You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1586 lines
56KB

  1. /*
  2. * Copyright (c) 2003 The Libav Project
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /*
  21. * How to use this decoder:
  22. * SVQ3 data is transported within Apple Quicktime files. Quicktime files
  23. * have stsd atoms to describe media trak properties. A stsd atom for a
  24. * video trak contains 1 or more ImageDescription atoms. These atoms begin
  25. * with the 4-byte length of the atom followed by the codec fourcc. Some
  26. * decoders need information in this atom to operate correctly. Such
  27. * is the case with SVQ3. In order to get the best use out of this decoder,
  28. * the calling app must make the SVQ3 ImageDescription atom available
  29. * via the AVCodecContext's extradata[_size] field:
  30. *
  31. * AVCodecContext.extradata = pointer to ImageDescription, first characters
  32. * are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length
  33. * AVCodecContext.extradata_size = size of ImageDescription atom memory
  34. * buffer (which will be the same as the ImageDescription atom size field
  35. * from the QT file, minus 4 bytes since the length is missing)
  36. *
  37. * You will know you have these parameters passed correctly when the decoder
  38. * correctly decodes this file:
  39. * http://samples.libav.org/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov
  40. */
  41. #include <inttypes.h>
  42. #include "libavutil/attributes.h"
  43. #include "internal.h"
  44. #include "avcodec.h"
  45. #include "mpegutils.h"
  46. #include "h264.h"
  47. #include "h264data.h"
  48. #include "golomb.h"
  49. #include "hpeldsp.h"
  50. #include "mathops.h"
  51. #include "rectangle.h"
  52. #include "tpeldsp.h"
  53. #if CONFIG_ZLIB
  54. #include <zlib.h>
  55. #endif
  56. #include "svq1.h"
  57. /**
  58. * @file
  59. * svq3 decoder.
  60. */
  61. typedef struct SVQ3Context {
  62. AVCodecContext *avctx;
  63. H264DSPContext h264dsp;
  64. H264PredContext hpc;
  65. HpelDSPContext hdsp;
  66. TpelDSPContext tdsp;
  67. VideoDSPContext vdsp;
  68. H264Picture *cur_pic;
  69. H264Picture *next_pic;
  70. H264Picture *last_pic;
  71. GetBitContext gb;
  72. GetBitContext gb_slice;
  73. uint8_t *slice_buf;
  74. int slice_size;
  75. int halfpel_flag;
  76. int thirdpel_flag;
  77. int unknown_flag;
  78. uint32_t watermark_key;
  79. int adaptive_quant;
  80. int next_p_frame_damaged;
  81. int h_edge_pos;
  82. int v_edge_pos;
  83. int last_frame_output;
  84. int slice_num;
  85. int qscale;
  86. int cbp;
  87. int frame_num;
  88. int frame_num_offset;
  89. int prev_frame_num_offset;
  90. int prev_frame_num;
  91. enum AVPictureType pict_type;
  92. int low_delay;
  93. int mb_x, mb_y;
  94. int mb_xy;
  95. int mb_width, mb_height;
  96. int mb_stride, mb_num;
  97. int b_stride;
  98. uint32_t *mb2br_xy;
  99. int chroma_pred_mode;
  100. int intra16x16_pred_mode;
  101. int8_t intra4x4_pred_mode_cache[5 * 8];
  102. int8_t (*intra4x4_pred_mode);
  103. unsigned int top_samples_available;
  104. unsigned int topright_samples_available;
  105. unsigned int left_samples_available;
  106. uint8_t *edge_emu_buffer;
  107. DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
  108. DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
  109. DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];
  110. DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
  111. DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
  112. uint32_t dequant4_coeff[QP_MAX_NUM + 1][16];
  113. int block_offset[2 * (16 * 3)];
  114. } SVQ3Context;
  115. #define FULLPEL_MODE 1
  116. #define HALFPEL_MODE 2
  117. #define THIRDPEL_MODE 3
  118. #define PREDICT_MODE 4
  119. /* dual scan (from some older h264 draft)
  120. * o-->o-->o o
  121. * | /|
  122. * o o o / o
  123. * | / | |/ |
  124. * o o o o
  125. * /
  126. * o-->o-->o-->o
  127. */
  128. static const uint8_t svq3_scan[16] = {
  129. 0 + 0 * 4, 1 + 0 * 4, 2 + 0 * 4, 2 + 1 * 4,
  130. 2 + 2 * 4, 3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4,
  131. 0 + 1 * 4, 0 + 2 * 4, 1 + 1 * 4, 1 + 2 * 4,
  132. 0 + 3 * 4, 1 + 3 * 4, 2 + 3 * 4, 3 + 3 * 4,
  133. };
  134. static const uint8_t luma_dc_zigzag_scan[16] = {
  135. 0 * 16 + 0 * 64, 1 * 16 + 0 * 64, 2 * 16 + 0 * 64, 0 * 16 + 2 * 64,
  136. 3 * 16 + 0 * 64, 0 * 16 + 1 * 64, 1 * 16 + 1 * 64, 2 * 16 + 1 * 64,
  137. 1 * 16 + 2 * 64, 2 * 16 + 2 * 64, 3 * 16 + 2 * 64, 0 * 16 + 3 * 64,
  138. 3 * 16 + 1 * 64, 1 * 16 + 3 * 64, 2 * 16 + 3 * 64, 3 * 16 + 3 * 64,
  139. };
  140. static const uint8_t svq3_pred_0[25][2] = {
  141. { 0, 0 },
  142. { 1, 0 }, { 0, 1 },
  143. { 0, 2 }, { 1, 1 }, { 2, 0 },
  144. { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
  145. { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
  146. { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
  147. { 2, 4 }, { 3, 3 }, { 4, 2 },
  148. { 4, 3 }, { 3, 4 },
  149. { 4, 4 }
  150. };
  151. static const int8_t svq3_pred_1[6][6][5] = {
  152. { { 2, -1, -1, -1, -1 }, { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 },
  153. { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 }, { 1, 2, -1, -1, -1 } },
  154. { { 0, 2, -1, -1, -1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
  155. { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
  156. { { 2, 0, -1, -1, -1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
  157. { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
  158. { { 2, 0, -1, -1, -1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
  159. { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
  160. { { 0, 2, -1, -1, -1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
  161. { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
  162. { { 0, 2, -1, -1, -1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
  163. { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
  164. };
  165. static const struct {
  166. uint8_t run;
  167. uint8_t level;
  168. } svq3_dct_tables[2][16] = {
  169. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
  170. { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
  171. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
  172. { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
  173. };
  174. static const uint32_t svq3_dequant_coeff[32] = {
  175. 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
  176. 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
  177. 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
  178. 61694, 68745, 77615, 89113, 100253, 109366, 126635, 141533
  179. };
  180. static void svq3_luma_dc_dequant_idct_c(int16_t *output, int16_t *input, int qp)
  181. {
  182. const int qmul = svq3_dequant_coeff[qp];
  183. #define stride 16
  184. int i;
  185. int temp[16];
  186. static const uint8_t x_offset[4] = { 0, 1 * stride, 4 * stride, 5 * stride };
  187. for (i = 0; i < 4; i++) {
  188. const int z0 = 13 * (input[4 * i + 0] + input[4 * i + 2]);
  189. const int z1 = 13 * (input[4 * i + 0] - input[4 * i + 2]);
  190. const int z2 = 7 * input[4 * i + 1] - 17 * input[4 * i + 3];
  191. const int z3 = 17 * input[4 * i + 1] + 7 * input[4 * i + 3];
  192. temp[4 * i + 0] = z0 + z3;
  193. temp[4 * i + 1] = z1 + z2;
  194. temp[4 * i + 2] = z1 - z2;
  195. temp[4 * i + 3] = z0 - z3;
  196. }
  197. for (i = 0; i < 4; i++) {
  198. const int offset = x_offset[i];
  199. const int z0 = 13 * (temp[4 * 0 + i] + temp[4 * 2 + i]);
  200. const int z1 = 13 * (temp[4 * 0 + i] - temp[4 * 2 + i]);
  201. const int z2 = 7 * temp[4 * 1 + i] - 17 * temp[4 * 3 + i];
  202. const int z3 = 17 * temp[4 * 1 + i] + 7 * temp[4 * 3 + i];
  203. output[stride * 0 + offset] = (z0 + z3) * qmul + 0x80000 >> 20;
  204. output[stride * 2 + offset] = (z1 + z2) * qmul + 0x80000 >> 20;
  205. output[stride * 8 + offset] = (z1 - z2) * qmul + 0x80000 >> 20;
  206. output[stride * 10 + offset] = (z0 - z3) * qmul + 0x80000 >> 20;
  207. }
  208. }
  209. #undef stride
  210. static void svq3_add_idct_c(uint8_t *dst, int16_t *block,
  211. int stride, int qp, int dc)
  212. {
  213. const int qmul = svq3_dequant_coeff[qp];
  214. int i;
  215. if (dc) {
  216. dc = 13 * 13 * (dc == 1 ? 1538 * block[0]
  217. : qmul * (block[0] >> 3) / 2);
  218. block[0] = 0;
  219. }
  220. for (i = 0; i < 4; i++) {
  221. const int z0 = 13 * (block[0 + 4 * i] + block[2 + 4 * i]);
  222. const int z1 = 13 * (block[0 + 4 * i] - block[2 + 4 * i]);
  223. const int z2 = 7 * block[1 + 4 * i] - 17 * block[3 + 4 * i];
  224. const int z3 = 17 * block[1 + 4 * i] + 7 * block[3 + 4 * i];
  225. block[0 + 4 * i] = z0 + z3;
  226. block[1 + 4 * i] = z1 + z2;
  227. block[2 + 4 * i] = z1 - z2;
  228. block[3 + 4 * i] = z0 - z3;
  229. }
  230. for (i = 0; i < 4; i++) {
  231. const int z0 = 13 * (block[i + 4 * 0] + block[i + 4 * 2]);
  232. const int z1 = 13 * (block[i + 4 * 0] - block[i + 4 * 2]);
  233. const int z2 = 7 * block[i + 4 * 1] - 17 * block[i + 4 * 3];
  234. const int z3 = 17 * block[i + 4 * 1] + 7 * block[i + 4 * 3];
  235. const int rr = (dc + 0x80000);
  236. dst[i + stride * 0] = av_clip_uint8(dst[i + stride * 0] + ((z0 + z3) * qmul + rr >> 20));
  237. dst[i + stride * 1] = av_clip_uint8(dst[i + stride * 1] + ((z1 + z2) * qmul + rr >> 20));
  238. dst[i + stride * 2] = av_clip_uint8(dst[i + stride * 2] + ((z1 - z2) * qmul + rr >> 20));
  239. dst[i + stride * 3] = av_clip_uint8(dst[i + stride * 3] + ((z0 - z3) * qmul + rr >> 20));
  240. }
  241. memset(block, 0, 16 * sizeof(int16_t));
  242. }
  243. static inline int svq3_decode_block(GetBitContext *gb, int16_t *block,
  244. int index, const int type)
  245. {
  246. static const uint8_t *const scan_patterns[4] = {
  247. luma_dc_zigzag_scan, ff_zigzag_scan, svq3_scan, ff_h264_chroma_dc_scan
  248. };
  249. int run, level, limit;
  250. unsigned vlc;
  251. const int intra = 3 * type >> 2;
  252. const uint8_t *const scan = scan_patterns[type];
  253. for (limit = (16 >> intra); index < 16; index = limit, limit += 8) {
  254. for (; (vlc = svq3_get_ue_golomb(gb)) != 0; index++) {
  255. int sign = (vlc & 1) ? 0 : -1;
  256. vlc = vlc + 1 >> 1;
  257. if (type == 3) {
  258. if (vlc < 3) {
  259. run = 0;
  260. level = vlc;
  261. } else if (vlc < 4) {
  262. run = 1;
  263. level = 1;
  264. } else {
  265. run = vlc & 0x3;
  266. level = (vlc + 9 >> 2) - run;
  267. }
  268. } else {
  269. if (vlc < 16) {
  270. run = svq3_dct_tables[intra][vlc].run;
  271. level = svq3_dct_tables[intra][vlc].level;
  272. } else if (intra) {
  273. run = vlc & 0x7;
  274. level = (vlc >> 3) +
  275. ((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1)));
  276. } else {
  277. run = vlc & 0xF;
  278. level = (vlc >> 4) +
  279. ((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0)));
  280. }
  281. }
  282. if ((index += run) >= limit)
  283. return -1;
  284. block[scan[index]] = (level ^ sign) - sign;
  285. }
  286. if (type != 2) {
  287. break;
  288. }
  289. }
  290. return 0;
  291. }
  292. static av_always_inline int
  293. svq3_fetch_diagonal_mv(const SVQ3Context *s, const int16_t **C,
  294. int i, int list, int part_width)
  295. {
  296. const int topright_ref = s->ref_cache[list][i - 8 + part_width];
  297. if (topright_ref != PART_NOT_AVAILABLE) {
  298. *C = s->mv_cache[list][i - 8 + part_width];
  299. return topright_ref;
  300. } else {
  301. *C = s->mv_cache[list][i - 8 - 1];
  302. return s->ref_cache[list][i - 8 - 1];
  303. }
  304. }
  305. /**
  306. * Get the predicted MV.
  307. * @param n the block index
  308. * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
  309. * @param mx the x component of the predicted motion vector
  310. * @param my the y component of the predicted motion vector
  311. */
  312. static av_always_inline void svq3_pred_motion(const SVQ3Context *s, int n,
  313. int part_width, int list,
  314. int ref, int *const mx, int *const my)
  315. {
  316. const int index8 = scan8[n];
  317. const int top_ref = s->ref_cache[list][index8 - 8];
  318. const int left_ref = s->ref_cache[list][index8 - 1];
  319. const int16_t *const A = s->mv_cache[list][index8 - 1];
  320. const int16_t *const B = s->mv_cache[list][index8 - 8];
  321. const int16_t *C;
  322. int diagonal_ref, match_count;
  323. /* mv_cache
  324. * B . . A T T T T
  325. * U . . L . . , .
  326. * U . . L . . . .
  327. * U . . L . . , .
  328. * . . . L . . . .
  329. */
  330. diagonal_ref = svq3_fetch_diagonal_mv(s, &C, index8, list, part_width);
  331. match_count = (diagonal_ref == ref) + (top_ref == ref) + (left_ref == ref);
  332. if (match_count > 1) { //most common
  333. *mx = mid_pred(A[0], B[0], C[0]);
  334. *my = mid_pred(A[1], B[1], C[1]);
  335. } else if (match_count == 1) {
  336. if (left_ref == ref) {
  337. *mx = A[0];
  338. *my = A[1];
  339. } else if (top_ref == ref) {
  340. *mx = B[0];
  341. *my = B[1];
  342. } else {
  343. *mx = C[0];
  344. *my = C[1];
  345. }
  346. } else {
  347. if (top_ref == PART_NOT_AVAILABLE &&
  348. diagonal_ref == PART_NOT_AVAILABLE &&
  349. left_ref != PART_NOT_AVAILABLE) {
  350. *mx = A[0];
  351. *my = A[1];
  352. } else {
  353. *mx = mid_pred(A[0], B[0], C[0]);
  354. *my = mid_pred(A[1], B[1], C[1]);
  355. }
  356. }
  357. }
  358. static inline void svq3_mc_dir_part(SVQ3Context *s,
  359. int x, int y, int width, int height,
  360. int mx, int my, int dxy,
  361. int thirdpel, int dir, int avg)
  362. {
  363. const H264Picture *pic = (dir == 0) ? s->last_pic : s->next_pic;
  364. uint8_t *src, *dest;
  365. int i, emu = 0;
  366. int blocksize = 2 - (width >> 3); // 16->0, 8->1, 4->2
  367. int linesize = s->cur_pic->f->linesize[0];
  368. int uvlinesize = s->cur_pic->f->linesize[1];
  369. mx += x;
  370. my += y;
  371. if (mx < 0 || mx >= s->h_edge_pos - width - 1 ||
  372. my < 0 || my >= s->v_edge_pos - height - 1) {
  373. emu = 1;
  374. mx = av_clip(mx, -16, s->h_edge_pos - width + 15);
  375. my = av_clip(my, -16, s->v_edge_pos - height + 15);
  376. }
  377. /* form component predictions */
  378. dest = s->cur_pic->f->data[0] + x + y * linesize;
  379. src = pic->f->data[0] + mx + my * linesize;
  380. if (emu) {
  381. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, src,
  382. linesize, linesize,
  383. width + 1, height + 1,
  384. mx, my, s->h_edge_pos, s->v_edge_pos);
  385. src = s->edge_emu_buffer;
  386. }
  387. if (thirdpel)
  388. (avg ? s->tdsp.avg_tpel_pixels_tab
  389. : s->tdsp.put_tpel_pixels_tab)[dxy](dest, src, linesize,
  390. width, height);
  391. else
  392. (avg ? s->hdsp.avg_pixels_tab
  393. : s->hdsp.put_pixels_tab)[blocksize][dxy](dest, src, linesize,
  394. height);
  395. if (!(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
  396. mx = mx + (mx < (int) x) >> 1;
  397. my = my + (my < (int) y) >> 1;
  398. width = width >> 1;
  399. height = height >> 1;
  400. blocksize++;
  401. for (i = 1; i < 3; i++) {
  402. dest = s->cur_pic->f->data[i] + (x >> 1) + (y >> 1) * uvlinesize;
  403. src = pic->f->data[i] + mx + my * uvlinesize;
  404. if (emu) {
  405. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, src,
  406. uvlinesize, uvlinesize,
  407. width + 1, height + 1,
  408. mx, my, (s->h_edge_pos >> 1),
  409. s->v_edge_pos >> 1);
  410. src = s->edge_emu_buffer;
  411. }
  412. if (thirdpel)
  413. (avg ? s->tdsp.avg_tpel_pixels_tab
  414. : s->tdsp.put_tpel_pixels_tab)[dxy](dest, src,
  415. uvlinesize,
  416. width, height);
  417. else
  418. (avg ? s->hdsp.avg_pixels_tab
  419. : s->hdsp.put_pixels_tab)[blocksize][dxy](dest, src,
  420. uvlinesize,
  421. height);
  422. }
  423. }
  424. }
  425. static inline int svq3_mc_dir(SVQ3Context *s, int size, int mode,
  426. int dir, int avg)
  427. {
  428. int i, j, k, mx, my, dx, dy, x, y;
  429. const int part_width = ((size & 5) == 4) ? 4 : 16 >> (size & 1);
  430. const int part_height = 16 >> ((unsigned)(size + 1) / 3);
  431. const int extra_width = (mode == PREDICT_MODE) ? -16 * 6 : 0;
  432. const int h_edge_pos = 6 * (s->h_edge_pos - part_width) - extra_width;
  433. const int v_edge_pos = 6 * (s->v_edge_pos - part_height) - extra_width;
  434. for (i = 0; i < 16; i += part_height)
  435. for (j = 0; j < 16; j += part_width) {
  436. const int b_xy = (4 * s->mb_x + (j >> 2)) +
  437. (4 * s->mb_y + (i >> 2)) * s->b_stride;
  438. int dxy;
  439. x = 16 * s->mb_x + j;
  440. y = 16 * s->mb_y + i;
  441. k = (j >> 2 & 1) + (i >> 1 & 2) +
  442. (j >> 1 & 4) + (i & 8);
  443. if (mode != PREDICT_MODE) {
  444. svq3_pred_motion(s, k, part_width >> 2, dir, 1, &mx, &my);
  445. } else {
  446. mx = s->next_pic->motion_val[0][b_xy][0] << 1;
  447. my = s->next_pic->motion_val[0][b_xy][1] << 1;
  448. if (dir == 0) {
  449. mx = mx * s->frame_num_offset /
  450. s->prev_frame_num_offset + 1 >> 1;
  451. my = my * s->frame_num_offset /
  452. s->prev_frame_num_offset + 1 >> 1;
  453. } else {
  454. mx = mx * (s->frame_num_offset - s->prev_frame_num_offset) /
  455. s->prev_frame_num_offset + 1 >> 1;
  456. my = my * (s->frame_num_offset - s->prev_frame_num_offset) /
  457. s->prev_frame_num_offset + 1 >> 1;
  458. }
  459. }
  460. /* clip motion vector prediction to frame border */
  461. mx = av_clip(mx, extra_width - 6 * x, h_edge_pos - 6 * x);
  462. my = av_clip(my, extra_width - 6 * y, v_edge_pos - 6 * y);
  463. /* get (optional) motion vector differential */
  464. if (mode == PREDICT_MODE) {
  465. dx = dy = 0;
  466. } else {
  467. dy = svq3_get_se_golomb(&s->gb_slice);
  468. dx = svq3_get_se_golomb(&s->gb_slice);
  469. if (dx == INVALID_VLC || dy == INVALID_VLC) {
  470. av_log(s->avctx, AV_LOG_ERROR, "invalid MV vlc\n");
  471. return -1;
  472. }
  473. }
  474. /* compute motion vector */
  475. if (mode == THIRDPEL_MODE) {
  476. int fx, fy;
  477. mx = (mx + 1 >> 1) + dx;
  478. my = (my + 1 >> 1) + dy;
  479. fx = (unsigned)(mx + 0x3000) / 3 - 0x1000;
  480. fy = (unsigned)(my + 0x3000) / 3 - 0x1000;
  481. dxy = (mx - 3 * fx) + 4 * (my - 3 * fy);
  482. svq3_mc_dir_part(s, x, y, part_width, part_height,
  483. fx, fy, dxy, 1, dir, avg);
  484. mx += mx;
  485. my += my;
  486. } else if (mode == HALFPEL_MODE || mode == PREDICT_MODE) {
  487. mx = (unsigned)(mx + 1 + 0x3000) / 3 + dx - 0x1000;
  488. my = (unsigned)(my + 1 + 0x3000) / 3 + dy - 0x1000;
  489. dxy = (mx & 1) + 2 * (my & 1);
  490. svq3_mc_dir_part(s, x, y, part_width, part_height,
  491. mx >> 1, my >> 1, dxy, 0, dir, avg);
  492. mx *= 3;
  493. my *= 3;
  494. } else {
  495. mx = (unsigned)(mx + 3 + 0x6000) / 6 + dx - 0x1000;
  496. my = (unsigned)(my + 3 + 0x6000) / 6 + dy - 0x1000;
  497. svq3_mc_dir_part(s, x, y, part_width, part_height,
  498. mx, my, 0, 0, dir, avg);
  499. mx *= 6;
  500. my *= 6;
  501. }
  502. /* update mv_cache */
  503. if (mode != PREDICT_MODE) {
  504. int32_t mv = pack16to32(mx, my);
  505. if (part_height == 8 && i < 8) {
  506. AV_WN32A(s->mv_cache[dir][scan8[k] + 1 * 8], mv);
  507. if (part_width == 8 && j < 8)
  508. AV_WN32A(s->mv_cache[dir][scan8[k] + 1 + 1 * 8], mv);
  509. }
  510. if (part_width == 8 && j < 8)
  511. AV_WN32A(s->mv_cache[dir][scan8[k] + 1], mv);
  512. if (part_width == 4 || part_height == 4)
  513. AV_WN32A(s->mv_cache[dir][scan8[k]], mv);
  514. }
  515. /* write back motion vectors */
  516. fill_rectangle(s->cur_pic->motion_val[dir][b_xy],
  517. part_width >> 2, part_height >> 2, s->b_stride,
  518. pack16to32(mx, my), 4);
  519. }
  520. return 0;
  521. }
  522. static av_always_inline void hl_decode_mb_idct_luma(SVQ3Context *s,
  523. int mb_type, const int *block_offset,
  524. int linesize, uint8_t *dest_y)
  525. {
  526. int i;
  527. if (!IS_INTRA4x4(mb_type)) {
  528. for (i = 0; i < 16; i++)
  529. if (s->non_zero_count_cache[scan8[i]] || s->mb[i * 16]) {
  530. uint8_t *const ptr = dest_y + block_offset[i];
  531. svq3_add_idct_c(ptr, s->mb + i * 16, linesize,
  532. s->qscale, IS_INTRA(mb_type) ? 1 : 0);
  533. }
  534. }
  535. }
  536. static av_always_inline int dctcoef_get(int16_t *mb, int index)
  537. {
  538. return AV_RN16A(mb + index);
  539. }
  540. static av_always_inline void hl_decode_mb_predict_luma(SVQ3Context *s,
  541. int mb_type,
  542. const int *block_offset,
  543. int linesize,
  544. uint8_t *dest_y)
  545. {
  546. int i;
  547. int qscale = s->qscale;
  548. if (IS_INTRA4x4(mb_type)) {
  549. for (i = 0; i < 16; i++) {
  550. uint8_t *const ptr = dest_y + block_offset[i];
  551. const int dir = s->intra4x4_pred_mode_cache[scan8[i]];
  552. uint8_t *topright;
  553. int nnz, tr;
  554. if (dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED) {
  555. const int topright_avail = (s->topright_samples_available << i) & 0x8000;
  556. assert(s->mb_y || linesize <= block_offset[i]);
  557. if (!topright_avail) {
  558. tr = ptr[3 - linesize] * 0x01010101u;
  559. topright = (uint8_t *)&tr;
  560. } else
  561. topright = ptr + 4 - linesize;
  562. } else
  563. topright = NULL;
  564. s->hpc.pred4x4[dir](ptr, topright, linesize);
  565. nnz = s->non_zero_count_cache[scan8[i]];
  566. if (nnz) {
  567. svq3_add_idct_c(ptr, s->mb + i * 16, linesize, qscale, 0);
  568. }
  569. }
  570. } else {
  571. s->hpc.pred16x16[s->intra16x16_pred_mode](dest_y, linesize);
  572. svq3_luma_dc_dequant_idct_c(s->mb, s->mb_luma_dc[0], qscale);
  573. }
  574. }
  575. static void hl_decode_mb(SVQ3Context *s)
  576. {
  577. const int mb_x = s->mb_x;
  578. const int mb_y = s->mb_y;
  579. const int mb_xy = s->mb_xy;
  580. const int mb_type = s->cur_pic->mb_type[mb_xy];
  581. uint8_t *dest_y, *dest_cb, *dest_cr;
  582. int linesize, uvlinesize;
  583. int i, j;
  584. const int *block_offset = &s->block_offset[0];
  585. const int block_h = 16 >> 1;
  586. linesize = s->cur_pic->f->linesize[0];
  587. uvlinesize = s->cur_pic->f->linesize[1];
  588. dest_y = s->cur_pic->f->data[0] + (mb_x + mb_y * linesize) * 16;
  589. dest_cb = s->cur_pic->f->data[1] + mb_x * 8 + mb_y * uvlinesize * block_h;
  590. dest_cr = s->cur_pic->f->data[2] + mb_x * 8 + mb_y * uvlinesize * block_h;
  591. s->vdsp.prefetch(dest_y + (s->mb_x & 3) * 4 * linesize + 64, linesize, 4);
  592. s->vdsp.prefetch(dest_cb + (s->mb_x & 7) * uvlinesize + 64, dest_cr - dest_cb, 2);
  593. if (IS_INTRA(mb_type)) {
  594. s->hpc.pred8x8[s->chroma_pred_mode](dest_cb, uvlinesize);
  595. s->hpc.pred8x8[s->chroma_pred_mode](dest_cr, uvlinesize);
  596. hl_decode_mb_predict_luma(s, mb_type, block_offset, linesize, dest_y);
  597. }
  598. hl_decode_mb_idct_luma(s, mb_type, block_offset, linesize, dest_y);
  599. if (s->cbp & 0x30) {
  600. uint8_t *dest[2] = { dest_cb, dest_cr };
  601. s->h264dsp.h264_chroma_dc_dequant_idct(s->mb + 16 * 16 * 1,
  602. s->dequant4_coeff[4][0]);
  603. s->h264dsp.h264_chroma_dc_dequant_idct(s->mb + 16 * 16 * 2,
  604. s->dequant4_coeff[4][0]);
  605. for (j = 1; j < 3; j++) {
  606. for (i = j * 16; i < j * 16 + 4; i++)
  607. if (s->non_zero_count_cache[scan8[i]] || s->mb[i * 16]) {
  608. uint8_t *const ptr = dest[j - 1] + block_offset[i];
  609. svq3_add_idct_c(ptr, s->mb + i * 16,
  610. uvlinesize, ff_h264_chroma_qp[0][s->qscale + 12] - 12, 2);
  611. }
  612. }
  613. }
  614. }
  615. static int svq3_decode_mb(SVQ3Context *s, unsigned int mb_type)
  616. {
  617. int i, j, k, m, dir, mode;
  618. int cbp = 0;
  619. uint32_t vlc;
  620. int8_t *top, *left;
  621. const int mb_xy = s->mb_xy;
  622. const int b_xy = 4 * s->mb_x + 4 * s->mb_y * s->b_stride;
  623. s->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  624. s->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  625. s->topright_samples_available = 0xFFFF;
  626. if (mb_type == 0) { /* SKIP */
  627. if (s->pict_type == AV_PICTURE_TYPE_P ||
  628. s->next_pic->mb_type[mb_xy] == -1) {
  629. svq3_mc_dir_part(s, 16 * s->mb_x, 16 * s->mb_y, 16, 16,
  630. 0, 0, 0, 0, 0, 0);
  631. if (s->pict_type == AV_PICTURE_TYPE_B)
  632. svq3_mc_dir_part(s, 16 * s->mb_x, 16 * s->mb_y, 16, 16,
  633. 0, 0, 0, 0, 1, 1);
  634. mb_type = MB_TYPE_SKIP;
  635. } else {
  636. mb_type = FFMIN(s->next_pic->mb_type[mb_xy], 6);
  637. if (svq3_mc_dir(s, mb_type, PREDICT_MODE, 0, 0) < 0)
  638. return -1;
  639. if (svq3_mc_dir(s, mb_type, PREDICT_MODE, 1, 1) < 0)
  640. return -1;
  641. mb_type = MB_TYPE_16x16;
  642. }
  643. } else if (mb_type < 8) { /* INTER */
  644. if (s->thirdpel_flag && s->halfpel_flag == !get_bits1(&s->gb_slice))
  645. mode = THIRDPEL_MODE;
  646. else if (s->halfpel_flag &&
  647. s->thirdpel_flag == !get_bits1(&s->gb_slice))
  648. mode = HALFPEL_MODE;
  649. else
  650. mode = FULLPEL_MODE;
  651. /* fill caches */
  652. /* note ref_cache should contain here:
  653. * ????????
  654. * ???11111
  655. * N??11111
  656. * N??11111
  657. * N??11111
  658. */
  659. for (m = 0; m < 2; m++) {
  660. if (s->mb_x > 0 && s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - 1] + 6] != -1) {
  661. for (i = 0; i < 4; i++)
  662. AV_COPY32(s->mv_cache[m][scan8[0] - 1 + i * 8],
  663. s->cur_pic->motion_val[m][b_xy - 1 + i * s->b_stride]);
  664. } else {
  665. for (i = 0; i < 4; i++)
  666. AV_ZERO32(s->mv_cache[m][scan8[0] - 1 + i * 8]);
  667. }
  668. if (s->mb_y > 0) {
  669. memcpy(s->mv_cache[m][scan8[0] - 1 * 8],
  670. s->cur_pic->motion_val[m][b_xy - s->b_stride],
  671. 4 * 2 * sizeof(int16_t));
  672. memset(&s->ref_cache[m][scan8[0] - 1 * 8],
  673. (s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride]] == -1) ? PART_NOT_AVAILABLE : 1, 4);
  674. if (s->mb_x < s->mb_width - 1) {
  675. AV_COPY32(s->mv_cache[m][scan8[0] + 4 - 1 * 8],
  676. s->cur_pic->motion_val[m][b_xy - s->b_stride + 4]);
  677. s->ref_cache[m][scan8[0] + 4 - 1 * 8] =
  678. (s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride + 1] + 6] == -1 ||
  679. s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride]] == -1) ? PART_NOT_AVAILABLE : 1;
  680. } else
  681. s->ref_cache[m][scan8[0] + 4 - 1 * 8] = PART_NOT_AVAILABLE;
  682. if (s->mb_x > 0) {
  683. AV_COPY32(s->mv_cache[m][scan8[0] - 1 - 1 * 8],
  684. s->cur_pic->motion_val[m][b_xy - s->b_stride - 1]);
  685. s->ref_cache[m][scan8[0] - 1 - 1 * 8] =
  686. (s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride - 1] + 3] == -1) ? PART_NOT_AVAILABLE : 1;
  687. } else
  688. s->ref_cache[m][scan8[0] - 1 - 1 * 8] = PART_NOT_AVAILABLE;
  689. } else
  690. memset(&s->ref_cache[m][scan8[0] - 1 * 8 - 1],
  691. PART_NOT_AVAILABLE, 8);
  692. if (s->pict_type != AV_PICTURE_TYPE_B)
  693. break;
  694. }
  695. /* decode motion vector(s) and form prediction(s) */
  696. if (s->pict_type == AV_PICTURE_TYPE_P) {
  697. if (svq3_mc_dir(s, mb_type - 1, mode, 0, 0) < 0)
  698. return -1;
  699. } else { /* AV_PICTURE_TYPE_B */
  700. if (mb_type != 2) {
  701. if (svq3_mc_dir(s, 0, mode, 0, 0) < 0)
  702. return -1;
  703. } else {
  704. for (i = 0; i < 4; i++)
  705. memset(s->cur_pic->motion_val[0][b_xy + i * s->b_stride],
  706. 0, 4 * 2 * sizeof(int16_t));
  707. }
  708. if (mb_type != 1) {
  709. if (svq3_mc_dir(s, 0, mode, 1, mb_type == 3) < 0)
  710. return -1;
  711. } else {
  712. for (i = 0; i < 4; i++)
  713. memset(s->cur_pic->motion_val[1][b_xy + i * s->b_stride],
  714. 0, 4 * 2 * sizeof(int16_t));
  715. }
  716. }
  717. mb_type = MB_TYPE_16x16;
  718. } else if (mb_type == 8 || mb_type == 33) { /* INTRA4x4 */
  719. int8_t *i4x4 = s->intra4x4_pred_mode + s->mb2br_xy[s->mb_xy];
  720. int8_t *i4x4_cache = s->intra4x4_pred_mode_cache;
  721. memset(s->intra4x4_pred_mode_cache, -1, 8 * 5 * sizeof(int8_t));
  722. if (mb_type == 8) {
  723. if (s->mb_x > 0) {
  724. for (i = 0; i < 4; i++)
  725. s->intra4x4_pred_mode_cache[scan8[0] - 1 + i * 8] = s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - 1] + 6 - i];
  726. if (s->intra4x4_pred_mode_cache[scan8[0] - 1] == -1)
  727. s->left_samples_available = 0x5F5F;
  728. }
  729. if (s->mb_y > 0) {
  730. s->intra4x4_pred_mode_cache[4 + 8 * 0] = s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride] + 0];
  731. s->intra4x4_pred_mode_cache[5 + 8 * 0] = s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride] + 1];
  732. s->intra4x4_pred_mode_cache[6 + 8 * 0] = s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride] + 2];
  733. s->intra4x4_pred_mode_cache[7 + 8 * 0] = s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride] + 3];
  734. if (s->intra4x4_pred_mode_cache[4 + 8 * 0] == -1)
  735. s->top_samples_available = 0x33FF;
  736. }
  737. /* decode prediction codes for luma blocks */
  738. for (i = 0; i < 16; i += 2) {
  739. vlc = svq3_get_ue_golomb(&s->gb_slice);
  740. if (vlc >= 25) {
  741. av_log(s->avctx, AV_LOG_ERROR,
  742. "luma prediction:%"PRIu32"\n", vlc);
  743. return -1;
  744. }
  745. left = &s->intra4x4_pred_mode_cache[scan8[i] - 1];
  746. top = &s->intra4x4_pred_mode_cache[scan8[i] - 8];
  747. left[1] = svq3_pred_1[top[0] + 1][left[0] + 1][svq3_pred_0[vlc][0]];
  748. left[2] = svq3_pred_1[top[1] + 1][left[1] + 1][svq3_pred_0[vlc][1]];
  749. if (left[1] == -1 || left[2] == -1) {
  750. av_log(s->avctx, AV_LOG_ERROR, "weird prediction\n");
  751. return -1;
  752. }
  753. }
  754. } else { /* mb_type == 33, DC_128_PRED block type */
  755. for (i = 0; i < 4; i++)
  756. memset(&s->intra4x4_pred_mode_cache[scan8[0] + 8 * i], DC_PRED, 4);
  757. }
  758. AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
  759. i4x4[4] = i4x4_cache[7 + 8 * 3];
  760. i4x4[5] = i4x4_cache[7 + 8 * 2];
  761. i4x4[6] = i4x4_cache[7 + 8 * 1];
  762. if (mb_type == 8) {
  763. ff_h264_check_intra4x4_pred_mode(s->intra4x4_pred_mode_cache,
  764. s->avctx, s->top_samples_available,
  765. s->left_samples_available);
  766. s->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  767. s->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  768. } else {
  769. for (i = 0; i < 4; i++)
  770. memset(&s->intra4x4_pred_mode_cache[scan8[0] + 8 * i], DC_128_PRED, 4);
  771. s->top_samples_available = 0x33FF;
  772. s->left_samples_available = 0x5F5F;
  773. }
  774. mb_type = MB_TYPE_INTRA4x4;
  775. } else { /* INTRA16x16 */
  776. dir = ff_h264_i_mb_type_info[mb_type - 8].pred_mode;
  777. dir = (dir >> 1) ^ 3 * (dir & 1) ^ 1;
  778. if ((s->intra16x16_pred_mode = ff_h264_check_intra_pred_mode(s->avctx, s->top_samples_available,
  779. s->left_samples_available, dir, 0)) < 0) {
  780. av_log(s->avctx, AV_LOG_ERROR, "ff_h264_check_intra_pred_mode < 0\n");
  781. return s->intra16x16_pred_mode;
  782. }
  783. cbp = ff_h264_i_mb_type_info[mb_type - 8].cbp;
  784. mb_type = MB_TYPE_INTRA16x16;
  785. }
  786. if (!IS_INTER(mb_type) && s->pict_type != AV_PICTURE_TYPE_I) {
  787. for (i = 0; i < 4; i++)
  788. memset(s->cur_pic->motion_val[0][b_xy + i * s->b_stride],
  789. 0, 4 * 2 * sizeof(int16_t));
  790. if (s->pict_type == AV_PICTURE_TYPE_B) {
  791. for (i = 0; i < 4; i++)
  792. memset(s->cur_pic->motion_val[1][b_xy + i * s->b_stride],
  793. 0, 4 * 2 * sizeof(int16_t));
  794. }
  795. }
  796. if (!IS_INTRA4x4(mb_type)) {
  797. memset(s->intra4x4_pred_mode + s->mb2br_xy[mb_xy], DC_PRED, 8);
  798. }
  799. if (!IS_SKIP(mb_type) || s->pict_type == AV_PICTURE_TYPE_B) {
  800. memset(s->non_zero_count_cache + 8, 0, 14 * 8 * sizeof(uint8_t));
  801. }
  802. if (!IS_INTRA16x16(mb_type) &&
  803. (!IS_SKIP(mb_type) || s->pict_type == AV_PICTURE_TYPE_B)) {
  804. if ((vlc = svq3_get_ue_golomb(&s->gb_slice)) >= 48) {
  805. av_log(s->avctx, AV_LOG_ERROR, "cbp_vlc=%"PRIu32"\n", vlc);
  806. return -1;
  807. }
  808. cbp = IS_INTRA(mb_type) ? ff_h264_golomb_to_intra4x4_cbp[vlc]
  809. : ff_h264_golomb_to_inter_cbp[vlc];
  810. }
  811. if (IS_INTRA16x16(mb_type) ||
  812. (s->pict_type != AV_PICTURE_TYPE_I && s->adaptive_quant && cbp)) {
  813. s->qscale += svq3_get_se_golomb(&s->gb_slice);
  814. if (s->qscale > 31u) {
  815. av_log(s->avctx, AV_LOG_ERROR, "qscale:%d\n", s->qscale);
  816. return -1;
  817. }
  818. }
  819. if (IS_INTRA16x16(mb_type)) {
  820. AV_ZERO128(s->mb_luma_dc[0] + 0);
  821. AV_ZERO128(s->mb_luma_dc[0] + 8);
  822. if (svq3_decode_block(&s->gb_slice, s->mb_luma_dc[0], 0, 1)) {
  823. av_log(s->avctx, AV_LOG_ERROR,
  824. "error while decoding intra luma dc\n");
  825. return -1;
  826. }
  827. }
  828. if (cbp) {
  829. const int index = IS_INTRA16x16(mb_type) ? 1 : 0;
  830. const int type = ((s->qscale < 24 && IS_INTRA4x4(mb_type)) ? 2 : 1);
  831. for (i = 0; i < 4; i++)
  832. if ((cbp & (1 << i))) {
  833. for (j = 0; j < 4; j++) {
  834. k = index ? (1 * (j & 1) + 2 * (i & 1) +
  835. 2 * (j & 2) + 4 * (i & 2))
  836. : (4 * i + j);
  837. s->non_zero_count_cache[scan8[k]] = 1;
  838. if (svq3_decode_block(&s->gb_slice, &s->mb[16 * k], index, type)) {
  839. av_log(s->avctx, AV_LOG_ERROR,
  840. "error while decoding block\n");
  841. return -1;
  842. }
  843. }
  844. }
  845. if ((cbp & 0x30)) {
  846. for (i = 1; i < 3; ++i)
  847. if (svq3_decode_block(&s->gb_slice, &s->mb[16 * 16 * i], 0, 3)) {
  848. av_log(s->avctx, AV_LOG_ERROR,
  849. "error while decoding chroma dc block\n");
  850. return -1;
  851. }
  852. if ((cbp & 0x20)) {
  853. for (i = 1; i < 3; i++) {
  854. for (j = 0; j < 4; j++) {
  855. k = 16 * i + j;
  856. s->non_zero_count_cache[scan8[k]] = 1;
  857. if (svq3_decode_block(&s->gb_slice, &s->mb[16 * k], 1, 1)) {
  858. av_log(s->avctx, AV_LOG_ERROR,
  859. "error while decoding chroma ac block\n");
  860. return -1;
  861. }
  862. }
  863. }
  864. }
  865. }
  866. }
  867. s->cbp = cbp;
  868. s->cur_pic->mb_type[mb_xy] = mb_type;
  869. if (IS_INTRA(mb_type))
  870. s->chroma_pred_mode = ff_h264_check_intra_pred_mode(s->avctx, s->top_samples_available,
  871. s->left_samples_available, DC_PRED8x8, 1);
  872. return 0;
  873. }
  874. static int svq3_decode_slice_header(AVCodecContext *avctx)
  875. {
  876. SVQ3Context *s = avctx->priv_data;
  877. const int mb_xy = s->mb_xy;
  878. int i, header;
  879. unsigned slice_id;
  880. header = get_bits(&s->gb, 8);
  881. if (((header & 0x9F) != 1 && (header & 0x9F) != 2) || (header & 0x60) == 0) {
  882. /* TODO: what? */
  883. av_log(avctx, AV_LOG_ERROR, "unsupported slice header (%02X)\n", header);
  884. return -1;
  885. } else {
  886. int slice_bits, slice_bytes, slice_length;
  887. int length = header >> 5 & 3;
  888. slice_length = show_bits(&s->gb, 8 * length);
  889. slice_bits = slice_length * 8;
  890. slice_bytes = slice_length + length - 1;
  891. if (slice_bytes > get_bits_left(&s->gb)) {
  892. av_log(avctx, AV_LOG_ERROR, "slice after bitstream end\n");
  893. return -1;
  894. }
  895. skip_bits(&s->gb, 8);
  896. av_fast_malloc(&s->slice_buf, &s->slice_size, slice_bytes + AV_INPUT_BUFFER_PADDING_SIZE);
  897. if (!s->slice_buf)
  898. return AVERROR(ENOMEM);
  899. memcpy(s->slice_buf, s->gb.buffer + s->gb.index / 8, slice_bytes);
  900. init_get_bits(&s->gb_slice, s->slice_buf, slice_bits);
  901. if (s->watermark_key) {
  902. uint32_t header = AV_RL32(&s->gb_slice.buffer[1]);
  903. AV_WL32(&s->gb_slice.buffer[1], header ^ s->watermark_key);
  904. }
  905. if (length > 0) {
  906. memcpy(s->slice_buf, &s->slice_buf[slice_length], length - 1);
  907. }
  908. skip_bits_long(&s->gb, slice_bytes * 8);
  909. }
  910. if ((slice_id = svq3_get_ue_golomb(&s->gb_slice)) >= 3) {
  911. av_log(s->avctx, AV_LOG_ERROR, "illegal slice type %u \n", slice_id);
  912. return -1;
  913. }
  914. s->pict_type = ff_h264_golomb_to_pict_type[slice_id];
  915. if ((header & 0x9F) == 2) {
  916. i = (s->mb_num < 64) ? 6 : (1 + av_log2(s->mb_num - 1));
  917. get_bits(&s->gb_slice, i);
  918. } else {
  919. skip_bits1(&s->gb_slice);
  920. }
  921. s->slice_num = get_bits(&s->gb_slice, 8);
  922. s->qscale = get_bits(&s->gb_slice, 5);
  923. s->adaptive_quant = get_bits1(&s->gb_slice);
  924. /* unknown fields */
  925. skip_bits1(&s->gb_slice);
  926. if (s->unknown_flag)
  927. skip_bits1(&s->gb_slice);
  928. skip_bits1(&s->gb_slice);
  929. skip_bits(&s->gb_slice, 2);
  930. while (get_bits1(&s->gb_slice))
  931. skip_bits(&s->gb_slice, 8);
  932. /* reset intra predictors and invalidate motion vector references */
  933. if (s->mb_x > 0) {
  934. memset(s->intra4x4_pred_mode + s->mb2br_xy[mb_xy - 1] + 3,
  935. -1, 4 * sizeof(int8_t));
  936. memset(s->intra4x4_pred_mode + s->mb2br_xy[mb_xy - s->mb_x],
  937. -1, 8 * sizeof(int8_t) * s->mb_x);
  938. }
  939. if (s->mb_y > 0) {
  940. memset(s->intra4x4_pred_mode + s->mb2br_xy[mb_xy - s->mb_stride],
  941. -1, 8 * sizeof(int8_t) * (s->mb_width - s->mb_x));
  942. if (s->mb_x > 0)
  943. s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride - 1] + 3] = -1;
  944. }
  945. return 0;
  946. }
  947. static void init_dequant4_coeff_table(SVQ3Context *s)
  948. {
  949. int q, x;
  950. const int max_qp = 51;
  951. for (q = 0; q < max_qp + 1; q++) {
  952. int shift = ff_h264_quant_div6[q] + 2;
  953. int idx = ff_h264_quant_rem6[q];
  954. for (x = 0; x < 16; x++)
  955. s->dequant4_coeff[q][(x >> 2) | ((x << 2) & 0xF)] =
  956. ((uint32_t)ff_h264_dequant4_coeff_init[idx][(x & 1) + ((x >> 2) & 1)] * 16) << shift;
  957. }
  958. }
  959. static av_cold int svq3_decode_init(AVCodecContext *avctx)
  960. {
  961. SVQ3Context *s = avctx->priv_data;
  962. int m, x, y;
  963. unsigned char *extradata;
  964. unsigned char *extradata_end;
  965. unsigned int size;
  966. int marker_found = 0;
  967. s->cur_pic = av_mallocz(sizeof(*s->cur_pic));
  968. s->last_pic = av_mallocz(sizeof(*s->last_pic));
  969. s->next_pic = av_mallocz(sizeof(*s->next_pic));
  970. if (!s->next_pic || !s->last_pic || !s->cur_pic) {
  971. av_freep(&s->cur_pic);
  972. av_freep(&s->last_pic);
  973. av_freep(&s->next_pic);
  974. return AVERROR(ENOMEM);
  975. }
  976. s->cur_pic->f = av_frame_alloc();
  977. s->last_pic->f = av_frame_alloc();
  978. s->next_pic->f = av_frame_alloc();
  979. if (!s->cur_pic->f || !s->last_pic->f || !s->next_pic->f)
  980. return AVERROR(ENOMEM);
  981. ff_h264dsp_init(&s->h264dsp, 8, 1);
  982. ff_h264_pred_init(&s->hpc, AV_CODEC_ID_SVQ3, 8, 1);
  983. ff_videodsp_init(&s->vdsp, 8);
  984. ff_hpeldsp_init(&s->hdsp, avctx->flags);
  985. ff_tpeldsp_init(&s->tdsp);
  986. avctx->pix_fmt = AV_PIX_FMT_YUVJ420P;
  987. avctx->color_range = AVCOL_RANGE_JPEG;
  988. s->avctx = avctx;
  989. s->halfpel_flag = 1;
  990. s->thirdpel_flag = 1;
  991. s->unknown_flag = 0;
  992. /* prowl for the "SEQH" marker in the extradata */
  993. extradata = (unsigned char *)avctx->extradata;
  994. extradata_end = avctx->extradata + avctx->extradata_size;
  995. if (extradata) {
  996. for (m = 0; m + 8 < avctx->extradata_size; m++) {
  997. if (!memcmp(extradata, "SEQH", 4)) {
  998. marker_found = 1;
  999. break;
  1000. }
  1001. extradata++;
  1002. }
  1003. }
  1004. /* if a match was found, parse the extra data */
  1005. if (marker_found) {
  1006. GetBitContext gb;
  1007. int frame_size_code;
  1008. size = AV_RB32(&extradata[4]);
  1009. if (size > extradata_end - extradata - 8)
  1010. return AVERROR_INVALIDDATA;
  1011. init_get_bits(&gb, extradata + 8, size * 8);
  1012. /* 'frame size code' and optional 'width, height' */
  1013. frame_size_code = get_bits(&gb, 3);
  1014. switch (frame_size_code) {
  1015. case 0:
  1016. avctx->width = 160;
  1017. avctx->height = 120;
  1018. break;
  1019. case 1:
  1020. avctx->width = 128;
  1021. avctx->height = 96;
  1022. break;
  1023. case 2:
  1024. avctx->width = 176;
  1025. avctx->height = 144;
  1026. break;
  1027. case 3:
  1028. avctx->width = 352;
  1029. avctx->height = 288;
  1030. break;
  1031. case 4:
  1032. avctx->width = 704;
  1033. avctx->height = 576;
  1034. break;
  1035. case 5:
  1036. avctx->width = 240;
  1037. avctx->height = 180;
  1038. break;
  1039. case 6:
  1040. avctx->width = 320;
  1041. avctx->height = 240;
  1042. break;
  1043. case 7:
  1044. avctx->width = get_bits(&gb, 12);
  1045. avctx->height = get_bits(&gb, 12);
  1046. break;
  1047. }
  1048. s->halfpel_flag = get_bits1(&gb);
  1049. s->thirdpel_flag = get_bits1(&gb);
  1050. /* unknown fields */
  1051. skip_bits1(&gb);
  1052. skip_bits1(&gb);
  1053. skip_bits1(&gb);
  1054. skip_bits1(&gb);
  1055. s->low_delay = get_bits1(&gb);
  1056. /* unknown field */
  1057. skip_bits1(&gb);
  1058. while (get_bits1(&gb))
  1059. skip_bits(&gb, 8);
  1060. s->unknown_flag = get_bits1(&gb);
  1061. avctx->has_b_frames = !s->low_delay;
  1062. if (s->unknown_flag) {
  1063. #if CONFIG_ZLIB
  1064. unsigned watermark_width = svq3_get_ue_golomb(&gb);
  1065. unsigned watermark_height = svq3_get_ue_golomb(&gb);
  1066. int u1 = svq3_get_ue_golomb(&gb);
  1067. int u2 = get_bits(&gb, 8);
  1068. int u3 = get_bits(&gb, 2);
  1069. int u4 = svq3_get_ue_golomb(&gb);
  1070. unsigned long buf_len = watermark_width *
  1071. watermark_height * 4;
  1072. int offset = get_bits_count(&gb) + 7 >> 3;
  1073. uint8_t *buf;
  1074. if (watermark_height > 0 &&
  1075. (uint64_t)watermark_width * 4 > UINT_MAX / watermark_height)
  1076. return -1;
  1077. buf = av_malloc(buf_len);
  1078. av_log(avctx, AV_LOG_DEBUG, "watermark size: %ux%u\n",
  1079. watermark_width, watermark_height);
  1080. av_log(avctx, AV_LOG_DEBUG,
  1081. "u1: %x u2: %x u3: %x compressed data size: %d offset: %d\n",
  1082. u1, u2, u3, u4, offset);
  1083. if (uncompress(buf, &buf_len, extradata + 8 + offset,
  1084. size - offset) != Z_OK) {
  1085. av_log(avctx, AV_LOG_ERROR,
  1086. "could not uncompress watermark logo\n");
  1087. av_free(buf);
  1088. return -1;
  1089. }
  1090. s->watermark_key = ff_svq1_packet_checksum(buf, buf_len, 0);
  1091. s->watermark_key = s->watermark_key << 16 | s->watermark_key;
  1092. av_log(avctx, AV_LOG_DEBUG,
  1093. "watermark key %#"PRIx32"\n", s->watermark_key);
  1094. av_free(buf);
  1095. #else
  1096. av_log(avctx, AV_LOG_ERROR,
  1097. "this svq3 file contains watermark which need zlib support compiled in\n");
  1098. return -1;
  1099. #endif
  1100. }
  1101. }
  1102. s->mb_width = (avctx->width + 15) / 16;
  1103. s->mb_height = (avctx->height + 15) / 16;
  1104. s->mb_stride = s->mb_width + 1;
  1105. s->mb_num = s->mb_width * s->mb_height;
  1106. s->b_stride = 4 * s->mb_width;
  1107. s->h_edge_pos = s->mb_width * 16;
  1108. s->v_edge_pos = s->mb_height * 16;
  1109. s->intra4x4_pred_mode = av_mallocz(s->mb_stride * 2 * 8);
  1110. if (!s->intra4x4_pred_mode)
  1111. return AVERROR(ENOMEM);
  1112. s->mb2br_xy = av_mallocz(s->mb_stride * (s->mb_height + 1) *
  1113. sizeof(*s->mb2br_xy));
  1114. if (!s->mb2br_xy)
  1115. return AVERROR(ENOMEM);
  1116. for (y = 0; y < s->mb_height; y++)
  1117. for (x = 0; x < s->mb_width; x++) {
  1118. const int mb_xy = x + y * s->mb_stride;
  1119. s->mb2br_xy[mb_xy] = 8 * (mb_xy % (2 * s->mb_stride));
  1120. }
  1121. init_dequant4_coeff_table(s);
  1122. return 0;
  1123. }
  1124. static void free_picture(AVCodecContext *avctx, H264Picture *pic)
  1125. {
  1126. int i;
  1127. for (i = 0; i < 2; i++) {
  1128. av_buffer_unref(&pic->motion_val_buf[i]);
  1129. av_buffer_unref(&pic->ref_index_buf[i]);
  1130. }
  1131. av_buffer_unref(&pic->mb_type_buf);
  1132. av_frame_unref(pic->f);
  1133. }
  1134. static int get_buffer(AVCodecContext *avctx, H264Picture *pic)
  1135. {
  1136. SVQ3Context *s = avctx->priv_data;
  1137. const int big_mb_num = s->mb_stride * (s->mb_height + 1) + 1;
  1138. const int mb_array_size = s->mb_stride * s->mb_height;
  1139. const int b4_stride = s->mb_width * 4 + 1;
  1140. const int b4_array_size = b4_stride * s->mb_height * 4;
  1141. int ret;
  1142. if (!pic->motion_val_buf[0]) {
  1143. int i;
  1144. pic->mb_type_buf = av_buffer_allocz((big_mb_num + s->mb_stride) * sizeof(uint32_t));
  1145. if (!pic->mb_type_buf)
  1146. return AVERROR(ENOMEM);
  1147. pic->mb_type = (uint32_t*)pic->mb_type_buf->data + 2 * s->mb_stride + 1;
  1148. for (i = 0; i < 2; i++) {
  1149. pic->motion_val_buf[i] = av_buffer_allocz(2 * (b4_array_size + 4) * sizeof(int16_t));
  1150. pic->ref_index_buf[i] = av_buffer_allocz(4 * mb_array_size);
  1151. if (!pic->motion_val_buf[i] || !pic->ref_index_buf[i]) {
  1152. ret = AVERROR(ENOMEM);
  1153. goto fail;
  1154. }
  1155. pic->motion_val[i] = (int16_t (*)[2])pic->motion_val_buf[i]->data + 4;
  1156. pic->ref_index[i] = pic->ref_index_buf[i]->data;
  1157. }
  1158. }
  1159. pic->reference = !(s->pict_type == AV_PICTURE_TYPE_B);
  1160. ret = ff_get_buffer(avctx, pic->f,
  1161. pic->reference ? AV_GET_BUFFER_FLAG_REF : 0);
  1162. if (ret < 0)
  1163. goto fail;
  1164. if (!s->edge_emu_buffer) {
  1165. s->edge_emu_buffer = av_mallocz(pic->f->linesize[0] * 17);
  1166. if (!s->edge_emu_buffer)
  1167. return AVERROR(ENOMEM);
  1168. }
  1169. return 0;
  1170. fail:
  1171. free_picture(avctx, pic);
  1172. return ret;
  1173. }
  1174. static int svq3_decode_frame(AVCodecContext *avctx, void *data,
  1175. int *got_frame, AVPacket *avpkt)
  1176. {
  1177. const uint8_t *buf = avpkt->data;
  1178. SVQ3Context *s = avctx->priv_data;
  1179. int buf_size = avpkt->size;
  1180. int ret, m, i;
  1181. /* special case for last picture */
  1182. if (buf_size == 0) {
  1183. if (s->next_pic->f->data[0] && !s->low_delay && !s->last_frame_output) {
  1184. ret = av_frame_ref(data, s->next_pic->f);
  1185. if (ret < 0)
  1186. return ret;
  1187. s->last_frame_output = 1;
  1188. *got_frame = 1;
  1189. }
  1190. return 0;
  1191. }
  1192. ret = init_get_bits(&s->gb, buf, 8 * buf_size);
  1193. if (ret < 0)
  1194. return ret;
  1195. s->mb_x = s->mb_y = s->mb_xy = 0;
  1196. if (svq3_decode_slice_header(avctx))
  1197. return -1;
  1198. if (s->pict_type != AV_PICTURE_TYPE_B)
  1199. FFSWAP(H264Picture*, s->next_pic, s->last_pic);
  1200. av_frame_unref(s->cur_pic->f);
  1201. /* for skipping the frame */
  1202. s->cur_pic->f->pict_type = s->pict_type;
  1203. s->cur_pic->f->key_frame = (s->pict_type == AV_PICTURE_TYPE_I);
  1204. ret = get_buffer(avctx, s->cur_pic);
  1205. if (ret < 0)
  1206. return ret;
  1207. for (i = 0; i < 16; i++) {
  1208. s->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7)) + 4 * s->cur_pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
  1209. s->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7)) + 8 * s->cur_pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
  1210. }
  1211. for (i = 0; i < 16; i++) {
  1212. s->block_offset[16 + i] =
  1213. s->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7)) + 4 * s->cur_pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
  1214. s->block_offset[48 + 16 + i] =
  1215. s->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7)) + 8 * s->cur_pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
  1216. }
  1217. if (s->pict_type != AV_PICTURE_TYPE_I) {
  1218. if (!s->last_pic->f->data[0]) {
  1219. av_log(avctx, AV_LOG_ERROR, "Missing reference frame.\n");
  1220. ret = get_buffer(avctx, s->last_pic);
  1221. if (ret < 0)
  1222. return ret;
  1223. memset(s->last_pic->f->data[0], 0, avctx->height * s->last_pic->f->linesize[0]);
  1224. memset(s->last_pic->f->data[1], 0x80, (avctx->height / 2) *
  1225. s->last_pic->f->linesize[1]);
  1226. memset(s->last_pic->f->data[2], 0x80, (avctx->height / 2) *
  1227. s->last_pic->f->linesize[2]);
  1228. }
  1229. if (s->pict_type == AV_PICTURE_TYPE_B && !s->next_pic->f->data[0]) {
  1230. av_log(avctx, AV_LOG_ERROR, "Missing reference frame.\n");
  1231. ret = get_buffer(avctx, s->next_pic);
  1232. if (ret < 0)
  1233. return ret;
  1234. memset(s->next_pic->f->data[0], 0, avctx->height * s->next_pic->f->linesize[0]);
  1235. memset(s->next_pic->f->data[1], 0x80, (avctx->height / 2) *
  1236. s->next_pic->f->linesize[1]);
  1237. memset(s->next_pic->f->data[2], 0x80, (avctx->height / 2) *
  1238. s->next_pic->f->linesize[2]);
  1239. }
  1240. }
  1241. if (avctx->debug & FF_DEBUG_PICT_INFO)
  1242. av_log(s->avctx, AV_LOG_DEBUG,
  1243. "%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n",
  1244. av_get_picture_type_char(s->pict_type),
  1245. s->halfpel_flag, s->thirdpel_flag,
  1246. s->adaptive_quant, s->qscale, s->slice_num);
  1247. if (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type == AV_PICTURE_TYPE_B ||
  1248. avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type != AV_PICTURE_TYPE_I ||
  1249. avctx->skip_frame >= AVDISCARD_ALL)
  1250. return 0;
  1251. if (s->next_p_frame_damaged) {
  1252. if (s->pict_type == AV_PICTURE_TYPE_B)
  1253. return 0;
  1254. else
  1255. s->next_p_frame_damaged = 0;
  1256. }
  1257. if (s->pict_type == AV_PICTURE_TYPE_B) {
  1258. s->frame_num_offset = s->slice_num - s->prev_frame_num;
  1259. if (s->frame_num_offset < 0)
  1260. s->frame_num_offset += 256;
  1261. if (s->frame_num_offset == 0 ||
  1262. s->frame_num_offset >= s->prev_frame_num_offset) {
  1263. av_log(s->avctx, AV_LOG_ERROR, "error in B-frame picture id\n");
  1264. return -1;
  1265. }
  1266. } else {
  1267. s->prev_frame_num = s->frame_num;
  1268. s->frame_num = s->slice_num;
  1269. s->prev_frame_num_offset = s->frame_num - s->prev_frame_num;
  1270. if (s->prev_frame_num_offset < 0)
  1271. s->prev_frame_num_offset += 256;
  1272. }
  1273. for (m = 0; m < 2; m++) {
  1274. int i;
  1275. for (i = 0; i < 4; i++) {
  1276. int j;
  1277. for (j = -1; j < 4; j++)
  1278. s->ref_cache[m][scan8[0] + 8 * i + j] = 1;
  1279. if (i < 3)
  1280. s->ref_cache[m][scan8[0] + 8 * i + j] = PART_NOT_AVAILABLE;
  1281. }
  1282. }
  1283. for (s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  1284. for (s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  1285. unsigned mb_type;
  1286. s->mb_xy = s->mb_x + s->mb_y * s->mb_stride;
  1287. if ((get_bits_left(&s->gb_slice)) <= 7) {
  1288. if (((get_bits_count(&s->gb_slice) & 7) == 0 ||
  1289. show_bits(&s->gb_slice, get_bits_left(&s->gb_slice) & 7) == 0)) {
  1290. if (svq3_decode_slice_header(avctx))
  1291. return -1;
  1292. }
  1293. /* TODO: support s->mb_skip_run */
  1294. }
  1295. mb_type = svq3_get_ue_golomb(&s->gb_slice);
  1296. if (s->pict_type == AV_PICTURE_TYPE_I)
  1297. mb_type += 8;
  1298. else if (s->pict_type == AV_PICTURE_TYPE_B && mb_type >= 4)
  1299. mb_type += 4;
  1300. if (mb_type > 33 || svq3_decode_mb(s, mb_type)) {
  1301. av_log(s->avctx, AV_LOG_ERROR,
  1302. "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  1303. return -1;
  1304. }
  1305. if (mb_type != 0)
  1306. hl_decode_mb(s);
  1307. if (s->pict_type != AV_PICTURE_TYPE_B && !s->low_delay)
  1308. s->cur_pic->mb_type[s->mb_x + s->mb_y * s->mb_stride] =
  1309. (s->pict_type == AV_PICTURE_TYPE_P && mb_type < 8) ? (mb_type - 1) : -1;
  1310. }
  1311. ff_draw_horiz_band(avctx, s->cur_pic->f,
  1312. s->last_pic->f->data[0] ? s->last_pic->f : NULL,
  1313. 16 * s->mb_y, 16, PICT_FRAME, 0,
  1314. s->low_delay);
  1315. }
  1316. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
  1317. ret = av_frame_ref(data, s->cur_pic->f);
  1318. else if (s->last_pic->f->data[0])
  1319. ret = av_frame_ref(data, s->last_pic->f);
  1320. if (ret < 0)
  1321. return ret;
  1322. /* Do not output the last pic after seeking. */
  1323. if (s->last_pic->f->data[0] || s->low_delay)
  1324. *got_frame = 1;
  1325. if (s->pict_type != AV_PICTURE_TYPE_B) {
  1326. FFSWAP(H264Picture*, s->cur_pic, s->next_pic);
  1327. } else {
  1328. av_frame_unref(s->cur_pic->f);
  1329. }
  1330. return buf_size;
  1331. }
  1332. static av_cold int svq3_decode_end(AVCodecContext *avctx)
  1333. {
  1334. SVQ3Context *s = avctx->priv_data;
  1335. free_picture(avctx, s->cur_pic);
  1336. free_picture(avctx, s->next_pic);
  1337. free_picture(avctx, s->last_pic);
  1338. av_frame_free(&s->cur_pic->f);
  1339. av_frame_free(&s->next_pic->f);
  1340. av_frame_free(&s->last_pic->f);
  1341. av_freep(&s->cur_pic);
  1342. av_freep(&s->next_pic);
  1343. av_freep(&s->last_pic);
  1344. av_freep(&s->slice_buf);
  1345. av_freep(&s->intra4x4_pred_mode);
  1346. av_freep(&s->edge_emu_buffer);
  1347. av_freep(&s->mb2br_xy);
  1348. return 0;
  1349. }
  1350. AVCodec ff_svq3_decoder = {
  1351. .name = "svq3",
  1352. .long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 3 / Sorenson Video 3 / SVQ3"),
  1353. .type = AVMEDIA_TYPE_VIDEO,
  1354. .id = AV_CODEC_ID_SVQ3,
  1355. .priv_data_size = sizeof(SVQ3Context),
  1356. .init = svq3_decode_init,
  1357. .close = svq3_decode_end,
  1358. .decode = svq3_decode_frame,
  1359. .capabilities = AV_CODEC_CAP_DRAW_HORIZ_BAND |
  1360. AV_CODEC_CAP_DR1 |
  1361. AV_CODEC_CAP_DELAY,
  1362. .pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_YUVJ420P,
  1363. AV_PIX_FMT_NONE},
  1364. };