  5364. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, ref, 1);
  5365. }else
  5366. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, (LIST_NOT_USED&0xFF), 1);
  5367. }
  5368. }
  5369. }
  5370. for(list=0; list<2; list++){
  5371. for(i=0; i<2; i++){
  5372. if(IS_DIR(mb_type, i, list)){
  5373. pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mpx, &mpy);
  5374. mx = mpx + decode_cabac_mb_mvd( h, list, 8*i, 0 );
  5375. my = mpy + decode_cabac_mb_mvd( h, list, 8*i, 1 );
  5376. tprintf("final mv:%d %d\n", mx, my);
  5377. fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx-mpx,my-mpy), 4);
  5378. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4);
  5379. }else{
  5380. fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
  5381. fill_rectangle(h-> mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
  5382. }
  5383. }
  5384. }
  5385. }else{
  5386. assert(IS_8X16(mb_type));
  5387. for(list=0; list<2; list++){
  5388. if(h->ref_count[list]>0){
  5389. for(i=0; i<2; i++){
  5390. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  5391. const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 4*i ) : 0;
  5392. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, ref, 1);
  5393. }else
  5394. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, (LIST_NOT_USED&0xFF), 1);
  5395. }
  5396. }
  5397. }
  5398. for(list=0; list<2; list++){
  5399. for(i=0; i<2; i++){
  5400. if(IS_DIR(mb_type, i, list)){
  5401. pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mpx, &mpy);
  5402. mx = mpx + decode_cabac_mb_mvd( h, list, 4*i, 0 );
  5403. my = mpy + decode_cabac_mb_mvd( h, list, 4*i, 1 );
  5404. tprintf("final mv:%d %d\n", mx, my);
  5405. fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
  5406. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4);
  5407. }else{
  5408. fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
  5409. fill_rectangle(h-> mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
  5410. }
  5411. }
  5412. }
  5413. }
  5414. }
  5415. if( IS_INTER( mb_type ) ) {
  5416. h->chroma_pred_mode_table[mb_xy] = 0;
  5417. write_back_motion( h, mb_type );
  5418. }
  5419. if( !IS_INTRA16x16( mb_type ) ) {
  5420. cbp = decode_cabac_mb_cbp_luma( h );
  5421. cbp |= decode_cabac_mb_cbp_chroma( h ) << 4;
  5422. }
  5423. h->cbp_table[mb_xy] = cbp;
  5424. if( dct8x8_allowed && (cbp&15) && !IS_INTRA( mb_type ) ) {
  5425. if( decode_cabac_mb_transform_size( h ) )
  5426. mb_type |= MB_TYPE_8x8DCT;
  5427. }
  5428. s->current_picture.mb_type[mb_xy]= mb_type;
  5429. if( cbp || IS_INTRA16x16( mb_type ) ) {
  5430. const uint8_t *scan, *dc_scan;
  5431. int dqp;
  5432. if(IS_INTERLACED(mb_type)){
  5433. scan= s->qscale ? h->field_scan : h->field_scan_q0;
  5434. dc_scan= luma_dc_field_scan;
  5435. }else{
  5436. scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  5437. dc_scan= luma_dc_zigzag_scan;
  5438. }
  5439. h->last_qscale_diff = dqp = decode_cabac_mb_dqp( h );
  5440. if( dqp == INT_MIN ){
  5441. av_log(h->s.avctx, AV_LOG_ERROR, "cabac decode of qscale diff failed at %d %d\n", s->mb_x, s->mb_y);
  5442. return -1;
  5443. }
  5444. s->qscale += dqp;
  5445. if(((unsigned)s->qscale) > 51){
  5446. if(s->qscale<0) s->qscale+= 52;
  5447. else s->qscale-= 52;
  5448. }
  5449. h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, s->qscale);
  5450. if( IS_INTRA16x16( mb_type ) ) {
  5451. int i;
  5452. //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 DC\n" );
  5453. if( decode_cabac_residual( h, h->mb, 0, 0, dc_scan, NULL, 16) < 0)
  5454. return -1;
  5455. if( cbp&15 ) {
  5456. for( i = 0; i < 16; i++ ) {
  5457. //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 AC:%d\n", i );
  5458. if( decode_cabac_residual(h, h->mb + 16*i, 1, i, scan + 1, h->dequant4_coeff[0][s->qscale], 15) < 0 )
  5459. return -1;
  5460. }
  5461. } else {
  5462. fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
  5463. }
  5464. } else {
  5465. int i8x8, i4x4;
  5466. for( i8x8 = 0; i8x8 < 4; i8x8++ ) {
  5467. if( cbp & (1<<i8x8) ) {
  5468. if( IS_8x8DCT(mb_type) ) {
  5469. if( decode_cabac_residual(h, h->mb + 64*i8x8, 5, 4*i8x8,
  5470. zigzag_scan8x8, h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 64) < 0 )
  5471. return -1;
  5472. } else
  5473. for( i4x4 = 0; i4x4 < 4; i4x4++ ) {
  5474. const int index = 4*i8x8 + i4x4;
  5475. //av_log( s->avctx, AV_LOG_ERROR, "Luma4x4: %d\n", index );
  5476. if( decode_cabac_residual(h, h->mb + 16*index, 2, index, scan, h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale], 16) < 0 )
  5477. return -1;
  5478. }
  5479. } else {
  5480. uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  5481. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  5482. }
  5483. }
  5484. }
  5485. if( cbp&0x30 ){
  5486. int c;
  5487. for( c = 0; c < 2; c++ ) {
  5488. //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-DC\n",c );
  5489. if( decode_cabac_residual(h, h->mb + 256 + 16*4*c, 3, c, chroma_dc_scan, NULL, 4) < 0)
  5490. return -1;
  5491. }
  5492. }
  5493. if( cbp&0x20 ) {
  5494. int c, i;
  5495. for( c = 0; c < 2; c++ ) {
  5496. for( i = 0; i < 4; i++ ) {
  5497. const int index = 16 + 4 * c + i;
  5498. //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-AC %d\n",c, index - 16 );
  5499. if( decode_cabac_residual(h, h->mb + 16*index, 4, index - 16, scan + 1, h->dequant4_coeff[c+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp], 15) < 0)
  5500. return -1;
  5501. }
  5502. }
  5503. } else {
  5504. uint8_t * const nnz= &h->non_zero_count_cache[0];
  5505. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  5506. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  5507. }
  5508. } else {
  5509. uint8_t * const nnz= &h->non_zero_count_cache[0];
  5510. fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
  5511. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  5512. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  5513. }
  5514. s->current_picture.qscale_table[mb_xy]= s->qscale;
  5515. write_back_non_zero_count(h);
  5516. return 0;
  5517. }
  5518. static void filter_mb_edgev( H264Context *h, uint8_t *pix, int stride, int bS[4], int qp ) {
  5519. int i, d;
  5520. const int index_a = clip( qp + h->slice_alpha_c0_offset, 0, 51 );
  5521. const int alpha = alpha_table[index_a];
  5522. const int beta = beta_table[clip( qp + h->slice_beta_offset, 0, 51 )];
  5523. if( bS[0] < 4 ) {
  5524. int8_t tc[4];
  5525. for(i=0; i<4; i++)
  5526. tc[i] = bS[i] ? tc0_table[index_a][bS[i] - 1] : -1;
  5527. h->s.dsp.h264_h_loop_filter_luma(pix, stride, alpha, beta, tc);
  5528. } else {
  5529. /* 16px edge length, because bS=4 is triggered by being at
  5530. * the edge of an intra MB, so all 4 bS are the same */
  5531. for( d = 0; d < 16; d++ ) {
  5532. const int p0 = pix[-1];
  5533. const int p1 = pix[-2];
  5534. const int p2 = pix[-3];
  5535. const int q0 = pix[0];
  5536. const int q1 = pix[1];
  5537. const int q2 = pix[2];
  5538. if( ABS( p0 - q0 ) < alpha &&
  5539. ABS( p1 - p0 ) < beta &&
  5540. ABS( q1 - q0 ) < beta ) {
  5541. if(ABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5542. if( ABS( p2 - p0 ) < beta)
  5543. {
  5544. const int p3 = pix[-4];
  5545. /* p0', p1', p2' */
  5546. pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5547. pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5548. pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5549. } else {
  5550. /* p0' */
  5551. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5552. }
  5553. if( ABS( q2 - q0 ) < beta)
  5554. {
  5555. const int q3 = pix[3];
  5556. /* q0', q1', q2' */
  5557. pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5558. pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5559. pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5560. } else {
  5561. /* q0' */
  5562. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5563. }
  5564. }else{
  5565. /* p0', q0' */
  5566. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5567. pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5568. }
  5569. tprintf("filter_mb_edgev i:%d d:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, p2, p1, p0, q0, q1, q2, pix[-2], pix[-1], pix[0], pix[1]);
  5570. }
  5571. pix += stride;
  5572. }
  5573. }
  5574. }
  5575. static void filter_mb_edgecv( H264Context *h, uint8_t *pix, int stride, int bS[4], int qp ) {
  5576. int i;
  5577. const int index_a = clip( qp + h->slice_alpha_c0_offset, 0, 51 );
  5578. const int alpha = alpha_table[index_a];
  5579. const int beta = beta_table[clip( qp + h->slice_beta_offset, 0, 51 )];
  5580. if( bS[0] < 4 ) {
  5581. int8_t tc[4];
  5582. for(i=0; i<4; i++)
  5583. tc[i] = bS[i] ? tc0_table[index_a][bS[i] - 1] + 1 : 0;
  5584. h->s.dsp.h264_h_loop_filter_chroma(pix, stride, alpha, beta, tc);
  5585. } else {
  5586. h->s.dsp.h264_h_loop_filter_chroma_intra(pix, stride, alpha, beta);
  5587. }
  5588. }
  5589. static void filter_mb_mbaff_edgev( H264Context *h, uint8_t *pix, int stride, int bS[8], int qp[2] ) {
  5590. int i;
  5591. for( i = 0; i < 16; i++, pix += stride) {
  5592. int index_a;
  5593. int alpha;
  5594. int beta;
  5595. int qp_index;
  5596. int bS_index = (i >> 1);
  5597. if (h->mb_field_decoding_flag) {
  5598. bS_index &= ~1;
  5599. bS_index |= (i & 1);
  5600. }
  5601. if( bS[bS_index] == 0 ) {
  5602. continue;
  5603. }
  5604. qp_index = h->mb_field_decoding_flag ? (i & 1) : (i >> 3);
  5605. index_a = clip( qp[qp_index] + h->slice_alpha_c0_offset, 0, 51 );
  5606. alpha = alpha_table[index_a];
  5607. beta = beta_table[clip( qp[qp_index] + h->slice_beta_offset, 0, 51 )];
  5608. if( bS[bS_index] < 4 ) {
  5609. const int tc0 = tc0_table[index_a][bS[bS_index] - 1];
  5610. /* 4px edge length */
  5611. const int p0 = pix[-1];
  5612. const int p1 = pix[-2];
  5613. const int p2 = pix[-3];
  5614. const int q0 = pix[0];
  5615. const int q1 = pix[1];
  5616. const int q2 = pix[2];
  5617. if( ABS( p0 - q0 ) < alpha &&
  5618. ABS( p1 - p0 ) < beta &&
  5619. ABS( q1 - q0 ) < beta ) {
  5620. int tc = tc0;
  5621. int i_delta;
  5622. if( ABS( p2 - p0 ) < beta ) {
  5623. pix[-2] = p1 + clip( ( p2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( p1 << 1 ) ) >> 1, -tc0, tc0 );
  5624. tc++;
  5625. }
  5626. if( ABS( q2 - q0 ) < beta ) {
  5627. pix[1] = q1 + clip( ( q2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( q1 << 1 ) ) >> 1, -tc0, tc0 );
  5628. tc++;
  5629. }
  5630. i_delta = clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  5631. pix[-1] = clip_uint8( p0 + i_delta ); /* p0' */
  5632. pix[0] = clip_uint8( q0 - i_delta ); /* q0' */
  5633. tprintf("filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
  5634. }
  5635. }else{
  5636. /* 4px edge length */
  5637. const int p0 = pix[-1];
  5638. const int p1 = pix[-2];
  5639. const int p2 = pix[-3];
  5640. const int q0 = pix[0];
  5641. const int q1 = pix[1];
  5642. const int q2 = pix[2];
  5643. if( ABS( p0 - q0 ) < alpha &&
  5644. ABS( p1 - p0 ) < beta &&
  5645. ABS( q1 - q0 ) < beta ) {
  5646. if(ABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5647. if( ABS( p2 - p0 ) < beta)
  5648. {
  5649. const int p3 = pix[-4];
  5650. /* p0', p1', p2' */
  5651. pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5652. pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5653. pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5654. } else {
  5655. /* p0' */
  5656. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5657. }
  5658. if( ABS( q2 - q0 ) < beta)
  5659. {
  5660. const int q3 = pix[3];
  5661. /* q0', q1', q2' */
  5662. pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5663. pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5664. pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5665. } else {
  5666. /* q0' */
  5667. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5668. }
  5669. }else{
  5670. /* p0', q0' */
  5671. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5672. pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5673. }
  5674. tprintf("filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, p2, p1, p0, q0, q1, q2, pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
  5675. }
  5676. }
  5677. }
  5678. }
  5679. static void filter_mb_mbaff_edgecv( H264Context *h, uint8_t *pix, int stride, int bS[4], int qp[2] ) {
  5680. int i;
  5681. for( i = 0; i < 8; i++, pix += stride) {
  5682. int index_a;
  5683. int alpha;
  5684. int beta;
  5685. int qp_index;
  5686. int bS_index = i;
  5687. if( bS[bS_index] == 0 ) {
  5688. continue;
  5689. }
  5690. qp_index = h->mb_field_decoding_flag ? (i & 1) : (i >> 3);
  5691. index_a = clip( qp[qp_index] + h->slice_alpha_c0_offset, 0, 51 );
  5692. alpha = alpha_table[index_a];
  5693. beta = beta_table[clip( qp[qp_index] + h->slice_beta_offset, 0, 51 )];
  5694. if( bS[bS_index] < 4 ) {
  5695. const int tc = tc0_table[index_a][bS[bS_index] - 1] + 1;
  5696. /* 2px edge length (because we use same bS than the one for luma) */
  5697. const int p0 = pix[-1];
  5698. const int p1 = pix[-2];
  5699. const int q0 = pix[0];
  5700. const int q1 = pix[1];
  5701. if( ABS( p0 - q0 ) < alpha &&
  5702. ABS( p1 - p0 ) < beta &&
  5703. ABS( q1 - q0 ) < beta ) {
  5704. const int i_delta = clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  5705. pix[-1] = clip_uint8( p0 + i_delta ); /* p0' */
  5706. pix[0] = clip_uint8( q0 - i_delta ); /* q0' */
  5707. tprintf("filter_mb_mbaff_edgecv i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
  5708. }
  5709. }else{
  5710. const int p0 = pix[-1];
  5711. const int p1 = pix[-2];
  5712. const int q0 = pix[0];
  5713. const int q1 = pix[1];
  5714. if( ABS( p0 - q0 ) < alpha &&
  5715. ABS( p1 - p0 ) < beta &&
  5716. ABS( q1 - q0 ) < beta ) {
  5717. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2; /* p0' */
  5718. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2; /* q0' */
  5719. tprintf("filter_mb_mbaff_edgecv i:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, pix[-3], p1, p0, q0, q1, pix[2], pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
  5720. }
  5721. }
  5722. }
  5723. }
  5724. static void filter_mb_edgeh( H264Context *h, uint8_t *pix, int stride, int bS[4], int qp ) {
  5725. int i, d;
  5726. const int index_a = clip( qp + h->slice_alpha_c0_offset, 0, 51 );
  5727. const int alpha = alpha_table[index_a];
  5728. const int beta = beta_table[clip( qp + h->slice_beta_offset, 0, 51 )];
  5729. const int pix_next = stride;
  5730. if( bS[0] < 4 ) {
  5731. int8_t tc[4];
  5732. for(i=0; i<4; i++)
  5733. tc[i] = bS[i] ? tc0_table[index_a][bS[i] - 1] : -1;
  5734. h->s.dsp.h264_v_loop_filter_luma(pix, stride, alpha, beta, tc);
  5735. } else {
  5736. /* 16px edge length, see filter_mb_edgev */
  5737. for( d = 0; d < 16; d++ ) {
  5738. const int p0 = pix[-1*pix_next];
  5739. const int p1 = pix[-2*pix_next];
  5740. const int p2 = pix[-3*pix_next];
  5741. const int q0 = pix[0];
  5742. const int q1 = pix[1*pix_next];
  5743. const int q2 = pix[2*pix_next];
  5744. if( ABS( p0 - q0 ) < alpha &&
  5745. ABS( p1 - p0 ) < beta &&
  5746. ABS( q1 - q0 ) < beta ) {
  5747. const int p3 = pix[-4*pix_next];
  5748. const int q3 = pix[ 3*pix_next];
  5749. if(ABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5750. if( ABS( p2 - p0 ) < beta) {
  5751. /* p0', p1', p2' */
  5752. pix[-1*pix_next] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5753. pix[-2*pix_next] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5754. pix[-3*pix_next] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5755. } else {
  5756. /* p0' */
  5757. pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5758. }
  5759. if( ABS( q2 - q0 ) < beta) {
  5760. /* q0', q1', q2' */
  5761. pix[0*pix_next] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5762. pix[1*pix_next] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5763. pix[2*pix_next] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5764. } else {
  5765. /* q0' */
  5766. pix[0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5767. }
  5768. }else{
  5769. /* p0', q0' */
  5770. pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5771. pix[ 0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5772. }
  5773. tprintf("filter_mb_edgeh i:%d d:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, qp, index_a, alpha, beta, bS[i], p2, p1, p0, q0, q1, q2, pix[-2*pix_next], pix[-pix_next], pix[0], pix[pix_next]);
  5774. }
  5775. pix++;
  5776. }
  5777. }
  5778. }
  5779. static void filter_mb_edgech( H264Context *h, uint8_t *pix, int stride, int bS[4], int qp ) {
  5780. int i;
  5781. const int index_a = clip( qp + h->slice_alpha_c0_offset, 0, 51 );
  5782. const int alpha = alpha_table[index_a];
  5783. const int beta = beta_table[clip( qp + h->slice_beta_offset, 0, 51 )];
  5784. if( bS[0] < 4 ) {
  5785. int8_t tc[4];
  5786. for(i=0; i<4; i++)
  5787. tc[i] = bS[i] ? tc0_table[index_a][bS[i] - 1] + 1 : 0;
  5788. h->s.dsp.h264_v_loop_filter_chroma(pix, stride, alpha, beta, tc);
  5789. } else {
  5790. h->s.dsp.h264_v_loop_filter_chroma_intra(pix, stride, alpha, beta);
  5791. }
  5792. }
  5793. static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
  5794. MpegEncContext * const s = &h->s;
  5795. const int mb_xy= mb_x + mb_y*s->mb_stride;
  5796. int first_vertical_edge_done = 0;
  5797. int dir;
  5798. /* FIXME: A given frame may occupy more than one position in
  5799. * the reference list. So ref2frm should be populated with
  5800. * frame numbers, not indices. */
  5801. static const int ref2frm[18] = {-1,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
  5802. //for sufficiently low qp, filtering wouldn't do anything
  5803. //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
  5804. if(!h->mb_aff_frame){
  5805. int qp_thresh = 15 - h->slice_alpha_c0_offset - FFMAX(0, h->pps.chroma_qp_index_offset);
  5806. int qp = s->current_picture.qscale_table[mb_xy];
  5807. if(qp <= qp_thresh
  5808. && (mb_x == 0 || ((qp + s->current_picture.qscale_table[mb_xy-1] + 1)>>1) <= qp_thresh)
  5809. && (mb_y == 0 || ((qp + s->current_picture.qscale_table[h->top_mb_xy] + 1)>>1) <= qp_thresh)){
  5810. return;
  5811. }
  5812. }
  5813. if (h->mb_aff_frame
  5814. // left mb is in picture
  5815. && h->slice_table[mb_xy-1] != 255
  5816. // and current and left pair do not have the same interlaced type
  5817. && (IS_INTERLACED(s->current_picture.mb_type[mb_xy]) != IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]))
  5818. // and left mb is in the same slice if deblocking_filter == 2
  5819. && (h->deblocking_filter!=2 || h->slice_table[mb_xy-1] == h->slice_table[mb_xy])) {
  5820. /* First vertical edge is different in MBAFF frames
  5821. * There are 8 different bS to compute and 2 different Qp
  5822. */
  5823. int bS[8];
  5824. int qp[2];
  5825. int chroma_qp[2];
  5826. int i;
  5827. first_vertical_edge_done = 1;
  5828. for( i = 0; i < 8; i++ ) {
  5829. int y = i>>1;
  5830. int b_idx= 8 + 4 + 8*y;
  5831. int bn_idx= b_idx - 1;
  5832. int mbn_xy = h->mb_field_decoding_flag ? h->left_mb_xy[i>>2] : h->left_mb_xy[i&1];
  5833. if( IS_INTRA( s->current_picture.mb_type[mb_xy] ) ||
  5834. IS_INTRA( s->current_picture.mb_type[mbn_xy] ) ) {
  5835. bS[i] = 4;
  5836. } else if( h->non_zero_count_cache[b_idx] != 0 ||
  5837. /* FIXME: with 8x8dct + cavlc, should check cbp instead of nnz */
  5838. h->non_zero_count_cache[bn_idx] != 0 ) {
  5839. bS[i] = 2;
  5840. } else {
  5841. int l;
  5842. bS[i] = 0;
  5843. for( l = 0; l < 1 + (h->slice_type == B_TYPE); l++ ) {
  5844. if( ref2frm[h->ref_cache[l][b_idx]+2] != ref2frm[h->ref_cache[l][bn_idx]+2] ||
  5845. ABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
  5846. ABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= 4 ) {
  5847. bS[i] = 1;
  5848. break;
  5849. }
  5850. }
  5851. }
  5852. }
  5853. if(bS[0]+bS[1]+bS[2]+bS[3] != 0) {
  5854. // Do not use s->qscale as luma quantizer because it has not the same
  5855. // value in IPCM macroblocks.
  5856. qp[0] = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[h->left_mb_xy[0]] + 1 ) >> 1;
  5857. chroma_qp[0] = ( get_chroma_qp( h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mb_xy] ) +
  5858. get_chroma_qp( h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[h->left_mb_xy[0]] ) + 1 ) >> 1;
  5859. qp[1] = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[h->left_mb_xy[1]] + 1 ) >> 1;
  5860. chroma_qp[1] = ( get_chroma_qp( h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mb_xy] ) +
  5861. get_chroma_qp( h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[h->left_mb_xy[1]] ) + 1 ) >> 1;
  5862. /* Filter edge */
  5863. tprintf("filter mb:%d/%d MBAFF, QPy:%d/%d, QPc:%d/%d ls:%d uvls:%d", mb_x, mb_y, qp[0], qp[1], chroma_qp[0], chroma_qp[1], linesize, uvlinesize);
  5864. { int i; for (i = 0; i < 8; i++) tprintf(" bS[%d]:%d", i, bS[i]); tprintf("\n"); }
  5865. filter_mb_mbaff_edgev ( h, &img_y [0], linesize, bS, qp );
  5866. filter_mb_mbaff_edgecv( h, &img_cb[0], uvlinesize, bS, chroma_qp );
  5867. filter_mb_mbaff_edgecv( h, &img_cr[0], uvlinesize, bS, chroma_qp );
  5868. }
  5869. }
  5870. /* dir : 0 -> vertical edge, 1 -> horizontal edge */
  5871. for( dir = 0; dir < 2; dir++ )
  5872. {
  5873. int edge;
  5874. const int mbm_xy = dir == 0 ? mb_xy -1 : h->top_mb_xy;
  5875. const int mb_type = s->current_picture.mb_type[mb_xy];
  5876. const int mbm_type = s->current_picture.mb_type[mbm_xy];
  5877. int start = h->slice_table[mbm_xy] == 255 ? 1 : 0;
  5878. const int edges = (mb_type & (MB_TYPE_16x16|MB_TYPE_SKIP))
  5879. == (MB_TYPE_16x16|MB_TYPE_SKIP) ? 1 : 4;
  5880. // how often to recheck mv-based bS when iterating between edges
  5881. const int mask_edge = (mb_type & (MB_TYPE_16x16 | (MB_TYPE_16x8 << dir))) ? 3 :
  5882. (mb_type & (MB_TYPE_8x16 >> dir)) ? 1 : 0;
  5883. // how often to recheck mv-based bS when iterating along each edge
  5884. const int mask_par0 = mb_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir));
  5885. if (first_vertical_edge_done) {
  5886. start = 1;
  5887. first_vertical_edge_done = 0;
  5888. }
  5889. if (h->deblocking_filter==2 && h->slice_table[mbm_xy] != h->slice_table[mb_xy])
  5890. start = 1;
  5891. /* Calculate bS */
  5892. for( edge = start; edge < edges; edge++ ) {
  5893. /* mbn_xy: neighbor macroblock */
  5894. const int mbn_xy = edge > 0 ? mb_xy : mbm_xy;
  5895. const int mbn_type = s->current_picture.mb_type[mbn_xy];
  5896. int bS[4];
  5897. int qp;
  5898. if( (edge&1) && IS_8x8DCT(mb_type) )
  5899. continue;
  5900. if (h->mb_aff_frame && (dir == 1) && (edge == 0) && ((mb_y & 1) == 0)
  5901. && !IS_INTERLACED(mb_type)
  5902. && IS_INTERLACED(mbn_type)
  5903. ) {
  5904. // This is a special case in the norm where the filtering must
  5905. // be done twice (one each of the field) even if we are in a
  5906. // frame macroblock.
  5907. //
  5908. unsigned int tmp_linesize = 2 * linesize;
  5909. unsigned int tmp_uvlinesize = 2 * uvlinesize;
  5910. int mbn_xy = mb_xy - 2 * s->mb_stride;
  5911. int qp, chroma_qp;
  5912. // first filtering
  5913. if( IS_INTRA(mb_type) ||
  5914. IS_INTRA(s->current_picture.mb_type[mbn_xy]) ) {
  5915. bS[0] = bS[1] = bS[2] = bS[3] = 3;
  5916. } else {
  5917. // TODO
  5918. av_log(h->s.avctx, AV_LOG_ERROR, "both non intra (TODO)\n");
  5919. }
  5920. /* Filter edge */
  5921. // Do not use s->qscale as luma quantizer because it has not the same
  5922. // value in IPCM macroblocks.
  5923. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
  5924. tprintf("filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, tmp_linesize, tmp_uvlinesize);
  5925. { int i; for (i = 0; i < 4; i++) tprintf(" bS[%d]:%d", i, bS[i]); tprintf("\n"); }
  5926. filter_mb_edgeh( h, &img_y[0], tmp_linesize, bS, qp );
  5927. chroma_qp = ( h->chroma_qp +
  5928. get_chroma_qp( h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1;
  5929. filter_mb_edgech( h, &img_cb[0], tmp_uvlinesize, bS, chroma_qp );
  5930. filter_mb_edgech( h, &img_cr[0], tmp_uvlinesize, bS, chroma_qp );
  5931. // second filtering
  5932. mbn_xy += s->mb_stride;
  5933. if( IS_INTRA(mb_type) ||
  5934. IS_INTRA(mbn_type) ) {
  5935. bS[0] = bS[1] = bS[2] = bS[3] = 3;
  5936. } else {
  5937. // TODO
  5938. av_log(h->s.avctx, AV_LOG_ERROR, "both non intra (TODO)\n");
  5939. }
  5940. /* Filter edge */
  5941. // Do not use s->qscale as luma quantizer because it has not the same
  5942. // value in IPCM macroblocks.
  5943. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
  5944. tprintf("filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, tmp_linesize, tmp_uvlinesize);
  5945. { int i; for (i = 0; i < 4; i++) tprintf(" bS[%d]:%d", i, bS[i]); tprintf("\n"); }
  5946. filter_mb_edgeh( h, &img_y[linesize], tmp_linesize, bS, qp );
  5947. chroma_qp = ( h->chroma_qp +
  5948. get_chroma_qp( h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1;
  5949. filter_mb_edgech( h, &img_cb[uvlinesize], tmp_uvlinesize, bS, chroma_qp );
  5950. filter_mb_edgech( h, &img_cr[uvlinesize], tmp_uvlinesize, bS, chroma_qp );
  5951. continue;
  5952. }
  5953. if( IS_INTRA(mb_type) ||
  5954. IS_INTRA(mbn_type) ) {
  5955. int value;
  5956. if (edge == 0) {
  5957. if ( (!IS_INTERLACED(mb_type) && !IS_INTERLACED(mbm_type))
  5958. || ((h->mb_aff_frame || (s->picture_structure != PICT_FRAME)) && (dir == 0))
  5959. ) {
  5960. value = 4;
  5961. } else {
  5962. value = 3;
  5963. }
  5964. } else {
  5965. value = 3;
  5966. }
  5967. bS[0] = bS[1] = bS[2] = bS[3] = value;
  5968. } else {
  5969. int i, l;
  5970. int mv_done;
  5971. if( edge & mask_edge ) {
  5972. bS[0] = bS[1] = bS[2] = bS[3] = 0;
  5973. mv_done = 1;
  5974. }
  5975. else if( mask_par0 && (edge || (mbn_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir)))) ) {
  5976. int b_idx= 8 + 4 + edge * (dir ? 8:1);
  5977. int bn_idx= b_idx - (dir ? 8:1);
  5978. int v = 0;
  5979. for( l = 0; !v && l < 1 + (h->slice_type == B_TYPE); l++ ) {
  5980. v |= ref2frm[h->ref_cache[l][b_idx]+2] != ref2frm[h->ref_cache[l][bn_idx]+2] ||
  5981. ABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
  5982. ABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= 4;
  5983. }
  5984. bS[0] = bS[1] = bS[2] = bS[3] = v;
  5985. mv_done = 1;
  5986. }
  5987. else
  5988. mv_done = 0;
  5989. for( i = 0; i < 4; i++ ) {
  5990. int x = dir == 0 ? edge : i;
  5991. int y = dir == 0 ? i : edge;
  5992. int b_idx= 8 + 4 + x + 8*y;
  5993. int bn_idx= b_idx - (dir ? 8:1);
  5994. if( h->non_zero_count_cache[b_idx] != 0 ||
  5995. h->non_zero_count_cache[bn_idx] != 0 ) {
  5996. bS[i] = 2;
  5997. }
  5998. else if(!mv_done)
  5999. {
  6000. bS[i] = 0;
  6001. for( l = 0; l < 1 + (h->slice_type == B_TYPE); l++ ) {
  6002. if( ref2frm[h->ref_cache[l][b_idx]+2] != ref2frm[h->ref_cache[l][bn_idx]+2] ||
  6003. ABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
  6004. ABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= 4 ) {
  6005. bS[i] = 1;
  6006. break;
  6007. }
  6008. }
  6009. }
  6010. }
  6011. if(bS[0]+bS[1]+bS[2]+bS[3] == 0)
  6012. continue;
  6013. }
  6014. /* Filter edge */
  6015. // Do not use s->qscale as luma quantizer because it has not the same
  6016. // value in IPCM macroblocks.
  6017. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
  6018. //tprintf("filter mb:%d/%d dir:%d edge:%d, QPy:%d, QPc:%d, QPcn:%d\n", mb_x, mb_y, dir, edge, qp, h->chroma_qp, s->current_picture.qscale_table[mbn_xy]);
  6019. tprintf("filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, linesize, uvlinesize);
  6020. { int i; for (i = 0; i < 4; i++) tprintf(" bS[%d]:%d", i, bS[i]); tprintf("\n"); }
  6021. if( dir == 0 ) {
  6022. filter_mb_edgev( h, &img_y[4*edge], linesize, bS, qp );
  6023. if( (edge&1) == 0 ) {
  6024. int chroma_qp = ( h->chroma_qp +
  6025. get_chroma_qp( h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1;
  6026. filter_mb_edgecv( h, &img_cb[2*edge], uvlinesize, bS, chroma_qp );
  6027. filter_mb_edgecv( h, &img_cr[2*edge], uvlinesize, bS, chroma_qp );
  6028. }
  6029. } else {
  6030. filter_mb_edgeh( h, &img_y[4*edge*linesize], linesize, bS, qp );
  6031. if( (edge&1) == 0 ) {
  6032. int chroma_qp = ( h->chroma_qp +
  6033. get_chroma_qp( h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1;
  6034. filter_mb_edgech( h, &img_cb[2*edge*uvlinesize], uvlinesize, bS, chroma_qp );
  6035. filter_mb_edgech( h, &img_cr[2*edge*uvlinesize], uvlinesize, bS, chroma_qp );
  6036. }
  6037. }
  6038. }
  6039. }
  6040. }
  6041. static int decode_slice(H264Context *h){
  6042. MpegEncContext * const s = &h->s;
  6043. const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
  6044. s->mb_skip_run= -1;
  6045. if( h->pps.cabac ) {
  6046. int i;
  6047. /* realign */
  6048. align_get_bits( &s->gb );
  6049. /* init cabac */
  6050. ff_init_cabac_states( &h->cabac, ff_h264_lps_range, ff_h264_mps_state, ff_h264_lps_state, 64 );
  6051. ff_init_cabac_decoder( &h->cabac,
  6052. s->gb.buffer + get_bits_count(&s->gb)/8,
  6053. ( s->gb.size_in_bits - get_bits_count(&s->gb) + 7)/8);
  6054. /* calculate pre-state */
  6055. for( i= 0; i < 460; i++ ) {
  6056. int pre;
  6057. if( h->slice_type == I_TYPE )
  6058. pre = clip( ((cabac_context_init_I[i][0] * s->qscale) >>4 ) + cabac_context_init_I[i][1], 1, 126 );
  6059. else
  6060. pre = clip( ((cabac_context_init_PB[h->cabac_init_idc][i][0] * s->qscale) >>4 ) + cabac_context_init_PB[h->cabac_init_idc][i][1], 1, 126 );
  6061. if( pre <= 63 )
  6062. h->cabac_state[i] = 2 * ( 63 - pre ) + 0;
  6063. else
  6064. h->cabac_state[i] = 2 * ( pre - 64 ) + 1;
  6065. }
  6066. for(;;){
  6067. int ret = decode_mb_cabac(h);
  6068. int eos;
  6069. if(ret>=0) hl_decode_mb(h);
  6070. /* XXX: useless as decode_mb_cabac it doesn't support that ... */
  6071. if( ret >= 0 && h->mb_aff_frame ) { //FIXME optimal? or let mb_decode decode 16x32 ?
  6072. s->mb_y++;
  6073. if(ret>=0) ret = decode_mb_cabac(h);
  6074. if(ret>=0) hl_decode_mb(h);
  6075. s->mb_y--;
  6076. }
  6077. eos = get_cabac_terminate( &h->cabac );
  6078. if( ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 1) {
  6079. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  6080. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6081. return -1;
  6082. }
  6083. if( ++s->mb_x >= s->mb_width ) {
  6084. s->mb_x = 0;
  6085. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6086. ++s->mb_y;
  6087. if(h->mb_aff_frame) {
  6088. ++s->mb_y;
  6089. }
  6090. }
  6091. if( eos || s->mb_y >= s->mb_height ) {
  6092. tprintf("slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6093. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6094. return 0;
  6095. }
  6096. }
  6097. } else {
  6098. for(;;){
  6099. int ret = decode_mb_cavlc(h);
  6100. if(ret>=0) hl_decode_mb(h);
  6101. if(ret>=0 && h->mb_aff_frame){ //FIXME optimal? or let mb_decode decode 16x32 ?
  6102. s->mb_y++;
  6103. ret = decode_mb_cavlc(h);
  6104. if(ret>=0) hl_decode_mb(h);
  6105. s->mb_y--;
  6106. }
  6107. if(ret<0){
  6108. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  6109. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6110. return -1;
  6111. }
  6112. if(++s->mb_x >= s->mb_width){
  6113. s->mb_x=0;
  6114. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6115. ++s->mb_y;
  6116. if(h->mb_aff_frame) {
  6117. ++s->mb_y;
  6118. }
  6119. if(s->mb_y >= s->mb_height){
  6120. tprintf("slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6121. if(get_bits_count(&s->gb) == s->gb.size_in_bits ) {
  6122. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6123. return 0;
  6124. }else{
  6125. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6126. return -1;
  6127. }
  6128. }
  6129. }
  6130. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
  6131. tprintf("slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6132. if(get_bits_count(&s->gb) == s->gb.size_in_bits ){
  6133. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6134. return 0;
  6135. }else{
  6136. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6137. return -1;
  6138. }
  6139. }
  6140. }
  6141. }
  6142. #if 0
  6143. for(;s->mb_y < s->mb_height; s->mb_y++){
  6144. for(;s->mb_x < s->mb_width; s->mb_x++){
  6145. int ret= decode_mb(h);
  6146. hl_decode_mb(h);
  6147. if(ret<0){
  6148. fprintf(stderr, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  6149. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6150. return -1;
  6151. }
  6152. if(++s->mb_x >= s->mb_width){
  6153. s->mb_x=0;
  6154. if(++s->mb_y >= s->mb_height){
  6155. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  6156. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6157. return 0;
  6158. }else{
  6159. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6160. return -1;
  6161. }
  6162. }
  6163. }
  6164. if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){
  6165. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  6166. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6167. return 0;
  6168. }else{
  6169. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6170. return -1;
  6171. }
  6172. }
  6173. }
  6174. s->mb_x=0;
  6175. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6176. }
  6177. #endif
  6178. return -1; //not reached
  6179. }
  6180. static int decode_unregistered_user_data(H264Context *h, int size){
  6181. MpegEncContext * const s = &h->s;
  6182. uint8_t user_data[16+256];
  6183. int e, build, i;
  6184. if(size<16)
  6185. return -1;
  6186. for(i=0; i<sizeof(user_data)-1 && i<size; i++){
  6187. user_data[i]= get_bits(&s->gb, 8);
  6188. }
  6189. user_data[i]= 0;
  6190. e= sscanf(user_data+16, "x264 - core %d"/*%s - H.264/MPEG-4 AVC codec - Copyleft 2005 - http://www.videolan.org/x264.html*/, &build);
  6191. if(e==1 && build>=0)
  6192. h->x264_build= build;
  6193. if(s->avctx->debug & FF_DEBUG_BUGS)
  6194. av_log(s->avctx, AV_LOG_DEBUG, "user data:\"%s\"\n", user_data+16);
  6195. for(; i<size; i++)
  6196. skip_bits(&s->gb, 8);
  6197. return 0;
  6198. }
  6199. static int decode_sei(H264Context *h){
  6200. MpegEncContext * const s = &h->s;
  6201. while(get_bits_count(&s->gb) + 16 < s->gb.size_in_bits){
  6202. int size, type;
  6203. type=0;
  6204. do{
  6205. type+= show_bits(&s->gb, 8);
  6206. }while(get_bits(&s->gb, 8) == 255);
  6207. size=0;
  6208. do{
  6209. size+= show_bits(&s->gb, 8);
  6210. }while(get_bits(&s->gb, 8) == 255);
  6211. switch(type){
  6212. case 5:
  6213. if(decode_unregistered_user_data(h, size) < 0);
  6214. return -1;
  6215. break;
  6216. default:
  6217. skip_bits(&s->gb, 8*size);
  6218. }
  6219. //FIXME check bits here
  6220. align_get_bits(&s->gb);
  6221. }
  6222. return 0;
  6223. }
  6224. static inline void decode_hrd_parameters(H264Context *h, SPS *sps){
  6225. MpegEncContext * const s = &h->s;
  6226. int cpb_count, i;
  6227. cpb_count = get_ue_golomb(&s->gb) + 1;
  6228. get_bits(&s->gb, 4); /* bit_rate_scale */
  6229. get_bits(&s->gb, 4); /* cpb_size_scale */
  6230. for(i=0; i<cpb_count; i++){
  6231. get_ue_golomb(&s->gb); /* bit_rate_value_minus1 */
  6232. get_ue_golomb(&s->gb); /* cpb_size_value_minus1 */
  6233. get_bits1(&s->gb); /* cbr_flag */
  6234. }
  6235. get_bits(&s->gb, 5); /* initial_cpb_removal_delay_length_minus1 */
  6236. get_bits(&s->gb, 5); /* cpb_removal_delay_length_minus1 */
  6237. get_bits(&s->gb, 5); /* dpb_output_delay_length_minus1 */
  6238. get_bits(&s->gb, 5); /* time_offset_length */
  6239. }
  6240. static inline int decode_vui_parameters(H264Context *h, SPS *sps){
  6241. MpegEncContext * const s = &h->s;
  6242. int aspect_ratio_info_present_flag, aspect_ratio_idc;
  6243. int nal_hrd_parameters_present_flag, vcl_hrd_parameters_present_flag;
  6244. aspect_ratio_info_present_flag= get_bits1(&s->gb);
  6245. if( aspect_ratio_info_present_flag ) {
  6246. aspect_ratio_idc= get_bits(&s->gb, 8);
  6247. if( aspect_ratio_idc == EXTENDED_SAR ) {
  6248. sps->sar.num= get_bits(&s->gb, 16);
  6249. sps->sar.den= get_bits(&s->gb, 16);
  6250. }else if(aspect_ratio_idc < 16){
  6251. sps->sar= pixel_aspect[aspect_ratio_idc];
  6252. }else{
  6253. av_log(h->s.avctx, AV_LOG_ERROR, "illegal aspect ratio\n");
  6254. return -1;
  6255. }
  6256. }else{
  6257. sps->sar.num=
  6258. sps->sar.den= 0;
  6259. }
  6260. // s->avctx->aspect_ratio= sar_width*s->width / (float)(s->height*sar_height);
  6261. if(get_bits1(&s->gb)){ /* overscan_info_present_flag */
  6262. get_bits1(&s->gb); /* overscan_appropriate_flag */
  6263. }
  6264. if(get_bits1(&s->gb)){ /* video_signal_type_present_flag */
  6265. get_bits(&s->gb, 3); /* video_format */
  6266. get_bits1(&s->gb); /* video_full_range_flag */
  6267. if(get_bits1(&s->gb)){ /* colour_description_present_flag */
  6268. get_bits(&s->gb, 8); /* colour_primaries */
  6269. get_bits(&s->gb, 8); /* transfer_characteristics */
  6270. get_bits(&s->gb, 8); /* matrix_coefficients */
  6271. }
  6272. }
  6273. if(get_bits1(&s->gb)){ /* chroma_location_info_present_flag */
  6274. get_ue_golomb(&s->gb); /* chroma_sample_location_type_top_field */
  6275. get_ue_golomb(&s->gb); /* chroma_sample_location_type_bottom_field */
  6276. }
  6277. sps->timing_info_present_flag = get_bits1(&s->gb);
  6278. if(sps->timing_info_present_flag){
  6279. sps->num_units_in_tick = get_bits_long(&s->gb, 32);
  6280. sps->time_scale = get_bits_long(&s->gb, 32);
  6281. sps->fixed_frame_rate_flag = get_bits1(&s->gb);
  6282. }
  6283. nal_hrd_parameters_present_flag = get_bits1(&s->gb);
  6284. if(nal_hrd_parameters_present_flag)
  6285. decode_hrd_parameters(h, sps);
  6286. vcl_hrd_parameters_present_flag = get_bits1(&s->gb);
  6287. if(vcl_hrd_parameters_present_flag)
  6288. decode_hrd_parameters(h, sps);
  6289. if(nal_hrd_parameters_present_flag || vcl_hrd_parameters_present_flag)
  6290. get_bits1(&s->gb); /* low_delay_hrd_flag */
  6291. get_bits1(&s->gb); /* pic_struct_present_flag */
  6292. sps->bitstream_restriction_flag = get_bits1(&s->gb);
  6293. if(sps->bitstream_restriction_flag){
  6294. get_bits1(&s->gb); /* motion_vectors_over_pic_boundaries_flag */
  6295. get_ue_golomb(&s->gb); /* max_bytes_per_pic_denom */
  6296. get_ue_golomb(&s->gb); /* max_bits_per_mb_denom */
  6297. get_ue_golomb(&s->gb); /* log2_max_mv_length_horizontal */
  6298. get_ue_golomb(&s->gb); /* log2_max_mv_length_vertical */
  6299. sps->num_reorder_frames = get_ue_golomb(&s->gb);
  6300. get_ue_golomb(&s->gb); /* max_dec_frame_buffering */
  6301. }
  6302. return 0;
  6303. }
  6304. static void decode_scaling_list(H264Context *h, uint8_t *factors, int size,
  6305. const uint8_t *jvt_list, const uint8_t *fallback_list){
  6306. MpegEncContext * const s = &h->s;
  6307. int i, last = 8, next = 8;
  6308. const uint8_t *scan = size == 16 ? zigzag_scan : zigzag_scan8x8;
  6309. if(!get_bits1(&s->gb)) /* matrix not written, we use the predicted one */
  6310. memcpy(factors, fallback_list, size*sizeof(uint8_t));
  6311. else
  6312. for(i=0;i<size;i++){
  6313. if(next)
  6314. next = (last + get_se_golomb(&s->gb)) & 0xff;
  6315. if(!i && !next){ /* matrix not written, we use the preset one */
  6316. memcpy(factors, jvt_list, size*sizeof(uint8_t));
  6317. break;
  6318. }
  6319. last = factors[scan[i]] = next ? next : last;
  6320. }
  6321. }
  6322. static void decode_scaling_matrices(H264Context *h, SPS *sps, PPS *pps, int is_sps,
  6323. uint8_t (*scaling_matrix4)[16], uint8_t (*scaling_matrix8)[64]){
  6324. MpegEncContext * const s = &h->s;
  6325. int fallback_sps = !is_sps && sps->scaling_matrix_present;
  6326. const uint8_t *fallback[4] = {
  6327. fallback_sps ? sps->scaling_matrix4[0] : default_scaling4[0],
  6328. fallback_sps ? sps->scaling_matrix4[3] : default_scaling4[1],
  6329. fallback_sps ? sps->scaling_matrix8[0] : default_scaling8[0],
  6330. fallback_sps ? sps->scaling_matrix8[1] : default_scaling8[1]
  6331. };
  6332. if(get_bits1(&s->gb)){
  6333. sps->scaling_matrix_present |= is_sps;
  6334. decode_scaling_list(h,scaling_matrix4[0],16,default_scaling4[0],fallback[0]); // Intra, Y
  6335. decode_scaling_list(h,scaling_matrix4[1],16,default_scaling4[0],scaling_matrix4[0]); // Intra, Cr
  6336. decode_scaling_list(h,scaling_matrix4[2],16,default_scaling4[0],scaling_matrix4[1]); // Intra, Cb
  6337. decode_scaling_list(h,scaling_matrix4[3],16,default_scaling4[1],fallback[1]); // Inter, Y
  6338. decode_scaling_list(h,scaling_matrix4[4],16,default_scaling4[1],scaling_matrix4[3]); // Inter, Cr
  6339. decode_scaling_list(h,scaling_matrix4[5],16,default_scaling4[1],scaling_matrix4[4]); // Inter, Cb
  6340. if(is_sps || pps->transform_8x8_mode){
  6341. decode_scaling_list(h,scaling_matrix8[0],64,default_scaling8[0],fallback[2]); // Intra, Y
  6342. decode_scaling_list(h,scaling_matrix8[1],64,default_scaling8[1],fallback[3]); // Inter, Y
  6343. }
  6344. } else if(fallback_sps) {
  6345. memcpy(scaling_matrix4, sps->scaling_matrix4, 6*16*sizeof(uint8_t));
  6346. memcpy(scaling_matrix8, sps->scaling_matrix8, 2*64*sizeof(uint8_t));
  6347. }
  6348. }
  6349. static inline int decode_seq_parameter_set(H264Context *h){
  6350. MpegEncContext * const s = &h->s;
  6351. int profile_idc, level_idc;
  6352. int sps_id, i;
  6353. SPS *sps;
  6354. profile_idc= get_bits(&s->gb, 8);
  6355. get_bits1(&s->gb); //constraint_set0_flag
  6356. get_bits1(&s->gb); //constraint_set1_flag
  6357. get_bits1(&s->gb); //constraint_set2_flag
  6358. get_bits1(&s->gb); //constraint_set3_flag
  6359. get_bits(&s->gb, 4); // reserved
  6360. level_idc= get_bits(&s->gb, 8);
  6361. sps_id= get_ue_golomb(&s->gb);
  6362. sps= &h->sps_buffer[ sps_id ];
  6363. sps->profile_idc= profile_idc;
  6364. sps->level_idc= level_idc;
  6365. if(sps->profile_idc >= 100){ //high profile
  6366. if(get_ue_golomb(&s->gb) == 3) //chroma_format_idc
  6367. get_bits1(&s->gb); //residual_color_transform_flag
  6368. get_ue_golomb(&s->gb); //bit_depth_luma_minus8
  6369. get_ue_golomb(&s->gb); //bit_depth_chroma_minus8
  6370. sps->transform_bypass = get_bits1(&s->gb);
  6371. decode_scaling_matrices(h, sps, NULL, 1, sps->scaling_matrix4, sps->scaling_matrix8);
  6372. }else
  6373. sps->scaling_matrix_present = 0;
  6374. sps->log2_max_frame_num= get_ue_golomb(&s->gb) + 4;
  6375. sps->poc_type= get_ue_golomb(&s->gb);
  6376. if(sps->poc_type == 0){ //FIXME #define
  6377. sps->log2_max_poc_lsb= get_ue_golomb(&s->gb) + 4;
  6378. } else if(sps->poc_type == 1){//FIXME #define
  6379. sps->delta_pic_order_always_zero_flag= get_bits1(&s->gb);
  6380. sps->offset_for_non_ref_pic= get_se_golomb(&s->gb);
  6381. sps->offset_for_top_to_bottom_field= get_se_golomb(&s->gb);
  6382. sps->poc_cycle_length= get_ue_golomb(&s->gb);
  6383. for(i=0; i<sps->poc_cycle_length; i++)
  6384. sps->offset_for_ref_frame[i]= get_se_golomb(&s->gb);
  6385. }
  6386. if(sps->poc_type > 2){
  6387. av_log(h->s.avctx, AV_LOG_ERROR, "illegal POC type %d\n", sps->poc_type);
  6388. return -1;
  6389. }
  6390. sps->ref_frame_count= get_ue_golomb(&s->gb);
  6391. if(sps->ref_frame_count > MAX_PICTURE_COUNT-2){
  6392. av_log(h->s.avctx, AV_LOG_ERROR, "too many reference frames\n");
  6393. }
  6394. sps->gaps_in_frame_num_allowed_flag= get_bits1(&s->gb);
  6395. sps->mb_width= get_ue_golomb(&s->gb) + 1;
  6396. sps->mb_height= get_ue_golomb(&s->gb) + 1;
  6397. if((unsigned)sps->mb_width >= INT_MAX/16 || (unsigned)sps->mb_height >= INT_MAX/16 ||
  6398. avcodec_check_dimensions(NULL, 16*sps->mb_width, 16*sps->mb_height))
  6399. return -1;
  6400. sps->frame_mbs_only_flag= get_bits1(&s->gb);
  6401. if(!sps->frame_mbs_only_flag)
  6402. sps->mb_aff= get_bits1(&s->gb);
  6403. else
  6404. sps->mb_aff= 0;
  6405. sps->direct_8x8_inference_flag= get_bits1(&s->gb);
  6406. sps->crop= get_bits1(&s->gb);
  6407. if(sps->crop){
  6408. sps->crop_left = get_ue_golomb(&s->gb);
  6409. sps->crop_right = get_ue_golomb(&s->gb);
  6410. sps->crop_top = get_ue_golomb(&s->gb);
  6411. sps->crop_bottom= get_ue_golomb(&s->gb);
  6412. if(sps->crop_left || sps->crop_top){
  6413. av_log(h->s.avctx, AV_LOG_ERROR, "insane cropping not completely supported, this could look slightly wrong ...\n");
  6414. }
  6415. }else{
  6416. sps->crop_left =
  6417. sps->crop_right =
  6418. sps->crop_top =
  6419. sps->crop_bottom= 0;
  6420. }
  6421. sps->vui_parameters_present_flag= get_bits1(&s->gb);
  6422. if( sps->vui_parameters_present_flag )
  6423. decode_vui_parameters(h, sps);
  6424. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  6425. av_log(h->s.avctx, AV_LOG_DEBUG, "sps:%d profile:%d/%d poc:%d ref:%d %dx%d %s %s crop:%d/%d/%d/%d %s\n",
  6426. sps_id, sps->profile_idc, sps->level_idc,
  6427. sps->poc_type,
  6428. sps->ref_frame_count,
  6429. sps->mb_width, sps->mb_height,
  6430. sps->frame_mbs_only_flag ? "FRM" : (sps->mb_aff ? "MB-AFF" : "PIC-AFF"),
  6431. sps->direct_8x8_inference_flag ? "8B8" : "",
  6432. sps->crop_left, sps->crop_right,
  6433. sps->crop_top, sps->crop_bottom,
  6434. sps->vui_parameters_present_flag ? "VUI" : ""
  6435. );
  6436. }
  6437. return 0;
  6438. }
  6439. static inline int decode_picture_parameter_set(H264Context *h, int bit_length){
  6440. MpegEncContext * const s = &h->s;
  6441. int pps_id= get_ue_golomb(&s->gb);
  6442. PPS *pps= &h->pps_buffer[pps_id];
  6443. pps->sps_id= get_ue_golomb(&s->gb);
  6444. pps->cabac= get_bits1(&s->gb);
  6445. pps->pic_order_present= get_bits1(&s->gb);
  6446. pps->slice_group_count= get_ue_golomb(&s->gb) + 1;
  6447. if(pps->slice_group_count > 1 ){
  6448. pps->mb_slice_group_map_type= get_ue_golomb(&s->gb);
  6449. av_log(h->s.avctx, AV_LOG_ERROR, "FMO not supported\n");
  6450. switch(pps->mb_slice_group_map_type){
  6451. case 0:
  6452. #if 0
  6453. | for( i = 0; i <= num_slice_groups_minus1; i++ ) | | |
  6454. | run_length[ i ] |1 |ue(v) |
  6455. #endif
  6456. break;
  6457. case 2:
  6458. #if 0
  6459. | for( i = 0; i < num_slice_groups_minus1; i++ ) | | |
  6460. |{ | | |
  6461. | top_left_mb[ i ] |1 |ue(v) |
  6462. | bottom_right_mb[ i ] |1 |ue(v) |
  6463. | } | | |
  6464. #endif
  6465. break;
  6466. case 3:
  6467. case 4:
  6468. case 5:
  6469. #if 0
  6470. | slice_group_change_direction_flag |1 |u(1) |
  6471. | slice_group_change_rate_minus1 |1 |ue(v) |
  6472. #endif
  6473. break;
  6474. case 6:
  6475. #if 0
  6476. | slice_group_id_cnt_minus1 |1 |ue(v) |
  6477. | for( i = 0; i <= slice_group_id_cnt_minus1; i++ | | |
  6478. |) | | |
  6479. | slice_group_id[ i ] |1 |u(v) |
  6480. #endif
  6481. break;
  6482. }
  6483. }
  6484. pps->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  6485. pps->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  6486. if(pps->ref_count[0] > 32 || pps->ref_count[1] > 32){
  6487. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow (pps)\n");
  6488. return -1;
  6489. }
  6490. pps->weighted_pred= get_bits1(&s->gb);
  6491. pps->weighted_bipred_idc= get_bits(&s->gb, 2);
  6492. pps->init_qp= get_se_golomb(&s->gb) + 26;
  6493. pps->init_qs= get_se_golomb(&s->gb) + 26;
  6494. pps->chroma_qp_index_offset= get_se_golomb(&s->gb);
  6495. pps->deblocking_filter_parameters_present= get_bits1(&s->gb);
  6496. pps->constrained_intra_pred= get_bits1(&s->gb);
  6497. pps->redundant_pic_cnt_present = get_bits1(&s->gb);
  6498. memset(pps->scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  6499. memset(pps->scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  6500. if(get_bits_count(&s->gb) < bit_length){
  6501. pps->transform_8x8_mode= get_bits1(&s->gb);
  6502. decode_scaling_matrices(h, &h->sps_buffer[pps->sps_id], pps, 0, pps->scaling_matrix4, pps->scaling_matrix8);
  6503. get_se_golomb(&s->gb); //second_chroma_qp_index_offset
  6504. }
  6505. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  6506. av_log(h->s.avctx, AV_LOG_DEBUG, "pps:%d sps:%d %s slice_groups:%d ref:%d/%d %s qp:%d/%d/%d %s %s %s %s\n",
  6507. pps_id, pps->sps_id,
  6508. pps->cabac ? "CABAC" : "CAVLC",
  6509. pps->slice_group_count,
  6510. pps->ref_count[0], pps->ref_count[1],
  6511. pps->weighted_pred ? "weighted" : "",
  6512. pps->init_qp, pps->init_qs, pps->chroma_qp_index_offset,
  6513. pps->deblocking_filter_parameters_present ? "LPAR" : "",
  6514. pps->constrained_intra_pred ? "CONSTR" : "",
  6515. pps->redundant_pic_cnt_present ? "REDU" : "",
  6516. pps->transform_8x8_mode ? "8x8DCT" : ""
  6517. );
  6518. }
  6519. return 0;
  6520. }
  6521. /**
  6522. * finds the end of the current frame in the bitstream.
  6523. * @return the position of the first byte of the next frame, or -1
  6524. */
  6525. static int find_frame_end(H264Context *h, const uint8_t *buf, int buf_size){
  6526. int i;
  6527. uint32_t state;
  6528. ParseContext *pc = &(h->s.parse_context);
  6529. //printf("first %02X%02X%02X%02X\n", buf[0], buf[1],buf[2],buf[3]);
  6530. // mb_addr= pc->mb_addr - 1;
  6531. state= pc->state;
  6532. for(i=0; i<=buf_size; i++){
  6533. if((state&0xFFFFFF1F) == 0x101 || (state&0xFFFFFF1F) == 0x102 || (state&0xFFFFFF1F) == 0x105){
  6534. tprintf("find_frame_end new startcode = %08x, frame_start_found = %d, pos = %d\n", state, pc->frame_start_found, i);
  6535. if(pc->frame_start_found){
  6536. // If there isn't one more byte in the buffer
  6537. // the test on first_mb_in_slice cannot be done yet
  6538. // do it at next call.
  6539. if (i >= buf_size) break;
  6540. if (buf[i] & 0x80) {
  6541. // first_mb_in_slice is 0, probably the first nal of a new
  6542. // slice
  6543. tprintf("find_frame_end frame_end_found, state = %08x, pos = %d\n", state, i);
  6544. pc->state=-1;
  6545. pc->frame_start_found= 0;
  6546. return i-4;
  6547. }
  6548. }
  6549. pc->frame_start_found = 1;
  6550. }
  6551. if((state&0xFFFFFF1F) == 0x107 || (state&0xFFFFFF1F) == 0x108 || (state&0xFFFFFF1F) == 0x109){
  6552. if(pc->frame_start_found){
  6553. pc->state=-1;
  6554. pc->frame_start_found= 0;
  6555. return i-4;
  6556. }
  6557. }
  6558. if (i<buf_size)
  6559. state= (state<<8) | buf[i];
  6560. }
  6561. pc->state= state;
  6562. return END_NOT_FOUND;
  6563. }
  6564. static int h264_parse(AVCodecParserContext *s,
  6565. AVCodecContext *avctx,
  6566. uint8_t **poutbuf, int *poutbuf_size,
  6567. const uint8_t *buf, int buf_size)
  6568. {
  6569. H264Context *h = s->priv_data;
  6570. ParseContext *pc = &h->s.parse_context;
  6571. int next;
  6572. next= find_frame_end(h, buf, buf_size);
  6573. if (ff_combine_frame(pc, next, (uint8_t **)&buf, &buf_size) < 0) {
  6574. *poutbuf = NULL;
  6575. *poutbuf_size = 0;
  6576. return buf_size;
  6577. }
  6578. *poutbuf = (uint8_t *)buf;
  6579. *poutbuf_size = buf_size;
  6580. return next;
  6581. }
  6582. static int h264_split(AVCodecContext *avctx,
  6583. const uint8_t *buf, int buf_size)
  6584. {
  6585. int i;
  6586. uint32_t state = -1;
  6587. int has_sps= 0;
  6588. for(i=0; i<=buf_size; i++){
  6589. if((state&0xFFFFFF1F) == 0x107)
  6590. has_sps=1;
  6591. /* if((state&0xFFFFFF1F) == 0x101 || (state&0xFFFFFF1F) == 0x102 || (state&0xFFFFFF1F) == 0x105){
  6592. }*/
  6593. if((state&0xFFFFFF00) == 0x100 && (state&0xFFFFFF1F) != 0x107 && (state&0xFFFFFF1F) != 0x108 && (state&0xFFFFFF1F) != 0x109){
  6594. if(has_sps){
  6595. while(i>4 && buf[i-5]==0) i--;
  6596. return i-4;
  6597. }
  6598. }
  6599. if (i<buf_size)
  6600. state= (state<<8) | buf[i];
  6601. }
  6602. return 0;
  6603. }
  6604. static int decode_nal_units(H264Context *h, uint8_t *buf, int buf_size){
  6605. MpegEncContext * const s = &h->s;
  6606. AVCodecContext * const avctx= s->avctx;
  6607. int buf_index=0;
  6608. #if 0
  6609. int i;
  6610. for(i=0; i<50; i++){
  6611. av_log(NULL, AV_LOG_ERROR,"%02X ", buf[i]);
  6612. }
  6613. #endif
  6614. h->slice_num = 0;
  6615. s->current_picture_ptr= NULL;
  6616. for(;;){
  6617. int consumed;
  6618. int dst_length;
  6619. int bit_length;
  6620. uint8_t *ptr;
  6621. int i, nalsize = 0;
  6622. if(h->is_avc) {
  6623. if(buf_index >= buf_size) break;
  6624. nalsize = 0;
  6625. for(i = 0; i < h->nal_length_size; i++)
  6626. nalsize = (nalsize << 8) | buf[buf_index++];
  6627. if(nalsize <= 1){
  6628. if(nalsize == 1){
  6629. buf_index++;
  6630. continue;
  6631. }else{
  6632. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize);
  6633. break;
  6634. }
  6635. }
  6636. } else {
  6637. // start code prefix search
  6638. for(; buf_index + 3 < buf_size; buf_index++){
  6639. // this should allways succeed in the first iteration
  6640. if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
  6641. break;
  6642. }
  6643. if(buf_index+3 >= buf_size) break;
  6644. buf_index+=3;
  6645. }
  6646. ptr= decode_nal(h, buf + buf_index, &dst_length, &consumed, h->is_avc ? nalsize : buf_size - buf_index);
  6647. if(ptr[dst_length - 1] == 0) dst_length--;
  6648. bit_length= 8*dst_length - decode_rbsp_trailing(ptr + dst_length - 1);
  6649. if(s->avctx->debug&FF_DEBUG_STARTCODE){
  6650. av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d at %d/%d length %d\n", h->nal_unit_type, buf_index, buf_size, dst_length);
  6651. }
  6652. if (h->is_avc && (nalsize != consumed))
  6653. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize);
  6654. buf_index += consumed;
  6655. if( (s->hurry_up == 1 && h->nal_ref_idc == 0) //FIXME dont discard SEI id
  6656. ||(avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  6657. continue;
  6658. switch(h->nal_unit_type){
  6659. case NAL_IDR_SLICE:
  6660. idr(h); //FIXME ensure we don't loose some frames if there is reordering
  6661. case NAL_SLICE:
  6662. init_get_bits(&s->gb, ptr, bit_length);
  6663. h->intra_gb_ptr=
  6664. h->inter_gb_ptr= &s->gb;
  6665. s->data_partitioning = 0;
  6666. if(decode_slice_header(h) < 0){
  6667. av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
  6668. break;
  6669. }
  6670. if(h->redundant_pic_count==0 && s->hurry_up < 5
  6671. && (avctx->skip_frame < AVDISCARD_NONREF || h->nal_ref_idc)
  6672. && (avctx->skip_frame < AVDISCARD_BIDIR || h->slice_type!=B_TYPE)
  6673. && (avctx->skip_frame < AVDISCARD_NONKEY || h->slice_type==I_TYPE)
  6674. && avctx->skip_frame < AVDISCARD_ALL)
  6675. decode_slice(h);
  6676. break;
  6677. case NAL_DPA:
  6678. init_get_bits(&s->gb, ptr, bit_length);
  6679. h->intra_gb_ptr=
  6680. h->inter_gb_ptr= NULL;
  6681. s->data_partitioning = 1;
  6682. if(decode_slice_header(h) < 0){
  6683. av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
  6684. }
  6685. break;
  6686. case NAL_DPB:
  6687. init_get_bits(&h->intra_gb, ptr, bit_length);
  6688. h->intra_gb_ptr= &h->intra_gb;
  6689. break;
  6690. case NAL_DPC:
  6691. init_get_bits(&h->inter_gb, ptr, bit_length);
  6692. h->inter_gb_ptr= &h->inter_gb;
  6693. if(h->redundant_pic_count==0 && h->intra_gb_ptr && s->data_partitioning
  6694. && s->hurry_up < 5
  6695. && (avctx->skip_frame < AVDISCARD_NONREF || h->nal_ref_idc)
  6696. && (avctx->skip_frame < AVDISCARD_BIDIR || h->slice_type!=B_TYPE)
  6697. && (avctx->skip_frame < AVDISCARD_NONKEY || h->slice_type==I_TYPE)
  6698. && avctx->skip_frame < AVDISCARD_ALL)
  6699. decode_slice(h);
  6700. break;
  6701. case NAL_SEI:
  6702. init_get_bits(&s->gb, ptr, bit_length);
  6703. decode_sei(h);
  6704. break;
  6705. case NAL_SPS:
  6706. init_get_bits(&s->gb, ptr, bit_length);
  6707. decode_seq_parameter_set(h);
  6708. if(s->flags& CODEC_FLAG_LOW_DELAY)
  6709. s->low_delay=1;
  6710. if(avctx->has_b_frames < 2)
  6711. avctx->has_b_frames= !s->low_delay;
  6712. break;
  6713. case NAL_PPS:
  6714. init_get_bits(&s->gb, ptr, bit_length);
  6715. decode_picture_parameter_set(h, bit_length);
  6716. break;
  6717. case NAL_AUD:
  6718. case NAL_END_SEQUENCE:
  6719. case NAL_END_STREAM:
  6720. case NAL_FILLER_DATA:
  6721. case NAL_SPS_EXT:
  6722. case NAL_AUXILIARY_SLICE:
  6723. break;
  6724. default:
  6725. av_log(avctx, AV_LOG_ERROR, "Unknown NAL code: %d\n", h->nal_unit_type);
  6726. }
  6727. }
  6728. if(!s->current_picture_ptr) return buf_index; //no frame
  6729. s->current_picture_ptr->qscale_type= FF_QSCALE_TYPE_H264;
  6730. s->current_picture_ptr->pict_type= s->pict_type;
  6731. s->current_picture_ptr->key_frame= s->pict_type == I_TYPE && h->nal_unit_type == NAL_IDR_SLICE;
  6732. h->prev_frame_num_offset= h->frame_num_offset;
  6733. h->prev_frame_num= h->frame_num;
  6734. if(s->current_picture_ptr->reference){
  6735. h->prev_poc_msb= h->poc_msb;
  6736. h->prev_poc_lsb= h->poc_lsb;
  6737. }
  6738. if(s->current_picture_ptr->reference)
  6739. execute_ref_pic_marking(h, h->mmco, h->mmco_index);
  6740. ff_er_frame_end(s);
  6741. MPV_frame_end(s);
  6742. return buf_index;
  6743. }
  6744. /**
  6745. * returns the number of bytes consumed for building the current frame
  6746. */
  6747. static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
  6748. if(s->flags&CODEC_FLAG_TRUNCATED){
  6749. pos -= s->parse_context.last_index;
  6750. if(pos<0) pos=0; // FIXME remove (unneeded?)
  6751. return pos;
  6752. }else{
  6753. if(pos==0) pos=1; //avoid infinite loops (i doubt thats needed but ...)
  6754. if(pos+10>buf_size) pos=buf_size; // oops ;)
  6755. return pos;
  6756. }
  6757. }
  6758. static int decode_frame(AVCodecContext *avctx,
  6759. void *data, int *data_size,
  6760. uint8_t *buf, int buf_size)
  6761. {
  6762. H264Context *h = avctx->priv_data;
  6763. MpegEncContext *s = &h->s;
  6764. AVFrame *pict = data;
  6765. int buf_index;
  6766. s->flags= avctx->flags;
  6767. s->flags2= avctx->flags2;
  6768. /* no supplementary picture */
  6769. if (buf_size == 0) {
  6770. return 0;
  6771. }
  6772. if(s->flags&CODEC_FLAG_TRUNCATED){
  6773. int next= find_frame_end(h, buf, buf_size);
  6774. if( ff_combine_frame(&s->parse_context, next, &buf, &buf_size) < 0 )
  6775. return buf_size;
  6776. //printf("next:%d buf_size:%d last_index:%d\n", next, buf_size, s->parse_context.last_index);
  6777. }
  6778. if(h->is_avc && !h->got_avcC) {
  6779. int i, cnt, nalsize;
  6780. unsigned char *p = avctx->extradata;
  6781. if(avctx->extradata_size < 7) {
  6782. av_log(avctx, AV_LOG_ERROR, "avcC too short\n");
  6783. return -1;
  6784. }
  6785. if(*p != 1) {
  6786. av_log(avctx, AV_LOG_ERROR, "Unknown avcC version %d\n", *p);
  6787. return -1;
  6788. }
  6789. /* sps and pps in the avcC always have length coded with 2 bytes,
  6790. so put a fake nal_length_size = 2 while parsing them */
  6791. h->nal_length_size = 2;
  6792. // Decode sps from avcC
  6793. cnt = *(p+5) & 0x1f; // Number of sps
  6794. p += 6;
  6795. for (i = 0; i < cnt; i++) {
  6796. nalsize = BE_16(p) + 2;
  6797. if(decode_nal_units(h, p, nalsize) < 0) {
  6798. av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i);
  6799. return -1;
  6800. }
  6801. p += nalsize;
  6802. }
  6803. // Decode pps from avcC
  6804. cnt = *(p++); // Number of pps
  6805. for (i = 0; i < cnt; i++) {
  6806. nalsize = BE_16(p) + 2;
  6807. if(decode_nal_units(h, p, nalsize) != nalsize) {
  6808. av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i);
  6809. return -1;
  6810. }
  6811. p += nalsize;
  6812. }
  6813. // Now store right nal length size, that will be use to parse all other nals
  6814. h->nal_length_size = ((*(((char*)(avctx->extradata))+4))&0x03)+1;
  6815. // Do not reparse avcC
  6816. h->got_avcC = 1;
  6817. }
  6818. if(!h->is_avc && s->avctx->extradata_size && s->picture_number==0){
  6819. if(decode_nal_units(h, s->avctx->extradata, s->avctx->extradata_size) < 0)
  6820. return -1;
  6821. }
  6822. buf_index=decode_nal_units(h, buf, buf_size);
  6823. if(buf_index < 0)
  6824. return -1;
  6825. //FIXME do something with unavailable reference frames
  6826. // if(ret==FRAME_SKIPPED) return get_consumed_bytes(s, buf_index, buf_size);
  6827. if(!s->current_picture_ptr){
  6828. av_log(h->s.avctx, AV_LOG_DEBUG, "error, NO frame\n");
  6829. return -1;
  6830. }
  6831. {
  6832. Picture *out = s->current_picture_ptr;
  6833. #if 0 //decode order
  6834. *data_size = sizeof(AVFrame);
  6835. #else
  6836. /* Sort B-frames into display order */
  6837. Picture *cur = s->current_picture_ptr;
  6838. Picture *prev = h->delayed_output_pic;
  6839. int out_idx = 0;
  6840. int pics = 0;
  6841. int out_of_order;
  6842. int cross_idr = 0;
  6843. int dropped_frame = 0;
  6844. int i;
  6845. if(h->sps.bitstream_restriction_flag
  6846. && s->avctx->has_b_frames < h->sps.num_reorder_frames){
  6847. s->avctx->has_b_frames = h->sps.num_reorder_frames;
  6848. s->low_delay = 0;
  6849. }
  6850. while(h->delayed_pic[pics]) pics++;
  6851. h->delayed_pic[pics++] = cur;
  6852. if(cur->reference == 0)
  6853. cur->reference = 1;
  6854. for(i=0; h->delayed_pic[i]; i++)
  6855. if(h->delayed_pic[i]->key_frame || h->delayed_pic[i]->poc==0)
  6856. cross_idr = 1;
  6857. out = h->delayed_pic[0];
  6858. for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame; i++)
  6859. if(h->delayed_pic[i]->poc < out->poc){
  6860. out = h->delayed_pic[i];
  6861. out_idx = i;
  6862. }
  6863. out_of_order = !cross_idr && prev && out->poc < prev->poc;
  6864. if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames >= h->sps.num_reorder_frames)
  6865. { }
  6866. else if(prev && pics <= s->avctx->has_b_frames)
  6867. out = prev;
  6868. else if((out_of_order && pics-1 == s->avctx->has_b_frames && pics < 15)
  6869. || (s->low_delay &&
  6870. ((!cross_idr && prev && out->poc > prev->poc + 2)
  6871. || cur->pict_type == B_TYPE)))
  6872. {
  6873. s->low_delay = 0;
  6874. s->avctx->has_b_frames++;
  6875. out = prev;
  6876. }
  6877. else if(out_of_order)
  6878. out = prev;
  6879. if(out_of_order || pics > s->avctx->has_b_frames){
  6880. dropped_frame = (out != h->delayed_pic[out_idx]);
  6881. for(i=out_idx; h->delayed_pic[i]; i++)
  6882. h->delayed_pic[i] = h->delayed_pic[i+1];
  6883. }
  6884. if(prev == out && !dropped_frame)
  6885. *data_size = 0;
  6886. else
  6887. *data_size = sizeof(AVFrame);
  6888. if(prev && prev != out && prev->reference == 1)
  6889. prev->reference = 0;
  6890. h->delayed_output_pic = out;
  6891. #endif
  6892. if(out)
  6893. *pict= *(AVFrame*)out;
  6894. else
  6895. av_log(avctx, AV_LOG_DEBUG, "no picture\n");
  6896. }
  6897. assert(pict->data[0] || !*data_size);
  6898. ff_print_debug_info(s, pict);
  6899. //printf("out %d\n", (int)pict->data[0]);
  6900. #if 0 //?
  6901. /* Return the Picture timestamp as the frame number */
  6902. /* we substract 1 because it is added on utils.c */
  6903. avctx->frame_number = s->picture_number - 1;
  6904. #endif
  6905. return get_consumed_bytes(s, buf_index, buf_size);
  6906. }
  6907. #if 0
  6908. static inline void fill_mb_avail(H264Context *h){
  6909. MpegEncContext * const s = &h->s;
  6910. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  6911. if(s->mb_y){
  6912. h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
  6913. h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num;
  6914. h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
  6915. }else{
  6916. h->mb_avail[0]=
  6917. h->mb_avail[1]=
  6918. h->mb_avail[2]= 0;
  6919. }
  6920. h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
  6921. h->mb_avail[4]= 1; //FIXME move out
  6922. h->mb_avail[5]= 0; //FIXME move out
  6923. }
  6924. #endif
  6925. #if 0 //selftest
  6926. #define COUNT 8000
  6927. #define SIZE (COUNT*40)
  6928. int main(){
  6929. int i;
  6930. uint8_t temp[SIZE];
  6931. PutBitContext pb;
  6932. GetBitContext gb;
  6933. // int int_temp[10000];
  6934. DSPContext dsp;
  6935. AVCodecContext avctx;
  6936. dsputil_init(&dsp, &avctx);
  6937. init_put_bits(&pb, temp, SIZE);
  6938. printf("testing unsigned exp golomb\n");
  6939. for(i=0; i<COUNT; i++){
  6940. START_TIMER
  6941. set_ue_golomb(&pb, i);
  6942. STOP_TIMER("set_ue_golomb");
  6943. }
  6944. flush_put_bits(&pb);
  6945. init_get_bits(&gb, temp, 8*SIZE);
  6946. for(i=0; i<COUNT; i++){
  6947. int j, s;
  6948. s= show_bits(&gb, 24);
  6949. START_TIMER
  6950. j= get_ue_golomb(&gb);
  6951. if(j != i){
  6952. printf("missmatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  6953. // return -1;
  6954. }
  6955. STOP_TIMER("get_ue_golomb");
  6956. }
  6957. init_put_bits(&pb, temp, SIZE);
  6958. printf("testing signed exp golomb\n");
  6959. for(i=0; i<COUNT; i++){
  6960. START_TIMER
  6961. set_se_golomb(&pb, i - COUNT/2);
  6962. STOP_TIMER("set_se_golomb");
  6963. }
  6964. flush_put_bits(&pb);
  6965. init_get_bits(&gb, temp, 8*SIZE);
  6966. for(i=0; i<COUNT; i++){
  6967. int j, s;
  6968. s= show_bits(&gb, 24);
  6969. START_TIMER
  6970. j= get_se_golomb(&gb);
  6971. if(j != i - COUNT/2){
  6972. printf("missmatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  6973. // return -1;
  6974. }
  6975. STOP_TIMER("get_se_golomb");
  6976. }
  6977. printf("testing 4x4 (I)DCT\n");
  6978. DCTELEM block[16];
  6979. uint8_t src[16], ref[16];
  6980. uint64_t error= 0, max_error=0;
  6981. for(i=0; i<COUNT; i++){
  6982. int j;
  6983. // printf("%d %d %d\n", r1, r2, (r2-r1)*16);
  6984. for(j=0; j<16; j++){
  6985. ref[j]= random()%255;
  6986. src[j]= random()%255;
  6987. }
  6988. h264_diff_dct_c(block, src, ref, 4);
  6989. //normalize
  6990. for(j=0; j<16; j++){
  6991. // printf("%d ", block[j]);
  6992. block[j]= block[j]*4;
  6993. if(j&1) block[j]= (block[j]*4 + 2)/5;
  6994. if(j&4) block[j]= (block[j]*4 + 2)/5;
  6995. }
  6996. // printf("\n");
  6997. s->dsp.h264_idct_add(ref, block, 4);
  6998. /* for(j=0; j<16; j++){
  6999. printf("%d ", ref[j]);
  7000. }
  7001. printf("\n");*/
  7002. for(j=0; j<16; j++){
  7003. int diff= ABS(src[j] - ref[j]);
  7004. error+= diff*diff;
  7005. max_error= FFMAX(max_error, diff);
  7006. }
  7007. }
  7008. printf("error=%f max_error=%d\n", ((float)error)/COUNT/16, (int)max_error );
  7009. #if 0
  7010. printf("testing quantizer\n");
  7011. for(qp=0; qp<52; qp++){
  7012. for(i=0; i<16; i++)
  7013. src1_block[i]= src2_block[i]= random()%255;
  7014. }
  7015. #endif
  7016. printf("Testing NAL layer\n");
  7017. uint8_t bitstream[COUNT];
  7018. uint8_t nal[COUNT*2];
  7019. H264Context h;
  7020. memset(&h, 0, sizeof(H264Context));
  7021. for(i=0; i<COUNT; i++){
  7022. int zeros= i;
  7023. int nal_length;
  7024. int consumed;
  7025. int out_length;
  7026. uint8_t *out;
  7027. int j;
  7028. for(j=0; j<COUNT; j++){
  7029. bitstream[j]= (random() % 255) + 1;
  7030. }
  7031. for(j=0; j<zeros; j++){
  7032. int pos= random() % COUNT;
  7033. while(bitstream[pos] == 0){
  7034. pos++;
  7035. pos %= COUNT;
  7036. }
  7037. bitstream[pos]=0;
  7038. }
  7039. START_TIMER
  7040. nal_length= encode_nal(&h, nal, bitstream, COUNT, COUNT*2);
  7041. if(nal_length<0){
  7042. printf("encoding failed\n");
  7043. return -1;
  7044. }
  7045. out= decode_nal(&h, nal, &out_length, &consumed, nal_length);
  7046. STOP_TIMER("NAL")
  7047. if(out_length != COUNT){
  7048. printf("incorrect length %d %d\n", out_length, COUNT);
  7049. return -1;
  7050. }
  7051. if(consumed != nal_length){
  7052. printf("incorrect consumed length %d %d\n", nal_length, consumed);
  7053. return -1;
  7054. }
  7055. if(memcmp(bitstream, out, COUNT)){
  7056. printf("missmatch\n");
  7057. return -1;
  7058. }
  7059. }
  7060. printf("Testing RBSP\n");
  7061. return 0;
  7062. }
  7063. #endif
  7064. static int decode_end(AVCodecContext *avctx)
  7065. {
  7066. H264Context *h = avctx->priv_data;
  7067. MpegEncContext *s = &h->s;
  7068. av_freep(&h->rbsp_buffer);
  7069. free_tables(h); //FIXME cleanup init stuff perhaps
  7070. MPV_common_end(s);
  7071. // memset(h, 0, sizeof(H264Context));
  7072. return 0;
  7073. }
  7074. AVCodec h264_decoder = {
  7075. "h264",
  7076. CODEC_TYPE_VIDEO,
  7077. CODEC_ID_H264,
  7078. sizeof(H264Context),
  7079. decode_init,
  7080. NULL,
  7081. decode_end,
  7082. decode_frame,
  7083. /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_TRUNCATED | CODEC_CAP_DELAY,
  7084. .flush= flush_dpb,
  7085. };
  7086. AVCodecParser h264_parser = {
  7087. { CODEC_ID_H264 },
  7088. sizeof(H264Context),
  7089. NULL,
  7090. h264_parse,
  7091. ff_parse_close,
  7092. h264_split,
  7093. };
  7094. #include "svq3.c"