You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

545 lines
21KB

  1. /*
  2. * RV40 decoder
  3. * Copyright (c) 2007 Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * RV40 decoder
  24. */
  25. #include "libavutil/imgutils.h"
  26. #include "avcodec.h"
  27. #include "dsputil.h"
  28. #include "mpegvideo.h"
  29. #include "golomb.h"
  30. #include "rv34.h"
  31. #include "rv40vlc2.h"
  32. #include "rv40data.h"
  33. static VLC aic_top_vlc;
  34. static VLC aic_mode1_vlc[AIC_MODE1_NUM], aic_mode2_vlc[AIC_MODE2_NUM];
  35. static VLC ptype_vlc[NUM_PTYPE_VLCS], btype_vlc[NUM_BTYPE_VLCS];
  36. static const int16_t mode2_offs[] = {
  37. 0, 614, 1222, 1794, 2410, 3014, 3586, 4202, 4792, 5382, 5966, 6542,
  38. 7138, 7716, 8292, 8864, 9444, 10030, 10642, 11212, 11814
  39. };
  40. /**
  41. * Initialize all tables.
  42. */
  43. static av_cold void rv40_init_tables(void)
  44. {
  45. int i;
  46. static VLC_TYPE aic_table[1 << AIC_TOP_BITS][2];
  47. static VLC_TYPE aic_mode1_table[AIC_MODE1_NUM << AIC_MODE1_BITS][2];
  48. static VLC_TYPE aic_mode2_table[11814][2];
  49. static VLC_TYPE ptype_table[NUM_PTYPE_VLCS << PTYPE_VLC_BITS][2];
  50. static VLC_TYPE btype_table[NUM_BTYPE_VLCS << BTYPE_VLC_BITS][2];
  51. aic_top_vlc.table = aic_table;
  52. aic_top_vlc.table_allocated = 1 << AIC_TOP_BITS;
  53. init_vlc(&aic_top_vlc, AIC_TOP_BITS, AIC_TOP_SIZE,
  54. rv40_aic_top_vlc_bits, 1, 1,
  55. rv40_aic_top_vlc_codes, 1, 1, INIT_VLC_USE_NEW_STATIC);
  56. for(i = 0; i < AIC_MODE1_NUM; i++){
  57. // Every tenth VLC table is empty
  58. if((i % 10) == 9) continue;
  59. aic_mode1_vlc[i].table = &aic_mode1_table[i << AIC_MODE1_BITS];
  60. aic_mode1_vlc[i].table_allocated = 1 << AIC_MODE1_BITS;
  61. init_vlc(&aic_mode1_vlc[i], AIC_MODE1_BITS, AIC_MODE1_SIZE,
  62. aic_mode1_vlc_bits[i], 1, 1,
  63. aic_mode1_vlc_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  64. }
  65. for(i = 0; i < AIC_MODE2_NUM; i++){
  66. aic_mode2_vlc[i].table = &aic_mode2_table[mode2_offs[i]];
  67. aic_mode2_vlc[i].table_allocated = mode2_offs[i + 1] - mode2_offs[i];
  68. init_vlc(&aic_mode2_vlc[i], AIC_MODE2_BITS, AIC_MODE2_SIZE,
  69. aic_mode2_vlc_bits[i], 1, 1,
  70. aic_mode2_vlc_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  71. }
  72. for(i = 0; i < NUM_PTYPE_VLCS; i++){
  73. ptype_vlc[i].table = &ptype_table[i << PTYPE_VLC_BITS];
  74. ptype_vlc[i].table_allocated = 1 << PTYPE_VLC_BITS;
  75. init_vlc_sparse(&ptype_vlc[i], PTYPE_VLC_BITS, PTYPE_VLC_SIZE,
  76. ptype_vlc_bits[i], 1, 1,
  77. ptype_vlc_codes[i], 1, 1,
  78. ptype_vlc_syms, 1, 1, INIT_VLC_USE_NEW_STATIC);
  79. }
  80. for(i = 0; i < NUM_BTYPE_VLCS; i++){
  81. btype_vlc[i].table = &btype_table[i << BTYPE_VLC_BITS];
  82. btype_vlc[i].table_allocated = 1 << BTYPE_VLC_BITS;
  83. init_vlc_sparse(&btype_vlc[i], BTYPE_VLC_BITS, BTYPE_VLC_SIZE,
  84. btype_vlc_bits[i], 1, 1,
  85. btype_vlc_codes[i], 1, 1,
  86. btype_vlc_syms, 1, 1, INIT_VLC_USE_NEW_STATIC);
  87. }
  88. }
  89. /**
  90. * Get stored dimension from bitstream.
  91. *
  92. * If the width/height is the standard one then it's coded as a 3-bit index.
  93. * Otherwise it is coded as escaped 8-bit portions.
  94. */
  95. static int get_dimension(GetBitContext *gb, const int *dim)
  96. {
  97. int t = get_bits(gb, 3);
  98. int val = dim[t];
  99. if(val < 0)
  100. val = dim[get_bits1(gb) - val];
  101. if(!val){
  102. do{
  103. t = get_bits(gb, 8);
  104. val += t << 2;
  105. }while(t == 0xFF);
  106. }
  107. return val;
  108. }
  109. /**
  110. * Get encoded picture size - usually this is called from rv40_parse_slice_header.
  111. */
  112. static void rv40_parse_picture_size(GetBitContext *gb, int *w, int *h)
  113. {
  114. *w = get_dimension(gb, rv40_standard_widths);
  115. *h = get_dimension(gb, rv40_standard_heights);
  116. }
  117. static int rv40_parse_slice_header(RV34DecContext *r, GetBitContext *gb, SliceInfo *si)
  118. {
  119. int mb_bits;
  120. int w = r->s.width, h = r->s.height;
  121. int mb_size;
  122. memset(si, 0, sizeof(SliceInfo));
  123. if(get_bits1(gb))
  124. return -1;
  125. si->type = get_bits(gb, 2);
  126. if(si->type == 1) si->type = 0;
  127. si->quant = get_bits(gb, 5);
  128. if(get_bits(gb, 2))
  129. return -1;
  130. si->vlc_set = get_bits(gb, 2);
  131. skip_bits1(gb);
  132. si->pts = get_bits(gb, 13);
  133. if(!si->type || !get_bits1(gb))
  134. rv40_parse_picture_size(gb, &w, &h);
  135. if(av_image_check_size(w, h, 0, r->s.avctx) < 0)
  136. return -1;
  137. si->width = w;
  138. si->height = h;
  139. mb_size = ((w + 15) >> 4) * ((h + 15) >> 4);
  140. mb_bits = ff_rv34_get_start_offset(gb, mb_size);
  141. si->start = get_bits(gb, mb_bits);
  142. return 0;
  143. }
  144. /**
  145. * Decode 4x4 intra types array.
  146. */
  147. static int rv40_decode_intra_types(RV34DecContext *r, GetBitContext *gb, int8_t *dst)
  148. {
  149. MpegEncContext *s = &r->s;
  150. int i, j, k, v;
  151. int A, B, C;
  152. int pattern;
  153. int8_t *ptr;
  154. for(i = 0; i < 4; i++, dst += r->intra_types_stride){
  155. if(!i && s->first_slice_line){
  156. pattern = get_vlc2(gb, aic_top_vlc.table, AIC_TOP_BITS, 1);
  157. dst[0] = (pattern >> 2) & 2;
  158. dst[1] = (pattern >> 1) & 2;
  159. dst[2] = pattern & 2;
  160. dst[3] = (pattern << 1) & 2;
  161. continue;
  162. }
  163. ptr = dst;
  164. for(j = 0; j < 4; j++){
  165. /* Coefficients are read using VLC chosen by the prediction pattern
  166. * The first one (used for retrieving a pair of coefficients) is
  167. * constructed from the top, top right and left coefficients
  168. * The second one (used for retrieving only one coefficient) is
  169. * top + 10 * left.
  170. */
  171. A = ptr[-r->intra_types_stride + 1]; // it won't be used for the last coefficient in a row
  172. B = ptr[-r->intra_types_stride];
  173. C = ptr[-1];
  174. pattern = A + (B << 4) + (C << 8);
  175. for(k = 0; k < MODE2_PATTERNS_NUM; k++)
  176. if(pattern == rv40_aic_table_index[k])
  177. break;
  178. if(j < 3 && k < MODE2_PATTERNS_NUM){ //pattern is found, decoding 2 coefficients
  179. v = get_vlc2(gb, aic_mode2_vlc[k].table, AIC_MODE2_BITS, 2);
  180. *ptr++ = v/9;
  181. *ptr++ = v%9;
  182. j++;
  183. }else{
  184. if(B != -1 && C != -1)
  185. v = get_vlc2(gb, aic_mode1_vlc[B + C*10].table, AIC_MODE1_BITS, 1);
  186. else{ // tricky decoding
  187. v = 0;
  188. switch(C){
  189. case -1: // code 0 -> 1, 1 -> 0
  190. if(B < 2)
  191. v = get_bits1(gb) ^ 1;
  192. break;
  193. case 0:
  194. case 2: // code 0 -> 2, 1 -> 0
  195. v = (get_bits1(gb) ^ 1) << 1;
  196. break;
  197. }
  198. }
  199. *ptr++ = v;
  200. }
  201. }
  202. }
  203. return 0;
  204. }
  205. /**
  206. * Decode macroblock information.
  207. */
  208. static int rv40_decode_mb_info(RV34DecContext *r)
  209. {
  210. MpegEncContext *s = &r->s;
  211. GetBitContext *gb = &s->gb;
  212. int q, i;
  213. int prev_type = 0;
  214. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  215. int blocks[RV34_MB_TYPES] = {0};
  216. int count = 0;
  217. if(!r->s.mb_skip_run) {
  218. r->s.mb_skip_run = svq3_get_ue_golomb(gb) + 1;
  219. if(r->s.mb_skip_run > (unsigned)s->mb_num)
  220. return -1;
  221. }
  222. if(--r->s.mb_skip_run)
  223. return RV34_MB_SKIP;
  224. if(r->avail_cache[6-1])
  225. blocks[r->mb_type[mb_pos - 1]]++;
  226. if(r->avail_cache[6-4]){
  227. blocks[r->mb_type[mb_pos - s->mb_stride]]++;
  228. if(r->avail_cache[6-2])
  229. blocks[r->mb_type[mb_pos - s->mb_stride + 1]]++;
  230. if(r->avail_cache[6-5])
  231. blocks[r->mb_type[mb_pos - s->mb_stride - 1]]++;
  232. }
  233. for(i = 0; i < RV34_MB_TYPES; i++){
  234. if(blocks[i] > count){
  235. count = blocks[i];
  236. prev_type = i;
  237. }
  238. }
  239. if(s->pict_type == AV_PICTURE_TYPE_P){
  240. prev_type = block_num_to_ptype_vlc_num[prev_type];
  241. q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
  242. if(q < PBTYPE_ESCAPE)
  243. return q;
  244. q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
  245. av_log(s->avctx, AV_LOG_ERROR, "Dquant for P-frame\n");
  246. }else{
  247. prev_type = block_num_to_btype_vlc_num[prev_type];
  248. q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
  249. if(q < PBTYPE_ESCAPE)
  250. return q;
  251. q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
  252. av_log(s->avctx, AV_LOG_ERROR, "Dquant for B-frame\n");
  253. }
  254. return 0;
  255. }
  256. enum RV40BlockPos{
  257. POS_CUR,
  258. POS_TOP,
  259. POS_LEFT,
  260. POS_BOTTOM,
  261. };
  262. #define MASK_CUR 0x0001
  263. #define MASK_RIGHT 0x0008
  264. #define MASK_BOTTOM 0x0010
  265. #define MASK_TOP 0x1000
  266. #define MASK_Y_TOP_ROW 0x000F
  267. #define MASK_Y_LAST_ROW 0xF000
  268. #define MASK_Y_LEFT_COL 0x1111
  269. #define MASK_Y_RIGHT_COL 0x8888
  270. #define MASK_C_TOP_ROW 0x0003
  271. #define MASK_C_LAST_ROW 0x000C
  272. #define MASK_C_LEFT_COL 0x0005
  273. #define MASK_C_RIGHT_COL 0x000A
  274. static const int neighbour_offs_x[4] = { 0, 0, -1, 0 };
  275. static const int neighbour_offs_y[4] = { 0, -1, 0, 1 };
  276. /**
  277. * RV40 loop filtering function
  278. */
  279. static void rv40_loop_filter(RV34DecContext *r, int row)
  280. {
  281. MpegEncContext *s = &r->s;
  282. int mb_pos, mb_x;
  283. int i, j, k;
  284. uint8_t *Y, *C;
  285. int alpha, beta, betaY, betaC;
  286. int q;
  287. int mbtype[4]; ///< current macroblock and its neighbours types
  288. /**
  289. * flags indicating that macroblock can be filtered with strong filter
  290. * it is set only for intra coded MB and MB with DCs coded separately
  291. */
  292. int mb_strong[4];
  293. int clip[4]; ///< MB filter clipping value calculated from filtering strength
  294. /**
  295. * coded block patterns for luma part of current macroblock and its neighbours
  296. * Format:
  297. * LSB corresponds to the top left block,
  298. * each nibble represents one row of subblocks.
  299. */
  300. int cbp[4];
  301. /**
  302. * coded block patterns for chroma part of current macroblock and its neighbours
  303. * Format is the same as for luma with two subblocks in a row.
  304. */
  305. int uvcbp[4][2];
  306. /**
  307. * This mask represents the pattern of luma subblocks that should be filtered
  308. * in addition to the coded ones because because they lie at the edge of
  309. * 8x8 block with different enough motion vectors
  310. */
  311. int mvmasks[4];
  312. mb_pos = row * s->mb_stride;
  313. for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
  314. int mbtype = s->current_picture_ptr->f.mb_type[mb_pos];
  315. if(IS_INTRA(mbtype) || IS_SEPARATE_DC(mbtype))
  316. r->cbp_luma [mb_pos] = r->deblock_coefs[mb_pos] = 0xFFFF;
  317. if(IS_INTRA(mbtype))
  318. r->cbp_chroma[mb_pos] = 0xFF;
  319. }
  320. mb_pos = row * s->mb_stride;
  321. for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
  322. int y_h_deblock, y_v_deblock;
  323. int c_v_deblock[2], c_h_deblock[2];
  324. int clip_left;
  325. int avail[4];
  326. int y_to_deblock, c_to_deblock[2];
  327. q = s->current_picture_ptr->f.qscale_table[mb_pos];
  328. alpha = rv40_alpha_tab[q];
  329. beta = rv40_beta_tab [q];
  330. betaY = betaC = beta * 3;
  331. if(s->width * s->height <= 176*144)
  332. betaY += beta;
  333. avail[0] = 1;
  334. avail[1] = row;
  335. avail[2] = mb_x;
  336. avail[3] = row < s->mb_height - 1;
  337. for(i = 0; i < 4; i++){
  338. if(avail[i]){
  339. int pos = mb_pos + neighbour_offs_x[i] + neighbour_offs_y[i]*s->mb_stride;
  340. mvmasks[i] = r->deblock_coefs[pos];
  341. mbtype [i] = s->current_picture_ptr->f.mb_type[pos];
  342. cbp [i] = r->cbp_luma[pos];
  343. uvcbp[i][0] = r->cbp_chroma[pos] & 0xF;
  344. uvcbp[i][1] = r->cbp_chroma[pos] >> 4;
  345. }else{
  346. mvmasks[i] = 0;
  347. mbtype [i] = mbtype[0];
  348. cbp [i] = 0;
  349. uvcbp[i][0] = uvcbp[i][1] = 0;
  350. }
  351. mb_strong[i] = IS_INTRA(mbtype[i]) || IS_SEPARATE_DC(mbtype[i]);
  352. clip[i] = rv40_filter_clip_tbl[mb_strong[i] + 1][q];
  353. }
  354. y_to_deblock = mvmasks[POS_CUR]
  355. | (mvmasks[POS_BOTTOM] << 16);
  356. /* This pattern contains bits signalling that horizontal edges of
  357. * the current block can be filtered.
  358. * That happens when either of adjacent subblocks is coded or lies on
  359. * the edge of 8x8 blocks with motion vectors differing by more than
  360. * 3/4 pel in any component (any edge orientation for some reason).
  361. */
  362. y_h_deblock = y_to_deblock
  363. | ((cbp[POS_CUR] << 4) & ~MASK_Y_TOP_ROW)
  364. | ((cbp[POS_TOP] & MASK_Y_LAST_ROW) >> 12);
  365. /* This pattern contains bits signalling that vertical edges of
  366. * the current block can be filtered.
  367. * That happens when either of adjacent subblocks is coded or lies on
  368. * the edge of 8x8 blocks with motion vectors differing by more than
  369. * 3/4 pel in any component (any edge orientation for some reason).
  370. */
  371. y_v_deblock = y_to_deblock
  372. | ((cbp[POS_CUR] << 1) & ~MASK_Y_LEFT_COL)
  373. | ((cbp[POS_LEFT] & MASK_Y_RIGHT_COL) >> 3);
  374. if(!mb_x)
  375. y_v_deblock &= ~MASK_Y_LEFT_COL;
  376. if(!row)
  377. y_h_deblock &= ~MASK_Y_TOP_ROW;
  378. if(row == s->mb_height - 1 || (mb_strong[POS_CUR] || mb_strong[POS_BOTTOM]))
  379. y_h_deblock &= ~(MASK_Y_TOP_ROW << 16);
  380. /* Calculating chroma patterns is similar and easier since there is
  381. * no motion vector pattern for them.
  382. */
  383. for(i = 0; i < 2; i++){
  384. c_to_deblock[i] = (uvcbp[POS_BOTTOM][i] << 4) | uvcbp[POS_CUR][i];
  385. c_v_deblock[i] = c_to_deblock[i]
  386. | ((uvcbp[POS_CUR] [i] << 1) & ~MASK_C_LEFT_COL)
  387. | ((uvcbp[POS_LEFT][i] & MASK_C_RIGHT_COL) >> 1);
  388. c_h_deblock[i] = c_to_deblock[i]
  389. | ((uvcbp[POS_TOP][i] & MASK_C_LAST_ROW) >> 2)
  390. | (uvcbp[POS_CUR][i] << 2);
  391. if(!mb_x)
  392. c_v_deblock[i] &= ~MASK_C_LEFT_COL;
  393. if(!row)
  394. c_h_deblock[i] &= ~MASK_C_TOP_ROW;
  395. if(row == s->mb_height - 1 || mb_strong[POS_CUR] || mb_strong[POS_BOTTOM])
  396. c_h_deblock[i] &= ~(MASK_C_TOP_ROW << 4);
  397. }
  398. for(j = 0; j < 16; j += 4){
  399. Y = s->current_picture_ptr->f.data[0] + mb_x*16 + (row*16 + j) * s->linesize;
  400. for(i = 0; i < 4; i++, Y += 4){
  401. int ij = i + j;
  402. int clip_cur = y_to_deblock & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
  403. int dither = j ? ij : i*4;
  404. // if bottom block is coded then we can filter its top edge
  405. // (or bottom edge of this block, which is the same)
  406. if(y_h_deblock & (MASK_BOTTOM << ij)){
  407. r->rdsp.rv40_h_loop_filter(Y+4*s->linesize, s->linesize, dither,
  408. y_to_deblock & (MASK_BOTTOM << ij) ? clip[POS_CUR] : 0,
  409. clip_cur,
  410. alpha, beta, betaY, 0, 0);
  411. }
  412. // filter left block edge in ordinary mode (with low filtering strength)
  413. if(y_v_deblock & (MASK_CUR << ij) && (i || !(mb_strong[POS_CUR] || mb_strong[POS_LEFT]))){
  414. if(!i)
  415. clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
  416. else
  417. clip_left = y_to_deblock & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
  418. r->rdsp.rv40_v_loop_filter(Y, s->linesize, dither,
  419. clip_cur,
  420. clip_left,
  421. alpha, beta, betaY, 0, 0);
  422. }
  423. // filter top edge of the current macroblock when filtering strength is high
  424. if(!j && y_h_deblock & (MASK_CUR << i) && (mb_strong[POS_CUR] || mb_strong[POS_TOP])){
  425. r->rdsp.rv40_h_loop_filter(Y, s->linesize, dither,
  426. clip_cur,
  427. mvmasks[POS_TOP] & (MASK_TOP << i) ? clip[POS_TOP] : 0,
  428. alpha, beta, betaY, 0, 1);
  429. }
  430. // filter left block edge in edge mode (with high filtering strength)
  431. if(y_v_deblock & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] || mb_strong[POS_LEFT])){
  432. clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
  433. r->rdsp.rv40_v_loop_filter(Y, s->linesize, dither,
  434. clip_cur,
  435. clip_left,
  436. alpha, beta, betaY, 0, 1);
  437. }
  438. }
  439. }
  440. for(k = 0; k < 2; k++){
  441. for(j = 0; j < 2; j++){
  442. C = s->current_picture_ptr->f.data[k + 1] + mb_x*8 + (row*8 + j*4) * s->uvlinesize;
  443. for(i = 0; i < 2; i++, C += 4){
  444. int ij = i + j*2;
  445. int clip_cur = c_to_deblock[k] & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
  446. if(c_h_deblock[k] & (MASK_CUR << (ij+2))){
  447. int clip_bot = c_to_deblock[k] & (MASK_CUR << (ij+2)) ? clip[POS_CUR] : 0;
  448. r->rdsp.rv40_h_loop_filter(C+4*s->uvlinesize, s->uvlinesize, i*8,
  449. clip_bot,
  450. clip_cur,
  451. alpha, beta, betaC, 1, 0);
  452. }
  453. if((c_v_deblock[k] & (MASK_CUR << ij)) && (i || !(mb_strong[POS_CUR] || mb_strong[POS_LEFT]))){
  454. if(!i)
  455. clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
  456. else
  457. clip_left = c_to_deblock[k] & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
  458. r->rdsp.rv40_v_loop_filter(C, s->uvlinesize, j*8,
  459. clip_cur,
  460. clip_left,
  461. alpha, beta, betaC, 1, 0);
  462. }
  463. if(!j && c_h_deblock[k] & (MASK_CUR << ij) && (mb_strong[POS_CUR] || mb_strong[POS_TOP])){
  464. int clip_top = uvcbp[POS_TOP][k] & (MASK_CUR << (ij+2)) ? clip[POS_TOP] : 0;
  465. r->rdsp.rv40_h_loop_filter(C, s->uvlinesize, i*8,
  466. clip_cur,
  467. clip_top,
  468. alpha, beta, betaC, 1, 1);
  469. }
  470. if(c_v_deblock[k] & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] || mb_strong[POS_LEFT])){
  471. clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
  472. r->rdsp.rv40_v_loop_filter(C, s->uvlinesize, j*8,
  473. clip_cur,
  474. clip_left,
  475. alpha, beta, betaC, 1, 1);
  476. }
  477. }
  478. }
  479. }
  480. }
  481. }
  482. /**
  483. * Initialize decoder.
  484. */
  485. static av_cold int rv40_decode_init(AVCodecContext *avctx)
  486. {
  487. RV34DecContext *r = avctx->priv_data;
  488. r->rv30 = 0;
  489. ff_rv34_decode_init(avctx);
  490. if(!aic_top_vlc.bits)
  491. rv40_init_tables();
  492. r->parse_slice_header = rv40_parse_slice_header;
  493. r->decode_intra_types = rv40_decode_intra_types;
  494. r->decode_mb_info = rv40_decode_mb_info;
  495. r->loop_filter = rv40_loop_filter;
  496. r->luma_dc_quant_i = rv40_luma_dc_quant[0];
  497. r->luma_dc_quant_p = rv40_luma_dc_quant[1];
  498. return 0;
  499. }
  500. AVCodec ff_rv40_decoder = {
  501. .name = "rv40",
  502. .type = AVMEDIA_TYPE_VIDEO,
  503. .id = CODEC_ID_RV40,
  504. .priv_data_size = sizeof(RV34DecContext),
  505. .init = rv40_decode_init,
  506. .close = ff_rv34_decode_end,
  507. .decode = ff_rv34_decode_frame,
  508. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  509. .flush = ff_mpeg_flush,
  510. .long_name = NULL_IF_CONFIG_SMALL("RealVideo 4.0"),
  511. .pix_fmts = ff_pixfmt_list_420,
  512. };